]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_fault.c
MFC 233925,236357:
[FreeBSD/stable/8.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vnode_pager.h>
104 #include <vm/vm_extern.h>
105
106 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
107
108 #define PFBAK 4
109 #define PFFOR 4
110 #define PAGEORDER_SIZE (PFBAK+PFFOR)
111
112 static int prefault_pageorder[] = {
113         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
114         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
115         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
116         -4 * PAGE_SIZE, 4 * PAGE_SIZE
117 };
118
119 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
120 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
121 #ifdef KTRACE
122 static int vm_fault_traced(vm_map_t, vm_offset_t, vm_prot_t, int);
123 #endif
124
125 #define VM_FAULT_READ_AHEAD 8
126 #define VM_FAULT_READ_BEHIND 7
127 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
128
129 struct faultstate {
130         vm_page_t m;
131         vm_object_t object;
132         vm_pindex_t pindex;
133         vm_page_t first_m;
134         vm_object_t     first_object;
135         vm_pindex_t first_pindex;
136         vm_map_t map;
137         vm_map_entry_t entry;
138         int lookup_still_valid;
139         struct vnode *vp;
140         int vfslocked;
141 };
142
143 static inline void
144 release_page(struct faultstate *fs)
145 {
146
147         vm_page_wakeup(fs->m);
148         vm_page_lock_queues();
149         vm_page_deactivate(fs->m);
150         vm_page_unlock_queues();
151         fs->m = NULL;
152 }
153
154 static inline void
155 unlock_map(struct faultstate *fs)
156 {
157
158         if (fs->lookup_still_valid) {
159                 vm_map_lookup_done(fs->map, fs->entry);
160                 fs->lookup_still_valid = FALSE;
161         }
162 }
163
164 static void
165 unlock_and_deallocate(struct faultstate *fs)
166 {
167
168         vm_object_pip_wakeup(fs->object);
169         VM_OBJECT_UNLOCK(fs->object);
170         if (fs->object != fs->first_object) {
171                 VM_OBJECT_LOCK(fs->first_object);
172                 vm_page_lock_queues();
173                 vm_page_free(fs->first_m);
174                 vm_page_unlock_queues();
175                 vm_object_pip_wakeup(fs->first_object);
176                 VM_OBJECT_UNLOCK(fs->first_object);
177                 fs->first_m = NULL;
178         }
179         vm_object_deallocate(fs->first_object);
180         unlock_map(fs); 
181         if (fs->vp != NULL) { 
182                 vput(fs->vp);
183                 fs->vp = NULL;
184         }
185         VFS_UNLOCK_GIANT(fs->vfslocked);
186         fs->vfslocked = 0;
187 }
188
189 /*
190  * TRYPAGER - used by vm_fault to calculate whether the pager for the
191  *            current object *might* contain the page.
192  *
193  *            default objects are zero-fill, there is no real pager.
194  */
195 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
196                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
197
198 /*
199  *      vm_fault:
200  *
201  *      Handle a page fault occurring at the given address,
202  *      requiring the given permissions, in the map specified.
203  *      If successful, the page is inserted into the
204  *      associated physical map.
205  *
206  *      NOTE: the given address should be truncated to the
207  *      proper page address.
208  *
209  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
210  *      a standard error specifying why the fault is fatal is returned.
211  *
212  *
213  *      The map in question must be referenced, and remains so.
214  *      Caller may hold no locks.
215  */
216 int
217 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
218          int fault_flags)
219 #ifdef KTRACE
220 {
221         struct thread *td;
222         int result;
223
224         td = curthread;
225         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
226                 ktrfault(vaddr, fault_type);
227         result = vm_fault_traced(map, vaddr, fault_type, fault_flags);
228         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
229                 ktrfaultend(result);
230         return (result);
231 }
232
233 int
234 vm_fault_traced(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
235     int fault_flags)
236 #endif
237 {
238         vm_prot_t prot;
239         int is_first_object_locked, result;
240         boolean_t are_queues_locked, growstack, wired;
241         int map_generation;
242         vm_object_t next_object;
243         vm_page_t marray[VM_FAULT_READ], mt, mt_prev;
244         int hardfault;
245         int faultcount, ahead, behind, alloc_req;
246         struct faultstate fs;
247         struct vnode *vp;
248         int locked, error;
249
250         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
251                 return (KERN_PROTECTION_FAILURE);
252
253         hardfault = 0;
254         growstack = TRUE;
255         PCPU_INC(cnt.v_vm_faults);
256         fs.vp = NULL;
257         fs.vfslocked = 0;
258         faultcount = behind = 0;
259
260 RetryFault:;
261
262         /*
263          * Find the backing store object and offset into it to begin the
264          * search.
265          */
266         fs.map = map;
267         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
268             &fs.first_object, &fs.first_pindex, &prot, &wired);
269         if (result != KERN_SUCCESS) {
270                 if (result != KERN_PROTECTION_FAILURE ||
271                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
272                         if (growstack && result == KERN_INVALID_ADDRESS &&
273                             map != kernel_map && curproc != NULL) {
274                                 result = vm_map_growstack(curproc, vaddr);
275                                 if (result != KERN_SUCCESS)
276                                         return (KERN_FAILURE);
277                                 growstack = FALSE;
278                                 goto RetryFault;
279                         }
280                         return (result);
281                 }
282
283                 /*
284                  * If we are user-wiring a r/w segment, and it is COW, then
285                  * we need to do the COW operation.  Note that we don't COW
286                  * currently RO sections now, because it is NOT desirable
287                  * to COW .text.  We simply keep .text from ever being COW'ed
288                  * and take the heat that one cannot debug wired .text sections.
289                  */
290                 result = vm_map_lookup(&fs.map, vaddr,
291                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
292                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
293                 if (result != KERN_SUCCESS)
294                         return (result);
295
296                 /*
297                  * If we don't COW now, on a user wire, the user will never
298                  * be able to write to the mapping.  If we don't make this
299                  * restriction, the bookkeeping would be nearly impossible.
300                  *
301                  * XXX The following assignment modifies the map without
302                  * holding a write lock on it.
303                  */
304                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
305                         fs.entry->max_protection &= ~VM_PROT_WRITE;
306         }
307
308         map_generation = fs.map->timestamp;
309
310         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
311                 panic("vm_fault: fault on nofault entry, addr: %lx",
312                     (u_long)vaddr);
313         }
314
315         /*
316          * Make a reference to this object to prevent its disposal while we
317          * are messing with it.  Once we have the reference, the map is free
318          * to be diddled.  Since objects reference their shadows (and copies),
319          * they will stay around as well.
320          *
321          * Bump the paging-in-progress count to prevent size changes (e.g. 
322          * truncation operations) during I/O.  This must be done after
323          * obtaining the vnode lock in order to avoid possible deadlocks.
324          */
325         VM_OBJECT_LOCK(fs.first_object);
326         vm_object_reference_locked(fs.first_object);
327         vm_object_pip_add(fs.first_object, 1);
328
329         fs.lookup_still_valid = TRUE;
330
331         if (wired)
332                 fault_type = prot;
333
334         fs.first_m = NULL;
335
336         /*
337          * Search for the page at object/offset.
338          */
339         fs.object = fs.first_object;
340         fs.pindex = fs.first_pindex;
341         while (TRUE) {
342                 /*
343                  * If the object is dead, we stop here
344                  */
345                 if (fs.object->flags & OBJ_DEAD) {
346                         unlock_and_deallocate(&fs);
347                         return (KERN_PROTECTION_FAILURE);
348                 }
349
350                 /*
351                  * See if page is resident
352                  */
353                 fs.m = vm_page_lookup(fs.object, fs.pindex);
354                 if (fs.m != NULL) {
355                         /* 
356                          * check for page-based copy on write.
357                          * We check fs.object == fs.first_object so
358                          * as to ensure the legacy COW mechanism is
359                          * used when the page in question is part of
360                          * a shadow object.  Otherwise, vm_page_cowfault()
361                          * removes the page from the backing object, 
362                          * which is not what we want.
363                          */
364                         vm_page_lock_queues();
365                         if ((fs.m->cow) && 
366                             (fault_type & VM_PROT_WRITE) &&
367                             (fs.object == fs.first_object)) {
368                                 vm_page_cowfault(fs.m);
369                                 vm_page_unlock_queues();
370                                 unlock_and_deallocate(&fs);
371                                 goto RetryFault;
372                         }
373
374                         /*
375                          * Wait/Retry if the page is busy.  We have to do this
376                          * if the page is busy via either VPO_BUSY or 
377                          * vm_page_t->busy because the vm_pager may be using
378                          * vm_page_t->busy for pageouts ( and even pageins if
379                          * it is the vnode pager ), and we could end up trying
380                          * to pagein and pageout the same page simultaneously.
381                          *
382                          * We can theoretically allow the busy case on a read
383                          * fault if the page is marked valid, but since such
384                          * pages are typically already pmap'd, putting that
385                          * special case in might be more effort then it is 
386                          * worth.  We cannot under any circumstances mess
387                          * around with a vm_page_t->busy page except, perhaps,
388                          * to pmap it.
389                          */
390                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
391                                 vm_page_unlock_queues();
392                                 if (fs.object != fs.first_object) {
393                                         if (!VM_OBJECT_TRYLOCK(
394                                             fs.first_object)) {
395                                                 VM_OBJECT_UNLOCK(fs.object);
396                                                 VM_OBJECT_LOCK(fs.first_object);
397                                                 VM_OBJECT_LOCK(fs.object);
398                                         }
399                                         vm_page_lock_queues();
400                                         vm_page_free(fs.first_m);
401                                         vm_page_unlock_queues();
402                                         vm_object_pip_wakeup(fs.first_object);
403                                         VM_OBJECT_UNLOCK(fs.first_object);
404                                         fs.first_m = NULL;
405                                 }
406                                 unlock_map(&fs);
407                                 if (fs.m == vm_page_lookup(fs.object,
408                                     fs.pindex)) {
409                                         vm_page_sleep_if_busy(fs.m, TRUE,
410                                             "vmpfw");
411                                 }
412                                 vm_object_pip_wakeup(fs.object);
413                                 VM_OBJECT_UNLOCK(fs.object);
414                                 PCPU_INC(cnt.v_intrans);
415                                 vm_object_deallocate(fs.first_object);
416                                 goto RetryFault;
417                         }
418                         vm_pageq_remove(fs.m);
419                         vm_page_unlock_queues();
420
421                         /*
422                          * Mark page busy for other processes, and the 
423                          * pagedaemon.  If it still isn't completely valid
424                          * (readable), jump to readrest, else break-out ( we
425                          * found the page ).
426                          */
427                         vm_page_busy(fs.m);
428                         if (fs.m->valid != VM_PAGE_BITS_ALL)
429                                 goto readrest;
430                         break;
431                 }
432
433                 /*
434                  * Page is not resident, If this is the search termination
435                  * or the pager might contain the page, allocate a new page.
436                  */
437                 if (TRYPAGER || fs.object == fs.first_object) {
438                         if (fs.pindex >= fs.object->size) {
439                                 unlock_and_deallocate(&fs);
440                                 return (KERN_PROTECTION_FAILURE);
441                         }
442
443                         /*
444                          * Allocate a new page for this object/offset pair.
445                          *
446                          * Unlocked read of the p_flag is harmless. At
447                          * worst, the P_KILLED might be not observed
448                          * there, and allocation can fail, causing
449                          * restart and new reading of the p_flag.
450                          */
451                         fs.m = NULL;
452                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
453 #if VM_NRESERVLEVEL > 0
454                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
455                                         fs.object->flags |= OBJ_COLORED;
456                                         fs.object->pg_color = atop(vaddr) -
457                                             fs.pindex;
458                                 }
459 #endif
460                                 alloc_req = P_KILLED(curproc) ?
461                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
462                                 if (fs.object->type != OBJT_VNODE &&
463                                     fs.object->backing_object == NULL)
464                                         alloc_req |= VM_ALLOC_ZERO;
465                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
466                                     alloc_req);
467                         }
468                         if (fs.m == NULL) {
469                                 unlock_and_deallocate(&fs);
470                                 VM_WAITPFAULT;
471                                 goto RetryFault;
472                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
473                                 break;
474                 }
475
476 readrest:
477                 /*
478                  * We have found a valid page or we have allocated a new page.
479                  * The page thus may not be valid or may not be entirely 
480                  * valid.
481                  *
482                  * Attempt to fault-in the page if there is a chance that the
483                  * pager has it, and potentially fault in additional pages
484                  * at the same time.
485                  */
486                 if (TRYPAGER) {
487                         int rv;
488                         int reqpage = 0;
489                         u_char behavior = vm_map_entry_behavior(fs.entry);
490
491                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
492                             P_KILLED(curproc)) {
493                                 ahead = 0;
494                                 behind = 0;
495                         } else {
496                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
497                                 if (behind > VM_FAULT_READ_BEHIND)
498                                         behind = VM_FAULT_READ_BEHIND;
499
500                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
501                                 if (ahead > VM_FAULT_READ_AHEAD)
502                                         ahead = VM_FAULT_READ_AHEAD;
503                         }
504                         is_first_object_locked = FALSE;
505                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
506                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
507                               fs.pindex >= fs.entry->lastr &&
508                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
509                             (fs.first_object == fs.object ||
510                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
511                             fs.first_object->type != OBJT_DEVICE &&
512                             fs.first_object->type != OBJT_PHYS &&
513                             fs.first_object->type != OBJT_SG) {
514                                 vm_pindex_t firstpindex;
515
516                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
517                                         firstpindex = 0;
518                                 else
519                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
520                                 mt = fs.first_object != fs.object ?
521                                     fs.first_m : fs.m;
522                                 KASSERT(mt != NULL, ("vm_fault: missing mt"));
523                                 KASSERT((mt->oflags & VPO_BUSY) != 0,
524                                     ("vm_fault: mt %p not busy", mt));
525                                 mt_prev = vm_page_prev(mt);
526
527                                 are_queues_locked = FALSE;
528                                 /*
529                                  * note: partially valid pages cannot be 
530                                  * included in the lookahead - NFS piecemeal
531                                  * writes will barf on it badly.
532                                  */
533                                 while ((mt = mt_prev) != NULL &&
534                                     mt->pindex >= firstpindex &&
535                                     mt->valid == VM_PAGE_BITS_ALL) {
536                                         mt_prev = vm_page_prev(mt);
537                                         if (mt->busy ||
538                                             (mt->oflags & VPO_BUSY))
539                                                 continue;
540                                         if (!are_queues_locked) {
541                                                 are_queues_locked = TRUE;
542                                                 vm_page_lock_queues();
543                                         }
544                                         if (mt->hold_count ||
545                                                 mt->wire_count) 
546                                                 continue;
547                                         pmap_remove_all(mt);
548                                         if (mt->dirty) {
549                                                 vm_page_deactivate(mt);
550                                         } else {
551                                                 vm_page_cache(mt);
552                                         }
553                                 }
554                                 if (are_queues_locked)
555                                         vm_page_unlock_queues();
556                                 ahead += behind;
557                                 behind = 0;
558                         }
559                         if (is_first_object_locked)
560                                 VM_OBJECT_UNLOCK(fs.first_object);
561
562                         /*
563                          * Call the pager to retrieve the data, if any, after
564                          * releasing the lock on the map.  We hold a ref on
565                          * fs.object and the pages are VPO_BUSY'd.
566                          */
567                         unlock_map(&fs);
568
569 vnode_lock:
570                         if (fs.object->type == OBJT_VNODE) {
571                                 vp = fs.object->handle;
572                                 if (vp == fs.vp)
573                                         goto vnode_locked;
574                                 else if (fs.vp != NULL) {
575                                         vput(fs.vp);
576                                         fs.vp = NULL;
577                                 }
578                                 locked = VOP_ISLOCKED(vp);
579
580                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
581                                         fs.vfslocked = 1;
582                                         if (!mtx_trylock(&Giant)) {
583                                                 VM_OBJECT_UNLOCK(fs.object);
584                                                 mtx_lock(&Giant);
585                                                 VM_OBJECT_LOCK(fs.object);
586                                                 goto vnode_lock;
587                                         }
588                                 }
589                                 if (locked != LK_EXCLUSIVE)
590                                         locked = LK_SHARED;
591                                 /* Do not sleep for vnode lock while fs.m is busy */
592                                 error = vget(vp, locked | LK_CANRECURSE |
593                                     LK_NOWAIT, curthread);
594                                 if (error != 0) {
595                                         int vfslocked;
596
597                                         vfslocked = fs.vfslocked;
598                                         fs.vfslocked = 0; /* Keep Giant */
599                                         vhold(vp);
600                                         release_page(&fs);
601                                         unlock_and_deallocate(&fs);
602                                         error = vget(vp, locked | LK_RETRY |
603                                             LK_CANRECURSE, curthread);
604                                         vdrop(vp);
605                                         fs.vp = vp;
606                                         fs.vfslocked = vfslocked;
607                                         KASSERT(error == 0,
608                                             ("vm_fault: vget failed"));
609                                         goto RetryFault;
610                                 }
611                                 fs.vp = vp;
612                         }
613 vnode_locked:
614                         KASSERT(fs.vp == NULL || !fs.map->system_map,
615                             ("vm_fault: vnode-backed object mapped by system map"));
616
617                         /*
618                          * now we find out if any other pages should be paged
619                          * in at this time this routine checks to see if the
620                          * pages surrounding this fault reside in the same
621                          * object as the page for this fault.  If they do,
622                          * then they are faulted in also into the object.  The
623                          * array "marray" returned contains an array of
624                          * vm_page_t structs where one of them is the
625                          * vm_page_t passed to the routine.  The reqpage
626                          * return value is the index into the marray for the
627                          * vm_page_t passed to the routine.
628                          *
629                          * fs.m plus the additional pages are VPO_BUSY'd.
630                          */
631                         faultcount = vm_fault_additional_pages(
632                             fs.m, behind, ahead, marray, &reqpage);
633
634                         rv = faultcount ?
635                             vm_pager_get_pages(fs.object, marray, faultcount,
636                                 reqpage) : VM_PAGER_FAIL;
637
638                         if (rv == VM_PAGER_OK) {
639                                 /*
640                                  * Found the page. Leave it busy while we play
641                                  * with it.
642                                  */
643
644                                 /*
645                                  * Relookup in case pager changed page. Pager
646                                  * is responsible for disposition of old page
647                                  * if moved.
648                                  */
649                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
650                                 if (!fs.m) {
651                                         unlock_and_deallocate(&fs);
652                                         goto RetryFault;
653                                 }
654
655                                 hardfault++;
656                                 break; /* break to PAGE HAS BEEN FOUND */
657                         }
658                         /*
659                          * Remove the bogus page (which does not exist at this
660                          * object/offset); before doing so, we must get back
661                          * our object lock to preserve our invariant.
662                          *
663                          * Also wake up any other process that may want to bring
664                          * in this page.
665                          *
666                          * If this is the top-level object, we must leave the
667                          * busy page to prevent another process from rushing
668                          * past us, and inserting the page in that object at
669                          * the same time that we are.
670                          */
671                         if (rv == VM_PAGER_ERROR)
672                                 printf("vm_fault: pager read error, pid %d (%s)\n",
673                                     curproc->p_pid, curproc->p_comm);
674                         /*
675                          * Data outside the range of the pager or an I/O error
676                          */
677                         /*
678                          * XXX - the check for kernel_map is a kludge to work
679                          * around having the machine panic on a kernel space
680                          * fault w/ I/O error.
681                          */
682                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
683                                 (rv == VM_PAGER_BAD)) {
684                                 vm_page_lock_queues();
685                                 vm_page_free(fs.m);
686                                 vm_page_unlock_queues();
687                                 fs.m = NULL;
688                                 unlock_and_deallocate(&fs);
689                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
690                         }
691                         if (fs.object != fs.first_object) {
692                                 vm_page_lock_queues();
693                                 vm_page_free(fs.m);
694                                 vm_page_unlock_queues();
695                                 fs.m = NULL;
696                                 /*
697                                  * XXX - we cannot just fall out at this
698                                  * point, m has been freed and is invalid!
699                                  */
700                         }
701                 }
702
703                 /*
704                  * We get here if the object has default pager (or unwiring) 
705                  * or the pager doesn't have the page.
706                  */
707                 if (fs.object == fs.first_object)
708                         fs.first_m = fs.m;
709
710                 /*
711                  * Move on to the next object.  Lock the next object before
712                  * unlocking the current one.
713                  */
714                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
715                 next_object = fs.object->backing_object;
716                 if (next_object == NULL) {
717                         /*
718                          * If there's no object left, fill the page in the top
719                          * object with zeros.
720                          */
721                         if (fs.object != fs.first_object) {
722                                 vm_object_pip_wakeup(fs.object);
723                                 VM_OBJECT_UNLOCK(fs.object);
724
725                                 fs.object = fs.first_object;
726                                 fs.pindex = fs.first_pindex;
727                                 fs.m = fs.first_m;
728                                 VM_OBJECT_LOCK(fs.object);
729                         }
730                         fs.first_m = NULL;
731
732                         /*
733                          * Zero the page if necessary and mark it valid.
734                          */
735                         if ((fs.m->flags & PG_ZERO) == 0) {
736                                 pmap_zero_page(fs.m);
737                         } else {
738                                 PCPU_INC(cnt.v_ozfod);
739                         }
740                         PCPU_INC(cnt.v_zfod);
741                         fs.m->valid = VM_PAGE_BITS_ALL;
742                         break;  /* break to PAGE HAS BEEN FOUND */
743                 } else {
744                         KASSERT(fs.object != next_object,
745                             ("object loop %p", next_object));
746                         VM_OBJECT_LOCK(next_object);
747                         vm_object_pip_add(next_object, 1);
748                         if (fs.object != fs.first_object)
749                                 vm_object_pip_wakeup(fs.object);
750                         VM_OBJECT_UNLOCK(fs.object);
751                         fs.object = next_object;
752                 }
753         }
754
755         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
756             ("vm_fault: not busy after main loop"));
757
758         /*
759          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
760          * is held.]
761          */
762
763         /*
764          * If the page is being written, but isn't already owned by the
765          * top-level object, we have to copy it into a new page owned by the
766          * top-level object.
767          */
768         if (fs.object != fs.first_object) {
769                 /*
770                  * We only really need to copy if we want to write it.
771                  */
772                 if (fault_type & VM_PROT_WRITE) {
773                         /*
774                          * This allows pages to be virtually copied from a 
775                          * backing_object into the first_object, where the 
776                          * backing object has no other refs to it, and cannot
777                          * gain any more refs.  Instead of a bcopy, we just 
778                          * move the page from the backing object to the 
779                          * first object.  Note that we must mark the page 
780                          * dirty in the first object so that it will go out 
781                          * to swap when needed.
782                          */
783                         is_first_object_locked = FALSE;
784                         if (
785                                 /*
786                                  * Only one shadow object
787                                  */
788                                 (fs.object->shadow_count == 1) &&
789                                 /*
790                                  * No COW refs, except us
791                                  */
792                                 (fs.object->ref_count == 1) &&
793                                 /*
794                                  * No one else can look this object up
795                                  */
796                                 (fs.object->handle == NULL) &&
797                                 /*
798                                  * No other ways to look the object up
799                                  */
800                                 ((fs.object->type == OBJT_DEFAULT) ||
801                                  (fs.object->type == OBJT_SWAP)) &&
802                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
803                                 /*
804                                  * We don't chase down the shadow chain
805                                  */
806                             fs.object == fs.first_object->backing_object) {
807                                 vm_page_lock_queues();
808                                 /*
809                                  * get rid of the unnecessary page
810                                  */
811                                 vm_page_free(fs.first_m);
812                                 /*
813                                  * grab the page and put it into the 
814                                  * process'es object.  The page is 
815                                  * automatically made dirty.
816                                  */
817                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
818                                 vm_page_unlock_queues();
819                                 vm_page_busy(fs.m);
820                                 fs.first_m = fs.m;
821                                 fs.m = NULL;
822                                 PCPU_INC(cnt.v_cow_optim);
823                         } else {
824                                 /*
825                                  * Oh, well, lets copy it.
826                                  */
827                                 pmap_copy_page(fs.m, fs.first_m);
828                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
829                         }
830                         if (fs.m) {
831                                 /*
832                                  * We no longer need the old page or object.
833                                  */
834                                 release_page(&fs);
835                         }
836                         /*
837                          * fs.object != fs.first_object due to above 
838                          * conditional
839                          */
840                         vm_object_pip_wakeup(fs.object);
841                         VM_OBJECT_UNLOCK(fs.object);
842                         /*
843                          * Only use the new page below...
844                          */
845                         fs.object = fs.first_object;
846                         fs.pindex = fs.first_pindex;
847                         fs.m = fs.first_m;
848                         if (!is_first_object_locked)
849                                 VM_OBJECT_LOCK(fs.object);
850                         PCPU_INC(cnt.v_cow_faults);
851                         curthread->td_cow++;
852                 } else {
853                         prot &= ~VM_PROT_WRITE;
854                 }
855         }
856
857         /*
858          * We must verify that the maps have not changed since our last
859          * lookup.
860          */
861         if (!fs.lookup_still_valid) {
862                 vm_object_t retry_object;
863                 vm_pindex_t retry_pindex;
864                 vm_prot_t retry_prot;
865
866                 if (!vm_map_trylock_read(fs.map)) {
867                         release_page(&fs);
868                         unlock_and_deallocate(&fs);
869                         goto RetryFault;
870                 }
871                 fs.lookup_still_valid = TRUE;
872                 if (fs.map->timestamp != map_generation) {
873                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
874                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
875
876                         /*
877                          * If we don't need the page any longer, put it on the inactive
878                          * list (the easiest thing to do here).  If no one needs it,
879                          * pageout will grab it eventually.
880                          */
881                         if (result != KERN_SUCCESS) {
882                                 release_page(&fs);
883                                 unlock_and_deallocate(&fs);
884
885                                 /*
886                                  * If retry of map lookup would have blocked then
887                                  * retry fault from start.
888                                  */
889                                 if (result == KERN_FAILURE)
890                                         goto RetryFault;
891                                 return (result);
892                         }
893                         if ((retry_object != fs.first_object) ||
894                             (retry_pindex != fs.first_pindex)) {
895                                 release_page(&fs);
896                                 unlock_and_deallocate(&fs);
897                                 goto RetryFault;
898                         }
899
900                         /*
901                          * Check whether the protection has changed or the object has
902                          * been copied while we left the map unlocked. Changing from
903                          * read to write permission is OK - we leave the page
904                          * write-protected, and catch the write fault. Changing from
905                          * write to read permission means that we can't mark the page
906                          * write-enabled after all.
907                          */
908                         prot &= retry_prot;
909                 }
910         }
911         /*
912          * If the page was filled by a pager, update the map entry's
913          * last read offset.  Since the pager does not return the
914          * actual set of pages that it read, this update is based on
915          * the requested set.  Typically, the requested and actual
916          * sets are the same.
917          *
918          * XXX The following assignment modifies the map
919          * without holding a write lock on it.
920          */
921         if (hardfault)
922                 fs.entry->lastr = fs.pindex + faultcount - behind;
923
924         if (prot & VM_PROT_WRITE) {
925                 vm_object_set_writeable_dirty(fs.object);
926
927                 /*
928                  * If the fault is a write, we know that this page is being
929                  * written NOW so dirty it explicitly to save on 
930                  * pmap_is_modified() calls later.
931                  *
932                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
933                  * if the page is already dirty to prevent data written with
934                  * the expectation of being synced from not being synced.
935                  * Likewise if this entry does not request NOSYNC then make
936                  * sure the page isn't marked NOSYNC.  Applications sharing
937                  * data should use the same flags to avoid ping ponging.
938                  *
939                  * Also tell the backing pager, if any, that it should remove
940                  * any swap backing since the page is now dirty.
941                  */
942                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
943                         if (fs.m->dirty == 0)
944                                 fs.m->oflags |= VPO_NOSYNC;
945                 } else {
946                         fs.m->oflags &= ~VPO_NOSYNC;
947                 }
948                 if (fault_flags & VM_FAULT_DIRTY) {
949                         vm_page_dirty(fs.m);
950                         vm_pager_page_unswapped(fs.m);
951                 }
952         }
953
954         /*
955          * Page had better still be busy
956          */
957         KASSERT(fs.m->oflags & VPO_BUSY,
958                 ("vm_fault: page %p not busy!", fs.m));
959         /*
960          * Page must be completely valid or it is not fit to
961          * map into user space.  vm_pager_get_pages() ensures this.
962          */
963         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
964             ("vm_fault: page %p partially invalid", fs.m));
965         VM_OBJECT_UNLOCK(fs.object);
966
967         /*
968          * Put this page into the physical map.  We had to do the unlock above
969          * because pmap_enter() may sleep.  We don't put the page
970          * back on the active queue until later so that the pageout daemon
971          * won't find it (yet).
972          */
973         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
974         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
975                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
976         }
977         VM_OBJECT_LOCK(fs.object);
978         vm_page_lock_queues();
979         vm_page_flag_set(fs.m, PG_REFERENCED);
980
981         /*
982          * If the page is not wired down, then put it where the pageout daemon
983          * can find it.
984          */
985         if (fault_flags & VM_FAULT_WIRE_MASK) {
986                 if (wired)
987                         vm_page_wire(fs.m);
988                 else
989                         vm_page_unwire(fs.m, 1);
990         } else {
991                 vm_page_activate(fs.m);
992         }
993         vm_page_unlock_queues();
994         vm_page_wakeup(fs.m);
995
996         /*
997          * Unlock everything, and return
998          */
999         unlock_and_deallocate(&fs);
1000         if (hardfault)
1001                 curthread->td_ru.ru_majflt++;
1002         else
1003                 curthread->td_ru.ru_minflt++;
1004
1005         return (KERN_SUCCESS);
1006 }
1007
1008 /*
1009  * vm_fault_prefault provides a quick way of clustering
1010  * pagefaults into a processes address space.  It is a "cousin"
1011  * of vm_map_pmap_enter, except it runs at page fault time instead
1012  * of mmap time.
1013  */
1014 static void
1015 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1016 {
1017         int i;
1018         vm_offset_t addr, starta;
1019         vm_pindex_t pindex;
1020         vm_page_t m;
1021         vm_object_t object;
1022
1023         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1024                 return;
1025
1026         object = entry->object.vm_object;
1027
1028         starta = addra - PFBAK * PAGE_SIZE;
1029         if (starta < entry->start) {
1030                 starta = entry->start;
1031         } else if (starta > addra) {
1032                 starta = 0;
1033         }
1034
1035         for (i = 0; i < PAGEORDER_SIZE; i++) {
1036                 vm_object_t backing_object, lobject;
1037
1038                 addr = addra + prefault_pageorder[i];
1039                 if (addr > addra + (PFFOR * PAGE_SIZE))
1040                         addr = 0;
1041
1042                 if (addr < starta || addr >= entry->end)
1043                         continue;
1044
1045                 if (!pmap_is_prefaultable(pmap, addr))
1046                         continue;
1047
1048                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1049                 lobject = object;
1050                 VM_OBJECT_LOCK(lobject);
1051                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1052                     lobject->type == OBJT_DEFAULT &&
1053                     (backing_object = lobject->backing_object) != NULL) {
1054                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1055                             0, ("vm_fault_prefault: unaligned object offset"));
1056                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1057                         VM_OBJECT_LOCK(backing_object);
1058                         VM_OBJECT_UNLOCK(lobject);
1059                         lobject = backing_object;
1060                 }
1061                 /*
1062                  * give-up when a page is not in memory
1063                  */
1064                 if (m == NULL) {
1065                         VM_OBJECT_UNLOCK(lobject);
1066                         break;
1067                 }
1068                 if (m->valid == VM_PAGE_BITS_ALL &&
1069                     (m->flags & PG_FICTITIOUS) == 0) {
1070                         vm_page_lock_queues();
1071                         pmap_enter_quick(pmap, addr, m, entry->protection);
1072                         vm_page_unlock_queues();
1073                 }
1074                 VM_OBJECT_UNLOCK(lobject);
1075         }
1076 }
1077
1078 /*
1079  *      vm_fault_quick:
1080  *
1081  *      Ensure that the requested virtual address, which may be in userland,
1082  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1083  */
1084 int
1085 vm_fault_quick(caddr_t v, int prot)
1086 {
1087         int r;
1088
1089         if (prot & VM_PROT_WRITE)
1090                 r = subyte(v, fubyte(v));
1091         else
1092                 r = fubyte(v);
1093         return(r);
1094 }
1095
1096 /*
1097  *      vm_fault_wire:
1098  *
1099  *      Wire down a range of virtual addresses in a map.
1100  */
1101 int
1102 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1103     boolean_t user_wire, boolean_t fictitious)
1104 {
1105         vm_offset_t va;
1106         int rv;
1107
1108         /*
1109          * We simulate a fault to get the page and enter it in the physical
1110          * map.  For user wiring, we only ask for read access on currently
1111          * read-only sections.
1112          */
1113         for (va = start; va < end; va += PAGE_SIZE) {
1114                 rv = vm_fault(map, va,
1115                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1116                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1117                 if (rv) {
1118                         if (va != start)
1119                                 vm_fault_unwire(map, start, va, fictitious);
1120                         return (rv);
1121                 }
1122         }
1123         return (KERN_SUCCESS);
1124 }
1125
1126 /*
1127  *      vm_fault_unwire:
1128  *
1129  *      Unwire a range of virtual addresses in a map.
1130  */
1131 void
1132 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1133     boolean_t fictitious)
1134 {
1135         vm_paddr_t pa;
1136         vm_offset_t va;
1137         pmap_t pmap;
1138
1139         pmap = vm_map_pmap(map);
1140
1141         /*
1142          * Since the pages are wired down, we must be able to get their
1143          * mappings from the physical map system.
1144          */
1145         for (va = start; va < end; va += PAGE_SIZE) {
1146                 pa = pmap_extract(pmap, va);
1147                 if (pa != 0) {
1148                         pmap_change_wiring(pmap, va, FALSE);
1149                         if (!fictitious) {
1150                                 vm_page_lock_queues();
1151                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1152                                 vm_page_unlock_queues();
1153                         }
1154                 }
1155         }
1156 }
1157
1158 /*
1159  *      Routine:
1160  *              vm_fault_copy_entry
1161  *      Function:
1162  *              Create new shadow object backing dst_entry with private copy of
1163  *              all underlying pages. When src_entry is equal to dst_entry,
1164  *              function implements COW for wired-down map entry. Otherwise,
1165  *              it forks wired entry into dst_map.
1166  *
1167  *      In/out conditions:
1168  *              The source and destination maps must be locked for write.
1169  *              The source map entry must be wired down (or be a sharing map
1170  *              entry corresponding to a main map entry that is wired down).
1171  */
1172 void
1173 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1174     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1175     vm_ooffset_t *fork_charge)
1176 {
1177         vm_object_t backing_object, dst_object, object, src_object;
1178         vm_pindex_t dst_pindex, pindex, src_pindex;
1179         vm_prot_t access, prot;
1180         vm_offset_t vaddr;
1181         vm_page_t dst_m;
1182         vm_page_t src_m;
1183         boolean_t src_readonly, upgrade;
1184
1185 #ifdef  lint
1186         src_map++;
1187 #endif  /* lint */
1188
1189         upgrade = src_entry == dst_entry;
1190
1191         src_object = src_entry->object.vm_object;
1192         src_pindex = OFF_TO_IDX(src_entry->offset);
1193         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1194
1195         /*
1196          * Create the top-level object for the destination entry. (Doesn't
1197          * actually shadow anything - we copy the pages directly.)
1198          */
1199         dst_object = vm_object_allocate(OBJT_DEFAULT,
1200             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1201 #if VM_NRESERVLEVEL > 0
1202         dst_object->flags |= OBJ_COLORED;
1203         dst_object->pg_color = atop(dst_entry->start);
1204 #endif
1205
1206         VM_OBJECT_LOCK(dst_object);
1207         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1208             ("vm_fault_copy_entry: vm_object not NULL"));
1209         dst_entry->object.vm_object = dst_object;
1210         dst_entry->offset = 0;
1211         dst_object->charge = dst_entry->end - dst_entry->start;
1212         if (fork_charge != NULL) {
1213                 KASSERT(dst_entry->uip == NULL,
1214                     ("vm_fault_copy_entry: leaked swp charge"));
1215                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1216                 uihold(dst_object->uip);
1217                 *fork_charge += dst_object->charge;
1218         } else {
1219                 dst_object->uip = dst_entry->uip;
1220                 dst_entry->uip = NULL;
1221         }
1222         access = prot = dst_entry->max_protection;
1223         /*
1224          * If not an upgrade, then enter the mappings in the pmap as
1225          * read and/or execute accesses.  Otherwise, enter them as
1226          * write accesses.
1227          *
1228          * A writeable large page mapping is only created if all of
1229          * the constituent small page mappings are modified. Marking
1230          * PTEs as modified on inception allows promotion to happen
1231          * without taking potentially large number of soft faults.
1232          */
1233         if (!upgrade)
1234                 access &= ~VM_PROT_WRITE;
1235
1236         /*
1237          * Loop through all of the pages in the entry's range, copying each
1238          * one from the source object (it should be there) to the destination
1239          * object.
1240          */
1241         for (vaddr = dst_entry->start, dst_pindex = 0;
1242             vaddr < dst_entry->end;
1243             vaddr += PAGE_SIZE, dst_pindex++) {
1244
1245                 /*
1246                  * Allocate a page in the destination object.
1247                  */
1248                 do {
1249                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1250                             VM_ALLOC_NORMAL);
1251                         if (dst_m == NULL) {
1252                                 VM_OBJECT_UNLOCK(dst_object);
1253                                 VM_WAIT;
1254                                 VM_OBJECT_LOCK(dst_object);
1255                         }
1256                 } while (dst_m == NULL);
1257
1258                 /*
1259                  * Find the page in the source object, and copy it in.
1260                  * (Because the source is wired down, the page will be in
1261                  * memory.)
1262                  */
1263                 VM_OBJECT_LOCK(src_object);
1264                 object = src_object;
1265                 pindex = src_pindex + dst_pindex;
1266                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1267                     src_readonly &&
1268                     (backing_object = object->backing_object) != NULL) {
1269                         /*
1270                          * Allow fallback to backing objects if we are reading.
1271                          */
1272                         VM_OBJECT_LOCK(backing_object);
1273                         pindex += OFF_TO_IDX(object->backing_object_offset);
1274                         VM_OBJECT_UNLOCK(object);
1275                         object = backing_object;
1276                 }
1277                 if (src_m == NULL)
1278                         panic("vm_fault_copy_wired: page missing");
1279                 pmap_copy_page(src_m, dst_m);
1280                 VM_OBJECT_UNLOCK(object);
1281                 dst_m->valid = VM_PAGE_BITS_ALL;
1282                 VM_OBJECT_UNLOCK(dst_object);
1283
1284                 /*
1285                  * Enter it in the pmap. If a wired, copy-on-write
1286                  * mapping is being replaced by a write-enabled
1287                  * mapping, then wire that new mapping.
1288                  */
1289                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1290
1291                 /*
1292                  * Mark it no longer busy, and put it on the active list.
1293                  */
1294                 VM_OBJECT_LOCK(dst_object);
1295                 vm_page_lock_queues();
1296                 if (upgrade) {
1297                         vm_page_unwire(src_m, 0);
1298                         vm_page_wire(dst_m);
1299                 } else
1300                         vm_page_activate(dst_m);
1301                 vm_page_unlock_queues();
1302                 vm_page_wakeup(dst_m);
1303         }
1304         VM_OBJECT_UNLOCK(dst_object);
1305         if (upgrade) {
1306                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1307                 vm_object_deallocate(src_object);
1308         }
1309 }
1310
1311
1312 /*
1313  * This routine checks around the requested page for other pages that
1314  * might be able to be faulted in.  This routine brackets the viable
1315  * pages for the pages to be paged in.
1316  *
1317  * Inputs:
1318  *      m, rbehind, rahead
1319  *
1320  * Outputs:
1321  *  marray (array of vm_page_t), reqpage (index of requested page)
1322  *
1323  * Return value:
1324  *  number of pages in marray
1325  */
1326 static int
1327 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1328         vm_page_t m;
1329         int rbehind;
1330         int rahead;
1331         vm_page_t *marray;
1332         int *reqpage;
1333 {
1334         int i,j;
1335         vm_object_t object;
1336         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1337         vm_page_t rtm;
1338         int cbehind, cahead;
1339
1340         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1341
1342         object = m->object;
1343         pindex = m->pindex;
1344         cbehind = cahead = 0;
1345
1346         /*
1347          * if the requested page is not available, then give up now
1348          */
1349         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1350                 return 0;
1351         }
1352
1353         if ((cbehind == 0) && (cahead == 0)) {
1354                 *reqpage = 0;
1355                 marray[0] = m;
1356                 return 1;
1357         }
1358
1359         if (rahead > cahead) {
1360                 rahead = cahead;
1361         }
1362
1363         if (rbehind > cbehind) {
1364                 rbehind = cbehind;
1365         }
1366
1367         /*
1368          * scan backward for the read behind pages -- in memory 
1369          */
1370         if (pindex > 0) {
1371                 if (rbehind > pindex) {
1372                         rbehind = pindex;
1373                         startpindex = 0;
1374                 } else {
1375                         startpindex = pindex - rbehind;
1376                 }
1377
1378                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1379                     rtm->pindex >= startpindex)
1380                         startpindex = rtm->pindex + 1;
1381
1382                 /* tpindex is unsigned; beware of numeric underflow. */
1383                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1384                     tpindex < pindex; i++, tpindex--) {
1385
1386                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1387                             VM_ALLOC_IFNOTCACHED);
1388                         if (rtm == NULL) {
1389                                 /*
1390                                  * Shift the allocated pages to the
1391                                  * beginning of the array.
1392                                  */
1393                                 for (j = 0; j < i; j++) {
1394                                         marray[j] = marray[j + tpindex + 1 -
1395                                             startpindex];
1396                                 }
1397                                 break;
1398                         }
1399
1400                         marray[tpindex - startpindex] = rtm;
1401                 }
1402         } else {
1403                 startpindex = 0;
1404                 i = 0;
1405         }
1406
1407         marray[i] = m;
1408         /* page offset of the required page */
1409         *reqpage = i;
1410
1411         tpindex = pindex + 1;
1412         i++;
1413
1414         /*
1415          * scan forward for the read ahead pages
1416          */
1417         endpindex = tpindex + rahead;
1418         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1419                 endpindex = rtm->pindex;
1420         if (endpindex > object->size)
1421                 endpindex = object->size;
1422
1423         for (; tpindex < endpindex; i++, tpindex++) {
1424
1425                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1426                     VM_ALLOC_IFNOTCACHED);
1427                 if (rtm == NULL) {
1428                         break;
1429                 }
1430
1431                 marray[i] = rtm;
1432         }
1433
1434         /* return number of pages */
1435         return i;
1436 }
1437
1438 /*
1439  * Block entry into the machine-independent layer's page fault handler by
1440  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1441  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1442  * spurious page faults. 
1443  */
1444 int
1445 vm_fault_disable_pagefaults(void)
1446 {
1447
1448         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1449 }
1450
1451 void
1452 vm_fault_enable_pagefaults(int save)
1453 {
1454
1455         curthread_pflags_restore(save);
1456 }