]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/kern/kern_thread.c
Copy head to stable/8 as part of 8.0 Release cycle.
[FreeBSD/stable/8.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/resourcevar.h>
41 #include <sys/smp.h>
42 #include <sys/sysctl.h>
43 #include <sys/sched.h>
44 #include <sys/sleepqueue.h>
45 #include <sys/selinfo.h>
46 #include <sys/turnstile.h>
47 #include <sys/ktr.h>
48 #include <sys/umtx.h>
49 #include <sys/cpuset.h>
50
51 #include <security/audit/audit.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <vm/uma.h>
56 #include <sys/eventhandler.h>
57
58 /*
59  * thread related storage.
60  */
61 static uma_zone_t thread_zone;
62
63 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
64
65 int max_threads_per_proc = 1500;
66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
67         &max_threads_per_proc, 0, "Limit on threads per proc");
68
69 int max_threads_hits;
70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
71         &max_threads_hits, 0, "");
72
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77 static void thread_zombie(struct thread *);
78
79 struct mtx tid_lock;
80 static struct unrhdr *tid_unrhdr;
81
82 /*
83  * Prepare a thread for use.
84  */
85 static int
86 thread_ctor(void *mem, int size, void *arg, int flags)
87 {
88         struct thread   *td;
89
90         td = (struct thread *)mem;
91         td->td_state = TDS_INACTIVE;
92         td->td_oncpu = NOCPU;
93
94         td->td_tid = alloc_unr(tid_unrhdr);
95         td->td_syscalls = 0;
96
97         /*
98          * Note that td_critnest begins life as 1 because the thread is not
99          * running and is thereby implicitly waiting to be on the receiving
100          * end of a context switch.
101          */
102         td->td_critnest = 1;
103         EVENTHANDLER_INVOKE(thread_ctor, td);
104 #ifdef AUDIT
105         audit_thread_alloc(td);
106 #endif
107         umtx_thread_alloc(td);
108         return (0);
109 }
110
111 /*
112  * Reclaim a thread after use.
113  */
114 static void
115 thread_dtor(void *mem, int size, void *arg)
116 {
117         struct thread *td;
118
119         td = (struct thread *)mem;
120
121 #ifdef INVARIANTS
122         /* Verify that this thread is in a safe state to free. */
123         switch (td->td_state) {
124         case TDS_INHIBITED:
125         case TDS_RUNNING:
126         case TDS_CAN_RUN:
127         case TDS_RUNQ:
128                 /*
129                  * We must never unlink a thread that is in one of
130                  * these states, because it is currently active.
131                  */
132                 panic("bad state for thread unlinking");
133                 /* NOTREACHED */
134         case TDS_INACTIVE:
135                 break;
136         default:
137                 panic("bad thread state");
138                 /* NOTREACHED */
139         }
140 #endif
141 #ifdef AUDIT
142         audit_thread_free(td);
143 #endif
144         /* Free all OSD associated to this thread. */
145         osd_thread_exit(td);
146
147         EVENTHANDLER_INVOKE(thread_dtor, td);
148         free_unr(tid_unrhdr, td->td_tid);
149 }
150
151 /*
152  * Initialize type-stable parts of a thread (when newly created).
153  */
154 static int
155 thread_init(void *mem, int size, int flags)
156 {
157         struct thread *td;
158
159         td = (struct thread *)mem;
160
161         td->td_sleepqueue = sleepq_alloc();
162         td->td_turnstile = turnstile_alloc();
163         EVENTHANDLER_INVOKE(thread_init, td);
164         td->td_sched = (struct td_sched *)&td[1];
165         umtx_thread_init(td);
166         td->td_kstack = 0;
167         return (0);
168 }
169
170 /*
171  * Tear down type-stable parts of a thread (just before being discarded).
172  */
173 static void
174 thread_fini(void *mem, int size)
175 {
176         struct thread *td;
177
178         td = (struct thread *)mem;
179         EVENTHANDLER_INVOKE(thread_fini, td);
180         turnstile_free(td->td_turnstile);
181         sleepq_free(td->td_sleepqueue);
182         umtx_thread_fini(td);
183         seltdfini(td);
184 }
185
186 /*
187  * For a newly created process,
188  * link up all the structures and its initial threads etc.
189  * called from:
190  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
191  * proc_dtor() (should go away)
192  * proc_init()
193  */
194 void
195 proc_linkup0(struct proc *p, struct thread *td)
196 {
197         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
198         proc_linkup(p, td);
199 }
200
201 void
202 proc_linkup(struct proc *p, struct thread *td)
203 {
204
205         sigqueue_init(&p->p_sigqueue, p);
206         p->p_ksi = ksiginfo_alloc(1);
207         if (p->p_ksi != NULL) {
208                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
209                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
210         }
211         LIST_INIT(&p->p_mqnotifier);
212         p->p_numthreads = 0;
213         thread_link(td, p);
214 }
215
216 /*
217  * Initialize global thread allocation resources.
218  */
219 void
220 threadinit(void)
221 {
222
223         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
224         /* leave one number for thread0 */
225         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
226
227         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
228             thread_ctor, thread_dtor, thread_init, thread_fini,
229             16 - 1, 0);
230 }
231
232 /*
233  * Place an unused thread on the zombie list.
234  * Use the slpq as that must be unused by now.
235  */
236 void
237 thread_zombie(struct thread *td)
238 {
239         mtx_lock_spin(&zombie_lock);
240         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
241         mtx_unlock_spin(&zombie_lock);
242 }
243
244 /*
245  * Release a thread that has exited after cpu_throw().
246  */
247 void
248 thread_stash(struct thread *td)
249 {
250         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
251         thread_zombie(td);
252 }
253
254 /*
255  * Reap zombie resources.
256  */
257 void
258 thread_reap(void)
259 {
260         struct thread *td_first, *td_next;
261
262         /*
263          * Don't even bother to lock if none at this instant,
264          * we really don't care about the next instant..
265          */
266         if (!TAILQ_EMPTY(&zombie_threads)) {
267                 mtx_lock_spin(&zombie_lock);
268                 td_first = TAILQ_FIRST(&zombie_threads);
269                 if (td_first)
270                         TAILQ_INIT(&zombie_threads);
271                 mtx_unlock_spin(&zombie_lock);
272                 while (td_first) {
273                         td_next = TAILQ_NEXT(td_first, td_slpq);
274                         if (td_first->td_ucred)
275                                 crfree(td_first->td_ucred);
276                         thread_free(td_first);
277                         td_first = td_next;
278                 }
279         }
280 }
281
282 /*
283  * Allocate a thread.
284  */
285 struct thread *
286 thread_alloc(void)
287 {
288         struct thread *td;
289
290         thread_reap(); /* check if any zombies to get */
291
292         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
293         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
294         if (!vm_thread_new(td, 0)) {
295                 uma_zfree(thread_zone, td);
296                 return (NULL);
297         }
298         cpu_thread_alloc(td);
299         return (td);
300 }
301
302
303 /*
304  * Deallocate a thread.
305  */
306 void
307 thread_free(struct thread *td)
308 {
309
310         lock_profile_thread_exit(td);
311         if (td->td_cpuset)
312                 cpuset_rel(td->td_cpuset);
313         td->td_cpuset = NULL;
314         cpu_thread_free(td);
315         if (td->td_altkstack != 0)
316                 vm_thread_dispose_altkstack(td);
317         if (td->td_kstack != 0)
318                 vm_thread_dispose(td);
319         uma_zfree(thread_zone, td);
320 }
321
322 /*
323  * Discard the current thread and exit from its context.
324  * Always called with scheduler locked.
325  *
326  * Because we can't free a thread while we're operating under its context,
327  * push the current thread into our CPU's deadthread holder. This means
328  * we needn't worry about someone else grabbing our context before we
329  * do a cpu_throw().
330  */
331 void
332 thread_exit(void)
333 {
334         uint64_t new_switchtime;
335         struct thread *td;
336         struct thread *td2;
337         struct proc *p;
338         int wakeup_swapper;
339
340         td = curthread;
341         p = td->td_proc;
342
343         PROC_SLOCK_ASSERT(p, MA_OWNED);
344         mtx_assert(&Giant, MA_NOTOWNED);
345
346         PROC_LOCK_ASSERT(p, MA_OWNED);
347         KASSERT(p != NULL, ("thread exiting without a process"));
348         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
349             (long)p->p_pid, td->td_name);
350         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
351
352 #ifdef AUDIT
353         AUDIT_SYSCALL_EXIT(0, td);
354 #endif
355         umtx_thread_exit(td);
356         /*
357          * drop FPU & debug register state storage, or any other
358          * architecture specific resources that
359          * would not be on a new untouched process.
360          */
361         cpu_thread_exit(td);    /* XXXSMP */
362
363         /* Do the same timestamp bookkeeping that mi_switch() would do. */
364         new_switchtime = cpu_ticks();
365         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
366         PCPU_SET(switchtime, new_switchtime);
367         PCPU_SET(switchticks, ticks);
368         PCPU_INC(cnt.v_swtch);
369         /* Save our resource usage in our process. */
370         td->td_ru.ru_nvcsw++;
371         rucollect(&p->p_ru, &td->td_ru);
372         /*
373          * The last thread is left attached to the process
374          * So that the whole bundle gets recycled. Skip
375          * all this stuff if we never had threads.
376          * EXIT clears all sign of other threads when
377          * it goes to single threading, so the last thread always
378          * takes the short path.
379          */
380         if (p->p_flag & P_HADTHREADS) {
381                 if (p->p_numthreads > 1) {
382                         thread_unlink(td);
383                         td2 = FIRST_THREAD_IN_PROC(p);
384                         sched_exit_thread(td2, td);
385
386                         /*
387                          * The test below is NOT true if we are the
388                          * sole exiting thread. P_STOPPED_SNGL is unset
389                          * in exit1() after it is the only survivor.
390                          */
391                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
392                                 if (p->p_numthreads == p->p_suspcount) {
393                                         thread_lock(p->p_singlethread);
394                                         wakeup_swapper = thread_unsuspend_one(
395                                                 p->p_singlethread);
396                                         thread_unlock(p->p_singlethread);
397                                         if (wakeup_swapper)
398                                                 kick_proc0();
399                                 }
400                         }
401
402                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
403                         PCPU_SET(deadthread, td);
404                 } else {
405                         /*
406                          * The last thread is exiting.. but not through exit()
407                          */
408                         panic ("thread_exit: Last thread exiting on its own");
409                 }
410         } 
411         PROC_UNLOCK(p);
412         thread_lock(td);
413         /* Save our tick information with both the thread and proc locked */
414         ruxagg(&p->p_rux, td);
415         PROC_SUNLOCK(p);
416         td->td_state = TDS_INACTIVE;
417 #ifdef WITNESS
418         witness_thread_exit(td);
419 #endif
420         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
421         sched_throw(td);
422         panic("I'm a teapot!");
423         /* NOTREACHED */
424 }
425
426 /*
427  * Do any thread specific cleanups that may be needed in wait()
428  * called with Giant, proc and schedlock not held.
429  */
430 void
431 thread_wait(struct proc *p)
432 {
433         struct thread *td;
434
435         mtx_assert(&Giant, MA_NOTOWNED);
436         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
437         td = FIRST_THREAD_IN_PROC(p);
438         /* Lock the last thread so we spin until it exits cpu_throw(). */
439         thread_lock(td);
440         thread_unlock(td);
441         /* Wait for any remaining threads to exit cpu_throw(). */
442         while (p->p_exitthreads)
443                 sched_relinquish(curthread);
444         lock_profile_thread_exit(td);
445         cpuset_rel(td->td_cpuset);
446         td->td_cpuset = NULL;
447         cpu_thread_clean(td);
448         crfree(td->td_ucred);
449         thread_reap();  /* check for zombie threads etc. */
450 }
451
452 /*
453  * Link a thread to a process.
454  * set up anything that needs to be initialized for it to
455  * be used by the process.
456  */
457 void
458 thread_link(struct thread *td, struct proc *p)
459 {
460
461         /*
462          * XXX This can't be enabled because it's called for proc0 before
463          * its lock has been created.
464          * PROC_LOCK_ASSERT(p, MA_OWNED);
465          */
466         td->td_state    = TDS_INACTIVE;
467         td->td_proc     = p;
468         td->td_flags    = TDF_INMEM;
469
470         LIST_INIT(&td->td_contested);
471         LIST_INIT(&td->td_lprof[0]);
472         LIST_INIT(&td->td_lprof[1]);
473         sigqueue_init(&td->td_sigqueue, p);
474         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
475         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
476         p->p_numthreads++;
477 }
478
479 /*
480  * Convert a process with one thread to an unthreaded process.
481  */
482 void
483 thread_unthread(struct thread *td)
484 {
485         struct proc *p = td->td_proc;
486
487         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
488         p->p_flag &= ~P_HADTHREADS;
489 }
490
491 /*
492  * Called from:
493  *  thread_exit()
494  */
495 void
496 thread_unlink(struct thread *td)
497 {
498         struct proc *p = td->td_proc;
499
500         PROC_LOCK_ASSERT(p, MA_OWNED);
501         TAILQ_REMOVE(&p->p_threads, td, td_plist);
502         p->p_numthreads--;
503         /* could clear a few other things here */
504         /* Must  NOT clear links to proc! */
505 }
506
507 static int
508 calc_remaining(struct proc *p, int mode)
509 {
510         int remaining;
511
512         if (mode == SINGLE_EXIT)
513                 remaining = p->p_numthreads;
514         else if (mode == SINGLE_BOUNDARY)
515                 remaining = p->p_numthreads - p->p_boundary_count;
516         else if (mode == SINGLE_NO_EXIT)
517                 remaining = p->p_numthreads - p->p_suspcount;
518         else
519                 panic("calc_remaining: wrong mode %d", mode);
520         return (remaining);
521 }
522
523 /*
524  * Enforce single-threading.
525  *
526  * Returns 1 if the caller must abort (another thread is waiting to
527  * exit the process or similar). Process is locked!
528  * Returns 0 when you are successfully the only thread running.
529  * A process has successfully single threaded in the suspend mode when
530  * There are no threads in user mode. Threads in the kernel must be
531  * allowed to continue until they get to the user boundary. They may even
532  * copy out their return values and data before suspending. They may however be
533  * accelerated in reaching the user boundary as we will wake up
534  * any sleeping threads that are interruptable. (PCATCH).
535  */
536 int
537 thread_single(int mode)
538 {
539         struct thread *td;
540         struct thread *td2;
541         struct proc *p;
542         int remaining, wakeup_swapper;
543
544         td = curthread;
545         p = td->td_proc;
546         mtx_assert(&Giant, MA_NOTOWNED);
547         PROC_LOCK_ASSERT(p, MA_OWNED);
548         KASSERT((td != NULL), ("curthread is NULL"));
549
550         if ((p->p_flag & P_HADTHREADS) == 0)
551                 return (0);
552
553         /* Is someone already single threading? */
554         if (p->p_singlethread != NULL && p->p_singlethread != td)
555                 return (1);
556
557         if (mode == SINGLE_EXIT) {
558                 p->p_flag |= P_SINGLE_EXIT;
559                 p->p_flag &= ~P_SINGLE_BOUNDARY;
560         } else {
561                 p->p_flag &= ~P_SINGLE_EXIT;
562                 if (mode == SINGLE_BOUNDARY)
563                         p->p_flag |= P_SINGLE_BOUNDARY;
564                 else
565                         p->p_flag &= ~P_SINGLE_BOUNDARY;
566         }
567         p->p_flag |= P_STOPPED_SINGLE;
568         PROC_SLOCK(p);
569         p->p_singlethread = td;
570         remaining = calc_remaining(p, mode);
571         while (remaining != 1) {
572                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
573                         goto stopme;
574                 wakeup_swapper = 0;
575                 FOREACH_THREAD_IN_PROC(p, td2) {
576                         if (td2 == td)
577                                 continue;
578                         thread_lock(td2);
579                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
580                         if (TD_IS_INHIBITED(td2)) {
581                                 switch (mode) {
582                                 case SINGLE_EXIT:
583                                         if (TD_IS_SUSPENDED(td2))
584                                                 wakeup_swapper |=
585                                                     thread_unsuspend_one(td2);
586                                         if (TD_ON_SLEEPQ(td2) &&
587                                             (td2->td_flags & TDF_SINTR))
588                                                 wakeup_swapper |=
589                                                     sleepq_abort(td2, EINTR);
590                                         break;
591                                 case SINGLE_BOUNDARY:
592                                         if (TD_IS_SUSPENDED(td2) &&
593                                             !(td2->td_flags & TDF_BOUNDARY))
594                                                 wakeup_swapper |=
595                                                     thread_unsuspend_one(td2);
596                                         if (TD_ON_SLEEPQ(td2) &&
597                                             (td2->td_flags & TDF_SINTR))
598                                                 wakeup_swapper |=
599                                                     sleepq_abort(td2, ERESTART);
600                                         break;
601                                 case SINGLE_NO_EXIT:
602                                         if (TD_IS_SUSPENDED(td2) &&
603                                             !(td2->td_flags & TDF_BOUNDARY))
604                                                 wakeup_swapper |=
605                                                     thread_unsuspend_one(td2);
606                                         if (TD_ON_SLEEPQ(td2) &&
607                                             (td2->td_flags & TDF_SINTR))
608                                                 wakeup_swapper |=
609                                                     sleepq_abort(td2, ERESTART);
610                                         break;
611                                 default:
612                                         break;
613                                 }
614                         }
615 #ifdef SMP
616                         else if (TD_IS_RUNNING(td2) && td != td2) {
617                                 forward_signal(td2);
618                         }
619 #endif
620                         thread_unlock(td2);
621                 }
622                 if (wakeup_swapper)
623                         kick_proc0();
624                 remaining = calc_remaining(p, mode);
625
626                 /*
627                  * Maybe we suspended some threads.. was it enough?
628                  */
629                 if (remaining == 1)
630                         break;
631
632 stopme:
633                 /*
634                  * Wake us up when everyone else has suspended.
635                  * In the mean time we suspend as well.
636                  */
637                 thread_suspend_switch(td);
638                 remaining = calc_remaining(p, mode);
639         }
640         if (mode == SINGLE_EXIT) {
641                 /*
642                  * We have gotten rid of all the other threads and we
643                  * are about to either exit or exec. In either case,
644                  * we try our utmost  to revert to being a non-threaded
645                  * process.
646                  */
647                 p->p_singlethread = NULL;
648                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
649                 thread_unthread(td);
650         }
651         PROC_SUNLOCK(p);
652         return (0);
653 }
654
655 /*
656  * Called in from locations that can safely check to see
657  * whether we have to suspend or at least throttle for a
658  * single-thread event (e.g. fork).
659  *
660  * Such locations include userret().
661  * If the "return_instead" argument is non zero, the thread must be able to
662  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
663  *
664  * The 'return_instead' argument tells the function if it may do a
665  * thread_exit() or suspend, or whether the caller must abort and back
666  * out instead.
667  *
668  * If the thread that set the single_threading request has set the
669  * P_SINGLE_EXIT bit in the process flags then this call will never return
670  * if 'return_instead' is false, but will exit.
671  *
672  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
673  *---------------+--------------------+---------------------
674  *       0       | returns 0          |   returns 0 or 1
675  *               | when ST ends       |   immediatly
676  *---------------+--------------------+---------------------
677  *       1       | thread exits       |   returns 1
678  *               |                    |  immediatly
679  * 0 = thread_exit() or suspension ok,
680  * other = return error instead of stopping the thread.
681  *
682  * While a full suspension is under effect, even a single threading
683  * thread would be suspended if it made this call (but it shouldn't).
684  * This call should only be made from places where
685  * thread_exit() would be safe as that may be the outcome unless
686  * return_instead is set.
687  */
688 int
689 thread_suspend_check(int return_instead)
690 {
691         struct thread *td;
692         struct proc *p;
693         int wakeup_swapper;
694
695         td = curthread;
696         p = td->td_proc;
697         mtx_assert(&Giant, MA_NOTOWNED);
698         PROC_LOCK_ASSERT(p, MA_OWNED);
699         while (P_SHOULDSTOP(p) ||
700               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
701                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
702                         KASSERT(p->p_singlethread != NULL,
703                             ("singlethread not set"));
704                         /*
705                          * The only suspension in action is a
706                          * single-threading. Single threader need not stop.
707                          * XXX Should be safe to access unlocked
708                          * as it can only be set to be true by us.
709                          */
710                         if (p->p_singlethread == td)
711                                 return (0);     /* Exempt from stopping. */
712                 }
713                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
714                         return (EINTR);
715
716                 /* Should we goto user boundary if we didn't come from there? */
717                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
718                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
719                         return (ERESTART);
720
721                 /* If thread will exit, flush its pending signals */
722                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
723                         sigqueue_flush(&td->td_sigqueue);
724
725                 PROC_SLOCK(p);
726                 thread_stopped(p);
727                 /*
728                  * If the process is waiting for us to exit,
729                  * this thread should just suicide.
730                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
731                  */
732                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
733                         thread_exit();
734                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
735                         if (p->p_numthreads == p->p_suspcount + 1) {
736                                 thread_lock(p->p_singlethread);
737                                 wakeup_swapper =
738                                     thread_unsuspend_one(p->p_singlethread);
739                                 thread_unlock(p->p_singlethread);
740                                 if (wakeup_swapper)
741                                         kick_proc0();
742                         }
743                 }
744                 PROC_UNLOCK(p);
745                 thread_lock(td);
746                 /*
747                  * When a thread suspends, it just
748                  * gets taken off all queues.
749                  */
750                 thread_suspend_one(td);
751                 if (return_instead == 0) {
752                         p->p_boundary_count++;
753                         td->td_flags |= TDF_BOUNDARY;
754                 }
755                 PROC_SUNLOCK(p);
756                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
757                 if (return_instead == 0)
758                         td->td_flags &= ~TDF_BOUNDARY;
759                 thread_unlock(td);
760                 PROC_LOCK(p);
761                 if (return_instead == 0)
762                         p->p_boundary_count--;
763         }
764         return (0);
765 }
766
767 void
768 thread_suspend_switch(struct thread *td)
769 {
770         struct proc *p;
771
772         p = td->td_proc;
773         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
774         PROC_LOCK_ASSERT(p, MA_OWNED);
775         PROC_SLOCK_ASSERT(p, MA_OWNED);
776         /*
777          * We implement thread_suspend_one in stages here to avoid
778          * dropping the proc lock while the thread lock is owned.
779          */
780         thread_stopped(p);
781         p->p_suspcount++;
782         PROC_UNLOCK(p);
783         thread_lock(td);
784         td->td_flags &= ~TDF_NEEDSUSPCHK;
785         TD_SET_SUSPENDED(td);
786         sched_sleep(td, 0);
787         PROC_SUNLOCK(p);
788         DROP_GIANT();
789         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
790         thread_unlock(td);
791         PICKUP_GIANT();
792         PROC_LOCK(p);
793         PROC_SLOCK(p);
794 }
795
796 void
797 thread_suspend_one(struct thread *td)
798 {
799         struct proc *p = td->td_proc;
800
801         PROC_SLOCK_ASSERT(p, MA_OWNED);
802         THREAD_LOCK_ASSERT(td, MA_OWNED);
803         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
804         p->p_suspcount++;
805         td->td_flags &= ~TDF_NEEDSUSPCHK;
806         TD_SET_SUSPENDED(td);
807         sched_sleep(td, 0);
808 }
809
810 int
811 thread_unsuspend_one(struct thread *td)
812 {
813         struct proc *p = td->td_proc;
814
815         PROC_SLOCK_ASSERT(p, MA_OWNED);
816         THREAD_LOCK_ASSERT(td, MA_OWNED);
817         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
818         TD_CLR_SUSPENDED(td);
819         p->p_suspcount--;
820         return (setrunnable(td));
821 }
822
823 /*
824  * Allow all threads blocked by single threading to continue running.
825  */
826 void
827 thread_unsuspend(struct proc *p)
828 {
829         struct thread *td;
830         int wakeup_swapper;
831
832         PROC_LOCK_ASSERT(p, MA_OWNED);
833         PROC_SLOCK_ASSERT(p, MA_OWNED);
834         wakeup_swapper = 0;
835         if (!P_SHOULDSTOP(p)) {
836                 FOREACH_THREAD_IN_PROC(p, td) {
837                         thread_lock(td);
838                         if (TD_IS_SUSPENDED(td)) {
839                                 wakeup_swapper |= thread_unsuspend_one(td);
840                         }
841                         thread_unlock(td);
842                 }
843         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
844             (p->p_numthreads == p->p_suspcount)) {
845                 /*
846                  * Stopping everything also did the job for the single
847                  * threading request. Now we've downgraded to single-threaded,
848                  * let it continue.
849                  */
850                 thread_lock(p->p_singlethread);
851                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
852                 thread_unlock(p->p_singlethread);
853         }
854         if (wakeup_swapper)
855                 kick_proc0();
856 }
857
858 /*
859  * End the single threading mode..
860  */
861 void
862 thread_single_end(void)
863 {
864         struct thread *td;
865         struct proc *p;
866         int wakeup_swapper;
867
868         td = curthread;
869         p = td->td_proc;
870         PROC_LOCK_ASSERT(p, MA_OWNED);
871         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
872         PROC_SLOCK(p);
873         p->p_singlethread = NULL;
874         wakeup_swapper = 0;
875         /*
876          * If there are other threads they may now run,
877          * unless of course there is a blanket 'stop order'
878          * on the process. The single threader must be allowed
879          * to continue however as this is a bad place to stop.
880          */
881         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
882                 FOREACH_THREAD_IN_PROC(p, td) {
883                         thread_lock(td);
884                         if (TD_IS_SUSPENDED(td)) {
885                                 wakeup_swapper |= thread_unsuspend_one(td);
886                         }
887                         thread_unlock(td);
888                 }
889         }
890         PROC_SUNLOCK(p);
891         if (wakeup_swapper)
892                 kick_proc0();
893 }
894
895 struct thread *
896 thread_find(struct proc *p, lwpid_t tid)
897 {
898         struct thread *td;
899
900         PROC_LOCK_ASSERT(p, MA_OWNED);
901         FOREACH_THREAD_IN_PROC(p, td) {
902                 if (td->td_tid == tid)
903                         break;
904         }
905         return (td);
906 }