]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/dev/usb/wlan/if_rum.c
Copy head to stable/8 as part of 8.0 Release cycle.
[FreeBSD/stable/8.git] / sys / dev / usb / wlan / if_rum.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*-
25  * Ralink Technology RT2501USB/RT2601USB chipset driver
26  * http://www.ralinktech.com.tw/
27  */
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_regdomain.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_amrr.h>
68
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include "usbdevs.h"
72
73 #define USB_DEBUG_VAR rum_debug
74 #include <dev/usb/usb_debug.h>
75
76 #include <dev/usb/wlan/if_rumreg.h>
77 #include <dev/usb/wlan/if_rumvar.h>
78 #include <dev/usb/wlan/if_rumfw.h>
79
80 #if USB_DEBUG
81 static int rum_debug = 0;
82
83 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
85     "Debug level");
86 #endif
87
88 static const struct usb_device_id rum_devs[] = {
89     { USB_VP(USB_VENDOR_ABOCOM,         USB_PRODUCT_ABOCOM_HWU54DM) },
90     { USB_VP(USB_VENDOR_ABOCOM,         USB_PRODUCT_ABOCOM_RT2573_2) },
91     { USB_VP(USB_VENDOR_ABOCOM,         USB_PRODUCT_ABOCOM_RT2573_3) },
92     { USB_VP(USB_VENDOR_ABOCOM,         USB_PRODUCT_ABOCOM_RT2573_4) },
93     { USB_VP(USB_VENDOR_ABOCOM,         USB_PRODUCT_ABOCOM_WUG2700) },
94     { USB_VP(USB_VENDOR_AMIT,           USB_PRODUCT_AMIT_CGWLUSB2GO) },
95     { USB_VP(USB_VENDOR_ASUS,           USB_PRODUCT_ASUS_RT2573_1) },
96     { USB_VP(USB_VENDOR_ASUS,           USB_PRODUCT_ASUS_RT2573_2) },
97     { USB_VP(USB_VENDOR_BELKIN,         USB_PRODUCT_BELKIN_F5D7050A) },
98     { USB_VP(USB_VENDOR_BELKIN,         USB_PRODUCT_BELKIN_F5D9050V3) },
99     { USB_VP(USB_VENDOR_CISCOLINKSYS,   USB_PRODUCT_CISCOLINKSYS_WUSB54GC) },
100     { USB_VP(USB_VENDOR_CISCOLINKSYS,   USB_PRODUCT_CISCOLINKSYS_WUSB54GR) },
101     { USB_VP(USB_VENDOR_CONCEPTRONIC2,  USB_PRODUCT_CONCEPTRONIC2_C54RU2) },
102     { USB_VP(USB_VENDOR_COREGA,         USB_PRODUCT_COREGA_CGWLUSB2GL) },
103     { USB_VP(USB_VENDOR_COREGA,         USB_PRODUCT_COREGA_CGWLUSB2GPX) },
104     { USB_VP(USB_VENDOR_DICKSMITH,      USB_PRODUCT_DICKSMITH_CWD854F) },
105     { USB_VP(USB_VENDOR_DICKSMITH,      USB_PRODUCT_DICKSMITH_RT2573) },
106     { USB_VP(USB_VENDOR_DLINK2,         USB_PRODUCT_DLINK2_DWLG122C1) },
107     { USB_VP(USB_VENDOR_DLINK2,         USB_PRODUCT_DLINK2_WUA1340) },
108     { USB_VP(USB_VENDOR_DLINK2,         USB_PRODUCT_DLINK2_DWA111) },
109     { USB_VP(USB_VENDOR_DLINK2,         USB_PRODUCT_DLINK2_DWA110) },
110     { USB_VP(USB_VENDOR_GIGABYTE,       USB_PRODUCT_GIGABYTE_GNWB01GS) },
111     { USB_VP(USB_VENDOR_GIGABYTE,       USB_PRODUCT_GIGABYTE_GNWI05GS) },
112     { USB_VP(USB_VENDOR_GIGASET,        USB_PRODUCT_GIGASET_RT2573) },
113     { USB_VP(USB_VENDOR_GOODWAY,        USB_PRODUCT_GOODWAY_RT2573) },
114     { USB_VP(USB_VENDOR_GUILLEMOT,      USB_PRODUCT_GUILLEMOT_HWGUSB254LB) },
115     { USB_VP(USB_VENDOR_GUILLEMOT,      USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP) },
116     { USB_VP(USB_VENDOR_HUAWEI3COM,     USB_PRODUCT_HUAWEI3COM_WUB320G) },
117     { USB_VP(USB_VENDOR_MELCO,          USB_PRODUCT_MELCO_G54HP) },
118     { USB_VP(USB_VENDOR_MELCO,          USB_PRODUCT_MELCO_SG54HP) },
119     { USB_VP(USB_VENDOR_MSI,            USB_PRODUCT_MSI_RT2573_1) },
120     { USB_VP(USB_VENDOR_MSI,            USB_PRODUCT_MSI_RT2573_2) },
121     { USB_VP(USB_VENDOR_MSI,            USB_PRODUCT_MSI_RT2573_3) },
122     { USB_VP(USB_VENDOR_MSI,            USB_PRODUCT_MSI_RT2573_4) },
123     { USB_VP(USB_VENDOR_NOVATECH,       USB_PRODUCT_NOVATECH_RT2573) },
124     { USB_VP(USB_VENDOR_PLANEX2,        USB_PRODUCT_PLANEX2_GWUS54HP) },
125     { USB_VP(USB_VENDOR_PLANEX2,        USB_PRODUCT_PLANEX2_GWUS54MINI2) },
126     { USB_VP(USB_VENDOR_PLANEX2,        USB_PRODUCT_PLANEX2_GWUSMM) },
127     { USB_VP(USB_VENDOR_QCOM,           USB_PRODUCT_QCOM_RT2573) },
128     { USB_VP(USB_VENDOR_QCOM,           USB_PRODUCT_QCOM_RT2573_2) },
129     { USB_VP(USB_VENDOR_QCOM,           USB_PRODUCT_QCOM_RT2573_3) },
130     { USB_VP(USB_VENDOR_RALINK,         USB_PRODUCT_RALINK_RT2573) },
131     { USB_VP(USB_VENDOR_RALINK,         USB_PRODUCT_RALINK_RT2573_2) },
132     { USB_VP(USB_VENDOR_RALINK,         USB_PRODUCT_RALINK_RT2671) },
133     { USB_VP(USB_VENDOR_SITECOMEU,      USB_PRODUCT_SITECOMEU_WL113R2) },
134     { USB_VP(USB_VENDOR_SITECOMEU,      USB_PRODUCT_SITECOMEU_WL172) },
135     { USB_VP(USB_VENDOR_SPARKLAN,       USB_PRODUCT_SPARKLAN_RT2573) },
136     { USB_VP(USB_VENDOR_SURECOM,        USB_PRODUCT_SURECOM_RT2573) },
137 };
138
139 MODULE_DEPEND(rum, wlan, 1, 1, 1);
140 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1);
141 MODULE_DEPEND(rum, usb, 1, 1, 1);
142
143 static device_probe_t rum_match;
144 static device_attach_t rum_attach;
145 static device_detach_t rum_detach;
146
147 static usb_callback_t rum_bulk_read_callback;
148 static usb_callback_t rum_bulk_write_callback;
149
150 static usb_error_t      rum_do_request(struct rum_softc *sc,
151                             struct usb_device_request *req, void *data);
152 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
153                             const char name[IFNAMSIZ], int unit, int opmode,
154                             int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
155                             const uint8_t mac[IEEE80211_ADDR_LEN]);
156 static void             rum_vap_delete(struct ieee80211vap *);
157 static void             rum_tx_free(struct rum_tx_data *, int);
158 static void             rum_setup_tx_list(struct rum_softc *);
159 static void             rum_unsetup_tx_list(struct rum_softc *);
160 static int              rum_newstate(struct ieee80211vap *,
161                             enum ieee80211_state, int);
162 static void             rum_setup_tx_desc(struct rum_softc *,
163                             struct rum_tx_desc *, uint32_t, uint16_t, int,
164                             int);
165 static int              rum_tx_mgt(struct rum_softc *, struct mbuf *,
166                             struct ieee80211_node *);
167 static int              rum_tx_raw(struct rum_softc *, struct mbuf *,
168                             struct ieee80211_node *, 
169                             const struct ieee80211_bpf_params *);
170 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
171                             struct ieee80211_node *);
172 static void             rum_start(struct ifnet *);
173 static int              rum_ioctl(struct ifnet *, u_long, caddr_t);
174 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
175                             int);
176 static uint32_t         rum_read(struct rum_softc *, uint16_t);
177 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
178                             int);
179 static usb_error_t      rum_write(struct rum_softc *, uint16_t, uint32_t);
180 static usb_error_t      rum_write_multi(struct rum_softc *, uint16_t, void *,
181                             size_t);
182 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
183 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
184 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
185 static void             rum_select_antenna(struct rum_softc *);
186 static void             rum_enable_mrr(struct rum_softc *);
187 static void             rum_set_txpreamble(struct rum_softc *);
188 static void             rum_set_basicrates(struct rum_softc *);
189 static void             rum_select_band(struct rum_softc *,
190                             struct ieee80211_channel *);
191 static void             rum_set_chan(struct rum_softc *,
192                             struct ieee80211_channel *);
193 static void             rum_enable_tsf_sync(struct rum_softc *);
194 static void             rum_enable_tsf(struct rum_softc *);
195 static void             rum_update_slot(struct ifnet *);
196 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
197 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
198 static void             rum_update_promisc(struct ifnet *);
199 static void             rum_setpromisc(struct rum_softc *);
200 static const char       *rum_get_rf(int);
201 static void             rum_read_eeprom(struct rum_softc *);
202 static int              rum_bbp_init(struct rum_softc *);
203 static void             rum_init_locked(struct rum_softc *);
204 static void             rum_init(void *);
205 static void             rum_stop(struct rum_softc *);
206 static void             rum_load_microcode(struct rum_softc *, const uint8_t *,
207                             size_t);
208 static int              rum_prepare_beacon(struct rum_softc *,
209                             struct ieee80211vap *);
210 static int              rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
211                             const struct ieee80211_bpf_params *);
212 static struct ieee80211_node *rum_node_alloc(struct ieee80211vap *,
213                             const uint8_t mac[IEEE80211_ADDR_LEN]);
214 static void             rum_newassoc(struct ieee80211_node *, int);
215 static void             rum_scan_start(struct ieee80211com *);
216 static void             rum_scan_end(struct ieee80211com *);
217 static void             rum_set_channel(struct ieee80211com *);
218 static int              rum_get_rssi(struct rum_softc *, uint8_t);
219 static void             rum_amrr_start(struct rum_softc *,
220                             struct ieee80211_node *);
221 static void             rum_amrr_timeout(void *);
222 static void             rum_amrr_task(void *, int);
223 static int              rum_pause(struct rum_softc *, int);
224
225 static const struct {
226         uint32_t        reg;
227         uint32_t        val;
228 } rum_def_mac[] = {
229         { RT2573_TXRX_CSR0,  0x025fb032 },
230         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
231         { RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
232         { RT2573_TXRX_CSR3,  0x00858687 },
233         { RT2573_TXRX_CSR7,  0x2e31353b },
234         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
235         { RT2573_TXRX_CSR15, 0x0000000f },
236         { RT2573_MAC_CSR6,   0x00000fff },
237         { RT2573_MAC_CSR8,   0x016c030a },
238         { RT2573_MAC_CSR10,  0x00000718 },
239         { RT2573_MAC_CSR12,  0x00000004 },
240         { RT2573_MAC_CSR13,  0x00007f00 },
241         { RT2573_SEC_CSR0,   0x00000000 },
242         { RT2573_SEC_CSR1,   0x00000000 },
243         { RT2573_SEC_CSR5,   0x00000000 },
244         { RT2573_PHY_CSR1,   0x000023b0 },
245         { RT2573_PHY_CSR5,   0x00040a06 },
246         { RT2573_PHY_CSR6,   0x00080606 },
247         { RT2573_PHY_CSR7,   0x00000408 },
248         { RT2573_AIFSN_CSR,  0x00002273 },
249         { RT2573_CWMIN_CSR,  0x00002344 },
250         { RT2573_CWMAX_CSR,  0x000034aa }
251 };
252
253 static const struct {
254         uint8_t reg;
255         uint8_t val;
256 } rum_def_bbp[] = {
257         {   3, 0x80 },
258         {  15, 0x30 },
259         {  17, 0x20 },
260         {  21, 0xc8 },
261         {  22, 0x38 },
262         {  23, 0x06 },
263         {  24, 0xfe },
264         {  25, 0x0a },
265         {  26, 0x0d },
266         {  32, 0x0b },
267         {  34, 0x12 },
268         {  37, 0x07 },
269         {  39, 0xf8 },
270         {  41, 0x60 },
271         {  53, 0x10 },
272         {  54, 0x18 },
273         {  60, 0x10 },
274         {  61, 0x04 },
275         {  62, 0x04 },
276         {  75, 0xfe },
277         {  86, 0xfe },
278         {  88, 0xfe },
279         {  90, 0x0f },
280         {  99, 0x00 },
281         { 102, 0x16 },
282         { 107, 0x04 }
283 };
284
285 static const struct rfprog {
286         uint8_t         chan;
287         uint32_t        r1, r2, r3, r4;
288 }  rum_rf5226[] = {
289         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
290         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
291         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
292         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
293         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
294         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
295         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
296         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
297         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
298         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
299         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
300         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
301         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
302         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
303
304         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
305         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
306         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
307         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
308
309         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
310         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
311         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
312         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
313         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
314         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
315         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
316         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
317
318         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
319         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
320         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
321         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
322         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
323         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
324         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
325         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
326         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
327         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
328         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
329
330         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
331         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
332         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
333         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
334         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
335 }, rum_rf5225[] = {
336         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
337         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
338         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
339         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
340         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
341         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
342         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
343         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
344         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
345         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
346         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
347         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
348         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
349         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
350
351         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
352         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
353         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
354         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
355
356         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
357         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
358         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
359         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
360         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
361         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
362         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
363         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
364
365         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
366         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
367         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
368         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
369         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
370         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
371         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
372         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
373         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
374         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
375         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
376
377         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
378         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
379         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
380         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
381         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
382 };
383
384 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
385         [RUM_BULK_WR] = {
386                 .type = UE_BULK,
387                 .endpoint = UE_ADDR_ANY,
388                 .direction = UE_DIR_OUT,
389                 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
390                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
391                 .callback = rum_bulk_write_callback,
392                 .timeout = 5000,        /* ms */
393         },
394         [RUM_BULK_RD] = {
395                 .type = UE_BULK,
396                 .endpoint = UE_ADDR_ANY,
397                 .direction = UE_DIR_IN,
398                 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
399                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
400                 .callback = rum_bulk_read_callback,
401         },
402 };
403
404 static int
405 rum_match(device_t self)
406 {
407         struct usb_attach_arg *uaa = device_get_ivars(self);
408
409         if (uaa->usb_mode != USB_MODE_HOST)
410                 return (ENXIO);
411         if (uaa->info.bConfigIndex != 0)
412                 return (ENXIO);
413         if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
414                 return (ENXIO);
415
416         return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
417 }
418
419 static int
420 rum_attach(device_t self)
421 {
422         struct usb_attach_arg *uaa = device_get_ivars(self);
423         struct rum_softc *sc = device_get_softc(self);
424         struct ieee80211com *ic;
425         struct ifnet *ifp;
426         uint8_t iface_index, bands;
427         uint32_t tmp;
428         int error, ntries;
429
430         device_set_usb_desc(self);
431         sc->sc_udev = uaa->device;
432         sc->sc_dev = self;
433
434         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
435             MTX_NETWORK_LOCK, MTX_DEF);
436
437         iface_index = RT2573_IFACE_INDEX;
438         error = usbd_transfer_setup(uaa->device, &iface_index,
439             sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
440         if (error) {
441                 device_printf(self, "could not allocate USB transfers, "
442                     "err=%s\n", usbd_errstr(error));
443                 goto detach;
444         }
445
446         RUM_LOCK(sc);
447         /* retrieve RT2573 rev. no */
448         for (ntries = 0; ntries < 100; ntries++) {
449                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
450                         break;
451                 if (rum_pause(sc, hz / 100))
452                         break;
453         }
454         if (ntries == 100) {
455                 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
456                 RUM_UNLOCK(sc);
457                 goto detach;
458         }
459
460         /* retrieve MAC address and various other things from EEPROM */
461         rum_read_eeprom(sc);
462
463         device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
464             tmp, rum_get_rf(sc->rf_rev));
465
466         rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
467         RUM_UNLOCK(sc);
468
469         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
470         if (ifp == NULL) {
471                 device_printf(sc->sc_dev, "can not if_alloc()\n");
472                 goto detach;
473         }
474         ic = ifp->if_l2com;
475
476         ifp->if_softc = sc;
477         if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
478         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
479         ifp->if_init = rum_init;
480         ifp->if_ioctl = rum_ioctl;
481         ifp->if_start = rum_start;
482         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
483         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
484         IFQ_SET_READY(&ifp->if_snd);
485
486         ic->ic_ifp = ifp;
487         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
488
489         /* set device capabilities */
490         ic->ic_caps =
491               IEEE80211_C_STA           /* station mode supported */
492             | IEEE80211_C_IBSS          /* IBSS mode supported */
493             | IEEE80211_C_MONITOR       /* monitor mode supported */
494             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
495             | IEEE80211_C_TXPMGT        /* tx power management */
496             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
497             | IEEE80211_C_SHSLOT        /* short slot time supported */
498             | IEEE80211_C_BGSCAN        /* bg scanning supported */
499             | IEEE80211_C_WPA           /* 802.11i */
500             ;
501
502         bands = 0;
503         setbit(&bands, IEEE80211_MODE_11B);
504         setbit(&bands, IEEE80211_MODE_11G);
505         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
506                 setbit(&bands, IEEE80211_MODE_11A);
507         ieee80211_init_channels(ic, NULL, &bands);
508
509         ieee80211_ifattach(ic, sc->sc_bssid);
510         ic->ic_update_promisc = rum_update_promisc;
511         ic->ic_newassoc = rum_newassoc;
512         ic->ic_raw_xmit = rum_raw_xmit;
513         ic->ic_node_alloc = rum_node_alloc;
514         ic->ic_scan_start = rum_scan_start;
515         ic->ic_scan_end = rum_scan_end;
516         ic->ic_set_channel = rum_set_channel;
517
518         ic->ic_vap_create = rum_vap_create;
519         ic->ic_vap_delete = rum_vap_delete;
520
521         ieee80211_radiotap_attach(ic,
522             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
523                 RT2573_TX_RADIOTAP_PRESENT,
524             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
525                 RT2573_RX_RADIOTAP_PRESENT);
526
527         if (bootverbose)
528                 ieee80211_announce(ic);
529
530         return (0);
531
532 detach:
533         rum_detach(self);
534         return (ENXIO);                 /* failure */
535 }
536
537 static int
538 rum_detach(device_t self)
539 {
540         struct rum_softc *sc = device_get_softc(self);
541         struct ifnet *ifp = sc->sc_ifp;
542         struct ieee80211com *ic;
543
544         /* stop all USB transfers */
545         usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
546
547         /* free TX list, if any */
548         RUM_LOCK(sc);
549         rum_unsetup_tx_list(sc);
550         RUM_UNLOCK(sc);
551
552         if (ifp) {
553                 ic = ifp->if_l2com;
554                 ieee80211_ifdetach(ic);
555                 if_free(ifp);
556         }
557         mtx_destroy(&sc->sc_mtx);
558
559         return (0);
560 }
561
562 static usb_error_t
563 rum_do_request(struct rum_softc *sc,
564     struct usb_device_request *req, void *data)
565 {
566         usb_error_t err;
567         int ntries = 10;
568
569         while (ntries--) {
570                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
571                     req, data, 0, NULL, 250 /* ms */);
572                 if (err == 0)
573                         break;
574
575                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
576                     usbd_errstr(err));
577                 if (rum_pause(sc, hz / 100))
578                         break;
579         }
580         return (err);
581 }
582
583 static struct ieee80211vap *
584 rum_vap_create(struct ieee80211com *ic,
585         const char name[IFNAMSIZ], int unit, int opmode, int flags,
586         const uint8_t bssid[IEEE80211_ADDR_LEN],
587         const uint8_t mac[IEEE80211_ADDR_LEN])
588 {
589         struct rum_softc *sc = ic->ic_ifp->if_softc;
590         struct rum_vap *rvp;
591         struct ieee80211vap *vap;
592
593         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
594                 return NULL;
595         rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap),
596             M_80211_VAP, M_NOWAIT | M_ZERO);
597         if (rvp == NULL)
598                 return NULL;
599         vap = &rvp->vap;
600         /* enable s/w bmiss handling for sta mode */
601         ieee80211_vap_setup(ic, vap, name, unit, opmode,
602             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
603
604         /* override state transition machine */
605         rvp->newstate = vap->iv_newstate;
606         vap->iv_newstate = rum_newstate;
607
608         usb_callout_init_mtx(&rvp->amrr_ch, &sc->sc_mtx, 0);
609         TASK_INIT(&rvp->amrr_task, 0, rum_amrr_task, rvp);
610         ieee80211_amrr_init(&rvp->amrr, vap,
611             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
612             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
613             1000 /* 1 sec */);
614
615         /* complete setup */
616         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
617         ic->ic_opmode = opmode;
618         return vap;
619 }
620
621 static void
622 rum_vap_delete(struct ieee80211vap *vap)
623 {
624         struct rum_vap *rvp = RUM_VAP(vap);
625         struct ieee80211com *ic = vap->iv_ic;
626
627         usb_callout_drain(&rvp->amrr_ch);
628         ieee80211_draintask(ic, &rvp->amrr_task);
629         ieee80211_amrr_cleanup(&rvp->amrr);
630         ieee80211_vap_detach(vap);
631         free(rvp, M_80211_VAP);
632 }
633
634 static void
635 rum_tx_free(struct rum_tx_data *data, int txerr)
636 {
637         struct rum_softc *sc = data->sc;
638
639         if (data->m != NULL) {
640                 if (data->m->m_flags & M_TXCB)
641                         ieee80211_process_callback(data->ni, data->m,
642                             txerr ? ETIMEDOUT : 0);
643                 m_freem(data->m);
644                 data->m = NULL;
645
646                 ieee80211_free_node(data->ni);
647                 data->ni = NULL;
648         }
649         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
650         sc->tx_nfree++;
651 }
652
653 static void
654 rum_setup_tx_list(struct rum_softc *sc)
655 {
656         struct rum_tx_data *data;
657         int i;
658
659         sc->tx_nfree = 0;
660         STAILQ_INIT(&sc->tx_q);
661         STAILQ_INIT(&sc->tx_free);
662
663         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
664                 data = &sc->tx_data[i];
665
666                 data->sc = sc;
667                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
668                 sc->tx_nfree++;
669         }
670 }
671
672 static void
673 rum_unsetup_tx_list(struct rum_softc *sc)
674 {
675         struct rum_tx_data *data;
676         int i;
677
678         /* make sure any subsequent use of the queues will fail */
679         sc->tx_nfree = 0;
680         STAILQ_INIT(&sc->tx_q);
681         STAILQ_INIT(&sc->tx_free);
682
683         /* free up all node references and mbufs */
684         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
685                 data = &sc->tx_data[i];
686
687                 if (data->m != NULL) {
688                         m_freem(data->m);
689                         data->m = NULL;
690                 }
691                 if (data->ni != NULL) {
692                         ieee80211_free_node(data->ni);
693                         data->ni = NULL;
694                 }
695         }
696 }
697
698 static int
699 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
700 {
701         struct rum_vap *rvp = RUM_VAP(vap);
702         struct ieee80211com *ic = vap->iv_ic;
703         struct rum_softc *sc = ic->ic_ifp->if_softc;
704         const struct ieee80211_txparam *tp;
705         enum ieee80211_state ostate;
706         struct ieee80211_node *ni;
707         uint32_t tmp;
708
709         ostate = vap->iv_state;
710         DPRINTF("%s -> %s\n",
711                 ieee80211_state_name[ostate],
712                 ieee80211_state_name[nstate]);
713
714         IEEE80211_UNLOCK(ic);
715         RUM_LOCK(sc);
716         usb_callout_stop(&rvp->amrr_ch);
717
718         switch (nstate) {
719         case IEEE80211_S_INIT:
720                 if (ostate == IEEE80211_S_RUN) {
721                         /* abort TSF synchronization */
722                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
723                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
724                 }
725                 break;
726
727         case IEEE80211_S_RUN:
728                 ni = vap->iv_bss;
729
730                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
731                         rum_update_slot(ic->ic_ifp);
732                         rum_enable_mrr(sc);
733                         rum_set_txpreamble(sc);
734                         rum_set_basicrates(sc);
735                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
736                         rum_set_bssid(sc, sc->sc_bssid);
737                 }
738
739                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
740                     vap->iv_opmode == IEEE80211_M_IBSS)
741                         rum_prepare_beacon(sc, vap);
742
743                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
744                         rum_enable_tsf_sync(sc);
745                 else
746                         rum_enable_tsf(sc);
747
748                 /* enable automatic rate adaptation */
749                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
750                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
751                         rum_amrr_start(sc, ni);
752                 break;
753         default:
754                 break;
755         }
756         RUM_UNLOCK(sc);
757         IEEE80211_LOCK(ic);
758         return (rvp->newstate(vap, nstate, arg));
759 }
760
761 static void
762 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
763 {
764         struct rum_softc *sc = usbd_xfer_softc(xfer);
765         struct ifnet *ifp = sc->sc_ifp;
766         struct ieee80211vap *vap;
767         struct rum_tx_data *data;
768         struct mbuf *m;
769         struct usb_page_cache *pc;
770         unsigned int len;
771         int actlen, sumlen;
772
773         usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
774
775         switch (USB_GET_STATE(xfer)) {
776         case USB_ST_TRANSFERRED:
777                 DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
778
779                 /* free resources */
780                 data = usbd_xfer_get_priv(xfer);
781                 rum_tx_free(data, 0);
782                 usbd_xfer_set_priv(xfer, NULL);
783
784                 ifp->if_opackets++;
785                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
786
787                 /* FALLTHROUGH */
788         case USB_ST_SETUP:
789 tr_setup:
790                 data = STAILQ_FIRST(&sc->tx_q);
791                 if (data) {
792                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
793                         m = data->m;
794
795                         if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) {
796                                 DPRINTFN(0, "data overflow, %u bytes\n",
797                                     m->m_pkthdr.len);
798                                 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
799                         }
800                         pc = usbd_xfer_get_frame(xfer, 0);
801                         usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
802                         usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
803                             m->m_pkthdr.len);
804
805                         vap = data->ni->ni_vap;
806                         if (ieee80211_radiotap_active_vap(vap)) {
807                                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
808
809                                 tap->wt_flags = 0;
810                                 tap->wt_rate = data->rate;
811                                 tap->wt_antenna = sc->tx_ant;
812
813                                 ieee80211_radiotap_tx(vap, m);
814                         }
815
816                         /* align end on a 4-bytes boundary */
817                         len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
818                         if ((len % 64) == 0)
819                                 len += 4;
820
821                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
822                             m->m_pkthdr.len, len);
823
824                         usbd_xfer_set_frame_len(xfer, 0, len);
825                         usbd_xfer_set_priv(xfer, data);
826
827                         usbd_transfer_submit(xfer);
828                 }
829                 break;
830
831         default:                        /* Error */
832                 DPRINTFN(11, "transfer error, %s\n",
833                     usbd_errstr(error));
834
835                 ifp->if_oerrors++;
836                 data = usbd_xfer_get_priv(xfer);
837                 if (data != NULL) {
838                         rum_tx_free(data, error);
839                         usbd_xfer_set_priv(xfer, NULL);
840                 }
841
842                 if (error == USB_ERR_STALLED) {
843                         /* try to clear stall first */
844                         usbd_xfer_set_stall(xfer);
845                         goto tr_setup;
846                 }
847                 if (error == USB_ERR_TIMEOUT)
848                         device_printf(sc->sc_dev, "device timeout\n");
849                 break;
850         }
851 }
852
853 static void
854 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
855 {
856         struct rum_softc *sc = usbd_xfer_softc(xfer);
857         struct ifnet *ifp = sc->sc_ifp;
858         struct ieee80211com *ic = ifp->if_l2com;
859         struct ieee80211_node *ni;
860         struct mbuf *m = NULL;
861         struct usb_page_cache *pc;
862         uint32_t flags;
863         uint8_t rssi = 0;
864         int len;
865
866         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
867
868         switch (USB_GET_STATE(xfer)) {
869         case USB_ST_TRANSFERRED:
870
871                 DPRINTFN(15, "rx done, actlen=%d\n", len);
872
873                 if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
874                         DPRINTF("%s: xfer too short %d\n",
875                             device_get_nameunit(sc->sc_dev), len);
876                         ifp->if_ierrors++;
877                         goto tr_setup;
878                 }
879
880                 len -= RT2573_RX_DESC_SIZE;
881                 pc = usbd_xfer_get_frame(xfer, 0);
882                 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
883
884                 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
885                 flags = le32toh(sc->sc_rx_desc.flags);
886                 if (flags & RT2573_RX_CRC_ERROR) {
887                         /*
888                          * This should not happen since we did not
889                          * request to receive those frames when we
890                          * filled RUM_TXRX_CSR2:
891                          */
892                         DPRINTFN(5, "PHY or CRC error\n");
893                         ifp->if_ierrors++;
894                         goto tr_setup;
895                 }
896
897                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
898                 if (m == NULL) {
899                         DPRINTF("could not allocate mbuf\n");
900                         ifp->if_ierrors++;
901                         goto tr_setup;
902                 }
903                 usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
904                     mtod(m, uint8_t *), len);
905
906                 /* finalize mbuf */
907                 m->m_pkthdr.rcvif = ifp;
908                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
909
910                 if (ieee80211_radiotap_active(ic)) {
911                         struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
912
913                         /* XXX read tsf */
914                         tap->wr_flags = 0;
915                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
916                             (flags & RT2573_RX_OFDM) ?
917                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
918                         tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
919                         tap->wr_antnoise = RT2573_NOISE_FLOOR;
920                         tap->wr_antenna = sc->rx_ant;
921                 }
922                 /* FALLTHROUGH */
923         case USB_ST_SETUP:
924 tr_setup:
925                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
926                 usbd_transfer_submit(xfer);
927
928                 /*
929                  * At the end of a USB callback it is always safe to unlock
930                  * the private mutex of a device! That is why we do the
931                  * "ieee80211_input" here, and not some lines up!
932                  */
933                 if (m) {
934                         RUM_UNLOCK(sc);
935                         ni = ieee80211_find_rxnode(ic,
936                             mtod(m, struct ieee80211_frame_min *));
937                         if (ni != NULL) {
938                                 (void) ieee80211_input(ni, m, rssi,
939                                     RT2573_NOISE_FLOOR);
940                                 ieee80211_free_node(ni);
941                         } else
942                                 (void) ieee80211_input_all(ic, m, rssi,
943                                     RT2573_NOISE_FLOOR);
944                         RUM_LOCK(sc);
945                 }
946                 return;
947
948         default:                        /* Error */
949                 if (error != USB_ERR_CANCELLED) {
950                         /* try to clear stall first */
951                         usbd_xfer_set_stall(xfer);
952                         goto tr_setup;
953                 }
954                 return;
955         }
956 }
957
958 static uint8_t
959 rum_plcp_signal(int rate)
960 {
961         switch (rate) {
962         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
963         case 12:        return 0xb;
964         case 18:        return 0xf;
965         case 24:        return 0xa;
966         case 36:        return 0xe;
967         case 48:        return 0x9;
968         case 72:        return 0xd;
969         case 96:        return 0x8;
970         case 108:       return 0xc;
971
972         /* CCK rates (NB: not IEEE std, device-specific) */
973         case 2:         return 0x0;
974         case 4:         return 0x1;
975         case 11:        return 0x2;
976         case 22:        return 0x3;
977         }
978         return 0xff;            /* XXX unsupported/unknown rate */
979 }
980
981 static void
982 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
983     uint32_t flags, uint16_t xflags, int len, int rate)
984 {
985         struct ifnet *ifp = sc->sc_ifp;
986         struct ieee80211com *ic = ifp->if_l2com;
987         uint16_t plcp_length;
988         int remainder;
989
990         desc->flags = htole32(flags);
991         desc->flags |= htole32(RT2573_TX_VALID);
992         desc->flags |= htole32(len << 16);
993
994         desc->xflags = htole16(xflags);
995
996         desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 
997             RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
998
999         /* setup PLCP fields */
1000         desc->plcp_signal  = rum_plcp_signal(rate);
1001         desc->plcp_service = 4;
1002
1003         len += IEEE80211_CRC_LEN;
1004         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1005                 desc->flags |= htole32(RT2573_TX_OFDM);
1006
1007                 plcp_length = len & 0xfff;
1008                 desc->plcp_length_hi = plcp_length >> 6;
1009                 desc->plcp_length_lo = plcp_length & 0x3f;
1010         } else {
1011                 plcp_length = (16 * len + rate - 1) / rate;
1012                 if (rate == 22) {
1013                         remainder = (16 * len) % 22;
1014                         if (remainder != 0 && remainder < 7)
1015                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1016                 }
1017                 desc->plcp_length_hi = plcp_length >> 8;
1018                 desc->plcp_length_lo = plcp_length & 0xff;
1019
1020                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1021                         desc->plcp_signal |= 0x08;
1022         }
1023 }
1024
1025 static int
1026 rum_sendprot(struct rum_softc *sc,
1027     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1028 {
1029         struct ieee80211com *ic = ni->ni_ic;
1030         const struct ieee80211_frame *wh;
1031         struct rum_tx_data *data;
1032         struct mbuf *mprot;
1033         int protrate, ackrate, pktlen, flags, isshort;
1034         uint16_t dur;
1035
1036         RUM_LOCK_ASSERT(sc, MA_OWNED);
1037         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1038             ("protection %d", prot));
1039
1040         wh = mtod(m, const struct ieee80211_frame *);
1041         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1042
1043         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1044         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1045
1046         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1047         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort);
1048             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1049         flags = RT2573_TX_MORE_FRAG;
1050         if (prot == IEEE80211_PROT_RTSCTS) {
1051                 /* NB: CTS is the same size as an ACK */
1052                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1053                 flags |= RT2573_TX_NEED_ACK;
1054                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1055         } else {
1056                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1057         }
1058         if (mprot == NULL) {
1059                 /* XXX stat + msg */
1060                 return (ENOBUFS);
1061         }
1062         data = STAILQ_FIRST(&sc->tx_free);
1063         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1064         sc->tx_nfree--;
1065
1066         data->m = mprot;
1067         data->ni = ieee80211_ref_node(ni);
1068         data->rate = protrate;
1069         rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate);
1070
1071         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1072         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1073
1074         return 0;
1075 }
1076
1077 static int
1078 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1079 {
1080         struct ieee80211vap *vap = ni->ni_vap;
1081         struct ifnet *ifp = sc->sc_ifp;
1082         struct ieee80211com *ic = ifp->if_l2com;
1083         struct rum_tx_data *data;
1084         struct ieee80211_frame *wh;
1085         const struct ieee80211_txparam *tp;
1086         struct ieee80211_key *k;
1087         uint32_t flags = 0;
1088         uint16_t dur;
1089
1090         RUM_LOCK_ASSERT(sc, MA_OWNED);
1091
1092         data = STAILQ_FIRST(&sc->tx_free);
1093         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1094         sc->tx_nfree--;
1095
1096         wh = mtod(m0, struct ieee80211_frame *);
1097         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1098                 k = ieee80211_crypto_encap(ni, m0);
1099                 if (k == NULL) {
1100                         m_freem(m0);
1101                         return ENOBUFS;
1102                 }
1103                 wh = mtod(m0, struct ieee80211_frame *);
1104         }
1105
1106         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1107
1108         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1109                 flags |= RT2573_TX_NEED_ACK;
1110
1111                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1112                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1113                 *(uint16_t *)wh->i_dur = htole16(dur);
1114
1115                 /* tell hardware to add timestamp for probe responses */
1116                 if ((wh->i_fc[0] &
1117                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1118                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1119                         flags |= RT2573_TX_TIMESTAMP;
1120         }
1121
1122         data->m = m0;
1123         data->ni = ni;
1124         data->rate = tp->mgmtrate;
1125
1126         rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate);
1127
1128         DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1129             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1130
1131         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1132         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1133
1134         return (0);
1135 }
1136
1137 static int
1138 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1139     const struct ieee80211_bpf_params *params)
1140 {
1141         struct ieee80211com *ic = ni->ni_ic;
1142         struct rum_tx_data *data;
1143         uint32_t flags;
1144         int rate, error;
1145
1146         RUM_LOCK_ASSERT(sc, MA_OWNED);
1147         KASSERT(params != NULL, ("no raw xmit params"));
1148
1149         rate = params->ibp_rate0;
1150         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1151                 m_freem(m0);
1152                 return EINVAL;
1153         }
1154         flags = 0;
1155         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1156                 flags |= RT2573_TX_NEED_ACK;
1157         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1158                 error = rum_sendprot(sc, m0, ni,
1159                     params->ibp_flags & IEEE80211_BPF_RTS ?
1160                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1161                     rate);
1162                 if (error || sc->tx_nfree == 0) {
1163                         m_freem(m0);
1164                         return ENOBUFS;
1165                 }
1166                 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1167         }
1168
1169         data = STAILQ_FIRST(&sc->tx_free);
1170         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1171         sc->tx_nfree--;
1172
1173         data->m = m0;
1174         data->ni = ni;
1175         data->rate = rate;
1176
1177         /* XXX need to setup descriptor ourself */
1178         rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1179
1180         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1181             m0->m_pkthdr.len, rate);
1182
1183         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1184         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1185
1186         return 0;
1187 }
1188
1189 static int
1190 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1191 {
1192         struct ieee80211vap *vap = ni->ni_vap;
1193         struct ifnet *ifp = sc->sc_ifp;
1194         struct ieee80211com *ic = ifp->if_l2com;
1195         struct rum_tx_data *data;
1196         struct ieee80211_frame *wh;
1197         const struct ieee80211_txparam *tp;
1198         struct ieee80211_key *k;
1199         uint32_t flags = 0;
1200         uint16_t dur;
1201         int error, rate;
1202
1203         RUM_LOCK_ASSERT(sc, MA_OWNED);
1204
1205         wh = mtod(m0, struct ieee80211_frame *);
1206
1207         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1208         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1209                 rate = tp->mcastrate;
1210         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1211                 rate = tp->ucastrate;
1212         else
1213                 rate = ni->ni_txrate;
1214
1215         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1216                 k = ieee80211_crypto_encap(ni, m0);
1217                 if (k == NULL) {
1218                         m_freem(m0);
1219                         return ENOBUFS;
1220                 }
1221
1222                 /* packet header may have moved, reset our local pointer */
1223                 wh = mtod(m0, struct ieee80211_frame *);
1224         }
1225
1226         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1227                 int prot = IEEE80211_PROT_NONE;
1228                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1229                         prot = IEEE80211_PROT_RTSCTS;
1230                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1231                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1232                         prot = ic->ic_protmode;
1233                 if (prot != IEEE80211_PROT_NONE) {
1234                         error = rum_sendprot(sc, m0, ni, prot, rate);
1235                         if (error || sc->tx_nfree == 0) {
1236                                 m_freem(m0);
1237                                 return ENOBUFS;
1238                         }
1239                         flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1240                 }
1241         }
1242
1243         data = STAILQ_FIRST(&sc->tx_free);
1244         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1245         sc->tx_nfree--;
1246
1247         data->m = m0;
1248         data->ni = ni;
1249         data->rate = rate;
1250
1251         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1252                 flags |= RT2573_TX_NEED_ACK;
1253                 flags |= RT2573_TX_MORE_FRAG;
1254
1255                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1256                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1257                 *(uint16_t *)wh->i_dur = htole16(dur);
1258         }
1259
1260         rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1261
1262         DPRINTFN(10, "sending frame len=%d rate=%d\n",
1263             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1264
1265         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1266         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1267
1268         return 0;
1269 }
1270
1271 static void
1272 rum_start(struct ifnet *ifp)
1273 {
1274         struct rum_softc *sc = ifp->if_softc;
1275         struct ieee80211_node *ni;
1276         struct mbuf *m;
1277
1278         RUM_LOCK(sc);
1279         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1280                 RUM_UNLOCK(sc);
1281                 return;
1282         }
1283         for (;;) {
1284                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1285                 if (m == NULL)
1286                         break;
1287                 if (sc->tx_nfree < RUM_TX_MINFREE) {
1288                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
1289                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1290                         break;
1291                 }
1292                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1293                 if (rum_tx_data(sc, m, ni) != 0) {
1294                         ieee80211_free_node(ni);
1295                         ifp->if_oerrors++;
1296                         break;
1297                 }
1298         }
1299         RUM_UNLOCK(sc);
1300 }
1301
1302 static int
1303 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1304 {
1305         struct rum_softc *sc = ifp->if_softc;
1306         struct ieee80211com *ic = ifp->if_l2com;
1307         struct ifreq *ifr = (struct ifreq *) data;
1308         int error = 0, startall = 0;
1309
1310         switch (cmd) {
1311         case SIOCSIFFLAGS:
1312                 RUM_LOCK(sc);
1313                 if (ifp->if_flags & IFF_UP) {
1314                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1315                                 rum_init_locked(sc);
1316                                 startall = 1;
1317                         } else
1318                                 rum_setpromisc(sc);
1319                 } else {
1320                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1321                                 rum_stop(sc);
1322                 }
1323                 RUM_UNLOCK(sc);
1324                 if (startall)
1325                         ieee80211_start_all(ic);
1326                 break;
1327         case SIOCGIFMEDIA:
1328                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1329                 break;
1330         case SIOCGIFADDR:
1331                 error = ether_ioctl(ifp, cmd, data);
1332                 break;
1333         default:
1334                 error = EINVAL;
1335                 break;
1336         }
1337         return error;
1338 }
1339
1340 static void
1341 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1342 {
1343         struct usb_device_request req;
1344         usb_error_t error;
1345
1346         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1347         req.bRequest = RT2573_READ_EEPROM;
1348         USETW(req.wValue, 0);
1349         USETW(req.wIndex, addr);
1350         USETW(req.wLength, len);
1351
1352         error = rum_do_request(sc, &req, buf);
1353         if (error != 0) {
1354                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1355                     usbd_errstr(error));
1356         }
1357 }
1358
1359 static uint32_t
1360 rum_read(struct rum_softc *sc, uint16_t reg)
1361 {
1362         uint32_t val;
1363
1364         rum_read_multi(sc, reg, &val, sizeof val);
1365
1366         return le32toh(val);
1367 }
1368
1369 static void
1370 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1371 {
1372         struct usb_device_request req;
1373         usb_error_t error;
1374
1375         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1376         req.bRequest = RT2573_READ_MULTI_MAC;
1377         USETW(req.wValue, 0);
1378         USETW(req.wIndex, reg);
1379         USETW(req.wLength, len);
1380
1381         error = rum_do_request(sc, &req, buf);
1382         if (error != 0) {
1383                 device_printf(sc->sc_dev,
1384                     "could not multi read MAC register: %s\n",
1385                     usbd_errstr(error));
1386         }
1387 }
1388
1389 static usb_error_t
1390 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1391 {
1392         uint32_t tmp = htole32(val);
1393
1394         return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1395 }
1396
1397 static usb_error_t
1398 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1399 {
1400         struct usb_device_request req;
1401         usb_error_t error;
1402
1403         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1404         req.bRequest = RT2573_WRITE_MULTI_MAC;
1405         USETW(req.wValue, 0);
1406         USETW(req.wIndex, reg);
1407         USETW(req.wLength, len);
1408
1409         error = rum_do_request(sc, &req, buf);
1410         if (error != 0) {
1411                 device_printf(sc->sc_dev,
1412                     "could not multi write MAC register: %s\n",
1413                     usbd_errstr(error));
1414         }
1415         return (error);
1416 }
1417
1418 static void
1419 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1420 {
1421         uint32_t tmp;
1422         int ntries;
1423
1424         DPRINTFN(2, "reg=0x%08x\n", reg);
1425
1426         for (ntries = 0; ntries < 100; ntries++) {
1427                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1428                         break;
1429                 if (rum_pause(sc, hz / 100))
1430                         break;
1431         }
1432         if (ntries == 100) {
1433                 device_printf(sc->sc_dev, "could not write to BBP\n");
1434                 return;
1435         }
1436
1437         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1438         rum_write(sc, RT2573_PHY_CSR3, tmp);
1439 }
1440
1441 static uint8_t
1442 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1443 {
1444         uint32_t val;
1445         int ntries;
1446
1447         DPRINTFN(2, "reg=0x%08x\n", reg);
1448
1449         for (ntries = 0; ntries < 100; ntries++) {
1450                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1451                         break;
1452                 if (rum_pause(sc, hz / 100))
1453                         break;
1454         }
1455         if (ntries == 100) {
1456                 device_printf(sc->sc_dev, "could not read BBP\n");
1457                 return 0;
1458         }
1459
1460         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1461         rum_write(sc, RT2573_PHY_CSR3, val);
1462
1463         for (ntries = 0; ntries < 100; ntries++) {
1464                 val = rum_read(sc, RT2573_PHY_CSR3);
1465                 if (!(val & RT2573_BBP_BUSY))
1466                         return val & 0xff;
1467                 if (rum_pause(sc, hz / 100))
1468                         break;
1469         }
1470
1471         device_printf(sc->sc_dev, "could not read BBP\n");
1472         return 0;
1473 }
1474
1475 static void
1476 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1477 {
1478         uint32_t tmp;
1479         int ntries;
1480
1481         for (ntries = 0; ntries < 100; ntries++) {
1482                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1483                         break;
1484                 if (rum_pause(sc, hz / 100))
1485                         break;
1486         }
1487         if (ntries == 100) {
1488                 device_printf(sc->sc_dev, "could not write to RF\n");
1489                 return;
1490         }
1491
1492         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1493             (reg & 3);
1494         rum_write(sc, RT2573_PHY_CSR4, tmp);
1495
1496         /* remember last written value in sc */
1497         sc->rf_regs[reg] = val;
1498
1499         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1500 }
1501
1502 static void
1503 rum_select_antenna(struct rum_softc *sc)
1504 {
1505         uint8_t bbp4, bbp77;
1506         uint32_t tmp;
1507
1508         bbp4  = rum_bbp_read(sc, 4);
1509         bbp77 = rum_bbp_read(sc, 77);
1510
1511         /* TBD */
1512
1513         /* make sure Rx is disabled before switching antenna */
1514         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1515         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1516
1517         rum_bbp_write(sc,  4, bbp4);
1518         rum_bbp_write(sc, 77, bbp77);
1519
1520         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1521 }
1522
1523 /*
1524  * Enable multi-rate retries for frames sent at OFDM rates.
1525  * In 802.11b/g mode, allow fallback to CCK rates.
1526  */
1527 static void
1528 rum_enable_mrr(struct rum_softc *sc)
1529 {
1530         struct ifnet *ifp = sc->sc_ifp;
1531         struct ieee80211com *ic = ifp->if_l2com;
1532         uint32_t tmp;
1533
1534         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1535
1536         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1537         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
1538                 tmp |= RT2573_MRR_CCK_FALLBACK;
1539         tmp |= RT2573_MRR_ENABLED;
1540
1541         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1542 }
1543
1544 static void
1545 rum_set_txpreamble(struct rum_softc *sc)
1546 {
1547         struct ifnet *ifp = sc->sc_ifp;
1548         struct ieee80211com *ic = ifp->if_l2com;
1549         uint32_t tmp;
1550
1551         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1552
1553         tmp &= ~RT2573_SHORT_PREAMBLE;
1554         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1555                 tmp |= RT2573_SHORT_PREAMBLE;
1556
1557         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1558 }
1559
1560 static void
1561 rum_set_basicrates(struct rum_softc *sc)
1562 {
1563         struct ifnet *ifp = sc->sc_ifp;
1564         struct ieee80211com *ic = ifp->if_l2com;
1565
1566         /* update basic rate set */
1567         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1568                 /* 11b basic rates: 1, 2Mbps */
1569                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1570         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1571                 /* 11a basic rates: 6, 12, 24Mbps */
1572                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1573         } else {
1574                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1575                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1576         }
1577 }
1578
1579 /*
1580  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1581  * driver.
1582  */
1583 static void
1584 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1585 {
1586         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1587         uint32_t tmp;
1588
1589         /* update all BBP registers that depend on the band */
1590         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1591         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1592         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1593                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1594                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1595         }
1596         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1597             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1598                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1599         }
1600
1601         sc->bbp17 = bbp17;
1602         rum_bbp_write(sc,  17, bbp17);
1603         rum_bbp_write(sc,  96, bbp96);
1604         rum_bbp_write(sc, 104, bbp104);
1605
1606         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1607             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1608                 rum_bbp_write(sc, 75, 0x80);
1609                 rum_bbp_write(sc, 86, 0x80);
1610                 rum_bbp_write(sc, 88, 0x80);
1611         }
1612
1613         rum_bbp_write(sc, 35, bbp35);
1614         rum_bbp_write(sc, 97, bbp97);
1615         rum_bbp_write(sc, 98, bbp98);
1616
1617         tmp = rum_read(sc, RT2573_PHY_CSR0);
1618         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1619         if (IEEE80211_IS_CHAN_2GHZ(c))
1620                 tmp |= RT2573_PA_PE_2GHZ;
1621         else
1622                 tmp |= RT2573_PA_PE_5GHZ;
1623         rum_write(sc, RT2573_PHY_CSR0, tmp);
1624 }
1625
1626 static void
1627 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1628 {
1629         struct ifnet *ifp = sc->sc_ifp;
1630         struct ieee80211com *ic = ifp->if_l2com;
1631         const struct rfprog *rfprog;
1632         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1633         int8_t power;
1634         int i, chan;
1635
1636         chan = ieee80211_chan2ieee(ic, c);
1637         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1638                 return;
1639
1640         /* select the appropriate RF settings based on what EEPROM says */
1641         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1642                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1643
1644         /* find the settings for this channel (we know it exists) */
1645         for (i = 0; rfprog[i].chan != chan; i++);
1646
1647         power = sc->txpow[i];
1648         if (power < 0) {
1649                 bbp94 += power;
1650                 power = 0;
1651         } else if (power > 31) {
1652                 bbp94 += power - 31;
1653                 power = 31;
1654         }
1655
1656         /*
1657          * If we are switching from the 2GHz band to the 5GHz band or
1658          * vice-versa, BBP registers need to be reprogrammed.
1659          */
1660         if (c->ic_flags != ic->ic_curchan->ic_flags) {
1661                 rum_select_band(sc, c);
1662                 rum_select_antenna(sc);
1663         }
1664         ic->ic_curchan = c;
1665
1666         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1667         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1668         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1669         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1670
1671         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1672         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1673         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1674         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1675
1676         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1677         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1678         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1679         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1680
1681         rum_pause(sc, hz / 100);
1682
1683         /* enable smart mode for MIMO-capable RFs */
1684         bbp3 = rum_bbp_read(sc, 3);
1685
1686         bbp3 &= ~RT2573_SMART_MODE;
1687         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1688                 bbp3 |= RT2573_SMART_MODE;
1689
1690         rum_bbp_write(sc, 3, bbp3);
1691
1692         if (bbp94 != RT2573_BBPR94_DEFAULT)
1693                 rum_bbp_write(sc, 94, bbp94);
1694
1695         /* give the chip some extra time to do the switchover */
1696         rum_pause(sc, hz / 100);
1697 }
1698
1699 /*
1700  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1701  * and HostAP operating modes.
1702  */
1703 static void
1704 rum_enable_tsf_sync(struct rum_softc *sc)
1705 {
1706         struct ifnet *ifp = sc->sc_ifp;
1707         struct ieee80211com *ic = ifp->if_l2com;
1708         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1709         uint32_t tmp;
1710
1711         if (vap->iv_opmode != IEEE80211_M_STA) {
1712                 /*
1713                  * Change default 16ms TBTT adjustment to 8ms.
1714                  * Must be done before enabling beacon generation.
1715                  */
1716                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1717         }
1718
1719         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1720
1721         /* set beacon interval (in 1/16ms unit) */
1722         tmp |= vap->iv_bss->ni_intval * 16;
1723
1724         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1725         if (vap->iv_opmode == IEEE80211_M_STA)
1726                 tmp |= RT2573_TSF_MODE(1);
1727         else
1728                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1729
1730         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1731 }
1732
1733 static void
1734 rum_enable_tsf(struct rum_softc *sc)
1735 {
1736         rum_write(sc, RT2573_TXRX_CSR9, 
1737             (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) |
1738             RT2573_TSF_TICKING | RT2573_TSF_MODE(2));
1739 }
1740
1741 static void
1742 rum_update_slot(struct ifnet *ifp)
1743 {
1744         struct rum_softc *sc = ifp->if_softc;
1745         struct ieee80211com *ic = ifp->if_l2com;
1746         uint8_t slottime;
1747         uint32_t tmp;
1748
1749         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1750
1751         tmp = rum_read(sc, RT2573_MAC_CSR9);
1752         tmp = (tmp & ~0xff) | slottime;
1753         rum_write(sc, RT2573_MAC_CSR9, tmp);
1754
1755         DPRINTF("setting slot time to %uus\n", slottime);
1756 }
1757
1758 static void
1759 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1760 {
1761         uint32_t tmp;
1762
1763         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1764         rum_write(sc, RT2573_MAC_CSR4, tmp);
1765
1766         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1767         rum_write(sc, RT2573_MAC_CSR5, tmp);
1768 }
1769
1770 static void
1771 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1772 {
1773         uint32_t tmp;
1774
1775         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1776         rum_write(sc, RT2573_MAC_CSR2, tmp);
1777
1778         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1779         rum_write(sc, RT2573_MAC_CSR3, tmp);
1780 }
1781
1782 static void
1783 rum_setpromisc(struct rum_softc *sc)
1784 {
1785         struct ifnet *ifp = sc->sc_ifp;
1786         uint32_t tmp;
1787
1788         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1789
1790         tmp &= ~RT2573_DROP_NOT_TO_ME;
1791         if (!(ifp->if_flags & IFF_PROMISC))
1792                 tmp |= RT2573_DROP_NOT_TO_ME;
1793
1794         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1795
1796         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1797             "entering" : "leaving");
1798 }
1799
1800 static void
1801 rum_update_promisc(struct ifnet *ifp)
1802 {
1803         struct rum_softc *sc = ifp->if_softc;
1804
1805         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1806                 return;
1807
1808         RUM_LOCK(sc);
1809         rum_setpromisc(sc);
1810         RUM_UNLOCK(sc);
1811 }
1812
1813 static const char *
1814 rum_get_rf(int rev)
1815 {
1816         switch (rev) {
1817         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1818         case RT2573_RF_2528:    return "RT2528";
1819         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1820         case RT2573_RF_5226:    return "RT5226";
1821         default:                return "unknown";
1822         }
1823 }
1824
1825 static void
1826 rum_read_eeprom(struct rum_softc *sc)
1827 {
1828         uint16_t val;
1829 #ifdef RUM_DEBUG
1830         int i;
1831 #endif
1832
1833         /* read MAC address */
1834         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6);
1835
1836         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1837         val = le16toh(val);
1838         sc->rf_rev =   (val >> 11) & 0x1f;
1839         sc->hw_radio = (val >> 10) & 0x1;
1840         sc->rx_ant =   (val >> 4)  & 0x3;
1841         sc->tx_ant =   (val >> 2)  & 0x3;
1842         sc->nb_ant =   val & 0x3;
1843
1844         DPRINTF("RF revision=%d\n", sc->rf_rev);
1845
1846         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1847         val = le16toh(val);
1848         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1849         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1850
1851         DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1852             sc->ext_2ghz_lna, sc->ext_5ghz_lna);
1853
1854         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1855         val = le16toh(val);
1856         if ((val & 0xff) != 0xff)
1857                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
1858
1859         /* Only [-10, 10] is valid */
1860         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1861                 sc->rssi_2ghz_corr = 0;
1862
1863         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1864         val = le16toh(val);
1865         if ((val & 0xff) != 0xff)
1866                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
1867
1868         /* Only [-10, 10] is valid */
1869         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1870                 sc->rssi_5ghz_corr = 0;
1871
1872         if (sc->ext_2ghz_lna)
1873                 sc->rssi_2ghz_corr -= 14;
1874         if (sc->ext_5ghz_lna)
1875                 sc->rssi_5ghz_corr -= 14;
1876
1877         DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1878             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
1879
1880         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1881         val = le16toh(val);
1882         if ((val & 0xff) != 0xff)
1883                 sc->rffreq = val & 0xff;
1884
1885         DPRINTF("RF freq=%d\n", sc->rffreq);
1886
1887         /* read Tx power for all a/b/g channels */
1888         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1889         /* XXX default Tx power for 802.11a channels */
1890         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1891 #ifdef RUM_DEBUG
1892         for (i = 0; i < 14; i++)
1893                 DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
1894 #endif
1895
1896         /* read default values for BBP registers */
1897         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1898 #ifdef RUM_DEBUG
1899         for (i = 0; i < 14; i++) {
1900                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1901                         continue;
1902                 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1903                     sc->bbp_prom[i].val);
1904         }
1905 #endif
1906 }
1907
1908 static int
1909 rum_bbp_init(struct rum_softc *sc)
1910 {
1911 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1912         int i, ntries;
1913
1914         /* wait for BBP to be ready */
1915         for (ntries = 0; ntries < 100; ntries++) {
1916                 const uint8_t val = rum_bbp_read(sc, 0);
1917                 if (val != 0 && val != 0xff)
1918                         break;
1919                 if (rum_pause(sc, hz / 100))
1920                         break;
1921         }
1922         if (ntries == 100) {
1923                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1924                 return EIO;
1925         }
1926
1927         /* initialize BBP registers to default values */
1928         for (i = 0; i < N(rum_def_bbp); i++)
1929                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1930
1931         /* write vendor-specific BBP values (from EEPROM) */
1932         for (i = 0; i < 16; i++) {
1933                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1934                         continue;
1935                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1936         }
1937
1938         return 0;
1939 #undef N
1940 }
1941
1942 static void
1943 rum_init_locked(struct rum_softc *sc)
1944 {
1945 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1946         struct ifnet *ifp = sc->sc_ifp;
1947         struct ieee80211com *ic = ifp->if_l2com;
1948         uint32_t tmp;
1949         usb_error_t error;
1950         int i, ntries;
1951
1952         RUM_LOCK_ASSERT(sc, MA_OWNED);
1953
1954         rum_stop(sc);
1955
1956         /* initialize MAC registers to default values */
1957         for (i = 0; i < N(rum_def_mac); i++)
1958                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1959
1960         /* set host ready */
1961         rum_write(sc, RT2573_MAC_CSR1, 3);
1962         rum_write(sc, RT2573_MAC_CSR1, 0);
1963
1964         /* wait for BBP/RF to wakeup */
1965         for (ntries = 0; ntries < 100; ntries++) {
1966                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1967                         break;
1968                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
1969                 if (rum_pause(sc, hz / 100))
1970                         break;
1971         }
1972         if (ntries == 100) {
1973                 device_printf(sc->sc_dev,
1974                     "timeout waiting for BBP/RF to wakeup\n");
1975                 goto fail;
1976         }
1977
1978         if ((error = rum_bbp_init(sc)) != 0)
1979                 goto fail;
1980
1981         /* select default channel */
1982         rum_select_band(sc, ic->ic_curchan);
1983         rum_select_antenna(sc);
1984         rum_set_chan(sc, ic->ic_curchan);
1985
1986         /* clear STA registers */
1987         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1988
1989         rum_set_macaddr(sc, IF_LLADDR(ifp));
1990
1991         /* initialize ASIC */
1992         rum_write(sc, RT2573_MAC_CSR1, 4);
1993
1994         /*
1995          * Allocate Tx and Rx xfer queues.
1996          */
1997         rum_setup_tx_list(sc);
1998
1999         /* update Rx filter */
2000         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2001
2002         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2003         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2004                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2005                        RT2573_DROP_ACKCTS;
2006                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2007                         tmp |= RT2573_DROP_TODS;
2008                 if (!(ifp->if_flags & IFF_PROMISC))
2009                         tmp |= RT2573_DROP_NOT_TO_ME;
2010         }
2011         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2012
2013         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2014         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2015         usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2016         usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2017         return;
2018
2019 fail:   rum_stop(sc);
2020 #undef N
2021 }
2022
2023 static void
2024 rum_init(void *priv)
2025 {
2026         struct rum_softc *sc = priv;
2027         struct ifnet *ifp = sc->sc_ifp;
2028         struct ieee80211com *ic = ifp->if_l2com;
2029
2030         RUM_LOCK(sc);
2031         rum_init_locked(sc);
2032         RUM_UNLOCK(sc);
2033
2034         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2035                 ieee80211_start_all(ic);                /* start all vap's */
2036 }
2037
2038 static void
2039 rum_stop(struct rum_softc *sc)
2040 {
2041         struct ifnet *ifp = sc->sc_ifp;
2042         uint32_t tmp;
2043
2044         RUM_LOCK_ASSERT(sc, MA_OWNED);
2045
2046         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2047
2048         RUM_UNLOCK(sc);
2049
2050         /*
2051          * Drain the USB transfers, if not already drained:
2052          */
2053         usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2054         usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2055
2056         RUM_LOCK(sc);
2057
2058         rum_unsetup_tx_list(sc);
2059
2060         /* disable Rx */
2061         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2062         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2063
2064         /* reset ASIC */
2065         rum_write(sc, RT2573_MAC_CSR1, 3);
2066         rum_write(sc, RT2573_MAC_CSR1, 0);
2067 }
2068
2069 static void
2070 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2071 {
2072         struct usb_device_request req;
2073         uint16_t reg = RT2573_MCU_CODE_BASE;
2074         usb_error_t err;
2075
2076         /* copy firmware image into NIC */
2077         for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2078                 err = rum_write(sc, reg, UGETDW(ucode));
2079                 if (err) {
2080                         /* firmware already loaded ? */
2081                         device_printf(sc->sc_dev, "Firmware load "
2082                             "failure! (ignored)\n");
2083                         break;
2084                 }
2085         }
2086
2087         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2088         req.bRequest = RT2573_MCU_CNTL;
2089         USETW(req.wValue, RT2573_MCU_RUN);
2090         USETW(req.wIndex, 0);
2091         USETW(req.wLength, 0);
2092
2093         err = rum_do_request(sc, &req, NULL);
2094         if (err != 0) {
2095                 device_printf(sc->sc_dev, "could not run firmware: %s\n",
2096                     usbd_errstr(err));
2097         }
2098
2099         /* give the chip some time to boot */
2100         rum_pause(sc, hz / 8);
2101 }
2102
2103 static int
2104 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2105 {
2106         struct ieee80211com *ic = vap->iv_ic;
2107         const struct ieee80211_txparam *tp;
2108         struct rum_tx_desc desc;
2109         struct mbuf *m0;
2110
2111         m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo);
2112         if (m0 == NULL) {
2113                 return ENOBUFS;
2114         }
2115
2116         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2117         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2118             m0->m_pkthdr.len, tp->mgmtrate);
2119
2120         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2121         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2122
2123         /* copy beacon header and payload into NIC memory */
2124         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2125             m0->m_pkthdr.len);
2126
2127         m_freem(m0);
2128
2129         return 0;
2130 }
2131
2132 static int
2133 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2134     const struct ieee80211_bpf_params *params)
2135 {
2136         struct ifnet *ifp = ni->ni_ic->ic_ifp;
2137         struct rum_softc *sc = ifp->if_softc;
2138
2139         RUM_LOCK(sc);
2140         /* prevent management frames from being sent if we're not ready */
2141         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2142                 RUM_UNLOCK(sc);
2143                 m_freem(m);
2144                 ieee80211_free_node(ni);
2145                 return ENETDOWN;
2146         }
2147         if (sc->tx_nfree < RUM_TX_MINFREE) {
2148                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2149                 RUM_UNLOCK(sc);
2150                 m_freem(m);
2151                 ieee80211_free_node(ni);
2152                 return EIO;
2153         }
2154
2155         ifp->if_opackets++;
2156
2157         if (params == NULL) {
2158                 /*
2159                  * Legacy path; interpret frame contents to decide
2160                  * precisely how to send the frame.
2161                  */
2162                 if (rum_tx_mgt(sc, m, ni) != 0)
2163                         goto bad;
2164         } else {
2165                 /*
2166                  * Caller supplied explicit parameters to use in
2167                  * sending the frame.
2168                  */
2169                 if (rum_tx_raw(sc, m, ni, params) != 0)
2170                         goto bad;
2171         }
2172         RUM_UNLOCK(sc);
2173
2174         return 0;
2175 bad:
2176         ifp->if_oerrors++;
2177         RUM_UNLOCK(sc);
2178         ieee80211_free_node(ni);
2179         return EIO;
2180 }
2181
2182 static void
2183 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2184 {
2185         struct ieee80211vap *vap = ni->ni_vap;
2186         struct rum_vap *rvp = RUM_VAP(vap);
2187
2188         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2189         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2190
2191         ieee80211_amrr_node_init(&rvp->amrr, &RUM_NODE(ni)->amn, ni);
2192
2193         usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp);
2194 }
2195
2196 static void
2197 rum_amrr_timeout(void *arg)
2198 {
2199         struct rum_vap *rvp = arg;
2200         struct ieee80211vap *vap = &rvp->vap;
2201         struct ieee80211com *ic = vap->iv_ic;
2202
2203         ieee80211_runtask(ic, &rvp->amrr_task);
2204 }
2205
2206 static void
2207 rum_amrr_task(void *arg, int pending)
2208 {
2209         struct rum_vap *rvp = arg;
2210         struct ieee80211vap *vap = &rvp->vap;
2211         struct ieee80211com *ic = vap->iv_ic;
2212         struct ifnet *ifp = ic->ic_ifp;
2213         struct rum_softc *sc = ifp->if_softc;
2214         struct ieee80211_node *ni = vap->iv_bss;
2215         int ok, fail;
2216
2217         RUM_LOCK(sc);
2218         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2219         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2220
2221         ok = (le32toh(sc->sta[4]) >> 16) +      /* TX ok w/o retry */
2222             (le32toh(sc->sta[5]) & 0xffff);     /* TX ok w/ retry */
2223         fail = (le32toh(sc->sta[5]) >> 16);     /* TX retry-fail count */
2224
2225         ieee80211_amrr_tx_update(&RUM_NODE(ni)->amn,
2226             ok+fail, ok, (le32toh(sc->sta[5]) & 0xffff) + fail);
2227         (void) ieee80211_amrr_choose(ni, &RUM_NODE(ni)->amn);
2228
2229         ifp->if_oerrors += fail;        /* count TX retry-fail as Tx errors */
2230
2231         usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp);
2232         RUM_UNLOCK(sc);
2233 }
2234
2235 /* ARGUSED */
2236 static struct ieee80211_node *
2237 rum_node_alloc(struct ieee80211vap *vap __unused,
2238         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
2239 {
2240         struct rum_node *rn;
2241
2242         rn = malloc(sizeof(struct rum_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2243         return rn != NULL ? &rn->ni : NULL;
2244 }
2245
2246 static void
2247 rum_newassoc(struct ieee80211_node *ni, int isnew)
2248 {
2249         struct ieee80211vap *vap = ni->ni_vap;
2250
2251         ieee80211_amrr_node_init(&RUM_VAP(vap)->amrr, &RUM_NODE(ni)->amn, ni);
2252 }
2253
2254 static void
2255 rum_scan_start(struct ieee80211com *ic)
2256 {
2257         struct ifnet *ifp = ic->ic_ifp;
2258         struct rum_softc *sc = ifp->if_softc;
2259         uint32_t tmp;
2260
2261         RUM_LOCK(sc);
2262         /* abort TSF synchronization */
2263         tmp = rum_read(sc, RT2573_TXRX_CSR9);
2264         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2265         rum_set_bssid(sc, ifp->if_broadcastaddr);
2266         RUM_UNLOCK(sc);
2267
2268 }
2269
2270 static void
2271 rum_scan_end(struct ieee80211com *ic)
2272 {
2273         struct rum_softc *sc = ic->ic_ifp->if_softc;
2274
2275         RUM_LOCK(sc);
2276         rum_enable_tsf_sync(sc);
2277         rum_set_bssid(sc, sc->sc_bssid);
2278         RUM_UNLOCK(sc);
2279
2280 }
2281
2282 static void
2283 rum_set_channel(struct ieee80211com *ic)
2284 {
2285         struct rum_softc *sc = ic->ic_ifp->if_softc;
2286
2287         RUM_LOCK(sc);
2288         rum_set_chan(sc, ic->ic_curchan);
2289         RUM_UNLOCK(sc);
2290 }
2291
2292 static int
2293 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2294 {
2295         struct ifnet *ifp = sc->sc_ifp;
2296         struct ieee80211com *ic = ifp->if_l2com;
2297         int lna, agc, rssi;
2298
2299         lna = (raw >> 5) & 0x3;
2300         agc = raw & 0x1f;
2301
2302         if (lna == 0) {
2303                 /*
2304                  * No RSSI mapping
2305                  *
2306                  * NB: Since RSSI is relative to noise floor, -1 is
2307                  *     adequate for caller to know error happened.
2308                  */
2309                 return -1;
2310         }
2311
2312         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2313
2314         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2315                 rssi += sc->rssi_2ghz_corr;
2316
2317                 if (lna == 1)
2318                         rssi -= 64;
2319                 else if (lna == 2)
2320                         rssi -= 74;
2321                 else if (lna == 3)
2322                         rssi -= 90;
2323         } else {
2324                 rssi += sc->rssi_5ghz_corr;
2325
2326                 if (!sc->ext_5ghz_lna && lna != 1)
2327                         rssi += 4;
2328
2329                 if (lna == 1)
2330                         rssi -= 64;
2331                 else if (lna == 2)
2332                         rssi -= 86;
2333                 else if (lna == 3)
2334                         rssi -= 100;
2335         }
2336         return rssi;
2337 }
2338
2339 static int
2340 rum_pause(struct rum_softc *sc, int timeout)
2341 {
2342
2343         usb_pause_mtx(&sc->sc_mtx, timeout);
2344         return (0);
2345 }
2346
2347 static device_method_t rum_methods[] = {
2348         /* Device interface */
2349         DEVMETHOD(device_probe,         rum_match),
2350         DEVMETHOD(device_attach,        rum_attach),
2351         DEVMETHOD(device_detach,        rum_detach),
2352
2353         { 0, 0 }
2354 };
2355
2356 static driver_t rum_driver = {
2357         .name = "rum",
2358         .methods = rum_methods,
2359         .size = sizeof(struct rum_softc),
2360 };
2361
2362 static devclass_t rum_devclass;
2363
2364 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);