]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/dev/ti/if_ti.c
MFC r227347,227367:
[FreeBSD/stable/8.git] / sys / dev / ti / if_ti.c
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81
82 #include "opt_ti.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103
104 #include <net/bpf.h>
105
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 #ifdef TI_SF_BUF_JUMBO
116 #include <vm/vm.h>
117 #include <vm/vm_page.h>
118 #endif
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122
123 #include <sys/tiio.h>
124 #include <dev/ti/if_tireg.h>
125 #include <dev/ti/ti_fw.h>
126 #include <dev/ti/ti_fw2.h>
127
128 #define TI_CSUM_FEATURES        (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
129 /*
130  * We can only turn on header splitting if we're using extended receive
131  * BDs.
132  */
133 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
134 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
135 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
136
137 typedef enum {
138         TI_SWAP_HTON,
139         TI_SWAP_NTOH
140 } ti_swap_type;
141
142 /*
143  * Various supported device vendors/types and their names.
144  */
145
146 static const struct ti_type const ti_devs[] = {
147         { ALT_VENDORID, ALT_DEVICEID_ACENIC,
148                 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
149         { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
150                 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
151         { TC_VENDORID,  TC_DEVICEID_3C985,
152                 "3Com 3c985-SX Gigabit Ethernet" },
153         { NG_VENDORID, NG_DEVICEID_GA620,
154                 "Netgear GA620 1000baseSX Gigabit Ethernet" },
155         { NG_VENDORID, NG_DEVICEID_GA620T,
156                 "Netgear GA620 1000baseT Gigabit Ethernet" },
157         { SGI_VENDORID, SGI_DEVICEID_TIGON,
158                 "Silicon Graphics Gigabit Ethernet" },
159         { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
160                 "Farallon PN9000SX Gigabit Ethernet" },
161         { 0, 0, NULL }
162 };
163
164
165 static  d_open_t        ti_open;
166 static  d_close_t       ti_close;
167 static  d_ioctl_t       ti_ioctl2;
168
169 static struct cdevsw ti_cdevsw = {
170         .d_version =    D_VERSION,
171         .d_flags =      0,
172         .d_open =       ti_open,
173         .d_close =      ti_close,
174         .d_ioctl =      ti_ioctl2,
175         .d_name =       "ti",
176 };
177
178 static int ti_probe(device_t);
179 static int ti_attach(device_t);
180 static int ti_detach(device_t);
181 static void ti_txeof(struct ti_softc *);
182 static void ti_rxeof(struct ti_softc *);
183
184 static void ti_stats_update(struct ti_softc *);
185 static int ti_encap(struct ti_softc *, struct mbuf **);
186
187 static void ti_intr(void *);
188 static void ti_start(struct ifnet *);
189 static void ti_start_locked(struct ifnet *);
190 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
191 static void ti_init(void *);
192 static void ti_init_locked(void *);
193 static void ti_init2(struct ti_softc *);
194 static void ti_stop(struct ti_softc *);
195 static void ti_watchdog(void *);
196 static int ti_shutdown(device_t);
197 static int ti_ifmedia_upd(struct ifnet *);
198 static int ti_ifmedia_upd_locked(struct ti_softc *);
199 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200
201 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
202 static uint8_t  ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
203 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
204
205 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
206 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
207 static void ti_setmulti(struct ti_softc *);
208
209 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
210 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
211 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
212 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
213     int);
214 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
215     int, int, int);
216 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217 static void ti_loadfw(struct ti_softc *);
218 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220 static void ti_handle_events(struct ti_softc *);
221 static int ti_alloc_dmamaps(struct ti_softc *);
222 static void ti_free_dmamaps(struct ti_softc *);
223 static int ti_alloc_jumbo_mem(struct ti_softc *);
224 static int ti_newbuf_std(struct ti_softc *, int);
225 static int ti_newbuf_mini(struct ti_softc *, int);
226 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
227 static int ti_init_rx_ring_std(struct ti_softc *);
228 static void ti_free_rx_ring_std(struct ti_softc *);
229 static int ti_init_rx_ring_jumbo(struct ti_softc *);
230 static void ti_free_rx_ring_jumbo(struct ti_softc *);
231 static int ti_init_rx_ring_mini(struct ti_softc *);
232 static void ti_free_rx_ring_mini(struct ti_softc *);
233 static void ti_free_tx_ring(struct ti_softc *);
234 static int ti_init_tx_ring(struct ti_softc *);
235 static void ti_discard_std(struct ti_softc *, int);
236 #ifndef TI_SF_BUF_JUMBO
237 static void ti_discard_jumbo(struct ti_softc *, int);
238 #endif
239 static void ti_discard_mini(struct ti_softc *, int);
240
241 static int ti_64bitslot_war(struct ti_softc *);
242 static int ti_chipinit(struct ti_softc *);
243 static int ti_gibinit(struct ti_softc *);
244
245 #ifdef TI_JUMBO_HDRSPLIT
246 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
247     int idx);
248 #endif /* TI_JUMBO_HDRSPLIT */
249
250 static device_method_t ti_methods[] = {
251         /* Device interface */
252         DEVMETHOD(device_probe,         ti_probe),
253         DEVMETHOD(device_attach,        ti_attach),
254         DEVMETHOD(device_detach,        ti_detach),
255         DEVMETHOD(device_shutdown,      ti_shutdown),
256         { 0, 0 }
257 };
258
259 static driver_t ti_driver = {
260         "ti",
261         ti_methods,
262         sizeof(struct ti_softc)
263 };
264
265 static devclass_t ti_devclass;
266
267 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
268 MODULE_DEPEND(ti, pci, 1, 1, 1);
269 MODULE_DEPEND(ti, ether, 1, 1, 1);
270
271 /*
272  * Send an instruction or address to the EEPROM, check for ACK.
273  */
274 static uint32_t
275 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
276 {
277         int i, ack = 0;
278
279         /*
280          * Make sure we're in TX mode.
281          */
282         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284         /*
285          * Feed in each bit and stobe the clock.
286          */
287         for (i = 0x80; i; i >>= 1) {
288                 if (byte & i) {
289                         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290                 } else {
291                         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292                 }
293                 DELAY(1);
294                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295                 DELAY(1);
296                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297         }
298
299         /*
300          * Turn off TX mode.
301          */
302         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304         /*
305          * Check for ack.
306          */
307         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308         ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311         return (ack);
312 }
313
314 /*
315  * Read a byte of data stored in the EEPROM at address 'addr.'
316  * We have to send two address bytes since the EEPROM can hold
317  * more than 256 bytes of data.
318  */
319 static uint8_t
320 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
321 {
322         int i;
323         uint8_t byte = 0;
324
325         EEPROM_START;
326
327         /*
328          * Send write control code to EEPROM.
329          */
330         if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
331                 device_printf(sc->ti_dev,
332                     "failed to send write command, status: %x\n",
333                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
334                 return (1);
335         }
336
337         /*
338          * Send first byte of address of byte we want to read.
339          */
340         if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
341                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
342                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
343                 return (1);
344         }
345         /*
346          * Send second byte address of byte we want to read.
347          */
348         if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
349                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351                 return (1);
352         }
353
354         EEPROM_STOP;
355         EEPROM_START;
356         /*
357          * Send read control code to EEPROM.
358          */
359         if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
360                 device_printf(sc->ti_dev,
361                     "failed to send read command, status: %x\n",
362                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
363                 return (1);
364         }
365
366         /*
367          * Start reading bits from EEPROM.
368          */
369         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
370         for (i = 0x80; i; i >>= 1) {
371                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
372                 DELAY(1);
373                 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
374                         byte |= i;
375                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
376                 DELAY(1);
377         }
378
379         EEPROM_STOP;
380
381         /*
382          * No ACK generated for read, so just return byte.
383          */
384
385         *dest = byte;
386
387         return (0);
388 }
389
390 /*
391  * Read a sequence of bytes from the EEPROM.
392  */
393 static int
394 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
395 {
396         int err = 0, i;
397         uint8_t byte = 0;
398
399         for (i = 0; i < cnt; i++) {
400                 err = ti_eeprom_getbyte(sc, off + i, &byte);
401                 if (err)
402                         break;
403                 *(dest + i) = byte;
404         }
405
406         return (err ? 1 : 0);
407 }
408
409 /*
410  * NIC memory read function.
411  * Can be used to copy data from NIC local memory.
412  */
413 static void
414 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
415 {
416         int segptr, segsize, cnt;
417         char *ptr;
418
419         segptr = addr;
420         cnt = len;
421         ptr = buf;
422
423         while (cnt) {
424                 if (cnt < TI_WINLEN)
425                         segsize = cnt;
426                 else
427                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
428                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
429                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
430                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
431                     segsize / 4);
432                 ptr += segsize;
433                 segptr += segsize;
434                 cnt -= segsize;
435         }
436 }
437
438
439 /*
440  * NIC memory write function.
441  * Can be used to copy data into NIC local memory.
442  */
443 static void
444 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
445 {
446         int segptr, segsize, cnt;
447         char *ptr;
448
449         segptr = addr;
450         cnt = len;
451         ptr = buf;
452
453         while (cnt) {
454                 if (cnt < TI_WINLEN)
455                         segsize = cnt;
456                 else
457                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
458                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
459                 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
460                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
461                     segsize / 4);
462                 ptr += segsize;
463                 segptr += segsize;
464                 cnt -= segsize;
465         }
466 }
467
468 /*
469  * NIC memory read function.
470  * Can be used to clear a section of NIC local memory.
471  */
472 static void
473 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
474 {
475         int segptr, segsize, cnt;
476
477         segptr = addr;
478         cnt = len;
479
480         while (cnt) {
481                 if (cnt < TI_WINLEN)
482                         segsize = cnt;
483                 else
484                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
485                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
486                 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
487                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
488                 segptr += segsize;
489                 cnt -= segsize;
490         }
491 }
492
493 static int
494 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
495     caddr_t buf, int useraddr, int readdata)
496 {
497         int segptr, segsize, cnt;
498         caddr_t ptr;
499         uint32_t origwin;
500         uint8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
501         int resid, segresid;
502         int first_pass;
503
504         TI_LOCK_ASSERT(sc);
505
506         /*
507          * At the moment, we don't handle non-aligned cases, we just bail.
508          * If this proves to be a problem, it will be fixed.
509          */
510         if ((readdata == 0)
511          && (tigon_addr & 0x3)) {
512                 device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
513                     "word-aligned\n", __func__, tigon_addr);
514                 device_printf(sc->ti_dev, "%s: unaligned writes aren't "
515                     "yet supported\n", __func__);
516                 return (EINVAL);
517         }
518
519         segptr = tigon_addr & ~0x3;
520         segresid = tigon_addr - segptr;
521
522         /*
523          * This is the non-aligned amount left over that we'll need to
524          * copy.
525          */
526         resid = len & 0x3;
527
528         /* Add in the left over amount at the front of the buffer */
529         resid += segresid;
530
531         cnt = len & ~0x3;
532         /*
533          * If resid + segresid is >= 4, add multiples of 4 to the count and
534          * decrease the residual by that much.
535          */
536         cnt += resid & ~0x3;
537         resid -= resid & ~0x3;
538
539         ptr = buf;
540
541         first_pass = 1;
542
543         /*
544          * Save the old window base value.
545          */
546         origwin = CSR_READ_4(sc, TI_WINBASE);
547
548         while (cnt) {
549                 bus_size_t ti_offset;
550
551                 if (cnt < TI_WINLEN)
552                         segsize = cnt;
553                 else
554                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
555                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
556
557                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
558
559                 if (readdata) {
560
561                         bus_space_read_region_4(sc->ti_btag,
562                                                 sc->ti_bhandle, ti_offset,
563                                                 (uint32_t *)tmparray,
564                                                 segsize >> 2);
565                         if (useraddr) {
566                                 /*
567                                  * Yeah, this is a little on the kludgy
568                                  * side, but at least this code is only
569                                  * used for debugging.
570                                  */
571                                 ti_bcopy_swap(tmparray, tmparray2, segsize,
572                                               TI_SWAP_NTOH);
573
574                                 TI_UNLOCK(sc);
575                                 if (first_pass) {
576                                         copyout(&tmparray2[segresid], ptr,
577                                                 segsize - segresid);
578                                         first_pass = 0;
579                                 } else
580                                         copyout(tmparray2, ptr, segsize);
581                                 TI_LOCK(sc);
582                         } else {
583                                 if (first_pass) {
584
585                                         ti_bcopy_swap(tmparray, tmparray2,
586                                                       segsize, TI_SWAP_NTOH);
587                                         TI_UNLOCK(sc);
588                                         bcopy(&tmparray2[segresid], ptr,
589                                               segsize - segresid);
590                                         TI_LOCK(sc);
591                                         first_pass = 0;
592                                 } else
593                                         ti_bcopy_swap(tmparray, ptr, segsize,
594                                                       TI_SWAP_NTOH);
595                         }
596
597                 } else {
598                         if (useraddr) {
599                                 TI_UNLOCK(sc);
600                                 copyin(ptr, tmparray2, segsize);
601                                 TI_LOCK(sc);
602                                 ti_bcopy_swap(tmparray2, tmparray, segsize,
603                                               TI_SWAP_HTON);
604                         } else
605                                 ti_bcopy_swap(ptr, tmparray, segsize,
606                                               TI_SWAP_HTON);
607
608                         bus_space_write_region_4(sc->ti_btag,
609                                                  sc->ti_bhandle, ti_offset,
610                                                  (uint32_t *)tmparray,
611                                                  segsize >> 2);
612                 }
613                 segptr += segsize;
614                 ptr += segsize;
615                 cnt -= segsize;
616         }
617
618         /*
619          * Handle leftover, non-word-aligned bytes.
620          */
621         if (resid != 0) {
622                 uint32_t        tmpval, tmpval2;
623                 bus_size_t      ti_offset;
624
625                 /*
626                  * Set the segment pointer.
627                  */
628                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
629
630                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
631
632                 /*
633                  * First, grab whatever is in our source/destination.
634                  * We'll obviously need this for reads, but also for
635                  * writes, since we'll be doing read/modify/write.
636                  */
637                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
638                                         ti_offset, &tmpval, 1);
639
640                 /*
641                  * Next, translate this from little-endian to big-endian
642                  * (at least on i386 boxes).
643                  */
644                 tmpval2 = ntohl(tmpval);
645
646                 if (readdata) {
647                         /*
648                          * If we're reading, just copy the leftover number
649                          * of bytes from the host byte order buffer to
650                          * the user's buffer.
651                          */
652                         if (useraddr) {
653                                 TI_UNLOCK(sc);
654                                 copyout(&tmpval2, ptr, resid);
655                                 TI_LOCK(sc);
656                         } else
657                                 bcopy(&tmpval2, ptr, resid);
658                 } else {
659                         /*
660                          * If we're writing, first copy the bytes to be
661                          * written into the network byte order buffer,
662                          * leaving the rest of the buffer with whatever was
663                          * originally in there.  Then, swap the bytes
664                          * around into host order and write them out.
665                          *
666                          * XXX KDM the read side of this has been verified
667                          * to work, but the write side of it has not been
668                          * verified.  So user beware.
669                          */
670                         if (useraddr) {
671                                 TI_UNLOCK(sc);
672                                 copyin(ptr, &tmpval2, resid);
673                                 TI_LOCK(sc);
674                         } else
675                                 bcopy(ptr, &tmpval2, resid);
676
677                         tmpval = htonl(tmpval2);
678
679                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
680                                                  ti_offset, &tmpval, 1);
681                 }
682         }
683
684         CSR_WRITE_4(sc, TI_WINBASE, origwin);
685
686         return (0);
687 }
688
689 static int
690 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
691     caddr_t buf, int useraddr, int readdata, int cpu)
692 {
693         uint32_t segptr;
694         int cnt;
695         uint32_t tmpval, tmpval2;
696         caddr_t ptr;
697
698         TI_LOCK_ASSERT(sc);
699
700         /*
701          * At the moment, we don't handle non-aligned cases, we just bail.
702          * If this proves to be a problem, it will be fixed.
703          */
704         if (tigon_addr & 0x3) {
705                 device_printf(sc->ti_dev, "%s: tigon address %#x "
706                     "isn't word-aligned\n", __func__, tigon_addr);
707                 return (EINVAL);
708         }
709
710         if (len & 0x3) {
711                 device_printf(sc->ti_dev, "%s: transfer length %d "
712                     "isn't word-aligned\n", __func__, len);
713                 return (EINVAL);
714         }
715
716         segptr = tigon_addr;
717         cnt = len;
718         ptr = buf;
719
720         while (cnt) {
721                 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
722
723                 if (readdata) {
724                         tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
725
726                         tmpval = ntohl(tmpval2);
727
728                         /*
729                          * Note:  I've used this debugging interface
730                          * extensively with Alteon's 12.3.15 firmware,
731                          * compiled with GCC 2.7.2.1 and binutils 2.9.1.
732                          *
733                          * When you compile the firmware without
734                          * optimization, which is necessary sometimes in
735                          * order to properly step through it, you sometimes
736                          * read out a bogus value of 0xc0017c instead of
737                          * whatever was supposed to be in that scratchpad
738                          * location.  That value is on the stack somewhere,
739                          * but I've never been able to figure out what was
740                          * causing the problem.
741                          *
742                          * The address seems to pop up in random places,
743                          * often not in the same place on two subsequent
744                          * reads.
745                          *
746                          * In any case, the underlying data doesn't seem
747                          * to be affected, just the value read out.
748                          *
749                          * KDM, 3/7/2000
750                          */
751
752                         if (tmpval2 == 0xc0017c)
753                                 device_printf(sc->ti_dev, "found 0xc0017c at "
754                                     "%#x (tmpval2)\n", segptr);
755
756                         if (tmpval == 0xc0017c)
757                                 device_printf(sc->ti_dev, "found 0xc0017c at "
758                                     "%#x (tmpval)\n", segptr);
759
760                         if (useraddr)
761                                 copyout(&tmpval, ptr, 4);
762                         else
763                                 bcopy(&tmpval, ptr, 4);
764                 } else {
765                         if (useraddr)
766                                 copyin(ptr, &tmpval2, 4);
767                         else
768                                 bcopy(ptr, &tmpval2, 4);
769
770                         tmpval = htonl(tmpval2);
771
772                         CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
773                 }
774
775                 cnt -= 4;
776                 segptr += 4;
777                 ptr += 4;
778         }
779
780         return (0);
781 }
782
783 static int
784 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
785 {
786         const uint8_t *tmpsrc;
787         uint8_t *tmpdst;
788         size_t tmplen;
789
790         if (len & 0x3) {
791                 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
792                        len);
793                 return (-1);
794         }
795
796         tmpsrc = src;
797         tmpdst = dst;
798         tmplen = len;
799
800         while (tmplen) {
801                 if (swap_type == TI_SWAP_NTOH)
802                         *(uint32_t *)tmpdst =
803                                 ntohl(*(const uint32_t *)tmpsrc);
804                 else
805                         *(uint32_t *)tmpdst =
806                                 htonl(*(const uint32_t *)tmpsrc);
807
808                 tmpsrc += 4;
809                 tmpdst += 4;
810                 tmplen -= 4;
811         }
812
813         return (0);
814 }
815
816 /*
817  * Load firmware image into the NIC. Check that the firmware revision
818  * is acceptable and see if we want the firmware for the Tigon 1 or
819  * Tigon 2.
820  */
821 static void
822 ti_loadfw(struct ti_softc *sc)
823 {
824
825         TI_LOCK_ASSERT(sc);
826
827         switch (sc->ti_hwrev) {
828         case TI_HWREV_TIGON:
829                 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
830                     tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
831                     tigonFwReleaseFix != TI_FIRMWARE_FIX) {
832                         device_printf(sc->ti_dev, "firmware revision mismatch; "
833                             "want %d.%d.%d, got %d.%d.%d\n",
834                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
835                             TI_FIRMWARE_FIX, tigonFwReleaseMajor,
836                             tigonFwReleaseMinor, tigonFwReleaseFix);
837                         return;
838                 }
839                 ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
840                 ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
841                 ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
842                     tigonFwRodata);
843                 ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
844                 ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
845                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
846                 break;
847         case TI_HWREV_TIGON_II:
848                 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
849                     tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
850                     tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
851                         device_printf(sc->ti_dev, "firmware revision mismatch; "
852                             "want %d.%d.%d, got %d.%d.%d\n",
853                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
854                             TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
855                             tigon2FwReleaseMinor, tigon2FwReleaseFix);
856                         return;
857                 }
858                 ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
859                     tigon2FwText);
860                 ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
861                     tigon2FwData);
862                 ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
863                     tigon2FwRodata);
864                 ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
865                 ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
866                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
867                 break;
868         default:
869                 device_printf(sc->ti_dev,
870                     "can't load firmware: unknown hardware rev\n");
871                 break;
872         }
873 }
874
875 /*
876  * Send the NIC a command via the command ring.
877  */
878 static void
879 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
880 {
881         int index;
882
883         index = sc->ti_cmd_saved_prodidx;
884         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
885         TI_INC(index, TI_CMD_RING_CNT);
886         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
887         sc->ti_cmd_saved_prodidx = index;
888 }
889
890 /*
891  * Send the NIC an extended command. The 'len' parameter specifies the
892  * number of command slots to include after the initial command.
893  */
894 static void
895 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
896 {
897         int index;
898         int i;
899
900         index = sc->ti_cmd_saved_prodidx;
901         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
902         TI_INC(index, TI_CMD_RING_CNT);
903         for (i = 0; i < len; i++) {
904                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
905                     *(uint32_t *)(&arg[i * 4]));
906                 TI_INC(index, TI_CMD_RING_CNT);
907         }
908         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
909         sc->ti_cmd_saved_prodidx = index;
910 }
911
912 /*
913  * Handle events that have triggered interrupts.
914  */
915 static void
916 ti_handle_events(struct ti_softc *sc)
917 {
918         struct ti_event_desc *e;
919
920         if (sc->ti_rdata->ti_event_ring == NULL)
921                 return;
922
923         while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924                 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
925                 switch (TI_EVENT_EVENT(e)) {
926                 case TI_EV_LINKSTAT_CHANGED:
927                         sc->ti_linkstat = TI_EVENT_CODE(e);
928                         if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929                                 if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930                                 sc->ti_ifp->if_baudrate = IF_Mbps(100);
931                                 if (bootverbose)
932                                         device_printf(sc->ti_dev,
933                                             "10/100 link up\n");
934                         } else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935                                 if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936                                 sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937                                 if (bootverbose)
938                                         device_printf(sc->ti_dev,
939                                             "gigabit link up\n");
940                         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941                                 if_link_state_change(sc->ti_ifp,
942                                     LINK_STATE_DOWN);
943                                 sc->ti_ifp->if_baudrate = 0;
944                                 if (bootverbose)
945                                         device_printf(sc->ti_dev,
946                                             "link down\n");
947                         }
948                         break;
949                 case TI_EV_ERROR:
950                         if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951                                 device_printf(sc->ti_dev, "invalid command\n");
952                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953                                 device_printf(sc->ti_dev, "unknown command\n");
954                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955                                 device_printf(sc->ti_dev, "bad config data\n");
956                         break;
957                 case TI_EV_FIRMWARE_UP:
958                         ti_init2(sc);
959                         break;
960                 case TI_EV_STATS_UPDATED:
961                         ti_stats_update(sc);
962                         break;
963                 case TI_EV_RESET_JUMBO_RING:
964                 case TI_EV_MCAST_UPDATED:
965                         /* Who cares. */
966                         break;
967                 default:
968                         device_printf(sc->ti_dev, "unknown event: %d\n",
969                             TI_EVENT_EVENT(e));
970                         break;
971                 }
972                 /* Advance the consumer index. */
973                 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974                 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975         }
976 }
977
978 static int
979 ti_alloc_dmamaps(struct ti_softc *sc)
980 {
981         int i;
982
983         for (i = 0; i < TI_TX_RING_CNT; i++) {
984                 sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
985                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
986                 if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
987                     &sc->ti_cdata.ti_txdesc[i].tx_dmamap)) {
988                         device_printf(sc->ti_dev,
989                             "cannot create DMA map for TX\n");
990                         return (ENOBUFS);
991                 }
992         }
993         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
994                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
995                     &sc->ti_cdata.ti_rx_std_maps[i])) {
996                         device_printf(sc->ti_dev,
997                             "cannot create DMA map for RX\n");
998                         return (ENOBUFS);
999                 }
1000         }
1001         if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1002             &sc->ti_cdata.ti_rx_std_sparemap)) {
1003                 device_printf(sc->ti_dev,
1004                     "cannot create spare DMA map for RX\n");
1005                 return (ENOBUFS);
1006         }
1007
1008         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1009                 if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1010                     &sc->ti_cdata.ti_rx_jumbo_maps[i])) {
1011                         device_printf(sc->ti_dev,
1012                             "cannot create DMA map for jumbo RX\n");
1013                         return (ENOBUFS);
1014                 }
1015         }
1016         if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017             &sc->ti_cdata.ti_rx_jumbo_sparemap)) {
1018                 device_printf(sc->ti_dev,
1019                     "cannot create spare DMA map for jumbo RX\n");
1020                 return (ENOBUFS);
1021         }
1022
1023         /* Mini ring is not available on Tigon 1. */
1024         if (sc->ti_hwrev == TI_HWREV_TIGON)
1025                 return (0);
1026
1027         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1028                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1029                     &sc->ti_cdata.ti_rx_mini_maps[i])) {
1030                         device_printf(sc->ti_dev,
1031                             "cannot create DMA map for mini RX\n");
1032                         return (ENOBUFS);
1033                 }
1034         }
1035         if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1036             &sc->ti_cdata.ti_rx_mini_sparemap)) {
1037                 device_printf(sc->ti_dev,
1038                     "cannot create DMA map for mini RX\n");
1039                 return (ENOBUFS);
1040         }
1041
1042         return (0);
1043 }
1044
1045 static void
1046 ti_free_dmamaps(struct ti_softc *sc)
1047 {
1048         int i;
1049
1050         if (sc->ti_mbuftx_dmat) {
1051                 for (i = 0; i < TI_TX_RING_CNT; i++) {
1052                         if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1053                                 bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1054                                     sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1055                                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1056                         }
1057                 }
1058         }
1059
1060         if (sc->ti_mbufrx_dmat) {
1061                 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1062                         if (sc->ti_cdata.ti_rx_std_maps[i]) {
1063                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1064                                     sc->ti_cdata.ti_rx_std_maps[i]);
1065                                 sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1066                         }
1067                 }
1068                 if (sc->ti_cdata.ti_rx_std_sparemap) {
1069                         bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1070                             sc->ti_cdata.ti_rx_std_sparemap);
1071                         sc->ti_cdata.ti_rx_std_sparemap = NULL;
1072                 }
1073         }
1074
1075         if (sc->ti_jumbo_dmat) {
1076                 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1077                         if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1078                                 bus_dmamap_destroy(sc->ti_jumbo_dmat,
1079                                     sc->ti_cdata.ti_rx_jumbo_maps[i]);
1080                                 sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1081                         }
1082                 }
1083                 if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1084                         bus_dmamap_destroy(sc->ti_jumbo_dmat,
1085                             sc->ti_cdata.ti_rx_jumbo_sparemap);
1086                         sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1087                 }
1088         }
1089
1090         if (sc->ti_mbufrx_dmat) {
1091                 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1092                         if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1093                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1094                                     sc->ti_cdata.ti_rx_mini_maps[i]);
1095                                 sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1096                         }
1097                 }
1098                 if (sc->ti_cdata.ti_rx_mini_sparemap) {
1099                         bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1100                             sc->ti_cdata.ti_rx_mini_sparemap);
1101                         sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1102                 }
1103         }
1104 }
1105
1106 #ifndef TI_SF_BUF_JUMBO
1107
1108 static int
1109 ti_alloc_jumbo_mem(struct ti_softc *sc)
1110 {
1111
1112         if (bus_dma_tag_create(sc->ti_parent_dmat, 1, 0, BUS_SPACE_MAXADDR,
1113             BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1, MJUM9BYTES, 0, NULL,
1114             NULL, &sc->ti_jumbo_dmat) != 0) {
1115                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116                 return (ENOBUFS);
1117         }
1118         return (0);
1119 }
1120
1121 #else
1122
1123 static int
1124 ti_alloc_jumbo_mem(struct ti_softc *sc)
1125 {
1126
1127         /*
1128          * The VM system will take care of providing aligned pages.  Alignment
1129          * is set to 1 here so that busdma resources won't be wasted.
1130          */
1131         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1132                                 1, 0,                   /* algnmnt, boundary */
1133                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1134                                 BUS_SPACE_MAXADDR,      /* highaddr */
1135                                 NULL, NULL,             /* filter, filterarg */
1136                                 PAGE_SIZE * 4 /*XXX*/,  /* maxsize */
1137                                 4,                      /* nsegments */
1138                                 PAGE_SIZE,              /* maxsegsize */
1139                                 0,                      /* flags */
1140                                 NULL, NULL,             /* lockfunc, lockarg */
1141                                 &sc->ti_jumbo_dmat) != 0) {
1142                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1143                 return (ENOBUFS);
1144         }
1145
1146         return (0);
1147 }
1148
1149 #endif /* TI_SF_BUF_JUMBO */
1150
1151 /*
1152  * Intialize a standard receive ring descriptor.
1153  */
1154 static int
1155 ti_newbuf_std(struct ti_softc *sc, int i)
1156 {
1157         bus_dmamap_t map;
1158         bus_dma_segment_t segs[1];
1159         struct mbuf *m;
1160         struct ti_rx_desc *r;
1161         int error, nsegs;
1162
1163         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1164         if (m == NULL)
1165                 return (ENOBUFS);
1166         m->m_len = m->m_pkthdr.len = MCLBYTES;
1167         m_adj(m, ETHER_ALIGN);
1168
1169         error = bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat,
1170             sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1171         if (error != 0) {
1172                 m_freem(m);
1173                 return (error);
1174         }
1175         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1176
1177         if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1178                 bus_dmamap_sync(sc->ti_mbufrx_dmat,
1179                     sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1180                 bus_dmamap_unload(sc->ti_mbufrx_dmat,
1181                     sc->ti_cdata.ti_rx_std_maps[i]);
1182         }
1183
1184         map = sc->ti_cdata.ti_rx_std_maps[i];
1185         sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1186         sc->ti_cdata.ti_rx_std_sparemap = map;
1187         sc->ti_cdata.ti_rx_std_chain[i] = m;
1188
1189         r = &sc->ti_rdata->ti_rx_std_ring[i];
1190         ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1191         r->ti_len = segs[0].ds_len;
1192         r->ti_type = TI_BDTYPE_RECV_BD;
1193         r->ti_flags = 0;
1194         r->ti_vlan_tag = 0;
1195         r->ti_tcp_udp_cksum = 0;
1196         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1197                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1198         r->ti_idx = i;
1199
1200         bus_dmamap_sync(sc->ti_mbufrx_dmat, sc->ti_cdata.ti_rx_std_maps[i],
1201             BUS_DMASYNC_PREREAD);
1202         return (0);
1203 }
1204
1205 /*
1206  * Intialize a mini receive ring descriptor. This only applies to
1207  * the Tigon 2.
1208  */
1209 static int
1210 ti_newbuf_mini(struct ti_softc *sc, int i)
1211 {
1212         bus_dmamap_t map;
1213         bus_dma_segment_t segs[1];
1214         struct mbuf *m;
1215         struct ti_rx_desc *r;
1216         int error, nsegs;
1217
1218         MGETHDR(m, M_DONTWAIT, MT_DATA);
1219         if (m == NULL)
1220                 return (ENOBUFS);
1221         m->m_len = m->m_pkthdr.len = MHLEN;
1222         m_adj(m, ETHER_ALIGN);
1223
1224         error = bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat,
1225             sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1226         if (error != 0) {
1227                 m_freem(m);
1228                 return (error);
1229         }
1230         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1231
1232         if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1233                 bus_dmamap_sync(sc->ti_mbufrx_dmat,
1234                     sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1235                 bus_dmamap_unload(sc->ti_mbufrx_dmat,
1236                     sc->ti_cdata.ti_rx_mini_maps[i]);
1237         }
1238
1239         map = sc->ti_cdata.ti_rx_mini_maps[i];
1240         sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1241         sc->ti_cdata.ti_rx_mini_sparemap = map;
1242         sc->ti_cdata.ti_rx_mini_chain[i] = m;
1243
1244         r = &sc->ti_rdata->ti_rx_mini_ring[i];
1245         ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1246         r->ti_len = segs[0].ds_len;
1247         r->ti_type = TI_BDTYPE_RECV_BD;
1248         r->ti_flags = TI_BDFLAG_MINI_RING;
1249         r->ti_vlan_tag = 0;
1250         r->ti_tcp_udp_cksum = 0;
1251         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1252                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1253         r->ti_idx = i;
1254
1255         bus_dmamap_sync(sc->ti_mbufrx_dmat, sc->ti_cdata.ti_rx_mini_maps[i],
1256             BUS_DMASYNC_PREREAD);
1257         return (0);
1258 }
1259
1260 #ifndef TI_SF_BUF_JUMBO
1261
1262 /*
1263  * Initialize a jumbo receive ring descriptor. This allocates
1264  * a jumbo buffer from the pool managed internally by the driver.
1265  */
1266 static int
1267 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1268 {
1269         bus_dmamap_t map;
1270         bus_dma_segment_t segs[1];
1271         struct mbuf *m;
1272         struct ti_rx_desc *r;
1273         int error, nsegs;
1274
1275         (void)dummy;
1276
1277         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1278         if (m == NULL)
1279                 return (ENOBUFS);
1280         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1281         m_adj(m, ETHER_ALIGN);
1282
1283         error = bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat,
1284             sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1285         if (error != 0) {
1286                 m_freem(m);
1287                 return (error);
1288         }
1289         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1290
1291         if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1292                 bus_dmamap_sync(sc->ti_jumbo_dmat,
1293                     sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1294                 bus_dmamap_unload(sc->ti_jumbo_dmat,
1295                     sc->ti_cdata.ti_rx_jumbo_maps[i]);
1296         }
1297
1298         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1299         sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1300         sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1301         sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1302
1303         r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1304         ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1305         r->ti_len = segs[0].ds_len;
1306         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1307         r->ti_flags = TI_BDFLAG_JUMBO_RING;
1308         r->ti_vlan_tag = 0;
1309         r->ti_tcp_udp_cksum = 0;
1310         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1311                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1312         r->ti_idx = i;
1313
1314         bus_dmamap_sync(sc->ti_jumbo_dmat, sc->ti_cdata.ti_rx_jumbo_maps[i],
1315             BUS_DMASYNC_PREREAD);
1316         return (0);
1317 }
1318
1319 #else
1320
1321 #if (PAGE_SIZE == 4096)
1322 #define NPAYLOAD 2
1323 #else
1324 #define NPAYLOAD 1
1325 #endif
1326
1327 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1328 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1329 #define NFS_HDR_LEN (UDP_HDR_LEN)
1330 static int HDR_LEN = TCP_HDR_LEN;
1331
1332 /*
1333  * Initialize a jumbo receive ring descriptor. This allocates
1334  * a jumbo buffer from the pool managed internally by the driver.
1335  */
1336 static int
1337 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1338 {
1339         bus_dmamap_t map;
1340         struct mbuf *cur, *m_new = NULL;
1341         struct mbuf *m[3] = {NULL, NULL, NULL};
1342         struct ti_rx_desc_ext *r;
1343         vm_page_t frame;
1344         static int color;
1345         /* 1 extra buf to make nobufs easy*/
1346         struct sf_buf *sf[3] = {NULL, NULL, NULL};
1347         int i;
1348         bus_dma_segment_t segs[4];
1349         int nsegs;
1350
1351         if (m_old != NULL) {
1352                 m_new = m_old;
1353                 cur = m_old->m_next;
1354                 for (i = 0; i <= NPAYLOAD; i++){
1355                         m[i] = cur;
1356                         cur = cur->m_next;
1357                 }
1358         } else {
1359                 /* Allocate the mbufs. */
1360                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1361                 if (m_new == NULL) {
1362                         device_printf(sc->ti_dev, "mbuf allocation failed "
1363                             "-- packet dropped!\n");
1364                         goto nobufs;
1365                 }
1366                 MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1367                 if (m[NPAYLOAD] == NULL) {
1368                         device_printf(sc->ti_dev, "cluster mbuf allocation "
1369                             "failed -- packet dropped!\n");
1370                         goto nobufs;
1371                 }
1372                 MCLGET(m[NPAYLOAD], M_DONTWAIT);
1373                 if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1374                         device_printf(sc->ti_dev, "mbuf allocation failed "
1375                             "-- packet dropped!\n");
1376                         goto nobufs;
1377                 }
1378                 m[NPAYLOAD]->m_len = MCLBYTES;
1379
1380                 for (i = 0; i < NPAYLOAD; i++){
1381                         MGET(m[i], M_DONTWAIT, MT_DATA);
1382                         if (m[i] == NULL) {
1383                                 device_printf(sc->ti_dev, "mbuf allocation "
1384                                     "failed -- packet dropped!\n");
1385                                 goto nobufs;
1386                         }
1387                         frame = vm_page_alloc(NULL, color++,
1388                             VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1389                             VM_ALLOC_WIRED);
1390                         if (frame == NULL) {
1391                                 device_printf(sc->ti_dev, "buffer allocation "
1392                                     "failed -- packet dropped!\n");
1393                                 printf("      index %d page %d\n", idx, i);
1394                                 goto nobufs;
1395                         }
1396                         sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1397                         if (sf[i] == NULL) {
1398                                 vm_page_lock_queues();
1399                                 vm_page_unwire(frame, 0);
1400                                 vm_page_free(frame);
1401                                 vm_page_unlock_queues();
1402                                 device_printf(sc->ti_dev, "buffer allocation "
1403                                     "failed -- packet dropped!\n");
1404                                 printf("      index %d page %d\n", idx, i);
1405                                 goto nobufs;
1406                         }
1407                 }
1408                 for (i = 0; i < NPAYLOAD; i++){
1409                 /* Attach the buffer to the mbuf. */
1410                         m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1411                         m[i]->m_len = PAGE_SIZE;
1412                         MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1413                             sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1414                             0, EXT_DISPOSABLE);
1415                         m[i]->m_next = m[i+1];
1416                 }
1417                 /* link the buffers to the header */
1418                 m_new->m_next = m[0];
1419                 m_new->m_data += ETHER_ALIGN;
1420                 if (sc->ti_hdrsplit)
1421                         m_new->m_len = MHLEN - ETHER_ALIGN;
1422                 else
1423                         m_new->m_len = HDR_LEN;
1424                 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1425         }
1426
1427         /* Set up the descriptor. */
1428         r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1429         sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1430         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1431         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1432                                     &nsegs, 0))
1433                 return (ENOBUFS);
1434         if ((nsegs < 1) || (nsegs > 4))
1435                 return (ENOBUFS);
1436         ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1437         r->ti_len0 = m_new->m_len;
1438
1439         ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1440         r->ti_len1 = PAGE_SIZE;
1441
1442         ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1443         r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1444
1445         if (PAGE_SIZE == 4096) {
1446                 ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1447                 r->ti_len3 = MCLBYTES;
1448         } else {
1449                 r->ti_len3 = 0;
1450         }
1451         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1452
1453         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1454
1455         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1456                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1457
1458         r->ti_idx = idx;
1459
1460         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1461         return (0);
1462
1463 nobufs:
1464
1465         /*
1466          * Warning! :
1467          * This can only be called before the mbufs are strung together.
1468          * If the mbufs are strung together, m_freem() will free the chain,
1469          * so that the later mbufs will be freed multiple times.
1470          */
1471         if (m_new)
1472                 m_freem(m_new);
1473
1474         for (i = 0; i < 3; i++) {
1475                 if (m[i])
1476                         m_freem(m[i]);
1477                 if (sf[i])
1478                         sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1479         }
1480         return (ENOBUFS);
1481 }
1482 #endif
1483
1484 /*
1485  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1486  * that's 1MB or memory, which is a lot. For now, we fill only the first
1487  * 256 ring entries and hope that our CPU is fast enough to keep up with
1488  * the NIC.
1489  */
1490 static int
1491 ti_init_rx_ring_std(struct ti_softc *sc)
1492 {
1493         int i;
1494         struct ti_cmd_desc cmd;
1495
1496         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1497                 if (ti_newbuf_std(sc, i) != 0)
1498                         return (ENOBUFS);
1499         };
1500
1501         sc->ti_std = TI_STD_RX_RING_CNT - 1;
1502         TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1503
1504         return (0);
1505 }
1506
1507 static void
1508 ti_free_rx_ring_std(struct ti_softc *sc)
1509 {
1510         bus_dmamap_t map;
1511         int i;
1512
1513         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1514                 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1515                         map = sc->ti_cdata.ti_rx_std_maps[i];
1516                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1517                             BUS_DMASYNC_POSTREAD);
1518                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1519                         m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1520                         sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1521                 }
1522                 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1523                     sizeof(struct ti_rx_desc));
1524         }
1525 }
1526
1527 static int
1528 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1529 {
1530         struct ti_cmd_desc cmd;
1531         int i;
1532
1533         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1534                 if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1535                         return (ENOBUFS);
1536         };
1537
1538         sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1539         TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1540
1541         return (0);
1542 }
1543
1544 static void
1545 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1546 {
1547         bus_dmamap_t map;
1548         int i;
1549
1550         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1551                 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1552                         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1553                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1554                             BUS_DMASYNC_POSTREAD);
1555                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1556                         m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1557                         sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1558                 }
1559                 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1560                     sizeof(struct ti_rx_desc));
1561         }
1562 }
1563
1564 static int
1565 ti_init_rx_ring_mini(struct ti_softc *sc)
1566 {
1567         int i;
1568
1569         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1570                 if (ti_newbuf_mini(sc, i) != 0)
1571                         return (ENOBUFS);
1572         };
1573
1574         sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1575         TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1576
1577         return (0);
1578 }
1579
1580 static void
1581 ti_free_rx_ring_mini(struct ti_softc *sc)
1582 {
1583         bus_dmamap_t map;
1584         int i;
1585
1586         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1587                 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1588                         map = sc->ti_cdata.ti_rx_mini_maps[i];
1589                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1590                             BUS_DMASYNC_POSTREAD);
1591                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1592                         m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1593                         sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1594                 }
1595                 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1596                     sizeof(struct ti_rx_desc));
1597         }
1598 }
1599
1600 static void
1601 ti_free_tx_ring(struct ti_softc *sc)
1602 {
1603         struct ti_txdesc *txd;
1604         int i;
1605
1606         if (sc->ti_rdata->ti_tx_ring == NULL)
1607                 return;
1608
1609         for (i = 0; i < TI_TX_RING_CNT; i++) {
1610                 txd = &sc->ti_cdata.ti_txdesc[i];
1611                 if (txd->tx_m != NULL) {
1612                         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1613                             BUS_DMASYNC_POSTWRITE);
1614                         bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1615                         m_freem(txd->tx_m);
1616                         txd->tx_m = NULL;
1617                 }
1618                 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1619                     sizeof(struct ti_tx_desc));
1620         }
1621 }
1622
1623 static int
1624 ti_init_tx_ring(struct ti_softc *sc)
1625 {
1626         struct ti_txdesc *txd;
1627         int i;
1628
1629         STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1630         STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1631         for (i = 0; i < TI_TX_RING_CNT; i++) {
1632                 txd = &sc->ti_cdata.ti_txdesc[i];
1633                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1634         }
1635         sc->ti_txcnt = 0;
1636         sc->ti_tx_saved_considx = 0;
1637         sc->ti_tx_saved_prodidx = 0;
1638         CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1639         return (0);
1640 }
1641
1642 /*
1643  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1644  * but we have to support the old way too so that Tigon 1 cards will
1645  * work.
1646  */
1647 static void
1648 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1649 {
1650         struct ti_cmd_desc cmd;
1651         uint16_t *m;
1652         uint32_t ext[2] = {0, 0};
1653
1654         m = (uint16_t *)&addr->octet[0];
1655
1656         switch (sc->ti_hwrev) {
1657         case TI_HWREV_TIGON:
1658                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1659                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1660                 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1661                 break;
1662         case TI_HWREV_TIGON_II:
1663                 ext[0] = htons(m[0]);
1664                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1665                 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1666                 break;
1667         default:
1668                 device_printf(sc->ti_dev, "unknown hwrev\n");
1669                 break;
1670         }
1671 }
1672
1673 static void
1674 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1675 {
1676         struct ti_cmd_desc cmd;
1677         uint16_t *m;
1678         uint32_t ext[2] = {0, 0};
1679
1680         m = (uint16_t *)&addr->octet[0];
1681
1682         switch (sc->ti_hwrev) {
1683         case TI_HWREV_TIGON:
1684                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1685                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1686                 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1687                 break;
1688         case TI_HWREV_TIGON_II:
1689                 ext[0] = htons(m[0]);
1690                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1691                 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1692                 break;
1693         default:
1694                 device_printf(sc->ti_dev, "unknown hwrev\n");
1695                 break;
1696         }
1697 }
1698
1699 /*
1700  * Configure the Tigon's multicast address filter.
1701  *
1702  * The actual multicast table management is a bit of a pain, thanks to
1703  * slight brain damage on the part of both Alteon and us. With our
1704  * multicast code, we are only alerted when the multicast address table
1705  * changes and at that point we only have the current list of addresses:
1706  * we only know the current state, not the previous state, so we don't
1707  * actually know what addresses were removed or added. The firmware has
1708  * state, but we can't get our grubby mits on it, and there is no 'delete
1709  * all multicast addresses' command. Hence, we have to maintain our own
1710  * state so we know what addresses have been programmed into the NIC at
1711  * any given time.
1712  */
1713 static void
1714 ti_setmulti(struct ti_softc *sc)
1715 {
1716         struct ifnet *ifp;
1717         struct ifmultiaddr *ifma;
1718         struct ti_cmd_desc cmd;
1719         struct ti_mc_entry *mc;
1720         uint32_t intrs;
1721
1722         TI_LOCK_ASSERT(sc);
1723
1724         ifp = sc->ti_ifp;
1725
1726         if (ifp->if_flags & IFF_ALLMULTI) {
1727                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1728                 return;
1729         } else {
1730                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1731         }
1732
1733         /* Disable interrupts. */
1734         intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1735         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1736
1737         /* First, zot all the existing filters. */
1738         while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1739                 mc = SLIST_FIRST(&sc->ti_mc_listhead);
1740                 ti_del_mcast(sc, &mc->mc_addr);
1741                 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1742                 free(mc, M_DEVBUF);
1743         }
1744
1745         /* Now program new ones. */
1746         if_maddr_rlock(ifp);
1747         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1748                 if (ifma->ifma_addr->sa_family != AF_LINK)
1749                         continue;
1750                 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1751                 if (mc == NULL) {
1752                         device_printf(sc->ti_dev,
1753                             "no memory for mcast filter entry\n");
1754                         continue;
1755                 }
1756                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1757                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1758                 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1759                 ti_add_mcast(sc, &mc->mc_addr);
1760         }
1761         if_maddr_runlock(ifp);
1762
1763         /* Re-enable interrupts. */
1764         CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1765 }
1766
1767 /*
1768  * Check to see if the BIOS has configured us for a 64 bit slot when
1769  * we aren't actually in one. If we detect this condition, we can work
1770  * around it on the Tigon 2 by setting a bit in the PCI state register,
1771  * but for the Tigon 1 we must give up and abort the interface attach.
1772  */
1773 static int ti_64bitslot_war(struct ti_softc *sc)
1774 {
1775
1776         if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1777                 CSR_WRITE_4(sc, 0x600, 0);
1778                 CSR_WRITE_4(sc, 0x604, 0);
1779                 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1780                 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1781                         if (sc->ti_hwrev == TI_HWREV_TIGON)
1782                                 return (EINVAL);
1783                         else {
1784                                 TI_SETBIT(sc, TI_PCI_STATE,
1785                                     TI_PCISTATE_32BIT_BUS);
1786                                 return (0);
1787                         }
1788                 }
1789         }
1790
1791         return (0);
1792 }
1793
1794 /*
1795  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1796  * self-test results.
1797  */
1798 static int
1799 ti_chipinit(struct ti_softc *sc)
1800 {
1801         uint32_t cacheline;
1802         uint32_t pci_writemax = 0;
1803         uint32_t hdrsplit;
1804
1805         /* Initialize link to down state. */
1806         sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1807
1808         /* Set endianness before we access any non-PCI registers. */
1809 #if 0 && BYTE_ORDER == BIG_ENDIAN
1810         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1811             TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1812 #else
1813         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1814             TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1815 #endif
1816
1817         /* Check the ROM failed bit to see if self-tests passed. */
1818         if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1819                 device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1820                 return (ENODEV);
1821         }
1822
1823         /* Halt the CPU. */
1824         TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1825
1826         /* Figure out the hardware revision. */
1827         switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1828         case TI_REV_TIGON_I:
1829                 sc->ti_hwrev = TI_HWREV_TIGON;
1830                 break;
1831         case TI_REV_TIGON_II:
1832                 sc->ti_hwrev = TI_HWREV_TIGON_II;
1833                 break;
1834         default:
1835                 device_printf(sc->ti_dev, "unsupported chip revision\n");
1836                 return (ENODEV);
1837         }
1838
1839         /* Do special setup for Tigon 2. */
1840         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1841                 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1842                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1843                 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1844         }
1845
1846         /*
1847          * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1848          * can't do header splitting.
1849          */
1850 #ifdef TI_JUMBO_HDRSPLIT
1851         if (sc->ti_hwrev != TI_HWREV_TIGON)
1852                 sc->ti_hdrsplit = 1;
1853         else
1854                 device_printf(sc->ti_dev,
1855                     "can't do header splitting on a Tigon I board\n");
1856 #endif /* TI_JUMBO_HDRSPLIT */
1857
1858         /* Set up the PCI state register. */
1859         CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1860         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1861                 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1862         }
1863
1864         /* Clear the read/write max DMA parameters. */
1865         TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1866             TI_PCISTATE_READ_MAXDMA));
1867
1868         /* Get cache line size. */
1869         cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1870
1871         /*
1872          * If the system has set enabled the PCI memory write
1873          * and invalidate command in the command register, set
1874          * the write max parameter accordingly. This is necessary
1875          * to use MWI with the Tigon 2.
1876          */
1877         if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1878                 switch (cacheline) {
1879                 case 1:
1880                 case 4:
1881                 case 8:
1882                 case 16:
1883                 case 32:
1884                 case 64:
1885                         break;
1886                 default:
1887                 /* Disable PCI memory write and invalidate. */
1888                         if (bootverbose)
1889                                 device_printf(sc->ti_dev, "cache line size %d"
1890                                     " not supported; disabling PCI MWI\n",
1891                                     cacheline);
1892                         CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1893                             TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1894                         break;
1895                 }
1896         }
1897
1898         TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1899
1900         /* This sets the min dma param all the way up (0xff). */
1901         TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1902
1903         if (sc->ti_hdrsplit)
1904                 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1905         else
1906                 hdrsplit = 0;
1907
1908         /* Configure DMA variables. */
1909 #if BYTE_ORDER == BIG_ENDIAN
1910         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1911             TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1912             TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1913             TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1914 #else /* BYTE_ORDER */
1915         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1916             TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1917             TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1918 #endif /* BYTE_ORDER */
1919
1920         /*
1921          * Only allow 1 DMA channel to be active at a time.
1922          * I don't think this is a good idea, but without it
1923          * the firmware racks up lots of nicDmaReadRingFull
1924          * errors.  This is not compatible with hardware checksums.
1925          */
1926         if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
1927                 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1928
1929         /* Recommended settings from Tigon manual. */
1930         CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1931         CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1932
1933         if (ti_64bitslot_war(sc)) {
1934                 device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
1935                     "but we aren't");
1936                 return (EINVAL);
1937         }
1938
1939         return (0);
1940 }
1941
1942 /*
1943  * Initialize the general information block and firmware, and
1944  * start the CPU(s) running.
1945  */
1946 static int
1947 ti_gibinit(struct ti_softc *sc)
1948 {
1949         struct ifnet *ifp;
1950         struct ti_rcb *rcb;
1951         uint32_t rdphys;
1952         int i;
1953
1954         TI_LOCK_ASSERT(sc);
1955
1956         ifp = sc->ti_ifp;
1957         rdphys = sc->ti_rdata_phys;
1958
1959         /* Disable interrupts for now. */
1960         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1961
1962         /*
1963          * Tell the chip where to find the general information block.
1964          * While this struct could go into >4GB memory, we allocate it in a
1965          * single slab with the other descriptors, and those don't seem to
1966          * support being located in a 64-bit region.
1967          */
1968         CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1969         CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1970
1971         /* Load the firmware into SRAM. */
1972         ti_loadfw(sc);
1973
1974         /* Set up the contents of the general info and ring control blocks. */
1975
1976         /* Set up the event ring and producer pointer. */
1977         rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1978
1979         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1980         rcb->ti_flags = 0;
1981         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1982             rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1983         sc->ti_ev_prodidx.ti_idx = 0;
1984         CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1985         sc->ti_ev_saved_considx = 0;
1986
1987         /* Set up the command ring and producer mailbox. */
1988         rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1989
1990         TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1991         rcb->ti_flags = 0;
1992         rcb->ti_max_len = 0;
1993         for (i = 0; i < TI_CMD_RING_CNT; i++) {
1994                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1995         }
1996         CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1997         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1998         sc->ti_cmd_saved_prodidx = 0;
1999
2000         /*
2001          * Assign the address of the stats refresh buffer.
2002          * We re-use the current stats buffer for this to
2003          * conserve memory.
2004          */
2005         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2006             rdphys + TI_RD_OFF(ti_info.ti_stats);
2007
2008         /* Set up the standard receive ring. */
2009         rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2010         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2011         rcb->ti_max_len = TI_FRAMELEN;
2012         rcb->ti_flags = 0;
2013         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2014                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2015                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2016         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2017                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2018
2019         /* Set up the jumbo receive ring. */
2020         rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2021         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2022
2023 #ifndef TI_SF_BUF_JUMBO
2024         rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2025         rcb->ti_flags = 0;
2026 #else
2027         rcb->ti_max_len = PAGE_SIZE;
2028         rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2029 #endif
2030         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2031                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2032                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2033         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2034                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2035
2036         /*
2037          * Set up the mini ring. Only activated on the
2038          * Tigon 2 but the slot in the config block is
2039          * still there on the Tigon 1.
2040          */
2041         rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2042         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2043         rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2044         if (sc->ti_hwrev == TI_HWREV_TIGON)
2045                 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2046         else
2047                 rcb->ti_flags = 0;
2048         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2049                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2050                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2051         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2052                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2053
2054         /*
2055          * Set up the receive return ring.
2056          */
2057         rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2058         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2059         rcb->ti_flags = 0;
2060         rcb->ti_max_len = TI_RETURN_RING_CNT;
2061         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2062             rdphys + TI_RD_OFF(ti_return_prodidx_r);
2063
2064         /*
2065          * Set up the tx ring. Note: for the Tigon 2, we have the option
2066          * of putting the transmit ring in the host's address space and
2067          * letting the chip DMA it instead of leaving the ring in the NIC's
2068          * memory and accessing it through the shared memory region. We
2069          * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2070          * so we have to revert to the shared memory scheme if we detect
2071          * a Tigon 1 chip.
2072          */
2073         CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2074         bzero((char *)sc->ti_rdata->ti_tx_ring,
2075             TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2076         rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2077         if (sc->ti_hwrev == TI_HWREV_TIGON)
2078                 rcb->ti_flags = 0;
2079         else
2080                 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2081         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2082                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2083         if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2084                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2085                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2086         rcb->ti_max_len = TI_TX_RING_CNT;
2087         if (sc->ti_hwrev == TI_HWREV_TIGON)
2088                 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2089         else
2090                 TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2091         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2092             rdphys + TI_RD_OFF(ti_tx_considx_r);
2093
2094         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2095             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2096
2097         /* Set up tuneables */
2098 #if 0
2099         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2100                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2101                     (sc->ti_rx_coal_ticks / 10));
2102         else
2103 #endif
2104                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2105         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2106         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2107         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2108         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2109         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2110
2111         /* Turn interrupts on. */
2112         CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2113         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2114
2115         /* Start CPU. */
2116         TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2117
2118         return (0);
2119 }
2120
2121 static void
2122 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2123 {
2124         struct ti_softc *sc;
2125
2126         sc = arg;
2127         if (error || nseg != 1)
2128                 return;
2129
2130         /*
2131          * All of the Tigon data structures need to live at <4GB.  This
2132          * cast is fine since busdma was told about this constraint.
2133          */
2134         sc->ti_rdata_phys = segs[0].ds_addr;
2135         return;
2136 }
2137
2138 /*
2139  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2140  * against our list and return its name if we find a match.
2141  */
2142 static int
2143 ti_probe(device_t dev)
2144 {
2145         const struct ti_type *t;
2146
2147         t = ti_devs;
2148
2149         while (t->ti_name != NULL) {
2150                 if ((pci_get_vendor(dev) == t->ti_vid) &&
2151                     (pci_get_device(dev) == t->ti_did)) {
2152                         device_set_desc(dev, t->ti_name);
2153                         return (BUS_PROBE_DEFAULT);
2154                 }
2155                 t++;
2156         }
2157
2158         return (ENXIO);
2159 }
2160
2161 static int
2162 ti_attach(device_t dev)
2163 {
2164         struct ifnet *ifp;
2165         struct ti_softc *sc;
2166         int error = 0, rid;
2167         u_char eaddr[6];
2168
2169         sc = device_get_softc(dev);
2170         sc->ti_dev = dev;
2171
2172         mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2173             MTX_DEF);
2174         callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2175         ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2176         ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2177         if (ifp == NULL) {
2178                 device_printf(dev, "can not if_alloc()\n");
2179                 error = ENOSPC;
2180                 goto fail;
2181         }
2182         sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2183         sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2184         sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2185
2186         /*
2187          * Map control/status registers.
2188          */
2189         pci_enable_busmaster(dev);
2190
2191         rid = PCIR_BAR(0);
2192         sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2193             RF_ACTIVE);
2194
2195         if (sc->ti_res == NULL) {
2196                 device_printf(dev, "couldn't map memory\n");
2197                 error = ENXIO;
2198                 goto fail;
2199         }
2200
2201         sc->ti_btag = rman_get_bustag(sc->ti_res);
2202         sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2203
2204         /* Allocate interrupt */
2205         rid = 0;
2206
2207         sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2208             RF_SHAREABLE | RF_ACTIVE);
2209
2210         if (sc->ti_irq == NULL) {
2211                 device_printf(dev, "couldn't map interrupt\n");
2212                 error = ENXIO;
2213                 goto fail;
2214         }
2215
2216         if (ti_chipinit(sc)) {
2217                 device_printf(dev, "chip initialization failed\n");
2218                 error = ENXIO;
2219                 goto fail;
2220         }
2221
2222         /* Zero out the NIC's on-board SRAM. */
2223         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2224
2225         /* Init again -- zeroing memory may have clobbered some registers. */
2226         if (ti_chipinit(sc)) {
2227                 device_printf(dev, "chip initialization failed\n");
2228                 error = ENXIO;
2229                 goto fail;
2230         }
2231
2232         /*
2233          * Get station address from the EEPROM. Note: the manual states
2234          * that the MAC address is at offset 0x8c, however the data is
2235          * stored as two longwords (since that's how it's loaded into
2236          * the NIC). This means the MAC address is actually preceded
2237          * by two zero bytes. We need to skip over those.
2238          */
2239         if (ti_read_eeprom(sc, eaddr,
2240                                 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2241                 device_printf(dev, "failed to read station address\n");
2242                 error = ENXIO;
2243                 goto fail;
2244         }
2245
2246         /* Allocate the general information block and ring buffers. */
2247         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
2248                                 1, 0,                   /* algnmnt, boundary */
2249                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2250                                 BUS_SPACE_MAXADDR,      /* highaddr */
2251                                 NULL, NULL,             /* filter, filterarg */
2252                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2253                                 0,                      /* nsegments */
2254                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2255                                 0,                      /* flags */
2256                                 NULL, NULL,             /* lockfunc, lockarg */
2257                                 &sc->ti_parent_dmat) != 0) {
2258                 device_printf(dev, "Failed to allocate parent dmat\n");
2259                 error = ENOMEM;
2260                 goto fail;
2261         }
2262
2263         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2264                                 PAGE_SIZE, 0,           /* algnmnt, boundary */
2265                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2266                                 BUS_SPACE_MAXADDR,      /* highaddr */
2267                                 NULL, NULL,             /* filter, filterarg */
2268                                 sizeof(struct ti_ring_data),    /* maxsize */
2269                                 1,                      /* nsegments */
2270                                 sizeof(struct ti_ring_data),    /* maxsegsize */
2271                                 0,                      /* flags */
2272                                 NULL, NULL,             /* lockfunc, lockarg */
2273                                 &sc->ti_rdata_dmat) != 0) {
2274                 device_printf(dev, "Failed to allocate rdata dmat\n");
2275                 error = ENOMEM;
2276                 goto fail;
2277         }
2278
2279         if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2280                              BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2281                              &sc->ti_rdata_dmamap) != 0) {
2282                 device_printf(dev, "Failed to allocate rdata memory\n");
2283                 error = ENOMEM;
2284                 goto fail;
2285         }
2286
2287         if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2288                             sc->ti_rdata, sizeof(struct ti_ring_data),
2289                             ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2290                 device_printf(dev, "Failed to load rdata segments\n");
2291                 error = ENOMEM;
2292                 goto fail;
2293         }
2294
2295         bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2296
2297         /* Try to allocate memory for jumbo buffers. */
2298         if (ti_alloc_jumbo_mem(sc)) {
2299                 device_printf(dev, "jumbo buffer allocation failed\n");
2300                 error = ENXIO;
2301                 goto fail;
2302         }
2303
2304         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2305                                 1, 0,                   /* algnmnt, boundary */
2306                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2307                                 BUS_SPACE_MAXADDR,      /* highaddr */
2308                                 NULL, NULL,             /* filter, filterarg */
2309                                 MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2310                                 TI_MAXTXSEGS,           /* nsegments */
2311                                 MCLBYTES,               /* maxsegsize */
2312                                 0,                      /* flags */
2313                                 NULL, NULL,             /* lockfunc, lockarg */
2314                                 &sc->ti_mbuftx_dmat) != 0) {
2315                 device_printf(dev, "Failed to allocate rdata dmat\n");
2316                 error = ENOMEM;
2317                 goto fail;
2318         }
2319
2320         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2321                                 1, 0,                   /* algnmnt, boundary */
2322                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2323                                 BUS_SPACE_MAXADDR,      /* highaddr */
2324                                 NULL, NULL,             /* filter, filterarg */
2325                                 MCLBYTES,               /* maxsize */
2326                                 1,                      /* nsegments */
2327                                 MCLBYTES,               /* maxsegsize */
2328                                 0,                      /* flags */
2329                                 NULL, NULL,             /* lockfunc, lockarg */
2330                                 &sc->ti_mbufrx_dmat) != 0) {
2331                 device_printf(dev, "Failed to allocate rdata dmat\n");
2332                 error = ENOMEM;
2333                 goto fail;
2334         }
2335
2336         if (ti_alloc_dmamaps(sc)) {
2337                 error = ENXIO;
2338                 goto fail;
2339         }
2340
2341         /*
2342          * We really need a better way to tell a 1000baseTX card
2343          * from a 1000baseSX one, since in theory there could be
2344          * OEMed 1000baseTX cards from lame vendors who aren't
2345          * clever enough to change the PCI ID. For the moment
2346          * though, the AceNIC is the only copper card available.
2347          */
2348         if (pci_get_vendor(dev) == ALT_VENDORID &&
2349             pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2350                 sc->ti_copper = 1;
2351         /* Ok, it's not the only copper card available. */
2352         if (pci_get_vendor(dev) == NG_VENDORID &&
2353             pci_get_device(dev) == NG_DEVICEID_GA620T)
2354                 sc->ti_copper = 1;
2355
2356         /* Set default tuneable values. */
2357         sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2358 #if 0
2359         sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2360 #endif
2361         sc->ti_rx_coal_ticks = 170;
2362         sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2363         sc->ti_rx_max_coal_bds = 64;
2364 #if 0
2365         sc->ti_tx_max_coal_bds = 128;
2366 #endif
2367         sc->ti_tx_max_coal_bds = 32;
2368         sc->ti_tx_buf_ratio = 21;
2369
2370         /* Set up ifnet structure */
2371         ifp->if_softc = sc;
2372         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2373         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2374         ifp->if_ioctl = ti_ioctl;
2375         ifp->if_start = ti_start;
2376         ifp->if_init = ti_init;
2377         ifp->if_baudrate = IF_Gbps(1UL);
2378         ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2379         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2380         IFQ_SET_READY(&ifp->if_snd);
2381
2382         /* Set up ifmedia support. */
2383         if (sc->ti_copper) {
2384                 /*
2385                  * Copper cards allow manual 10/100 mode selection,
2386                  * but not manual 1000baseTX mode selection. Why?
2387                  * Becuase currently there's no way to specify the
2388                  * master/slave setting through the firmware interface,
2389                  * so Alteon decided to just bag it and handle it
2390                  * via autonegotiation.
2391                  */
2392                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2393                 ifmedia_add(&sc->ifmedia,
2394                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2395                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2396                 ifmedia_add(&sc->ifmedia,
2397                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2398                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2399                 ifmedia_add(&sc->ifmedia,
2400                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2401         } else {
2402                 /* Fiber cards don't support 10/100 modes. */
2403                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2404                 ifmedia_add(&sc->ifmedia,
2405                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2406         }
2407         ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2408         ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2409
2410         /*
2411          * We're assuming here that card initialization is a sequential
2412          * thing.  If it isn't, multiple cards probing at the same time
2413          * could stomp on the list of softcs here.
2414          */
2415
2416         /* Register the device */
2417         sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2418             GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2419         sc->dev->si_drv1 = sc;
2420
2421         /*
2422          * Call MI attach routine.
2423          */
2424         ether_ifattach(ifp, eaddr);
2425
2426         /* VLAN capability setup. */
2427         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2428             IFCAP_VLAN_HWTAGGING;
2429         ifp->if_capenable = ifp->if_capabilities;
2430         /* Tell the upper layer we support VLAN over-sized frames. */
2431         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2432
2433         /* Driver supports link state tracking. */
2434         ifp->if_capabilities |= IFCAP_LINKSTATE;
2435         ifp->if_capenable |= IFCAP_LINKSTATE;
2436
2437         /* Hook interrupt last to avoid having to lock softc */
2438         error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2439            NULL, ti_intr, sc, &sc->ti_intrhand);
2440
2441         if (error) {
2442                 device_printf(dev, "couldn't set up irq\n");
2443                 goto fail;
2444         }
2445
2446 fail:
2447         if (error)
2448                 ti_detach(dev);
2449
2450         return (error);
2451 }
2452
2453 /*
2454  * Shutdown hardware and free up resources. This can be called any
2455  * time after the mutex has been initialized. It is called in both
2456  * the error case in attach and the normal detach case so it needs
2457  * to be careful about only freeing resources that have actually been
2458  * allocated.
2459  */
2460 static int
2461 ti_detach(device_t dev)
2462 {
2463         struct ti_softc *sc;
2464         struct ifnet *ifp;
2465
2466         sc = device_get_softc(dev);
2467         if (sc->dev)
2468                 destroy_dev(sc->dev);
2469         KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2470         ifp = sc->ti_ifp;
2471         if (device_is_attached(dev)) {
2472                 ether_ifdetach(ifp);
2473                 TI_LOCK(sc);
2474                 ti_stop(sc);
2475                 TI_UNLOCK(sc);
2476         }
2477
2478         /* These should only be active if attach succeeded */
2479         callout_drain(&sc->ti_watchdog);
2480         bus_generic_detach(dev);
2481         ti_free_dmamaps(sc);
2482         ifmedia_removeall(&sc->ifmedia);
2483
2484         if (sc->ti_jumbo_dmat)
2485                 bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2486         if (sc->ti_mbuftx_dmat)
2487                 bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2488         if (sc->ti_mbufrx_dmat)
2489                 bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2490         if (sc->ti_rdata && sc->ti_rdata_dmamap)
2491                 bus_dmamap_unload(sc->ti_rdata_dmat, sc->ti_rdata_dmamap);
2492         if (sc->ti_rdata)
2493                 bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2494                                 sc->ti_rdata_dmamap);
2495         if (sc->ti_rdata_dmat)
2496                 bus_dma_tag_destroy(sc->ti_rdata_dmat);
2497         if (sc->ti_parent_dmat)
2498                 bus_dma_tag_destroy(sc->ti_parent_dmat);
2499         if (sc->ti_intrhand)
2500                 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2501         if (sc->ti_irq)
2502                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2503         if (sc->ti_res) {
2504                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2505                     sc->ti_res);
2506         }
2507         if (ifp)
2508                 if_free(ifp);
2509
2510         mtx_destroy(&sc->ti_mtx);
2511
2512         return (0);
2513 }
2514
2515 #ifdef TI_JUMBO_HDRSPLIT
2516 /*
2517  * If hdr_len is 0, that means that header splitting wasn't done on
2518  * this packet for some reason.  The two most likely reasons are that
2519  * the protocol isn't a supported protocol for splitting, or this
2520  * packet had a fragment offset that wasn't 0.
2521  *
2522  * The header length, if it is non-zero, will always be the length of
2523  * the headers on the packet, but that length could be longer than the
2524  * first mbuf.  So we take the minimum of the two as the actual
2525  * length.
2526  */
2527 static __inline void
2528 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2529 {
2530         int i = 0;
2531         int lengths[4] = {0, 0, 0, 0};
2532         struct mbuf *m, *mp;
2533
2534         if (hdr_len != 0)
2535                 top->m_len = min(hdr_len, top->m_len);
2536         pkt_len -= top->m_len;
2537         lengths[i++] = top->m_len;
2538
2539         mp = top;
2540         for (m = top->m_next; m && pkt_len; m = m->m_next) {
2541                 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2542                 pkt_len -= m->m_len;
2543                 lengths[i++] = m->m_len;
2544                 mp = m;
2545         }
2546
2547 #if 0
2548         if (hdr_len != 0)
2549                 printf("got split packet: ");
2550         else
2551                 printf("got non-split packet: ");
2552
2553         printf("%d,%d,%d,%d = %d\n", lengths[0],
2554             lengths[1], lengths[2], lengths[3],
2555             lengths[0] + lengths[1] + lengths[2] +
2556             lengths[3]);
2557 #endif
2558
2559         if (pkt_len)
2560                 panic("header splitting didn't");
2561
2562         if (m) {
2563                 m_freem(m);
2564                 mp->m_next = NULL;
2565
2566         }
2567         if (mp->m_next != NULL)
2568                 panic("ti_hdr_split: last mbuf in chain should be null");
2569 }
2570 #endif /* TI_JUMBO_HDRSPLIT */
2571
2572 static void
2573 ti_discard_std(struct ti_softc *sc, int i)
2574 {
2575
2576         struct ti_rx_desc *r;
2577
2578         r = &sc->ti_rdata->ti_rx_std_ring[i];
2579         r->ti_len = MCLBYTES - ETHER_ALIGN;
2580         r->ti_type = TI_BDTYPE_RECV_BD;
2581         r->ti_flags = 0;
2582         r->ti_vlan_tag = 0;
2583         r->ti_tcp_udp_cksum = 0;
2584         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2585                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2586         r->ti_idx = i;
2587 }
2588
2589 static void
2590 ti_discard_mini(struct ti_softc *sc, int i)
2591 {
2592
2593         struct ti_rx_desc *r;
2594
2595         r = &sc->ti_rdata->ti_rx_mini_ring[i];
2596         r->ti_len = MHLEN - ETHER_ALIGN;
2597         r->ti_type = TI_BDTYPE_RECV_BD;
2598         r->ti_flags = TI_BDFLAG_MINI_RING;
2599         r->ti_vlan_tag = 0;
2600         r->ti_tcp_udp_cksum = 0;
2601         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2602                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2603         r->ti_idx = i;
2604 }
2605
2606 #ifndef TI_SF_BUF_JUMBO
2607 static void
2608 ti_discard_jumbo(struct ti_softc *sc, int i)
2609 {
2610
2611         struct ti_rx_desc *r;
2612
2613         r = &sc->ti_rdata->ti_rx_mini_ring[i];
2614         r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2615         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2616         r->ti_flags = TI_BDFLAG_JUMBO_RING;
2617         r->ti_vlan_tag = 0;
2618         r->ti_tcp_udp_cksum = 0;
2619         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2620                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2621         r->ti_idx = i;
2622 }
2623 #endif
2624
2625 /*
2626  * Frame reception handling. This is called if there's a frame
2627  * on the receive return list.
2628  *
2629  * Note: we have to be able to handle three possibilities here:
2630  * 1) the frame is from the mini receive ring (can only happen)
2631  *    on Tigon 2 boards)
2632  * 2) the frame is from the jumbo recieve ring
2633  * 3) the frame is from the standard receive ring
2634  */
2635
2636 static void
2637 ti_rxeof(struct ti_softc *sc)
2638 {
2639         struct ifnet *ifp;
2640 #ifdef TI_SF_BUF_JUMBO
2641         bus_dmamap_t map;
2642 #endif
2643         struct ti_cmd_desc cmd;
2644         int jumbocnt, minicnt, stdcnt, ti_len;
2645
2646         TI_LOCK_ASSERT(sc);
2647
2648         ifp = sc->ti_ifp;
2649
2650         jumbocnt = minicnt = stdcnt = 0;
2651         while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2652                 struct ti_rx_desc *cur_rx;
2653                 uint32_t rxidx;
2654                 struct mbuf *m = NULL;
2655                 uint16_t vlan_tag = 0;
2656                 int have_tag = 0;
2657
2658                 cur_rx =
2659                     &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2660                 rxidx = cur_rx->ti_idx;
2661                 ti_len = cur_rx->ti_len;
2662                 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2663
2664                 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2665                         have_tag = 1;
2666                         vlan_tag = cur_rx->ti_vlan_tag;
2667                 }
2668
2669                 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2670                         jumbocnt++;
2671                         TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2672                         m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2673 #ifndef TI_SF_BUF_JUMBO
2674                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2675                                 ifp->if_ierrors++;
2676                                 ti_discard_jumbo(sc, rxidx);
2677                                 continue;
2678                         }
2679                         if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2680                                 ifp->if_iqdrops++;
2681                                 ti_discard_jumbo(sc, rxidx);
2682                                 continue;
2683                         }
2684                         m->m_len = ti_len;
2685 #else /* !TI_SF_BUF_JUMBO */
2686                         sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2687                         map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2688                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2689                             BUS_DMASYNC_POSTREAD);
2690                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2691                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2692                                 ifp->if_ierrors++;
2693                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2694                                 continue;
2695                         }
2696                         if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2697                                 ifp->if_iqdrops++;
2698                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2699                                 continue;
2700                         }
2701 #ifdef TI_JUMBO_HDRSPLIT
2702                         if (sc->ti_hdrsplit)
2703                                 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2704                                              ti_len, rxidx);
2705                         else
2706 #endif /* TI_JUMBO_HDRSPLIT */
2707                         m_adj(m, ti_len - m->m_pkthdr.len);
2708 #endif /* TI_SF_BUF_JUMBO */
2709                 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2710                         minicnt++;
2711                         TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2712                         m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2713                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2714                                 ifp->if_ierrors++;
2715                                 ti_discard_mini(sc, rxidx);
2716                                 continue;
2717                         }
2718                         if (ti_newbuf_mini(sc, rxidx) != 0) {
2719                                 ifp->if_iqdrops++;
2720                                 ti_discard_mini(sc, rxidx);
2721                                 continue;
2722                         }
2723                         m->m_len = ti_len;
2724                 } else {
2725                         stdcnt++;
2726                         TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2727                         m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2728                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2729                                 ifp->if_ierrors++;
2730                                 ti_discard_std(sc, rxidx);
2731                                 continue;
2732                         }
2733                         if (ti_newbuf_std(sc, rxidx) != 0) {
2734                                 ifp->if_iqdrops++;
2735                                 ti_discard_std(sc, rxidx);
2736                                 continue;
2737                         }
2738                         m->m_len = ti_len;
2739                 }
2740
2741                 m->m_pkthdr.len = ti_len;
2742                 ifp->if_ipackets++;
2743                 m->m_pkthdr.rcvif = ifp;
2744
2745                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2746                         if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2747                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2748                                 if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2749                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2750                         }
2751                         if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2752                                 m->m_pkthdr.csum_data =
2753                                     cur_rx->ti_tcp_udp_cksum;
2754                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2755                         }
2756                 }
2757
2758                 /*
2759                  * If we received a packet with a vlan tag,
2760                  * tag it before passing the packet upward.
2761                  */
2762                 if (have_tag) {
2763                         m->m_pkthdr.ether_vtag = vlan_tag;
2764                         m->m_flags |= M_VLANTAG;
2765                 }
2766                 TI_UNLOCK(sc);
2767                 (*ifp->if_input)(ifp, m);
2768                 TI_LOCK(sc);
2769         }
2770
2771         /* Only necessary on the Tigon 1. */
2772         if (sc->ti_hwrev == TI_HWREV_TIGON)
2773                 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2774                     sc->ti_rx_saved_considx);
2775
2776         if (stdcnt > 0)
2777                 TI_UPDATE_STDPROD(sc, sc->ti_std);
2778         if (minicnt > 0)
2779                 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2780         if (jumbocnt > 0)
2781                 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2782 }
2783
2784 static void
2785 ti_txeof(struct ti_softc *sc)
2786 {
2787         struct ti_txdesc *txd;
2788         struct ti_tx_desc txdesc;
2789         struct ti_tx_desc *cur_tx = NULL;
2790         struct ifnet *ifp;
2791         int idx;
2792
2793         ifp = sc->ti_ifp;
2794
2795         txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2796         if (txd == NULL)
2797                 return;
2798         /*
2799          * Go through our tx ring and free mbufs for those
2800          * frames that have been sent.
2801          */
2802         for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2803             TI_INC(idx, TI_TX_RING_CNT)) {
2804                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2805                         ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2806                             sizeof(txdesc), &txdesc);
2807                         cur_tx = &txdesc;
2808                 } else
2809                         cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2810                 sc->ti_txcnt--;
2811                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2812                 if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2813                         continue;
2814                 bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2815                     BUS_DMASYNC_POSTWRITE);
2816                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2817
2818                 ifp->if_opackets++;
2819                 m_freem(txd->tx_m);
2820                 txd->tx_m = NULL;
2821                 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2822                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2823                 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2824         }
2825         sc->ti_tx_saved_considx = idx;
2826
2827         sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2828 }
2829
2830 static void
2831 ti_intr(void *xsc)
2832 {
2833         struct ti_softc *sc;
2834         struct ifnet *ifp;
2835
2836         sc = xsc;
2837         TI_LOCK(sc);
2838         ifp = sc->ti_ifp;
2839
2840 /*#ifdef notdef*/
2841         /* Avoid this for now -- checking this register is expensive. */
2842         /* Make sure this is really our interrupt. */
2843         if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2844                 TI_UNLOCK(sc);
2845                 return;
2846         }
2847 /*#endif*/
2848
2849         /* Ack interrupt and stop others from occuring. */
2850         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2851
2852         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2853                 /* Check RX return ring producer/consumer */
2854                 ti_rxeof(sc);
2855
2856                 /* Check TX ring producer/consumer */
2857                 ti_txeof(sc);
2858         }
2859
2860         ti_handle_events(sc);
2861
2862         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2863                 /* Re-enable interrupts. */
2864                 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2865                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2866                         ti_start_locked(ifp);
2867         }
2868
2869         TI_UNLOCK(sc);
2870 }
2871
2872 static void
2873 ti_stats_update(struct ti_softc *sc)
2874 {
2875         struct ifnet *ifp;
2876
2877         ifp = sc->ti_ifp;
2878
2879         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2880             BUS_DMASYNC_POSTREAD);
2881
2882         ifp->if_collisions +=
2883            (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2884            sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2885            sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2886            sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2887            ifp->if_collisions;
2888
2889         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2890             BUS_DMASYNC_PREREAD);
2891 }
2892
2893 /*
2894  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2895  * pointers to descriptors.
2896  */
2897 static int
2898 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
2899 {
2900         struct ti_txdesc *txd;
2901         struct ti_tx_desc *f;
2902         struct ti_tx_desc txdesc;
2903         struct mbuf *m;
2904         bus_dma_segment_t txsegs[TI_MAXTXSEGS];
2905         uint16_t csum_flags;
2906         int error, frag, i, nseg;
2907
2908         if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2909                 return (ENOBUFS);
2910
2911         error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2912             *m_head, txsegs, &nseg, 0);
2913         if (error == EFBIG) {
2914                 m = m_defrag(*m_head, M_DONTWAIT);
2915                 if (m == NULL) {
2916                         m_freem(*m_head);
2917                         *m_head = NULL;
2918                         return (ENOMEM);
2919                 }
2920                 *m_head = m;
2921                 error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2922                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2923                 if (error) {
2924                         m_freem(*m_head);
2925                         *m_head = NULL;
2926                         return (error);
2927                 }
2928         } else if (error != 0)
2929                 return (error);
2930         if (nseg == 0) {
2931                 m_freem(*m_head);
2932                 *m_head = NULL;
2933                 return (EIO);
2934         }
2935
2936         if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2937                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2938                 return (ENOBUFS);
2939         }
2940
2941         m = *m_head;
2942         csum_flags = 0;
2943         if (m->m_pkthdr.csum_flags) {
2944                 if (m->m_pkthdr.csum_flags & CSUM_IP)
2945                         csum_flags |= TI_BDFLAG_IP_CKSUM;
2946                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2947                         csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2948                 if (m->m_flags & M_LASTFRAG)
2949                         csum_flags |= TI_BDFLAG_IP_FRAG_END;
2950                 else if (m->m_flags & M_FRAG)
2951                         csum_flags |= TI_BDFLAG_IP_FRAG;
2952         }
2953
2954         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2955             BUS_DMASYNC_PREWRITE);
2956         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2957             BUS_DMASYNC_PREWRITE);
2958
2959         frag = sc->ti_tx_saved_prodidx;
2960         for (i = 0; i < nseg; i++) {
2961                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2962                         bzero(&txdesc, sizeof(txdesc));
2963                         f = &txdesc;
2964                 } else
2965                         f = &sc->ti_rdata->ti_tx_ring[frag];
2966                 ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
2967                 f->ti_len = txsegs[i].ds_len;
2968                 f->ti_flags = csum_flags;
2969                 if (m->m_flags & M_VLANTAG) {
2970                         f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2971                         f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
2972                 } else {
2973                         f->ti_vlan_tag = 0;
2974                 }
2975
2976                 if (sc->ti_hwrev == TI_HWREV_TIGON)
2977                         ti_mem_write(sc, TI_TX_RING_BASE + frag *
2978                             sizeof(txdesc), sizeof(txdesc), &txdesc);
2979                 TI_INC(frag, TI_TX_RING_CNT);
2980         }
2981
2982         sc->ti_tx_saved_prodidx = frag;
2983         /* set TI_BDFLAG_END on the last descriptor */
2984         frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
2985         if (sc->ti_hwrev == TI_HWREV_TIGON) {
2986                 txdesc.ti_flags |= TI_BDFLAG_END;
2987                 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
2988                     sizeof(txdesc), &txdesc);
2989         } else
2990                 sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
2991
2992         STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
2993         STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
2994         txd->tx_m = m;
2995         sc->ti_txcnt += nseg;
2996
2997         return (0);
2998 }
2999
3000 static void
3001 ti_start(struct ifnet *ifp)
3002 {
3003         struct ti_softc *sc;
3004
3005         sc = ifp->if_softc;
3006         TI_LOCK(sc);
3007         ti_start_locked(ifp);
3008         TI_UNLOCK(sc);
3009 }
3010
3011 /*
3012  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3013  * to the mbuf data regions directly in the transmit descriptors.
3014  */
3015 static void
3016 ti_start_locked(struct ifnet *ifp)
3017 {
3018         struct ti_softc *sc;
3019         struct mbuf *m_head = NULL;
3020         int enq = 0;
3021
3022         sc = ifp->if_softc;
3023
3024         for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3025             sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3026                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3027                 if (m_head == NULL)
3028                         break;
3029
3030                 /*
3031                  * XXX
3032                  * safety overkill.  If this is a fragmented packet chain
3033                  * with delayed TCP/UDP checksums, then only encapsulate
3034                  * it if we have enough descriptors to handle the entire
3035                  * chain at once.
3036                  * (paranoia -- may not actually be needed)
3037                  */
3038                 if (m_head->m_flags & M_FIRSTFRAG &&
3039                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3040                         if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3041                             m_head->m_pkthdr.csum_data + 16) {
3042                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3043                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3044                                 break;
3045                         }
3046                 }
3047
3048                 /*
3049                  * Pack the data into the transmit ring. If we
3050                  * don't have room, set the OACTIVE flag and wait
3051                  * for the NIC to drain the ring.
3052                  */
3053                 if (ti_encap(sc, &m_head)) {
3054                         if (m_head == NULL)
3055                                 break;
3056                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3057                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3058                         break;
3059                 }
3060
3061                 enq++;
3062                 /*
3063                  * If there's a BPF listener, bounce a copy of this frame
3064                  * to him.
3065                  */
3066                 ETHER_BPF_MTAP(ifp, m_head);
3067         }
3068
3069         if (enq > 0) {
3070                 /* Transmit */
3071                 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3072
3073                 /*
3074                  * Set a timeout in case the chip goes out to lunch.
3075                  */
3076                 sc->ti_timer = 5;
3077         }
3078 }
3079
3080 static void
3081 ti_init(void *xsc)
3082 {
3083         struct ti_softc *sc;
3084
3085         sc = xsc;
3086         TI_LOCK(sc);
3087         ti_init_locked(sc);
3088         TI_UNLOCK(sc);
3089 }
3090
3091 static void
3092 ti_init_locked(void *xsc)
3093 {
3094         struct ti_softc *sc = xsc;
3095
3096         if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3097                 return;
3098
3099         /* Cancel pending I/O and flush buffers. */
3100         ti_stop(sc);
3101
3102         /* Init the gen info block, ring control blocks and firmware. */
3103         if (ti_gibinit(sc)) {
3104                 device_printf(sc->ti_dev, "initialization failure\n");
3105                 return;
3106         }
3107 }
3108
3109 static void ti_init2(struct ti_softc *sc)
3110 {
3111         struct ti_cmd_desc cmd;
3112         struct ifnet *ifp;
3113         uint8_t *ea;
3114         struct ifmedia *ifm;
3115         int tmp;
3116
3117         TI_LOCK_ASSERT(sc);
3118
3119         ifp = sc->ti_ifp;
3120
3121         /* Specify MTU and interface index. */
3122         CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3123         CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3124             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3125         TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3126
3127         /* Load our MAC address. */
3128         ea = IF_LLADDR(sc->ti_ifp);
3129         CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3130         CSR_WRITE_4(sc, TI_GCR_PAR1,
3131             (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3132         TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3133
3134         /* Enable or disable promiscuous mode as needed. */
3135         if (ifp->if_flags & IFF_PROMISC) {
3136                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3137         } else {
3138                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3139         }
3140
3141         /* Program multicast filter. */
3142         ti_setmulti(sc);
3143
3144         /*
3145          * If this is a Tigon 1, we should tell the
3146          * firmware to use software packet filtering.
3147          */
3148         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3149                 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3150         }
3151
3152         /* Init RX ring. */
3153         if (ti_init_rx_ring_std(sc) != 0) {
3154                 /* XXX */
3155                 device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3156                 return;
3157         }
3158
3159         /* Init jumbo RX ring. */
3160         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3161                 if (ti_init_rx_ring_jumbo(sc) != 0) {
3162                         /* XXX */
3163                         device_printf(sc->ti_dev,
3164                             "no memory for jumbo Rx buffers.\n");
3165                         return;
3166                 }
3167         }
3168
3169         /*
3170          * If this is a Tigon 2, we can also configure the
3171          * mini ring.
3172          */
3173         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3174                 if (ti_init_rx_ring_mini(sc) != 0) {
3175                         /* XXX */
3176                         device_printf(sc->ti_dev,
3177                             "no memory for mini Rx buffers.\n");
3178                         return;
3179                 }
3180         }
3181
3182         CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3183         sc->ti_rx_saved_considx = 0;
3184
3185         /* Init TX ring. */
3186         ti_init_tx_ring(sc);
3187
3188         /* Tell firmware we're alive. */
3189         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3190
3191         /* Enable host interrupts. */
3192         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3193
3194         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3195         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3196         callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3197
3198         /*
3199          * Make sure to set media properly. We have to do this
3200          * here since we have to issue commands in order to set
3201          * the link negotiation and we can't issue commands until
3202          * the firmware is running.
3203          */
3204         ifm = &sc->ifmedia;
3205         tmp = ifm->ifm_media;
3206         ifm->ifm_media = ifm->ifm_cur->ifm_media;
3207         ti_ifmedia_upd_locked(sc);
3208         ifm->ifm_media = tmp;
3209 }
3210
3211 /*
3212  * Set media options.
3213  */
3214 static int
3215 ti_ifmedia_upd(struct ifnet *ifp)
3216 {
3217         struct ti_softc *sc;
3218         int error;
3219
3220         sc = ifp->if_softc;
3221         TI_LOCK(sc);
3222         error = ti_ifmedia_upd(ifp);
3223         TI_UNLOCK(sc);
3224
3225         return (error);
3226 }
3227
3228 static int
3229 ti_ifmedia_upd_locked(struct ti_softc *sc)
3230 {
3231         struct ifmedia *ifm;
3232         struct ti_cmd_desc cmd;
3233         uint32_t flowctl;
3234
3235         ifm = &sc->ifmedia;
3236
3237         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3238                 return (EINVAL);
3239
3240         flowctl = 0;
3241
3242         switch (IFM_SUBTYPE(ifm->ifm_media)) {
3243         case IFM_AUTO:
3244                 /*
3245                  * Transmit flow control doesn't work on the Tigon 1.
3246                  */
3247                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3248
3249                 /*
3250                  * Transmit flow control can also cause problems on the
3251                  * Tigon 2, apparantly with both the copper and fiber
3252                  * boards.  The symptom is that the interface will just
3253                  * hang.  This was reproduced with Alteon 180 switches.
3254                  */
3255 #if 0
3256                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3257                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3258 #endif
3259
3260                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3261                     TI_GLNK_FULL_DUPLEX| flowctl |
3262                     TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3263
3264                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3265 #if 0
3266                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3267                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3268 #endif
3269
3270                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3271                     TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3272                     TI_LNK_AUTONEGENB|TI_LNK_ENB);
3273                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3274                     TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3275                 break;
3276         case IFM_1000_SX:
3277         case IFM_1000_T:
3278                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3279 #if 0
3280                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3281                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3282 #endif
3283
3284                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3285                     flowctl |TI_GLNK_ENB);
3286                 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3287                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3288                         TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3289                 }
3290                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3291                     TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3292                 break;
3293         case IFM_100_FX:
3294         case IFM_10_FL:
3295         case IFM_100_TX:
3296         case IFM_10_T:
3297                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3298 #if 0
3299                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3300                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3301 #endif
3302
3303                 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3304                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3305                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3306                     IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3307                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3308                 } else {
3309                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3310                 }
3311                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3312                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3313                 } else {
3314                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3315                 }
3316                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3317                     TI_CMD_CODE_NEGOTIATE_10_100, 0);
3318                 break;
3319         }
3320
3321         return (0);
3322 }
3323
3324 /*
3325  * Report current media status.
3326  */
3327 static void
3328 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3329 {
3330         struct ti_softc *sc;
3331         uint32_t media = 0;
3332
3333         sc = ifp->if_softc;
3334
3335         TI_LOCK(sc);
3336
3337         ifmr->ifm_status = IFM_AVALID;
3338         ifmr->ifm_active = IFM_ETHER;
3339
3340         if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3341                 TI_UNLOCK(sc);
3342                 return;
3343         }
3344
3345         ifmr->ifm_status |= IFM_ACTIVE;
3346
3347         if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3348                 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3349                 if (sc->ti_copper)
3350                         ifmr->ifm_active |= IFM_1000_T;
3351                 else
3352                         ifmr->ifm_active |= IFM_1000_SX;
3353                 if (media & TI_GLNK_FULL_DUPLEX)
3354                         ifmr->ifm_active |= IFM_FDX;
3355                 else
3356                         ifmr->ifm_active |= IFM_HDX;
3357         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3358                 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3359                 if (sc->ti_copper) {
3360                         if (media & TI_LNK_100MB)
3361                                 ifmr->ifm_active |= IFM_100_TX;
3362                         if (media & TI_LNK_10MB)
3363                                 ifmr->ifm_active |= IFM_10_T;
3364                 } else {
3365                         if (media & TI_LNK_100MB)
3366                                 ifmr->ifm_active |= IFM_100_FX;
3367                         if (media & TI_LNK_10MB)
3368                                 ifmr->ifm_active |= IFM_10_FL;
3369                 }
3370                 if (media & TI_LNK_FULL_DUPLEX)
3371                         ifmr->ifm_active |= IFM_FDX;
3372                 if (media & TI_LNK_HALF_DUPLEX)
3373                         ifmr->ifm_active |= IFM_HDX;
3374         }
3375         TI_UNLOCK(sc);
3376 }
3377
3378 static int
3379 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3380 {
3381         struct ti_softc *sc = ifp->if_softc;
3382         struct ifreq *ifr = (struct ifreq *) data;
3383         struct ti_cmd_desc cmd;
3384         int mask, error = 0;
3385
3386         switch (command) {
3387         case SIOCSIFMTU:
3388                 TI_LOCK(sc);
3389                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3390                         error = EINVAL;
3391                 else {
3392                         ifp->if_mtu = ifr->ifr_mtu;
3393                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3394                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3395                                 ti_init_locked(sc);
3396                         }
3397                 }
3398                 TI_UNLOCK(sc);
3399                 break;
3400         case SIOCSIFFLAGS:
3401                 TI_LOCK(sc);
3402                 if (ifp->if_flags & IFF_UP) {
3403                         /*
3404                          * If only the state of the PROMISC flag changed,
3405                          * then just use the 'set promisc mode' command
3406                          * instead of reinitializing the entire NIC. Doing
3407                          * a full re-init means reloading the firmware and
3408                          * waiting for it to start up, which may take a
3409                          * second or two.
3410                          */
3411                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3412                             ifp->if_flags & IFF_PROMISC &&
3413                             !(sc->ti_if_flags & IFF_PROMISC)) {
3414                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3415                                     TI_CMD_CODE_PROMISC_ENB, 0);
3416                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3417                             !(ifp->if_flags & IFF_PROMISC) &&
3418                             sc->ti_if_flags & IFF_PROMISC) {
3419                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3420                                     TI_CMD_CODE_PROMISC_DIS, 0);
3421                         } else
3422                                 ti_init_locked(sc);
3423                 } else {
3424                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3425                                 ti_stop(sc);
3426                         }
3427                 }
3428                 sc->ti_if_flags = ifp->if_flags;
3429                 TI_UNLOCK(sc);
3430                 break;
3431         case SIOCADDMULTI:
3432         case SIOCDELMULTI:
3433                 TI_LOCK(sc);
3434                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3435                         ti_setmulti(sc);
3436                 TI_UNLOCK(sc);
3437                 break;
3438         case SIOCSIFMEDIA:
3439         case SIOCGIFMEDIA:
3440                 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3441                 break;
3442         case SIOCSIFCAP:
3443                 TI_LOCK(sc);
3444                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3445                 if ((mask & IFCAP_TXCSUM) != 0 &&
3446                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3447                         ifp->if_capenable ^= IFCAP_TXCSUM;
3448                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3449                                 ifp->if_hwassist |= TI_CSUM_FEATURES;
3450                         else
3451                                 ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3452                 }
3453                 if ((mask & IFCAP_RXCSUM) != 0 &&
3454                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3455                         ifp->if_capenable ^= IFCAP_RXCSUM;
3456                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3457                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3458                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3459                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3460                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3461                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3462                 if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3463                     IFCAP_VLAN_HWTAGGING)) != 0) {
3464                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3465                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3466                                 ti_init_locked(sc);
3467                         }
3468                 }
3469                 TI_UNLOCK(sc);
3470                 VLAN_CAPABILITIES(ifp);
3471                 break;
3472         default:
3473                 error = ether_ioctl(ifp, command, data);
3474                 break;
3475         }
3476
3477         return (error);
3478 }
3479
3480 static int
3481 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3482 {
3483         struct ti_softc *sc;
3484
3485         sc = dev->si_drv1;
3486         if (sc == NULL)
3487                 return (ENODEV);
3488
3489         TI_LOCK(sc);
3490         sc->ti_flags |= TI_FLAG_DEBUGING;
3491         TI_UNLOCK(sc);
3492
3493         return (0);
3494 }
3495
3496 static int
3497 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3498 {
3499         struct ti_softc *sc;
3500
3501         sc = dev->si_drv1;
3502         if (sc == NULL)
3503                 return (ENODEV);
3504
3505         TI_LOCK(sc);
3506         sc->ti_flags &= ~TI_FLAG_DEBUGING;
3507         TI_UNLOCK(sc);
3508
3509         return (0);
3510 }
3511
3512 /*
3513  * This ioctl routine goes along with the Tigon character device.
3514  */
3515 static int
3516 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3517     struct thread *td)
3518 {
3519         struct ti_softc *sc;
3520         int error;
3521
3522         sc = dev->si_drv1;
3523         if (sc == NULL)
3524                 return (ENODEV);
3525
3526         error = 0;
3527
3528         switch (cmd) {
3529         case TIIOCGETSTATS:
3530         {
3531                 struct ti_stats *outstats;
3532
3533                 outstats = (struct ti_stats *)addr;
3534
3535                 TI_LOCK(sc);
3536                 bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3537                       sizeof(struct ti_stats));
3538                 TI_UNLOCK(sc);
3539                 break;
3540         }
3541         case TIIOCGETPARAMS:
3542         {
3543                 struct ti_params *params;
3544
3545                 params = (struct ti_params *)addr;
3546
3547                 TI_LOCK(sc);
3548                 params->ti_stat_ticks = sc->ti_stat_ticks;
3549                 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3550                 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3551                 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3552                 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3553                 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3554                 params->param_mask = TI_PARAM_ALL;
3555                 TI_UNLOCK(sc);
3556
3557                 error = 0;
3558
3559                 break;
3560         }
3561         case TIIOCSETPARAMS:
3562         {
3563                 struct ti_params *params;
3564
3565                 params = (struct ti_params *)addr;
3566
3567                 TI_LOCK(sc);
3568                 if (params->param_mask & TI_PARAM_STAT_TICKS) {
3569                         sc->ti_stat_ticks = params->ti_stat_ticks;
3570                         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3571                 }
3572
3573                 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3574                         sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3575                         CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3576                                     sc->ti_rx_coal_ticks);
3577                 }
3578
3579                 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3580                         sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3581                         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3582                                     sc->ti_tx_coal_ticks);
3583                 }
3584
3585                 if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3586                         sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3587                         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3588                                     sc->ti_rx_max_coal_bds);
3589                 }
3590
3591                 if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3592                         sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3593                         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3594                                     sc->ti_tx_max_coal_bds);
3595                 }
3596
3597                 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3598                         sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3599                         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3600                                     sc->ti_tx_buf_ratio);
3601                 }
3602                 TI_UNLOCK(sc);
3603
3604                 error = 0;
3605
3606                 break;
3607         }
3608         case TIIOCSETTRACE: {
3609                 ti_trace_type   trace_type;
3610
3611                 trace_type = *(ti_trace_type *)addr;
3612
3613                 /*
3614                  * Set tracing to whatever the user asked for.  Setting
3615                  * this register to 0 should have the effect of disabling
3616                  * tracing.
3617                  */
3618                 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3619
3620                 error = 0;
3621
3622                 break;
3623         }
3624         case TIIOCGETTRACE: {
3625                 struct ti_trace_buf *trace_buf;
3626                 uint32_t trace_start, cur_trace_ptr, trace_len;
3627
3628                 trace_buf = (struct ti_trace_buf *)addr;
3629
3630                 TI_LOCK(sc);
3631                 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3632                 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3633                 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3634
3635 #if 0
3636                 if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3637                        "trace_len = %d\n", trace_start,
3638                        cur_trace_ptr, trace_len);
3639                 if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3640                        trace_buf->buf_len);
3641 #endif
3642
3643                 error = ti_copy_mem(sc, trace_start, min(trace_len,
3644                                     trace_buf->buf_len),
3645                                     (caddr_t)trace_buf->buf, 1, 1);
3646
3647                 if (error == 0) {
3648                         trace_buf->fill_len = min(trace_len,
3649                                                   trace_buf->buf_len);
3650                         if (cur_trace_ptr < trace_start)
3651                                 trace_buf->cur_trace_ptr =
3652                                         trace_start - cur_trace_ptr;
3653                         else
3654                                 trace_buf->cur_trace_ptr =
3655                                         cur_trace_ptr - trace_start;
3656                 } else
3657                         trace_buf->fill_len = 0;
3658                 TI_UNLOCK(sc);
3659
3660                 break;
3661         }
3662
3663         /*
3664          * For debugging, five ioctls are needed:
3665          * ALT_ATTACH
3666          * ALT_READ_TG_REG
3667          * ALT_WRITE_TG_REG
3668          * ALT_READ_TG_MEM
3669          * ALT_WRITE_TG_MEM
3670          */
3671         case ALT_ATTACH:
3672                 /*
3673                  * From what I can tell, Alteon's Solaris Tigon driver
3674                  * only has one character device, so you have to attach
3675                  * to the Tigon board you're interested in.  This seems
3676                  * like a not-so-good way to do things, since unless you
3677                  * subsequently specify the unit number of the device
3678                  * you're interested in every ioctl, you'll only be
3679                  * able to debug one board at a time.
3680                  */
3681                 error = 0;
3682                 break;
3683         case ALT_READ_TG_MEM:
3684         case ALT_WRITE_TG_MEM:
3685         {
3686                 struct tg_mem *mem_param;
3687                 uint32_t sram_end, scratch_end;
3688
3689                 mem_param = (struct tg_mem *)addr;
3690
3691                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3692                         sram_end = TI_END_SRAM_I;
3693                         scratch_end = TI_END_SCRATCH_I;
3694                 } else {
3695                         sram_end = TI_END_SRAM_II;
3696                         scratch_end = TI_END_SCRATCH_II;
3697                 }
3698
3699                 /*
3700                  * For now, we'll only handle accessing regular SRAM,
3701                  * nothing else.
3702                  */
3703                 TI_LOCK(sc);
3704                 if ((mem_param->tgAddr >= TI_BEG_SRAM)
3705                  && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3706                         /*
3707                          * In this instance, we always copy to/from user
3708                          * space, so the user space argument is set to 1.
3709                          */
3710                         error = ti_copy_mem(sc, mem_param->tgAddr,
3711                                             mem_param->len,
3712                                             mem_param->userAddr, 1,
3713                                             (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3714                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3715                         && (mem_param->tgAddr <= scratch_end)) {
3716                         error = ti_copy_scratch(sc, mem_param->tgAddr,
3717                                                 mem_param->len,
3718                                                 mem_param->userAddr, 1,
3719                                                 (cmd == ALT_READ_TG_MEM) ?
3720                                                 1 : 0, TI_PROCESSOR_A);
3721                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3722                         && (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3723                         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3724                                 if_printf(sc->ti_ifp,
3725                                     "invalid memory range for Tigon I\n");
3726                                 error = EINVAL;
3727                                 break;
3728                         }
3729                         error = ti_copy_scratch(sc, mem_param->tgAddr -
3730                                                 TI_SCRATCH_DEBUG_OFF,
3731                                                 mem_param->len,
3732                                                 mem_param->userAddr, 1,
3733                                                 (cmd == ALT_READ_TG_MEM) ?
3734                                                 1 : 0, TI_PROCESSOR_B);
3735                 } else {
3736                         if_printf(sc->ti_ifp, "memory address %#x len %d is "
3737                                 "out of supported range\n",
3738                                 mem_param->tgAddr, mem_param->len);
3739                         error = EINVAL;
3740                 }
3741                 TI_UNLOCK(sc);
3742
3743                 break;
3744         }
3745         case ALT_READ_TG_REG:
3746         case ALT_WRITE_TG_REG:
3747         {
3748                 struct tg_reg   *regs;
3749                 uint32_t        tmpval;
3750
3751                 regs = (struct tg_reg *)addr;
3752
3753                 /*
3754                  * Make sure the address in question isn't out of range.
3755                  */
3756                 if (regs->addr > TI_REG_MAX) {
3757                         error = EINVAL;
3758                         break;
3759                 }
3760                 TI_LOCK(sc);
3761                 if (cmd == ALT_READ_TG_REG) {
3762                         bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3763                                                 regs->addr, &tmpval, 1);
3764                         regs->data = ntohl(tmpval);
3765 #if 0
3766                         if ((regs->addr == TI_CPU_STATE)
3767                          || (regs->addr == TI_CPU_CTL_B)) {
3768                                 if_printf(sc->ti_ifp, "register %#x = %#x\n",
3769                                        regs->addr, tmpval);
3770                         }
3771 #endif
3772                 } else {
3773                         tmpval = htonl(regs->data);
3774                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3775                                                  regs->addr, &tmpval, 1);
3776                 }
3777                 TI_UNLOCK(sc);
3778
3779                 break;
3780         }
3781         default:
3782                 error = ENOTTY;
3783                 break;
3784         }
3785         return (error);
3786 }
3787
3788 static void
3789 ti_watchdog(void *arg)
3790 {
3791         struct ti_softc *sc;
3792         struct ifnet *ifp;
3793
3794         sc = arg;
3795         TI_LOCK_ASSERT(sc);
3796         callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3797         if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3798                 return;
3799
3800         /*
3801          * When we're debugging, the chip is often stopped for long periods
3802          * of time, and that would normally cause the watchdog timer to fire.
3803          * Since that impedes debugging, we don't want to do that.
3804          */
3805         if (sc->ti_flags & TI_FLAG_DEBUGING)
3806                 return;
3807
3808         ifp = sc->ti_ifp;
3809         if_printf(ifp, "watchdog timeout -- resetting\n");
3810         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3811         ti_init_locked(sc);
3812
3813         ifp->if_oerrors++;
3814 }
3815
3816 /*
3817  * Stop the adapter and free any mbufs allocated to the
3818  * RX and TX lists.
3819  */
3820 static void
3821 ti_stop(struct ti_softc *sc)
3822 {
3823         struct ifnet *ifp;
3824         struct ti_cmd_desc cmd;
3825
3826         TI_LOCK_ASSERT(sc);
3827
3828         ifp = sc->ti_ifp;
3829
3830         /* Disable host interrupts. */
3831         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3832         /*
3833          * Tell firmware we're shutting down.
3834          */
3835         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3836
3837         /* Halt and reinitialize. */
3838         if (ti_chipinit(sc) == 0) {
3839                 ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3840                 /* XXX ignore init errors. */
3841                 ti_chipinit(sc);
3842         }
3843
3844         /* Free the RX lists. */
3845         ti_free_rx_ring_std(sc);
3846
3847         /* Free jumbo RX list. */
3848         ti_free_rx_ring_jumbo(sc);
3849
3850         /* Free mini RX list. */
3851         ti_free_rx_ring_mini(sc);
3852
3853         /* Free TX buffers. */
3854         ti_free_tx_ring(sc);
3855
3856         sc->ti_ev_prodidx.ti_idx = 0;
3857         sc->ti_return_prodidx.ti_idx = 0;
3858         sc->ti_tx_considx.ti_idx = 0;
3859         sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3860
3861         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3862         callout_stop(&sc->ti_watchdog);
3863 }
3864
3865 /*
3866  * Stop all chip I/O so that the kernel's probe routines don't
3867  * get confused by errant DMAs when rebooting.
3868  */
3869 static int
3870 ti_shutdown(device_t dev)
3871 {
3872         struct ti_softc *sc;
3873
3874         sc = device_get_softc(dev);
3875         TI_LOCK(sc);
3876         ti_chipinit(sc);
3877         TI_UNLOCK(sc);
3878
3879         return (0);
3880 }