]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/dev/usb/wlan/if_ural.c
Copy head to stable/8 as part of 8.0 Release cycle.
[FreeBSD/stable/8.git] / sys / dev / usb / wlan / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *      Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_amrr.h>
70
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include "usbdevs.h"
74
75 #define USB_DEBUG_VAR ural_debug
76 #include <dev/usb/usb_debug.h>
77
78 #include <dev/usb/wlan/if_uralreg.h>
79 #include <dev/usb/wlan/if_uralvar.h>
80
81 #if USB_DEBUG
82 static int ural_debug = 0;
83
84 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
86     "Debug level");
87 #endif
88
89 #define URAL_RSSI(rssi)                                 \
90         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
91          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92
93 /* various supported device vendors/products */
94 static const struct usb_device_id ural_devs[] = {
95         { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G) },
96         { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_RALINK_RT2570) },
97         { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050) },
98         { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7051) },
99         { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS) },
100         { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G) },
101         { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP) },
102         { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU) },
103         { USB_VP(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122) },
104         { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GN54G) },
105         { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG) },
106         { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254) },
107         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54) },
108         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI) },
109         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB) },
110         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI) },
111         { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570) },
112         { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2) },
113         { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3) },
114         { USB_VP(USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902) },
115         { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570) },
116         { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2) },
117         { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3) },
118         { USB_VP(USB_VENDOR_SIEMENS2, USB_PRODUCT_SIEMENS2_WL54G) },
119         { USB_VP(USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG) },
120         { USB_VP(USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R) },
121         { USB_VP(USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570) },
122         { USB_VP(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570) },
123         { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570) },
124 };
125
126 static usb_callback_t ural_bulk_read_callback;
127 static usb_callback_t ural_bulk_write_callback;
128
129 static usb_error_t      ural_do_request(struct ural_softc *sc,
130                             struct usb_device_request *req, void *data);
131 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
132                             const char name[IFNAMSIZ], int unit, int opmode,
133                             int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
134                             const uint8_t mac[IEEE80211_ADDR_LEN]);
135 static void             ural_vap_delete(struct ieee80211vap *);
136 static void             ural_tx_free(struct ural_tx_data *, int);
137 static void             ural_setup_tx_list(struct ural_softc *);
138 static void             ural_unsetup_tx_list(struct ural_softc *);
139 static int              ural_newstate(struct ieee80211vap *,
140                             enum ieee80211_state, int);
141 static void             ural_setup_tx_desc(struct ural_softc *,
142                             struct ural_tx_desc *, uint32_t, int, int);
143 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
144                             struct ieee80211_node *);
145 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
146                             struct ieee80211_node *);
147 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
148                             struct ieee80211_node *);
149 static void             ural_start(struct ifnet *);
150 static int              ural_ioctl(struct ifnet *, u_long, caddr_t);
151 static void             ural_set_testmode(struct ural_softc *);
152 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
153                             int);
154 static uint16_t         ural_read(struct ural_softc *, uint16_t);
155 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
156                             int);
157 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
158 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
159                             int) __unused;
160 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
161 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
162 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
163 static struct ieee80211_node *ural_node_alloc(struct ieee80211vap *,
164                             const uint8_t mac[IEEE80211_ADDR_LEN]);
165 static void             ural_newassoc(struct ieee80211_node *, int);
166 static void             ural_scan_start(struct ieee80211com *);
167 static void             ural_scan_end(struct ieee80211com *);
168 static void             ural_set_channel(struct ieee80211com *);
169 static void             ural_set_chan(struct ural_softc *,
170                             struct ieee80211_channel *);
171 static void             ural_disable_rf_tune(struct ural_softc *);
172 static void             ural_enable_tsf_sync(struct ural_softc *);
173 static void             ural_enable_tsf(struct ural_softc *);
174 static void             ural_update_slot(struct ifnet *);
175 static void             ural_set_txpreamble(struct ural_softc *);
176 static void             ural_set_basicrates(struct ural_softc *,
177                             const struct ieee80211_channel *);
178 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
179 static void             ural_set_macaddr(struct ural_softc *, uint8_t *);
180 static void             ural_update_promisc(struct ifnet *);
181 static void             ural_setpromisc(struct ural_softc *);
182 static const char       *ural_get_rf(int);
183 static void             ural_read_eeprom(struct ural_softc *);
184 static int              ural_bbp_init(struct ural_softc *);
185 static void             ural_set_txantenna(struct ural_softc *, int);
186 static void             ural_set_rxantenna(struct ural_softc *, int);
187 static void             ural_init_locked(struct ural_softc *);
188 static void             ural_init(void *);
189 static void             ural_stop(struct ural_softc *);
190 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191                             const struct ieee80211_bpf_params *);
192 static void             ural_amrr_start(struct ural_softc *,
193                             struct ieee80211_node *);
194 static void             ural_amrr_timeout(void *);
195 static void             ural_amrr_task(void *, int);
196 static int              ural_pause(struct ural_softc *sc, int timeout);
197
198 /*
199  * Default values for MAC registers; values taken from the reference driver.
200  */
201 static const struct {
202         uint16_t        reg;
203         uint16_t        val;
204 } ural_def_mac[] = {
205         { RAL_TXRX_CSR5,  0x8c8d },
206         { RAL_TXRX_CSR6,  0x8b8a },
207         { RAL_TXRX_CSR7,  0x8687 },
208         { RAL_TXRX_CSR8,  0x0085 },
209         { RAL_MAC_CSR13,  0x1111 },
210         { RAL_MAC_CSR14,  0x1e11 },
211         { RAL_TXRX_CSR21, 0xe78f },
212         { RAL_MAC_CSR9,   0xff1d },
213         { RAL_MAC_CSR11,  0x0002 },
214         { RAL_MAC_CSR22,  0x0053 },
215         { RAL_MAC_CSR15,  0x0000 },
216         { RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217         { RAL_TXRX_CSR19, 0x0000 },
218         { RAL_TXRX_CSR18, 0x005a },
219         { RAL_PHY_CSR2,   0x0000 },
220         { RAL_TXRX_CSR0,  0x1ec0 },
221         { RAL_PHY_CSR4,   0x000f }
222 };
223
224 /*
225  * Default values for BBP registers; values taken from the reference driver.
226  */
227 static const struct {
228         uint8_t reg;
229         uint8_t val;
230 } ural_def_bbp[] = {
231         {  3, 0x02 },
232         {  4, 0x19 },
233         { 14, 0x1c },
234         { 15, 0x30 },
235         { 16, 0xac },
236         { 17, 0x48 },
237         { 18, 0x18 },
238         { 19, 0xff },
239         { 20, 0x1e },
240         { 21, 0x08 },
241         { 22, 0x08 },
242         { 23, 0x08 },
243         { 24, 0x80 },
244         { 25, 0x50 },
245         { 26, 0x08 },
246         { 27, 0x23 },
247         { 30, 0x10 },
248         { 31, 0x2b },
249         { 32, 0xb9 },
250         { 34, 0x12 },
251         { 35, 0x50 },
252         { 39, 0xc4 },
253         { 40, 0x02 },
254         { 41, 0x60 },
255         { 53, 0x10 },
256         { 54, 0x18 },
257         { 56, 0x08 },
258         { 57, 0x10 },
259         { 58, 0x08 },
260         { 61, 0x60 },
261         { 62, 0x10 },
262         { 75, 0xff }
263 };
264
265 /*
266  * Default values for RF register R2 indexed by channel numbers.
267  */
268 static const uint32_t ural_rf2522_r2[] = {
269         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271 };
272
273 static const uint32_t ural_rf2523_r2[] = {
274         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277
278 static const uint32_t ural_rf2524_r2[] = {
279         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281 };
282
283 static const uint32_t ural_rf2525_r2[] = {
284         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286 };
287
288 static const uint32_t ural_rf2525_hi_r2[] = {
289         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291 };
292
293 static const uint32_t ural_rf2525e_r2[] = {
294         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296 };
297
298 static const uint32_t ural_rf2526_hi_r2[] = {
299         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301 };
302
303 static const uint32_t ural_rf2526_r2[] = {
304         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306 };
307
308 /*
309  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310  * values taken from the reference driver.
311  */
312 static const struct {
313         uint8_t         chan;
314         uint32_t        r1;
315         uint32_t        r2;
316         uint32_t        r4;
317 } ural_rf5222[] = {
318         {   1, 0x08808, 0x0044d, 0x00282 },
319         {   2, 0x08808, 0x0044e, 0x00282 },
320         {   3, 0x08808, 0x0044f, 0x00282 },
321         {   4, 0x08808, 0x00460, 0x00282 },
322         {   5, 0x08808, 0x00461, 0x00282 },
323         {   6, 0x08808, 0x00462, 0x00282 },
324         {   7, 0x08808, 0x00463, 0x00282 },
325         {   8, 0x08808, 0x00464, 0x00282 },
326         {   9, 0x08808, 0x00465, 0x00282 },
327         {  10, 0x08808, 0x00466, 0x00282 },
328         {  11, 0x08808, 0x00467, 0x00282 },
329         {  12, 0x08808, 0x00468, 0x00282 },
330         {  13, 0x08808, 0x00469, 0x00282 },
331         {  14, 0x08808, 0x0046b, 0x00286 },
332
333         {  36, 0x08804, 0x06225, 0x00287 },
334         {  40, 0x08804, 0x06226, 0x00287 },
335         {  44, 0x08804, 0x06227, 0x00287 },
336         {  48, 0x08804, 0x06228, 0x00287 },
337         {  52, 0x08804, 0x06229, 0x00287 },
338         {  56, 0x08804, 0x0622a, 0x00287 },
339         {  60, 0x08804, 0x0622b, 0x00287 },
340         {  64, 0x08804, 0x0622c, 0x00287 },
341
342         { 100, 0x08804, 0x02200, 0x00283 },
343         { 104, 0x08804, 0x02201, 0x00283 },
344         { 108, 0x08804, 0x02202, 0x00283 },
345         { 112, 0x08804, 0x02203, 0x00283 },
346         { 116, 0x08804, 0x02204, 0x00283 },
347         { 120, 0x08804, 0x02205, 0x00283 },
348         { 124, 0x08804, 0x02206, 0x00283 },
349         { 128, 0x08804, 0x02207, 0x00283 },
350         { 132, 0x08804, 0x02208, 0x00283 },
351         { 136, 0x08804, 0x02209, 0x00283 },
352         { 140, 0x08804, 0x0220a, 0x00283 },
353
354         { 149, 0x08808, 0x02429, 0x00281 },
355         { 153, 0x08808, 0x0242b, 0x00281 },
356         { 157, 0x08808, 0x0242d, 0x00281 },
357         { 161, 0x08808, 0x0242f, 0x00281 }
358 };
359
360 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361         [URAL_BULK_WR] = {
362                 .type = UE_BULK,
363                 .endpoint = UE_ADDR_ANY,
364                 .direction = UE_DIR_OUT,
365                 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367                 .callback = ural_bulk_write_callback,
368                 .timeout = 5000,        /* ms */
369         },
370         [URAL_BULK_RD] = {
371                 .type = UE_BULK,
372                 .endpoint = UE_ADDR_ANY,
373                 .direction = UE_DIR_IN,
374                 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376                 .callback = ural_bulk_read_callback,
377         },
378 };
379
380 static device_probe_t ural_match;
381 static device_attach_t ural_attach;
382 static device_detach_t ural_detach;
383
384 static device_method_t ural_methods[] = {
385         /* Device interface */
386         DEVMETHOD(device_probe,         ural_match),
387         DEVMETHOD(device_attach,        ural_attach),
388         DEVMETHOD(device_detach,        ural_detach),
389
390         { 0, 0 }
391 };
392
393 static driver_t ural_driver = {
394         .name = "ural",
395         .methods = ural_methods,
396         .size = sizeof(struct ural_softc),
397 };
398
399 static devclass_t ural_devclass;
400
401 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
402 MODULE_DEPEND(ural, usb, 1, 1, 1);
403 MODULE_DEPEND(ural, wlan, 1, 1, 1);
404 MODULE_DEPEND(ural, wlan_amrr, 1, 1, 1);
405
406 static int
407 ural_match(device_t self)
408 {
409         struct usb_attach_arg *uaa = device_get_ivars(self);
410
411         if (uaa->usb_mode != USB_MODE_HOST)
412                 return (ENXIO);
413         if (uaa->info.bConfigIndex != 0)
414                 return (ENXIO);
415         if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
416                 return (ENXIO);
417
418         return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
419 }
420
421 static int
422 ural_attach(device_t self)
423 {
424         struct usb_attach_arg *uaa = device_get_ivars(self);
425         struct ural_softc *sc = device_get_softc(self);
426         struct ifnet *ifp;
427         struct ieee80211com *ic;
428         uint8_t iface_index, bands;
429         int error;
430
431         device_set_usb_desc(self);
432         sc->sc_udev = uaa->device;
433         sc->sc_dev = self;
434
435         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
436             MTX_NETWORK_LOCK, MTX_DEF);
437
438         iface_index = RAL_IFACE_INDEX;
439         error = usbd_transfer_setup(uaa->device,
440             &iface_index, sc->sc_xfer, ural_config,
441             URAL_N_TRANSFER, sc, &sc->sc_mtx);
442         if (error) {
443                 device_printf(self, "could not allocate USB transfers, "
444                     "err=%s\n", usbd_errstr(error));
445                 goto detach;
446         }
447
448         RAL_LOCK(sc);
449         /* retrieve RT2570 rev. no */
450         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
451
452         /* retrieve MAC address and various other things from EEPROM */
453         ural_read_eeprom(sc);
454         RAL_UNLOCK(sc);
455
456         device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
457             sc->asic_rev, ural_get_rf(sc->rf_rev));
458
459         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
460         if (ifp == NULL) {
461                 device_printf(sc->sc_dev, "can not if_alloc()\n");
462                 goto detach;
463         }
464         ic = ifp->if_l2com;
465
466         ifp->if_softc = sc;
467         if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
468         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
469         ifp->if_init = ural_init;
470         ifp->if_ioctl = ural_ioctl;
471         ifp->if_start = ural_start;
472         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
473         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
474         IFQ_SET_READY(&ifp->if_snd);
475
476         ic->ic_ifp = ifp;
477         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
478
479         /* set device capabilities */
480         ic->ic_caps =
481               IEEE80211_C_STA           /* station mode supported */
482             | IEEE80211_C_IBSS          /* IBSS mode supported */
483             | IEEE80211_C_MONITOR       /* monitor mode supported */
484             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
485             | IEEE80211_C_TXPMGT        /* tx power management */
486             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
487             | IEEE80211_C_SHSLOT        /* short slot time supported */
488             | IEEE80211_C_BGSCAN        /* bg scanning supported */
489             | IEEE80211_C_WPA           /* 802.11i */
490             ;
491
492         bands = 0;
493         setbit(&bands, IEEE80211_MODE_11B);
494         setbit(&bands, IEEE80211_MODE_11G);
495         if (sc->rf_rev == RAL_RF_5222)
496                 setbit(&bands, IEEE80211_MODE_11A);
497         ieee80211_init_channels(ic, NULL, &bands);
498
499         ieee80211_ifattach(ic, sc->sc_bssid);
500         ic->ic_update_promisc = ural_update_promisc;
501         ic->ic_newassoc = ural_newassoc;
502         ic->ic_raw_xmit = ural_raw_xmit;
503         ic->ic_node_alloc = ural_node_alloc;
504         ic->ic_scan_start = ural_scan_start;
505         ic->ic_scan_end = ural_scan_end;
506         ic->ic_set_channel = ural_set_channel;
507
508         ic->ic_vap_create = ural_vap_create;
509         ic->ic_vap_delete = ural_vap_delete;
510
511         ieee80211_radiotap_attach(ic,
512             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
513                 RAL_TX_RADIOTAP_PRESENT,
514             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
515                 RAL_RX_RADIOTAP_PRESENT);
516
517         if (bootverbose)
518                 ieee80211_announce(ic);
519
520         return (0);
521
522 detach:
523         ural_detach(self);
524         return (ENXIO);                 /* failure */
525 }
526
527 static int
528 ural_detach(device_t self)
529 {
530         struct ural_softc *sc = device_get_softc(self);
531         struct ifnet *ifp = sc->sc_ifp;
532         struct ieee80211com *ic;
533
534         /* stop all USB transfers */
535         usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
536
537         /* free TX list, if any */
538         RAL_LOCK(sc);
539         ural_unsetup_tx_list(sc);
540         RAL_UNLOCK(sc);
541
542         if (ifp) {
543                 ic = ifp->if_l2com;
544                 ieee80211_ifdetach(ic);
545                 if_free(ifp);
546         }
547         mtx_destroy(&sc->sc_mtx);
548
549         return (0);
550 }
551
552 static usb_error_t
553 ural_do_request(struct ural_softc *sc,
554     struct usb_device_request *req, void *data)
555 {
556         usb_error_t err;
557         int ntries = 10;
558
559         while (ntries--) {
560                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
561                     req, data, 0, NULL, 250 /* ms */);
562                 if (err == 0)
563                         break;
564
565                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
566                     usbd_errstr(err));
567                 if (ural_pause(sc, hz / 100))
568                         break;
569         }
570         return (err);
571 }
572
573 static struct ieee80211vap *
574 ural_vap_create(struct ieee80211com *ic,
575         const char name[IFNAMSIZ], int unit, int opmode, int flags,
576         const uint8_t bssid[IEEE80211_ADDR_LEN],
577         const uint8_t mac[IEEE80211_ADDR_LEN])
578 {
579         struct ural_softc *sc = ic->ic_ifp->if_softc;
580         struct ural_vap *uvp;
581         struct ieee80211vap *vap;
582
583         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
584                 return NULL;
585         uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
586             M_80211_VAP, M_NOWAIT | M_ZERO);
587         if (uvp == NULL)
588                 return NULL;
589         vap = &uvp->vap;
590         /* enable s/w bmiss handling for sta mode */
591         ieee80211_vap_setup(ic, vap, name, unit, opmode,
592             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
593
594         /* override state transition machine */
595         uvp->newstate = vap->iv_newstate;
596         vap->iv_newstate = ural_newstate;
597
598         usb_callout_init_mtx(&uvp->amrr_ch, &sc->sc_mtx, 0);
599         TASK_INIT(&uvp->amrr_task, 0, ural_amrr_task, uvp);
600         ieee80211_amrr_init(&uvp->amrr, vap,
601             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
602             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
603             1000 /* 1 sec */);
604
605         /* complete setup */
606         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
607         ic->ic_opmode = opmode;
608         return vap;
609 }
610
611 static void
612 ural_vap_delete(struct ieee80211vap *vap)
613 {
614         struct ural_vap *uvp = URAL_VAP(vap);
615         struct ieee80211com *ic = vap->iv_ic;
616
617         usb_callout_drain(&uvp->amrr_ch);
618         ieee80211_draintask(ic, &uvp->amrr_task);
619         ieee80211_amrr_cleanup(&uvp->amrr);
620         ieee80211_vap_detach(vap);
621         free(uvp, M_80211_VAP);
622 }
623
624 static void
625 ural_tx_free(struct ural_tx_data *data, int txerr)
626 {
627         struct ural_softc *sc = data->sc;
628
629         if (data->m != NULL) {
630                 if (data->m->m_flags & M_TXCB)
631                         ieee80211_process_callback(data->ni, data->m,
632                             txerr ? ETIMEDOUT : 0);
633                 m_freem(data->m);
634                 data->m = NULL;
635
636                 ieee80211_free_node(data->ni);
637                 data->ni = NULL;
638         }
639         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
640         sc->tx_nfree++;
641 }
642
643 static void
644 ural_setup_tx_list(struct ural_softc *sc)
645 {
646         struct ural_tx_data *data;
647         int i;
648
649         sc->tx_nfree = 0;
650         STAILQ_INIT(&sc->tx_q);
651         STAILQ_INIT(&sc->tx_free);
652
653         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
654                 data = &sc->tx_data[i];
655
656                 data->sc = sc;
657                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
658                 sc->tx_nfree++;
659         }
660 }
661
662 static void
663 ural_unsetup_tx_list(struct ural_softc *sc)
664 {
665         struct ural_tx_data *data;
666         int i;
667
668         /* make sure any subsequent use of the queues will fail */
669         sc->tx_nfree = 0;
670         STAILQ_INIT(&sc->tx_q);
671         STAILQ_INIT(&sc->tx_free);
672
673         /* free up all node references and mbufs */
674         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
675                 data = &sc->tx_data[i];
676
677                 if (data->m != NULL) {
678                         m_freem(data->m);
679                         data->m = NULL;
680                 }
681                 if (data->ni != NULL) {
682                         ieee80211_free_node(data->ni);
683                         data->ni = NULL;
684                 }
685         }
686 }
687
688 static int
689 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
690 {
691         struct ural_vap *uvp = URAL_VAP(vap);
692         struct ieee80211com *ic = vap->iv_ic;
693         struct ural_softc *sc = ic->ic_ifp->if_softc;
694         const struct ieee80211_txparam *tp;
695         struct ieee80211_node *ni;
696         struct mbuf *m;
697
698         DPRINTF("%s -> %s\n",
699                 ieee80211_state_name[vap->iv_state],
700                 ieee80211_state_name[nstate]);
701
702         IEEE80211_UNLOCK(ic);
703         RAL_LOCK(sc);
704         usb_callout_stop(&uvp->amrr_ch);
705
706         switch (nstate) {
707         case IEEE80211_S_INIT:
708                 if (vap->iv_state == IEEE80211_S_RUN) {
709                         /* abort TSF synchronization */
710                         ural_write(sc, RAL_TXRX_CSR19, 0);
711
712                         /* force tx led to stop blinking */
713                         ural_write(sc, RAL_MAC_CSR20, 0);
714                 }
715                 break;
716
717         case IEEE80211_S_RUN:
718                 ni = vap->iv_bss;
719
720                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
721                         ural_update_slot(ic->ic_ifp);
722                         ural_set_txpreamble(sc);
723                         ural_set_basicrates(sc, ic->ic_bsschan);
724                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
725                         ural_set_bssid(sc, sc->sc_bssid);
726                 }
727
728                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
729                     vap->iv_opmode == IEEE80211_M_IBSS) {
730                         m = ieee80211_beacon_alloc(ni, &uvp->bo);
731                         if (m == NULL) {
732                                 device_printf(sc->sc_dev,
733                                     "could not allocate beacon\n");
734                                 RAL_UNLOCK(sc);
735                                 IEEE80211_LOCK(ic);
736                                 return (-1);
737                         }
738                         ieee80211_ref_node(ni);
739                         if (ural_tx_bcn(sc, m, ni) != 0) {
740                                 device_printf(sc->sc_dev,
741                                     "could not send beacon\n");
742                                 RAL_UNLOCK(sc);
743                                 IEEE80211_LOCK(ic);
744                                 return (-1);
745                         }
746                 }
747
748                 /* make tx led blink on tx (controlled by ASIC) */
749                 ural_write(sc, RAL_MAC_CSR20, 1);
750
751                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
752                         ural_enable_tsf_sync(sc);
753                 else
754                         ural_enable_tsf(sc);
755
756                 /* enable automatic rate adaptation */
757                 /* XXX should use ic_bsschan but not valid until after newstate call below */
758                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
759                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
760                         ural_amrr_start(sc, ni);
761
762                 break;
763
764         default:
765                 break;
766         }
767         RAL_UNLOCK(sc);
768         IEEE80211_LOCK(ic);
769         return (uvp->newstate(vap, nstate, arg));
770 }
771
772
773 static void
774 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
775 {
776         struct ural_softc *sc = usbd_xfer_softc(xfer);
777         struct ifnet *ifp = sc->sc_ifp;
778         struct ieee80211vap *vap;
779         struct ural_tx_data *data;
780         struct mbuf *m;
781         struct usb_page_cache *pc;
782         int len;
783
784         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
785
786         switch (USB_GET_STATE(xfer)) {
787         case USB_ST_TRANSFERRED:
788                 DPRINTFN(11, "transfer complete, %d bytes\n", len);
789
790                 /* free resources */
791                 data = usbd_xfer_get_priv(xfer);
792                 ural_tx_free(data, 0);
793                 usbd_xfer_set_priv(xfer, NULL);
794
795                 ifp->if_opackets++;
796                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
797
798                 /* FALLTHROUGH */
799         case USB_ST_SETUP:
800 tr_setup:
801                 data = STAILQ_FIRST(&sc->tx_q);
802                 if (data) {
803                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
804                         m = data->m;
805
806                         if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
807                                 DPRINTFN(0, "data overflow, %u bytes\n",
808                                     m->m_pkthdr.len);
809                                 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
810                         }
811                         pc = usbd_xfer_get_frame(xfer, 0);
812                         usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
813                         usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
814                             m->m_pkthdr.len);
815
816                         vap = data->ni->ni_vap;
817                         if (ieee80211_radiotap_active_vap(vap)) {
818                                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
819
820                                 tap->wt_flags = 0;
821                                 tap->wt_rate = data->rate;
822                                 tap->wt_antenna = sc->tx_ant;
823
824                                 ieee80211_radiotap_tx(vap, m);
825                         }
826
827                         /* xfer length needs to be a multiple of two! */
828                         len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
829                         if ((len % 64) == 0)
830                                 len += 2;
831
832                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
833                             m->m_pkthdr.len, len);
834
835                         usbd_xfer_set_frame_len(xfer, 0, len);
836                         usbd_xfer_set_priv(xfer, data);
837
838                         usbd_transfer_submit(xfer);
839                 }
840                 break;
841
842         default:                        /* Error */
843                 DPRINTFN(11, "transfer error, %s\n",
844                     usbd_errstr(error));
845
846                 ifp->if_oerrors++;
847                 data = usbd_xfer_get_priv(xfer);
848                 if (data != NULL) {
849                         ural_tx_free(data, error);
850                         usbd_xfer_set_priv(xfer, NULL);
851                 }
852
853                 if (error == USB_ERR_STALLED) {
854                         /* try to clear stall first */
855                         usbd_xfer_set_stall(xfer);
856                         goto tr_setup;
857                 }
858                 if (error == USB_ERR_TIMEOUT)
859                         device_printf(sc->sc_dev, "device timeout\n");
860                 break;
861         }
862 }
863
864 static void
865 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
866 {
867         struct ural_softc *sc = usbd_xfer_softc(xfer);
868         struct ifnet *ifp = sc->sc_ifp;
869         struct ieee80211com *ic = ifp->if_l2com;
870         struct ieee80211_node *ni;
871         struct mbuf *m = NULL;
872         struct usb_page_cache *pc;
873         uint32_t flags;
874         int8_t rssi = 0, nf = 0;
875         int len;
876
877         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
878
879         switch (USB_GET_STATE(xfer)) {
880         case USB_ST_TRANSFERRED:
881
882                 DPRINTFN(15, "rx done, actlen=%d\n", len);
883
884                 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
885                         DPRINTF("%s: xfer too short %d\n",
886                             device_get_nameunit(sc->sc_dev), len);
887                         ifp->if_ierrors++;
888                         goto tr_setup;
889                 }
890
891                 len -= RAL_RX_DESC_SIZE;
892                 /* rx descriptor is located at the end */
893                 pc = usbd_xfer_get_frame(xfer, 0);
894                 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
895
896                 rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
897                 nf = RAL_NOISE_FLOOR;
898                 flags = le32toh(sc->sc_rx_desc.flags);
899                 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
900                         /*
901                          * This should not happen since we did not
902                          * request to receive those frames when we
903                          * filled RAL_TXRX_CSR2:
904                          */
905                         DPRINTFN(5, "PHY or CRC error\n");
906                         ifp->if_ierrors++;
907                         goto tr_setup;
908                 }
909
910                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
911                 if (m == NULL) {
912                         DPRINTF("could not allocate mbuf\n");
913                         ifp->if_ierrors++;
914                         goto tr_setup;
915                 }
916                 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
917
918                 /* finalize mbuf */
919                 m->m_pkthdr.rcvif = ifp;
920                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
921
922                 if (ieee80211_radiotap_active(ic)) {
923                         struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
924
925                         /* XXX set once */
926                         tap->wr_flags = 0;
927                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
928                             (flags & RAL_RX_OFDM) ?
929                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
930                         tap->wr_antenna = sc->rx_ant;
931                         tap->wr_antsignal = nf + rssi;
932                         tap->wr_antnoise = nf;
933                 }
934                 /* Strip trailing 802.11 MAC FCS. */
935                 m_adj(m, -IEEE80211_CRC_LEN);
936
937                 /* FALLTHROUGH */
938         case USB_ST_SETUP:
939 tr_setup:
940                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
941                 usbd_transfer_submit(xfer);
942
943                 /*
944                  * At the end of a USB callback it is always safe to unlock
945                  * the private mutex of a device! That is why we do the
946                  * "ieee80211_input" here, and not some lines up!
947                  */
948                 if (m) {
949                         RAL_UNLOCK(sc);
950                         ni = ieee80211_find_rxnode(ic,
951                             mtod(m, struct ieee80211_frame_min *));
952                         if (ni != NULL) {
953                                 (void) ieee80211_input(ni, m, rssi, nf);
954                                 ieee80211_free_node(ni);
955                         } else
956                                 (void) ieee80211_input_all(ic, m, rssi, nf);
957                         RAL_LOCK(sc);
958                 }
959                 return;
960
961         default:                        /* Error */
962                 if (error != USB_ERR_CANCELLED) {
963                         /* try to clear stall first */
964                         usbd_xfer_set_stall(xfer);
965                         goto tr_setup;
966                 }
967                 return;
968         }
969 }
970
971 static uint8_t
972 ural_plcp_signal(int rate)
973 {
974         switch (rate) {
975         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
976         case 12:        return 0xb;
977         case 18:        return 0xf;
978         case 24:        return 0xa;
979         case 36:        return 0xe;
980         case 48:        return 0x9;
981         case 72:        return 0xd;
982         case 96:        return 0x8;
983         case 108:       return 0xc;
984
985         /* CCK rates (NB: not IEEE std, device-specific) */
986         case 2:         return 0x0;
987         case 4:         return 0x1;
988         case 11:        return 0x2;
989         case 22:        return 0x3;
990         }
991         return 0xff;            /* XXX unsupported/unknown rate */
992 }
993
994 static void
995 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
996     uint32_t flags, int len, int rate)
997 {
998         struct ifnet *ifp = sc->sc_ifp;
999         struct ieee80211com *ic = ifp->if_l2com;
1000         uint16_t plcp_length;
1001         int remainder;
1002
1003         desc->flags = htole32(flags);
1004         desc->flags |= htole32(RAL_TX_NEWSEQ);
1005         desc->flags |= htole32(len << 16);
1006
1007         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1008         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1009
1010         /* setup PLCP fields */
1011         desc->plcp_signal  = ural_plcp_signal(rate);
1012         desc->plcp_service = 4;
1013
1014         len += IEEE80211_CRC_LEN;
1015         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1016                 desc->flags |= htole32(RAL_TX_OFDM);
1017
1018                 plcp_length = len & 0xfff;
1019                 desc->plcp_length_hi = plcp_length >> 6;
1020                 desc->plcp_length_lo = plcp_length & 0x3f;
1021         } else {
1022                 plcp_length = (16 * len + rate - 1) / rate;
1023                 if (rate == 22) {
1024                         remainder = (16 * len) % 22;
1025                         if (remainder != 0 && remainder < 7)
1026                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1027                 }
1028                 desc->plcp_length_hi = plcp_length >> 8;
1029                 desc->plcp_length_lo = plcp_length & 0xff;
1030
1031                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1032                         desc->plcp_signal |= 0x08;
1033         }
1034
1035         desc->iv = 0;
1036         desc->eiv = 0;
1037 }
1038
1039 #define RAL_TX_TIMEOUT  5000
1040
1041 static int
1042 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1043 {
1044         struct ieee80211vap *vap = ni->ni_vap;
1045         struct ieee80211com *ic = ni->ni_ic;
1046         struct ifnet *ifp = sc->sc_ifp;
1047         const struct ieee80211_txparam *tp;
1048         struct ural_tx_data *data;
1049
1050         if (sc->tx_nfree == 0) {
1051                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1052                 m_freem(m0);
1053                 ieee80211_free_node(ni);
1054                 return EIO;
1055         }
1056         data = STAILQ_FIRST(&sc->tx_free);
1057         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1058         sc->tx_nfree--;
1059         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1060
1061         data->m = m0;
1062         data->ni = ni;
1063         data->rate = tp->mgmtrate;
1064
1065         ural_setup_tx_desc(sc, &data->desc,
1066             RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1067             tp->mgmtrate);
1068
1069         DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1070             m0->m_pkthdr.len, tp->mgmtrate);
1071
1072         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1073         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1074
1075         return (0);
1076 }
1077
1078 static int
1079 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1080 {
1081         struct ieee80211vap *vap = ni->ni_vap;
1082         struct ieee80211com *ic = ni->ni_ic;
1083         const struct ieee80211_txparam *tp;
1084         struct ural_tx_data *data;
1085         struct ieee80211_frame *wh;
1086         struct ieee80211_key *k;
1087         uint32_t flags;
1088         uint16_t dur;
1089
1090         RAL_LOCK_ASSERT(sc, MA_OWNED);
1091
1092         data = STAILQ_FIRST(&sc->tx_free);
1093         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1094         sc->tx_nfree--;
1095
1096         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1097
1098         wh = mtod(m0, struct ieee80211_frame *);
1099         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1100                 k = ieee80211_crypto_encap(ni, m0);
1101                 if (k == NULL) {
1102                         m_freem(m0);
1103                         return ENOBUFS;
1104                 }
1105                 wh = mtod(m0, struct ieee80211_frame *);
1106         }
1107
1108         data->m = m0;
1109         data->ni = ni;
1110         data->rate = tp->mgmtrate;
1111
1112         flags = 0;
1113         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1114                 flags |= RAL_TX_ACK;
1115
1116                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1117                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1118                 *(uint16_t *)wh->i_dur = htole16(dur);
1119
1120                 /* tell hardware to add timestamp for probe responses */
1121                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1122                     IEEE80211_FC0_TYPE_MGT &&
1123                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1124                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1125                         flags |= RAL_TX_TIMESTAMP;
1126         }
1127
1128         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1129
1130         DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1131             m0->m_pkthdr.len, tp->mgmtrate);
1132
1133         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1134         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1135
1136         return 0;
1137 }
1138
1139 static int
1140 ural_sendprot(struct ural_softc *sc,
1141     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1142 {
1143         struct ieee80211com *ic = ni->ni_ic;
1144         const struct ieee80211_frame *wh;
1145         struct ural_tx_data *data;
1146         struct mbuf *mprot;
1147         int protrate, ackrate, pktlen, flags, isshort;
1148         uint16_t dur;
1149
1150         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1151             ("protection %d", prot));
1152
1153         wh = mtod(m, const struct ieee80211_frame *);
1154         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1155
1156         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1157         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1158
1159         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1160         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort);
1161             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1162         flags = RAL_TX_RETRY(7);
1163         if (prot == IEEE80211_PROT_RTSCTS) {
1164                 /* NB: CTS is the same size as an ACK */
1165                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1166                 flags |= RAL_TX_ACK;
1167                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1168         } else {
1169                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1170         }
1171         if (mprot == NULL) {
1172                 /* XXX stat + msg */
1173                 return ENOBUFS;
1174         }
1175         data = STAILQ_FIRST(&sc->tx_free);
1176         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1177         sc->tx_nfree--;
1178
1179         data->m = mprot;
1180         data->ni = ieee80211_ref_node(ni);
1181         data->rate = protrate;
1182         ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1183
1184         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1185         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1186
1187         return 0;
1188 }
1189
1190 static int
1191 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1192     const struct ieee80211_bpf_params *params)
1193 {
1194         struct ieee80211com *ic = ni->ni_ic;
1195         struct ural_tx_data *data;
1196         uint32_t flags;
1197         int error;
1198         int rate;
1199
1200         RAL_LOCK_ASSERT(sc, MA_OWNED);
1201         KASSERT(params != NULL, ("no raw xmit params"));
1202
1203         rate = params->ibp_rate0;
1204         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1205                 m_freem(m0);
1206                 return EINVAL;
1207         }
1208         flags = 0;
1209         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1210                 flags |= RAL_TX_ACK;
1211         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1212                 error = ural_sendprot(sc, m0, ni,
1213                     params->ibp_flags & IEEE80211_BPF_RTS ?
1214                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1215                     rate);
1216                 if (error || sc->tx_nfree == 0) {
1217                         m_freem(m0);
1218                         return ENOBUFS;
1219                 }
1220                 flags |= RAL_TX_IFS_SIFS;
1221         }
1222
1223         data = STAILQ_FIRST(&sc->tx_free);
1224         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1225         sc->tx_nfree--;
1226
1227         data->m = m0;
1228         data->ni = ni;
1229         data->rate = rate;
1230
1231         /* XXX need to setup descriptor ourself */
1232         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1233
1234         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1235             m0->m_pkthdr.len, rate);
1236
1237         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1238         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1239
1240         return 0;
1241 }
1242
1243 static int
1244 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1245 {
1246         struct ieee80211vap *vap = ni->ni_vap;
1247         struct ieee80211com *ic = ni->ni_ic;
1248         struct ural_tx_data *data;
1249         struct ieee80211_frame *wh;
1250         const struct ieee80211_txparam *tp;
1251         struct ieee80211_key *k;
1252         uint32_t flags = 0;
1253         uint16_t dur;
1254         int error, rate;
1255
1256         RAL_LOCK_ASSERT(sc, MA_OWNED);
1257
1258         wh = mtod(m0, struct ieee80211_frame *);
1259
1260         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1261         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1262                 rate = tp->mcastrate;
1263         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1264                 rate = tp->ucastrate;
1265         else
1266                 rate = ni->ni_txrate;
1267
1268         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1269                 k = ieee80211_crypto_encap(ni, m0);
1270                 if (k == NULL) {
1271                         m_freem(m0);
1272                         return ENOBUFS;
1273                 }
1274                 /* packet header may have moved, reset our local pointer */
1275                 wh = mtod(m0, struct ieee80211_frame *);
1276         }
1277
1278         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1279                 int prot = IEEE80211_PROT_NONE;
1280                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1281                         prot = IEEE80211_PROT_RTSCTS;
1282                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1283                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1284                         prot = ic->ic_protmode;
1285                 if (prot != IEEE80211_PROT_NONE) {
1286                         error = ural_sendprot(sc, m0, ni, prot, rate);
1287                         if (error || sc->tx_nfree == 0) {
1288                                 m_freem(m0);
1289                                 return ENOBUFS;
1290                         }
1291                         flags |= RAL_TX_IFS_SIFS;
1292                 }
1293         }
1294
1295         data = STAILQ_FIRST(&sc->tx_free);
1296         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1297         sc->tx_nfree--;
1298
1299         data->m = m0;
1300         data->ni = ni;
1301         data->rate = rate;
1302
1303         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1304                 flags |= RAL_TX_ACK;
1305                 flags |= RAL_TX_RETRY(7);
1306
1307                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1308                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1309                 *(uint16_t *)wh->i_dur = htole16(dur);
1310         }
1311
1312         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1313
1314         DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1315             m0->m_pkthdr.len, rate);
1316
1317         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1318         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1319
1320         return 0;
1321 }
1322
1323 static void
1324 ural_start(struct ifnet *ifp)
1325 {
1326         struct ural_softc *sc = ifp->if_softc;
1327         struct ieee80211_node *ni;
1328         struct mbuf *m;
1329
1330         RAL_LOCK(sc);
1331         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1332                 RAL_UNLOCK(sc);
1333                 return;
1334         }
1335         for (;;) {
1336                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1337                 if (m == NULL)
1338                         break;
1339                 if (sc->tx_nfree < RAL_TX_MINFREE) {
1340                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
1341                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1342                         break;
1343                 }
1344                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1345                 if (ural_tx_data(sc, m, ni) != 0) {
1346                         ieee80211_free_node(ni);
1347                         ifp->if_oerrors++;
1348                         break;
1349                 }
1350         }
1351         RAL_UNLOCK(sc);
1352 }
1353
1354 static int
1355 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1356 {
1357         struct ural_softc *sc = ifp->if_softc;
1358         struct ieee80211com *ic = ifp->if_l2com;
1359         struct ifreq *ifr = (struct ifreq *) data;
1360         int error = 0, startall = 0;
1361
1362         switch (cmd) {
1363         case SIOCSIFFLAGS:
1364                 RAL_LOCK(sc);
1365                 if (ifp->if_flags & IFF_UP) {
1366                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1367                                 ural_init_locked(sc);
1368                                 startall = 1;
1369                         } else
1370                                 ural_setpromisc(sc);
1371                 } else {
1372                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1373                                 ural_stop(sc);
1374                 }
1375                 RAL_UNLOCK(sc);
1376                 if (startall)
1377                         ieee80211_start_all(ic);
1378                 break;
1379         case SIOCGIFMEDIA:
1380         case SIOCSIFMEDIA:
1381                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1382                 break;
1383         default:
1384                 error = ether_ioctl(ifp, cmd, data);
1385                 break;
1386         }
1387         return error;
1388 }
1389
1390 static void
1391 ural_set_testmode(struct ural_softc *sc)
1392 {
1393         struct usb_device_request req;
1394         usb_error_t error;
1395
1396         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1397         req.bRequest = RAL_VENDOR_REQUEST;
1398         USETW(req.wValue, 4);
1399         USETW(req.wIndex, 1);
1400         USETW(req.wLength, 0);
1401
1402         error = ural_do_request(sc, &req, NULL);
1403         if (error != 0) {
1404                 device_printf(sc->sc_dev, "could not set test mode: %s\n",
1405                     usbd_errstr(error));
1406         }
1407 }
1408
1409 static void
1410 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1411 {
1412         struct usb_device_request req;
1413         usb_error_t error;
1414
1415         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1416         req.bRequest = RAL_READ_EEPROM;
1417         USETW(req.wValue, 0);
1418         USETW(req.wIndex, addr);
1419         USETW(req.wLength, len);
1420
1421         error = ural_do_request(sc, &req, buf);
1422         if (error != 0) {
1423                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1424                     usbd_errstr(error));
1425         }
1426 }
1427
1428 static uint16_t
1429 ural_read(struct ural_softc *sc, uint16_t reg)
1430 {
1431         struct usb_device_request req;
1432         usb_error_t error;
1433         uint16_t val;
1434
1435         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1436         req.bRequest = RAL_READ_MAC;
1437         USETW(req.wValue, 0);
1438         USETW(req.wIndex, reg);
1439         USETW(req.wLength, sizeof (uint16_t));
1440
1441         error = ural_do_request(sc, &req, &val);
1442         if (error != 0) {
1443                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1444                     usbd_errstr(error));
1445                 return 0;
1446         }
1447
1448         return le16toh(val);
1449 }
1450
1451 static void
1452 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1453 {
1454         struct usb_device_request req;
1455         usb_error_t error;
1456
1457         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1458         req.bRequest = RAL_READ_MULTI_MAC;
1459         USETW(req.wValue, 0);
1460         USETW(req.wIndex, reg);
1461         USETW(req.wLength, len);
1462
1463         error = ural_do_request(sc, &req, buf);
1464         if (error != 0) {
1465                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1466                     usbd_errstr(error));
1467         }
1468 }
1469
1470 static void
1471 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1472 {
1473         struct usb_device_request req;
1474         usb_error_t error;
1475
1476         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1477         req.bRequest = RAL_WRITE_MAC;
1478         USETW(req.wValue, val);
1479         USETW(req.wIndex, reg);
1480         USETW(req.wLength, 0);
1481
1482         error = ural_do_request(sc, &req, NULL);
1483         if (error != 0) {
1484                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1485                     usbd_errstr(error));
1486         }
1487 }
1488
1489 static void
1490 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1491 {
1492         struct usb_device_request req;
1493         usb_error_t error;
1494
1495         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1496         req.bRequest = RAL_WRITE_MULTI_MAC;
1497         USETW(req.wValue, 0);
1498         USETW(req.wIndex, reg);
1499         USETW(req.wLength, len);
1500
1501         error = ural_do_request(sc, &req, buf);
1502         if (error != 0) {
1503                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1504                     usbd_errstr(error));
1505         }
1506 }
1507
1508 static void
1509 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1510 {
1511         uint16_t tmp;
1512         int ntries;
1513
1514         for (ntries = 0; ntries < 100; ntries++) {
1515                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1516                         break;
1517                 if (ural_pause(sc, hz / 100))
1518                         break;
1519         }
1520         if (ntries == 100) {
1521                 device_printf(sc->sc_dev, "could not write to BBP\n");
1522                 return;
1523         }
1524
1525         tmp = reg << 8 | val;
1526         ural_write(sc, RAL_PHY_CSR7, tmp);
1527 }
1528
1529 static uint8_t
1530 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1531 {
1532         uint16_t val;
1533         int ntries;
1534
1535         val = RAL_BBP_WRITE | reg << 8;
1536         ural_write(sc, RAL_PHY_CSR7, val);
1537
1538         for (ntries = 0; ntries < 100; ntries++) {
1539                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1540                         break;
1541                 if (ural_pause(sc, hz / 100))
1542                         break;
1543         }
1544         if (ntries == 100) {
1545                 device_printf(sc->sc_dev, "could not read BBP\n");
1546                 return 0;
1547         }
1548
1549         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1550 }
1551
1552 static void
1553 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1554 {
1555         uint32_t tmp;
1556         int ntries;
1557
1558         for (ntries = 0; ntries < 100; ntries++) {
1559                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1560                         break;
1561                 if (ural_pause(sc, hz / 100))
1562                         break;
1563         }
1564         if (ntries == 100) {
1565                 device_printf(sc->sc_dev, "could not write to RF\n");
1566                 return;
1567         }
1568
1569         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1570         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1571         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1572
1573         /* remember last written value in sc */
1574         sc->rf_regs[reg] = val;
1575
1576         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1577 }
1578
1579 /* ARGUSED */
1580 static struct ieee80211_node *
1581 ural_node_alloc(struct ieee80211vap *vap __unused,
1582         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1583 {
1584         struct ural_node *un;
1585
1586         un = malloc(sizeof(struct ural_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1587         return un != NULL ? &un->ni : NULL;
1588 }
1589
1590 static void
1591 ural_newassoc(struct ieee80211_node *ni, int isnew)
1592 {
1593         struct ieee80211vap *vap = ni->ni_vap;
1594
1595         ieee80211_amrr_node_init(&URAL_VAP(vap)->amrr, &URAL_NODE(ni)->amn, ni);
1596 }
1597
1598 static void
1599 ural_scan_start(struct ieee80211com *ic)
1600 {
1601         struct ifnet *ifp = ic->ic_ifp;
1602         struct ural_softc *sc = ifp->if_softc;
1603
1604         RAL_LOCK(sc);
1605         ural_write(sc, RAL_TXRX_CSR19, 0);
1606         ural_set_bssid(sc, ifp->if_broadcastaddr);
1607         RAL_UNLOCK(sc);
1608 }
1609
1610 static void
1611 ural_scan_end(struct ieee80211com *ic)
1612 {
1613         struct ural_softc *sc = ic->ic_ifp->if_softc;
1614
1615         RAL_LOCK(sc);
1616         ural_enable_tsf_sync(sc);
1617         ural_set_bssid(sc, sc->sc_bssid);
1618         RAL_UNLOCK(sc);
1619
1620 }
1621
1622 static void
1623 ural_set_channel(struct ieee80211com *ic)
1624 {
1625         struct ural_softc *sc = ic->ic_ifp->if_softc;
1626
1627         RAL_LOCK(sc);
1628         ural_set_chan(sc, ic->ic_curchan);
1629         RAL_UNLOCK(sc);
1630 }
1631
1632 static void
1633 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1634 {
1635         struct ifnet *ifp = sc->sc_ifp;
1636         struct ieee80211com *ic = ifp->if_l2com;
1637         uint8_t power, tmp;
1638         int i, chan;
1639
1640         chan = ieee80211_chan2ieee(ic, c);
1641         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1642                 return;
1643
1644         if (IEEE80211_IS_CHAN_2GHZ(c))
1645                 power = min(sc->txpow[chan - 1], 31);
1646         else
1647                 power = 31;
1648
1649         /* adjust txpower using ifconfig settings */
1650         power -= (100 - ic->ic_txpowlimit) / 8;
1651
1652         DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1653
1654         switch (sc->rf_rev) {
1655         case RAL_RF_2522:
1656                 ural_rf_write(sc, RAL_RF1, 0x00814);
1657                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1658                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1659                 break;
1660
1661         case RAL_RF_2523:
1662                 ural_rf_write(sc, RAL_RF1, 0x08804);
1663                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1664                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1665                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1666                 break;
1667
1668         case RAL_RF_2524:
1669                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1670                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1671                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1672                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1673                 break;
1674
1675         case RAL_RF_2525:
1676                 ural_rf_write(sc, RAL_RF1, 0x08808);
1677                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1678                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1679                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1680
1681                 ural_rf_write(sc, RAL_RF1, 0x08808);
1682                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1683                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1684                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1685                 break;
1686
1687         case RAL_RF_2525E:
1688                 ural_rf_write(sc, RAL_RF1, 0x08808);
1689                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1690                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1691                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1692                 break;
1693
1694         case RAL_RF_2526:
1695                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1696                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1697                 ural_rf_write(sc, RAL_RF1, 0x08804);
1698
1699                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1700                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1701                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1702                 break;
1703
1704         /* dual-band RF */
1705         case RAL_RF_5222:
1706                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1707
1708                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1709                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1710                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1711                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1712                 break;
1713         }
1714
1715         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1716             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1717                 /* set Japan filter bit for channel 14 */
1718                 tmp = ural_bbp_read(sc, 70);
1719
1720                 tmp &= ~RAL_JAPAN_FILTER;
1721                 if (chan == 14)
1722                         tmp |= RAL_JAPAN_FILTER;
1723
1724                 ural_bbp_write(sc, 70, tmp);
1725
1726                 /* clear CRC errors */
1727                 ural_read(sc, RAL_STA_CSR0);
1728
1729                 ural_pause(sc, hz / 100);
1730                 ural_disable_rf_tune(sc);
1731         }
1732
1733         /* XXX doesn't belong here */
1734         /* update basic rate set */
1735         ural_set_basicrates(sc, c);
1736
1737         /* give the hardware some time to do the switchover */
1738         ural_pause(sc, hz / 100);
1739 }
1740
1741 /*
1742  * Disable RF auto-tuning.
1743  */
1744 static void
1745 ural_disable_rf_tune(struct ural_softc *sc)
1746 {
1747         uint32_t tmp;
1748
1749         if (sc->rf_rev != RAL_RF_2523) {
1750                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1751                 ural_rf_write(sc, RAL_RF1, tmp);
1752         }
1753
1754         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1755         ural_rf_write(sc, RAL_RF3, tmp);
1756
1757         DPRINTFN(2, "disabling RF autotune\n");
1758 }
1759
1760 /*
1761  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1762  * synchronization.
1763  */
1764 static void
1765 ural_enable_tsf_sync(struct ural_softc *sc)
1766 {
1767         struct ifnet *ifp = sc->sc_ifp;
1768         struct ieee80211com *ic = ifp->if_l2com;
1769         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1770         uint16_t logcwmin, preload, tmp;
1771
1772         /* first, disable TSF synchronization */
1773         ural_write(sc, RAL_TXRX_CSR19, 0);
1774
1775         tmp = (16 * vap->iv_bss->ni_intval) << 4;
1776         ural_write(sc, RAL_TXRX_CSR18, tmp);
1777
1778         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1779         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1780         tmp = logcwmin << 12 | preload;
1781         ural_write(sc, RAL_TXRX_CSR20, tmp);
1782
1783         /* finally, enable TSF synchronization */
1784         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1785         if (ic->ic_opmode == IEEE80211_M_STA)
1786                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1787         else
1788                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1789         ural_write(sc, RAL_TXRX_CSR19, tmp);
1790
1791         DPRINTF("enabling TSF synchronization\n");
1792 }
1793
1794 static void
1795 ural_enable_tsf(struct ural_softc *sc)
1796 {
1797         /* first, disable TSF synchronization */
1798         ural_write(sc, RAL_TXRX_CSR19, 0);
1799         ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1800 }
1801
1802 #define RAL_RXTX_TURNAROUND     5       /* us */
1803 static void
1804 ural_update_slot(struct ifnet *ifp)
1805 {
1806         struct ural_softc *sc = ifp->if_softc;
1807         struct ieee80211com *ic = ifp->if_l2com;
1808         uint16_t slottime, sifs, eifs;
1809
1810         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1811
1812         /*
1813          * These settings may sound a bit inconsistent but this is what the
1814          * reference driver does.
1815          */
1816         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1817                 sifs = 16 - RAL_RXTX_TURNAROUND;
1818                 eifs = 364;
1819         } else {
1820                 sifs = 10 - RAL_RXTX_TURNAROUND;
1821                 eifs = 64;
1822         }
1823
1824         ural_write(sc, RAL_MAC_CSR10, slottime);
1825         ural_write(sc, RAL_MAC_CSR11, sifs);
1826         ural_write(sc, RAL_MAC_CSR12, eifs);
1827 }
1828
1829 static void
1830 ural_set_txpreamble(struct ural_softc *sc)
1831 {
1832         struct ifnet *ifp = sc->sc_ifp;
1833         struct ieee80211com *ic = ifp->if_l2com;
1834         uint16_t tmp;
1835
1836         tmp = ural_read(sc, RAL_TXRX_CSR10);
1837
1838         tmp &= ~RAL_SHORT_PREAMBLE;
1839         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1840                 tmp |= RAL_SHORT_PREAMBLE;
1841
1842         ural_write(sc, RAL_TXRX_CSR10, tmp);
1843 }
1844
1845 static void
1846 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1847 {
1848         /* XXX wrong, take from rate set */
1849         /* update basic rate set */
1850         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1851                 /* 11a basic rates: 6, 12, 24Mbps */
1852                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1853         } else if (IEEE80211_IS_CHAN_ANYG(c)) {
1854                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1855                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1856         } else {
1857                 /* 11b basic rates: 1, 2Mbps */
1858                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1859         }
1860 }
1861
1862 static void
1863 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1864 {
1865         uint16_t tmp;
1866
1867         tmp = bssid[0] | bssid[1] << 8;
1868         ural_write(sc, RAL_MAC_CSR5, tmp);
1869
1870         tmp = bssid[2] | bssid[3] << 8;
1871         ural_write(sc, RAL_MAC_CSR6, tmp);
1872
1873         tmp = bssid[4] | bssid[5] << 8;
1874         ural_write(sc, RAL_MAC_CSR7, tmp);
1875
1876         DPRINTF("setting BSSID to %6D\n", bssid, ":");
1877 }
1878
1879 static void
1880 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1881 {
1882         uint16_t tmp;
1883
1884         tmp = addr[0] | addr[1] << 8;
1885         ural_write(sc, RAL_MAC_CSR2, tmp);
1886
1887         tmp = addr[2] | addr[3] << 8;
1888         ural_write(sc, RAL_MAC_CSR3, tmp);
1889
1890         tmp = addr[4] | addr[5] << 8;
1891         ural_write(sc, RAL_MAC_CSR4, tmp);
1892
1893         DPRINTF("setting MAC address to %6D\n", addr, ":");
1894 }
1895
1896 static void
1897 ural_setpromisc(struct ural_softc *sc)
1898 {
1899         struct ifnet *ifp = sc->sc_ifp;
1900         uint32_t tmp;
1901
1902         tmp = ural_read(sc, RAL_TXRX_CSR2);
1903
1904         tmp &= ~RAL_DROP_NOT_TO_ME;
1905         if (!(ifp->if_flags & IFF_PROMISC))
1906                 tmp |= RAL_DROP_NOT_TO_ME;
1907
1908         ural_write(sc, RAL_TXRX_CSR2, tmp);
1909
1910         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1911             "entering" : "leaving");
1912 }
1913
1914 static void
1915 ural_update_promisc(struct ifnet *ifp)
1916 {
1917         struct ural_softc *sc = ifp->if_softc;
1918
1919         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1920                 return;
1921
1922         RAL_LOCK(sc);
1923         ural_setpromisc(sc);
1924         RAL_UNLOCK(sc);
1925 }
1926
1927 static const char *
1928 ural_get_rf(int rev)
1929 {
1930         switch (rev) {
1931         case RAL_RF_2522:       return "RT2522";
1932         case RAL_RF_2523:       return "RT2523";
1933         case RAL_RF_2524:       return "RT2524";
1934         case RAL_RF_2525:       return "RT2525";
1935         case RAL_RF_2525E:      return "RT2525e";
1936         case RAL_RF_2526:       return "RT2526";
1937         case RAL_RF_5222:       return "RT5222";
1938         default:                return "unknown";
1939         }
1940 }
1941
1942 static void
1943 ural_read_eeprom(struct ural_softc *sc)
1944 {
1945         uint16_t val;
1946
1947         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1948         val = le16toh(val);
1949         sc->rf_rev =   (val >> 11) & 0x7;
1950         sc->hw_radio = (val >> 10) & 0x1;
1951         sc->led_mode = (val >> 6)  & 0x7;
1952         sc->rx_ant =   (val >> 4)  & 0x3;
1953         sc->tx_ant =   (val >> 2)  & 0x3;
1954         sc->nb_ant =   val & 0x3;
1955
1956         /* read MAC address */
1957         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1958
1959         /* read default values for BBP registers */
1960         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1961
1962         /* read Tx power for all b/g channels */
1963         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1964 }
1965
1966 static int
1967 ural_bbp_init(struct ural_softc *sc)
1968 {
1969 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1970         int i, ntries;
1971
1972         /* wait for BBP to be ready */
1973         for (ntries = 0; ntries < 100; ntries++) {
1974                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1975                         break;
1976                 if (ural_pause(sc, hz / 100))
1977                         break;
1978         }
1979         if (ntries == 100) {
1980                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1981                 return EIO;
1982         }
1983
1984         /* initialize BBP registers to default values */
1985         for (i = 0; i < N(ural_def_bbp); i++)
1986                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1987
1988 #if 0
1989         /* initialize BBP registers to values stored in EEPROM */
1990         for (i = 0; i < 16; i++) {
1991                 if (sc->bbp_prom[i].reg == 0xff)
1992                         continue;
1993                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1994         }
1995 #endif
1996
1997         return 0;
1998 #undef N
1999 }
2000
2001 static void
2002 ural_set_txantenna(struct ural_softc *sc, int antenna)
2003 {
2004         uint16_t tmp;
2005         uint8_t tx;
2006
2007         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2008         if (antenna == 1)
2009                 tx |= RAL_BBP_ANTA;
2010         else if (antenna == 2)
2011                 tx |= RAL_BBP_ANTB;
2012         else
2013                 tx |= RAL_BBP_DIVERSITY;
2014
2015         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2016         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2017             sc->rf_rev == RAL_RF_5222)
2018                 tx |= RAL_BBP_FLIPIQ;
2019
2020         ural_bbp_write(sc, RAL_BBP_TX, tx);
2021
2022         /* update values in PHY_CSR5 and PHY_CSR6 */
2023         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2024         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2025
2026         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2027         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2028 }
2029
2030 static void
2031 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2032 {
2033         uint8_t rx;
2034
2035         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2036         if (antenna == 1)
2037                 rx |= RAL_BBP_ANTA;
2038         else if (antenna == 2)
2039                 rx |= RAL_BBP_ANTB;
2040         else
2041                 rx |= RAL_BBP_DIVERSITY;
2042
2043         /* need to force no I/Q flip for RF 2525e and 2526 */
2044         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2045                 rx &= ~RAL_BBP_FLIPIQ;
2046
2047         ural_bbp_write(sc, RAL_BBP_RX, rx);
2048 }
2049
2050 static void
2051 ural_init_locked(struct ural_softc *sc)
2052 {
2053 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2054         struct ifnet *ifp = sc->sc_ifp;
2055         struct ieee80211com *ic = ifp->if_l2com;
2056         uint16_t tmp;
2057         int i, ntries;
2058
2059         RAL_LOCK_ASSERT(sc, MA_OWNED);
2060
2061         ural_set_testmode(sc);
2062         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2063
2064         ural_stop(sc);
2065
2066         /* initialize MAC registers to default values */
2067         for (i = 0; i < N(ural_def_mac); i++)
2068                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2069
2070         /* wait for BBP and RF to wake up (this can take a long time!) */
2071         for (ntries = 0; ntries < 100; ntries++) {
2072                 tmp = ural_read(sc, RAL_MAC_CSR17);
2073                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2074                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2075                         break;
2076                 if (ural_pause(sc, hz / 100))
2077                         break;
2078         }
2079         if (ntries == 100) {
2080                 device_printf(sc->sc_dev,
2081                     "timeout waiting for BBP/RF to wakeup\n");
2082                 goto fail;
2083         }
2084
2085         /* we're ready! */
2086         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2087
2088         /* set basic rate set (will be updated later) */
2089         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2090
2091         if (ural_bbp_init(sc) != 0)
2092                 goto fail;
2093
2094         ural_set_chan(sc, ic->ic_curchan);
2095
2096         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2097         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2098
2099         ural_set_txantenna(sc, sc->tx_ant);
2100         ural_set_rxantenna(sc, sc->rx_ant);
2101
2102         ural_set_macaddr(sc, IF_LLADDR(ifp));
2103
2104         /*
2105          * Allocate Tx and Rx xfer queues.
2106          */
2107         ural_setup_tx_list(sc);
2108
2109         /* kick Rx */
2110         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2111         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2112                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2113                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2114                         tmp |= RAL_DROP_TODS;
2115                 if (!(ifp->if_flags & IFF_PROMISC))
2116                         tmp |= RAL_DROP_NOT_TO_ME;
2117         }
2118         ural_write(sc, RAL_TXRX_CSR2, tmp);
2119
2120         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2121         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2122         usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2123         usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2124         return;
2125
2126 fail:   ural_stop(sc);
2127 #undef N
2128 }
2129
2130 static void
2131 ural_init(void *priv)
2132 {
2133         struct ural_softc *sc = priv;
2134         struct ifnet *ifp = sc->sc_ifp;
2135         struct ieee80211com *ic = ifp->if_l2com;
2136
2137         RAL_LOCK(sc);
2138         ural_init_locked(sc);
2139         RAL_UNLOCK(sc);
2140
2141         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2142                 ieee80211_start_all(ic);                /* start all vap's */
2143 }
2144
2145 static void
2146 ural_stop(struct ural_softc *sc)
2147 {
2148         struct ifnet *ifp = sc->sc_ifp;
2149
2150         RAL_LOCK_ASSERT(sc, MA_OWNED);
2151
2152         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2153
2154         /*
2155          * Drain all the transfers, if not already drained:
2156          */
2157         RAL_UNLOCK(sc);
2158         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2159         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2160         RAL_LOCK(sc);
2161
2162         ural_unsetup_tx_list(sc);
2163
2164         /* disable Rx */
2165         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2166         /* reset ASIC and BBP (but won't reset MAC registers!) */
2167         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2168         /* wait a little */
2169         ural_pause(sc, hz / 10);
2170         ural_write(sc, RAL_MAC_CSR1, 0);
2171         /* wait a little */
2172         ural_pause(sc, hz / 10);
2173 }
2174
2175 static int
2176 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2177         const struct ieee80211_bpf_params *params)
2178 {
2179         struct ieee80211com *ic = ni->ni_ic;
2180         struct ifnet *ifp = ic->ic_ifp;
2181         struct ural_softc *sc = ifp->if_softc;
2182
2183         RAL_LOCK(sc);
2184         /* prevent management frames from being sent if we're not ready */
2185         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2186                 RAL_UNLOCK(sc);
2187                 m_freem(m);
2188                 ieee80211_free_node(ni);
2189                 return ENETDOWN;
2190         }
2191         if (sc->tx_nfree < RAL_TX_MINFREE) {
2192                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2193                 RAL_UNLOCK(sc);
2194                 m_freem(m);
2195                 ieee80211_free_node(ni);
2196                 return EIO;
2197         }
2198
2199         ifp->if_opackets++;
2200
2201         if (params == NULL) {
2202                 /*
2203                  * Legacy path; interpret frame contents to decide
2204                  * precisely how to send the frame.
2205                  */
2206                 if (ural_tx_mgt(sc, m, ni) != 0)
2207                         goto bad;
2208         } else {
2209                 /*
2210                  * Caller supplied explicit parameters to use in
2211                  * sending the frame.
2212                  */
2213                 if (ural_tx_raw(sc, m, ni, params) != 0)
2214                         goto bad;
2215         }
2216         RAL_UNLOCK(sc);
2217         return 0;
2218 bad:
2219         ifp->if_oerrors++;
2220         RAL_UNLOCK(sc);
2221         ieee80211_free_node(ni);
2222         return EIO;             /* XXX */
2223 }
2224
2225 static void
2226 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2227 {
2228         struct ieee80211vap *vap = ni->ni_vap;
2229         struct ural_vap *uvp = URAL_VAP(vap);
2230
2231         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2232         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2233
2234         ieee80211_amrr_node_init(&uvp->amrr, &URAL_NODE(ni)->amn, ni);
2235
2236         usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2237 }
2238
2239 static void
2240 ural_amrr_timeout(void *arg)
2241 {
2242         struct ural_vap *uvp = arg;
2243         struct ieee80211vap *vap = &uvp->vap;
2244         struct ieee80211com *ic = vap->iv_ic;
2245
2246         ieee80211_runtask(ic, &uvp->amrr_task);
2247 }
2248
2249 static void
2250 ural_amrr_task(void *arg, int pending)
2251 {
2252         struct ural_vap *uvp = arg;
2253         struct ieee80211vap *vap = &uvp->vap;
2254         struct ieee80211com *ic = vap->iv_ic;
2255         struct ifnet *ifp = ic->ic_ifp;
2256         struct ural_softc *sc = ifp->if_softc;
2257         struct ieee80211_node *ni = vap->iv_bss;
2258         int ok, fail;
2259
2260         RAL_LOCK(sc);
2261         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2262         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2263
2264         ok = sc->sta[7] +               /* TX ok w/o retry */
2265              sc->sta[8];                /* TX ok w/ retry */
2266         fail = sc->sta[9];              /* TX retry-fail count */
2267
2268         ieee80211_amrr_tx_update(&URAL_NODE(ni)->amn,
2269             ok+fail, ok, sc->sta[8] + fail);
2270         (void) ieee80211_amrr_choose(ni, &URAL_NODE(ni)->amn);
2271
2272         ifp->if_oerrors += fail;        /* count TX retry-fail as Tx errors */
2273
2274         usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2275         RAL_UNLOCK(sc);
2276 }
2277
2278 static int
2279 ural_pause(struct ural_softc *sc, int timeout)
2280 {
2281
2282         usb_pause_mtx(&sc->sc_mtx, timeout);
2283         return (0);
2284 }