]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_object.c
MFC 226217,227070,227341,227502:
[FreeBSD/stable/8.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int msync_flush_flags = 0;
100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
101     "Does nothing; kept for backward compatibility");
102
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108                     int pagerflags, int flags, int *clearobjflags);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     int *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages",
171             object));
172 #if VM_NRESERVLEVEL > 0
173         KASSERT(LIST_EMPTY(&object->rvq),
174             ("object %p has reservations",
175             object));
176 #endif
177         KASSERT(object->cache == NULL,
178             ("object %p has cached pages",
179             object));
180         KASSERT(object->paging_in_progress == 0,
181             ("object %p paging_in_progress = %d",
182             object, object->paging_in_progress));
183         KASSERT(object->resident_page_count == 0,
184             ("object %p resident_page_count = %d",
185             object, object->resident_page_count));
186         KASSERT(object->shadow_count == 0,
187             ("object %p shadow_count = %d",
188             object, object->shadow_count));
189 }
190 #endif
191
192 static int
193 vm_object_zinit(void *mem, int size, int flags)
194 {
195         vm_object_t object;
196
197         object = (vm_object_t)mem;
198         bzero(&object->mtx, sizeof(object->mtx));
199         VM_OBJECT_LOCK_INIT(object, "standard object");
200
201         /* These are true for any object that has been freed */
202         object->paging_in_progress = 0;
203         object->resident_page_count = 0;
204         object->shadow_count = 0;
205         return (0);
206 }
207
208 void
209 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
210 {
211
212         TAILQ_INIT(&object->memq);
213         LIST_INIT(&object->shadow_head);
214
215         object->root = NULL;
216         object->type = type;
217         object->size = size;
218         object->generation = 1;
219         object->ref_count = 1;
220         object->memattr = VM_MEMATTR_DEFAULT;
221         object->flags = 0;
222         object->uip = NULL;
223         object->charge = 0;
224         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
225                 object->flags = OBJ_ONEMAPPING;
226         object->pg_color = 0;
227         object->handle = NULL;
228         object->backing_object = NULL;
229         object->backing_object_offset = (vm_ooffset_t) 0;
230 #if VM_NRESERVLEVEL > 0
231         LIST_INIT(&object->rvq);
232 #endif
233         object->cache = NULL;
234
235         mtx_lock(&vm_object_list_mtx);
236         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
237         mtx_unlock(&vm_object_list_mtx);
238 }
239
240 /*
241  *      vm_object_init:
242  *
243  *      Initialize the VM objects module.
244  */
245 void
246 vm_object_init(void)
247 {
248         TAILQ_INIT(&vm_object_list);
249         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
250         
251         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
252         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
253             kernel_object);
254 #if VM_NRESERVLEVEL > 0
255         kernel_object->flags |= OBJ_COLORED;
256         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
257 #endif
258
259         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
260         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
261             kmem_object);
262 #if VM_NRESERVLEVEL > 0
263         kmem_object->flags |= OBJ_COLORED;
264         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
265 #endif
266
267         /*
268          * The lock portion of struct vm_object must be type stable due
269          * to vm_pageout_fallback_object_lock locking a vm object
270          * without holding any references to it.
271          */
272         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
273 #ifdef INVARIANTS
274             vm_object_zdtor,
275 #else
276             NULL,
277 #endif
278             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
279 }
280
281 void
282 vm_object_clear_flag(vm_object_t object, u_short bits)
283 {
284
285         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
286         object->flags &= ~bits;
287 }
288
289 /*
290  *      Sets the default memory attribute for the specified object.  Pages
291  *      that are allocated to this object are by default assigned this memory
292  *      attribute.
293  *
294  *      Presently, this function must be called before any pages are allocated
295  *      to the object.  In the future, this requirement may be relaxed for
296  *      "default" and "swap" objects.
297  */
298 int
299 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
300 {
301
302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303         switch (object->type) {
304         case OBJT_DEFAULT:
305         case OBJT_DEVICE:
306         case OBJT_PHYS:
307         case OBJT_SG:
308         case OBJT_SWAP:
309         case OBJT_VNODE:
310                 if (!TAILQ_EMPTY(&object->memq))
311                         return (KERN_FAILURE);
312                 break;
313         case OBJT_DEAD:
314                 return (KERN_INVALID_ARGUMENT);
315         }
316         object->memattr = memattr;
317         return (KERN_SUCCESS);
318 }
319
320 void
321 vm_object_pip_add(vm_object_t object, short i)
322 {
323
324         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
325         object->paging_in_progress += i;
326 }
327
328 void
329 vm_object_pip_subtract(vm_object_t object, short i)
330 {
331
332         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
333         object->paging_in_progress -= i;
334 }
335
336 void
337 vm_object_pip_wakeup(vm_object_t object)
338 {
339
340         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
341         object->paging_in_progress--;
342         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
343                 vm_object_clear_flag(object, OBJ_PIPWNT);
344                 wakeup(object);
345         }
346 }
347
348 void
349 vm_object_pip_wakeupn(vm_object_t object, short i)
350 {
351
352         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
353         if (i)
354                 object->paging_in_progress -= i;
355         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
356                 vm_object_clear_flag(object, OBJ_PIPWNT);
357                 wakeup(object);
358         }
359 }
360
361 void
362 vm_object_pip_wait(vm_object_t object, char *waitid)
363 {
364
365         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
366         while (object->paging_in_progress) {
367                 object->flags |= OBJ_PIPWNT;
368                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
369         }
370 }
371
372 /*
373  *      vm_object_allocate:
374  *
375  *      Returns a new object with the given size.
376  */
377 vm_object_t
378 vm_object_allocate(objtype_t type, vm_pindex_t size)
379 {
380         vm_object_t object;
381
382         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
383         _vm_object_allocate(type, size, object);
384         return (object);
385 }
386
387
388 /*
389  *      vm_object_reference:
390  *
391  *      Gets another reference to the given object.  Note: OBJ_DEAD
392  *      objects can be referenced during final cleaning.
393  */
394 void
395 vm_object_reference(vm_object_t object)
396 {
397         if (object == NULL)
398                 return;
399         VM_OBJECT_LOCK(object);
400         vm_object_reference_locked(object);
401         VM_OBJECT_UNLOCK(object);
402 }
403
404 /*
405  *      vm_object_reference_locked:
406  *
407  *      Gets another reference to the given object.
408  *
409  *      The object must be locked.
410  */
411 void
412 vm_object_reference_locked(vm_object_t object)
413 {
414         struct vnode *vp;
415
416         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
417         object->ref_count++;
418         if (object->type == OBJT_VNODE) {
419                 vp = object->handle;
420                 vref(vp);
421         }
422 }
423
424 /*
425  * Handle deallocating an object of type OBJT_VNODE.
426  */
427 static void
428 vm_object_vndeallocate(vm_object_t object)
429 {
430         struct vnode *vp = (struct vnode *) object->handle;
431
432         VFS_ASSERT_GIANT(vp->v_mount);
433         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
434         KASSERT(object->type == OBJT_VNODE,
435             ("vm_object_vndeallocate: not a vnode object"));
436         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
437 #ifdef INVARIANTS
438         if (object->ref_count == 0) {
439                 vprint("vm_object_vndeallocate", vp);
440                 panic("vm_object_vndeallocate: bad object reference count");
441         }
442 #endif
443
444         if (object->ref_count > 1) {
445                 object->ref_count--;
446                 VM_OBJECT_UNLOCK(object);
447                 /* vrele may need the vnode lock. */
448                 vrele(vp);
449         } else {
450                 vhold(vp);
451                 VM_OBJECT_UNLOCK(object);
452                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
453                 vdrop(vp);
454                 VM_OBJECT_LOCK(object);
455                 object->ref_count--;
456                 if (object->type == OBJT_DEAD) {
457                         VM_OBJECT_UNLOCK(object);
458                         VOP_UNLOCK(vp, 0);
459                 } else {
460                         if (object->ref_count == 0)
461                                 vp->v_vflag &= ~VV_TEXT;
462                         VM_OBJECT_UNLOCK(object);
463                         vput(vp);
464                 }
465         }
466 }
467
468 /*
469  *      vm_object_deallocate:
470  *
471  *      Release a reference to the specified object,
472  *      gained either through a vm_object_allocate
473  *      or a vm_object_reference call.  When all references
474  *      are gone, storage associated with this object
475  *      may be relinquished.
476  *
477  *      No object may be locked.
478  */
479 void
480 vm_object_deallocate(vm_object_t object)
481 {
482         vm_object_t temp;
483
484         while (object != NULL) {
485                 int vfslocked;
486
487                 vfslocked = 0;
488         restart:
489                 VM_OBJECT_LOCK(object);
490                 if (object->type == OBJT_VNODE) {
491                         struct vnode *vp = (struct vnode *) object->handle;
492
493                         /*
494                          * Conditionally acquire Giant for a vnode-backed
495                          * object.  We have to be careful since the type of
496                          * a vnode object can change while the object is
497                          * unlocked.
498                          */
499                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
500                                 vfslocked = 1;
501                                 if (!mtx_trylock(&Giant)) {
502                                         VM_OBJECT_UNLOCK(object);
503                                         mtx_lock(&Giant);
504                                         goto restart;
505                                 }
506                         }
507                         vm_object_vndeallocate(object);
508                         VFS_UNLOCK_GIANT(vfslocked);
509                         return;
510                 } else
511                         /*
512                          * This is to handle the case that the object
513                          * changed type while we dropped its lock to
514                          * obtain Giant.
515                          */
516                         VFS_UNLOCK_GIANT(vfslocked);
517
518                 KASSERT(object->ref_count != 0,
519                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
520
521                 /*
522                  * If the reference count goes to 0 we start calling
523                  * vm_object_terminate() on the object chain.
524                  * A ref count of 1 may be a special case depending on the
525                  * shadow count being 0 or 1.
526                  */
527                 object->ref_count--;
528                 if (object->ref_count > 1) {
529                         VM_OBJECT_UNLOCK(object);
530                         return;
531                 } else if (object->ref_count == 1) {
532                         if (object->shadow_count == 0 &&
533                             object->handle == NULL &&
534                             (object->type == OBJT_DEFAULT ||
535                              object->type == OBJT_SWAP)) {
536                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
537                         } else if ((object->shadow_count == 1) &&
538                             (object->handle == NULL) &&
539                             (object->type == OBJT_DEFAULT ||
540                              object->type == OBJT_SWAP)) {
541                                 vm_object_t robject;
542
543                                 robject = LIST_FIRST(&object->shadow_head);
544                                 KASSERT(robject != NULL,
545                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
546                                          object->ref_count,
547                                          object->shadow_count));
548                                 if (!VM_OBJECT_TRYLOCK(robject)) {
549                                         /*
550                                          * Avoid a potential deadlock.
551                                          */
552                                         object->ref_count++;
553                                         VM_OBJECT_UNLOCK(object);
554                                         /*
555                                          * More likely than not the thread
556                                          * holding robject's lock has lower
557                                          * priority than the current thread.
558                                          * Let the lower priority thread run.
559                                          */
560                                         pause("vmo_de", 1);
561                                         continue;
562                                 }
563                                 /*
564                                  * Collapse object into its shadow unless its
565                                  * shadow is dead.  In that case, object will
566                                  * be deallocated by the thread that is
567                                  * deallocating its shadow.
568                                  */
569                                 if ((robject->flags & OBJ_DEAD) == 0 &&
570                                     (robject->handle == NULL) &&
571                                     (robject->type == OBJT_DEFAULT ||
572                                      robject->type == OBJT_SWAP)) {
573
574                                         robject->ref_count++;
575 retry:
576                                         if (robject->paging_in_progress) {
577                                                 VM_OBJECT_UNLOCK(object);
578                                                 vm_object_pip_wait(robject,
579                                                     "objde1");
580                                                 temp = robject->backing_object;
581                                                 if (object == temp) {
582                                                         VM_OBJECT_LOCK(object);
583                                                         goto retry;
584                                                 }
585                                         } else if (object->paging_in_progress) {
586                                                 VM_OBJECT_UNLOCK(robject);
587                                                 object->flags |= OBJ_PIPWNT;
588                                                 msleep(object,
589                                                     VM_OBJECT_MTX(object),
590                                                     PDROP | PVM, "objde2", 0);
591                                                 VM_OBJECT_LOCK(robject);
592                                                 temp = robject->backing_object;
593                                                 if (object == temp) {
594                                                         VM_OBJECT_LOCK(object);
595                                                         goto retry;
596                                                 }
597                                         } else
598                                                 VM_OBJECT_UNLOCK(object);
599
600                                         if (robject->ref_count == 1) {
601                                                 robject->ref_count--;
602                                                 object = robject;
603                                                 goto doterm;
604                                         }
605                                         object = robject;
606                                         vm_object_collapse(object);
607                                         VM_OBJECT_UNLOCK(object);
608                                         continue;
609                                 }
610                                 VM_OBJECT_UNLOCK(robject);
611                         }
612                         VM_OBJECT_UNLOCK(object);
613                         return;
614                 }
615 doterm:
616                 temp = object->backing_object;
617                 if (temp != NULL) {
618                         VM_OBJECT_LOCK(temp);
619                         LIST_REMOVE(object, shadow_list);
620                         temp->shadow_count--;
621                         VM_OBJECT_UNLOCK(temp);
622                         object->backing_object = NULL;
623                 }
624                 /*
625                  * Don't double-terminate, we could be in a termination
626                  * recursion due to the terminate having to sync data
627                  * to disk.
628                  */
629                 if ((object->flags & OBJ_DEAD) == 0)
630                         vm_object_terminate(object);
631                 else
632                         VM_OBJECT_UNLOCK(object);
633                 object = temp;
634         }
635 }
636
637 /*
638  *      vm_object_destroy removes the object from the global object list
639  *      and frees the space for the object.
640  */
641 void
642 vm_object_destroy(vm_object_t object)
643 {
644
645         /*
646          * Remove the object from the global object list.
647          */
648         mtx_lock(&vm_object_list_mtx);
649         TAILQ_REMOVE(&vm_object_list, object, object_list);
650         mtx_unlock(&vm_object_list_mtx);
651
652         /*
653          * Release the allocation charge.
654          */
655         if (object->uip != NULL) {
656                 KASSERT(object->type == OBJT_DEFAULT ||
657                     object->type == OBJT_SWAP,
658                     ("vm_object_terminate: non-swap obj %p has uip",
659                      object));
660                 swap_release_by_uid(object->charge, object->uip);
661                 object->charge = 0;
662                 uifree(object->uip);
663                 object->uip = NULL;
664         }
665
666         /*
667          * Free the space for the object.
668          */
669         uma_zfree(obj_zone, object);
670 }
671
672 /*
673  *      vm_object_terminate actually destroys the specified object, freeing
674  *      up all previously used resources.
675  *
676  *      The object must be locked.
677  *      This routine may block.
678  */
679 void
680 vm_object_terminate(vm_object_t object)
681 {
682         vm_page_t p, p_next;
683
684         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
685
686         /*
687          * Make sure no one uses us.
688          */
689         vm_object_set_flag(object, OBJ_DEAD);
690
691         /*
692          * wait for the pageout daemon to be done with the object
693          */
694         vm_object_pip_wait(object, "objtrm");
695
696         KASSERT(!object->paging_in_progress,
697                 ("vm_object_terminate: pageout in progress"));
698
699         /*
700          * Clean and free the pages, as appropriate. All references to the
701          * object are gone, so we don't need to lock it.
702          */
703         if (object->type == OBJT_VNODE) {
704                 struct vnode *vp = (struct vnode *)object->handle;
705
706                 /*
707                  * Clean pages and flush buffers.
708                  */
709                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
710                 VM_OBJECT_UNLOCK(object);
711
712                 vinvalbuf(vp, V_SAVE, 0, 0);
713
714                 VM_OBJECT_LOCK(object);
715         }
716
717         KASSERT(object->ref_count == 0, 
718                 ("vm_object_terminate: object with references, ref_count=%d",
719                 object->ref_count));
720
721         /*
722          * Free any remaining pageable pages.  This also removes them from the
723          * paging queues.  However, don't free wired pages, just remove them
724          * from the object.  Rather than incrementally removing each page from
725          * the object, the page and object are reset to any empty state. 
726          */
727         vm_page_lock_queues();
728         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
729                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
730                     ("vm_object_terminate: freeing busy page %p", p));
731                 /*
732                  * Optimize the page's removal from the object by resetting
733                  * its "object" field.  Specifically, if the page is not
734                  * wired, then the effect of this assignment is that
735                  * vm_page_free()'s call to vm_page_remove() will return
736                  * immediately without modifying the page or the object.
737                  */ 
738                 p->object = NULL;
739                 if (p->wire_count == 0) {
740                         vm_page_free(p);
741                         cnt.v_pfree++;
742                 }
743         }
744         vm_page_unlock_queues();
745         /*
746          * If the object contained any pages, then reset it to an empty state.
747          * None of the object's fields, including "resident_page_count", were
748          * modified by the preceding loop.
749          */
750         if (object->resident_page_count != 0) {
751                 object->root = NULL;
752                 TAILQ_INIT(&object->memq);
753                 object->resident_page_count = 0;
754                 if (object->type == OBJT_VNODE)
755                         vdrop(object->handle);
756         }
757
758 #if VM_NRESERVLEVEL > 0
759         if (__predict_false(!LIST_EMPTY(&object->rvq)))
760                 vm_reserv_break_all(object);
761 #endif
762         if (__predict_false(object->cache != NULL))
763                 vm_page_cache_free(object, 0, 0);
764
765         /*
766          * Let the pager know object is dead.
767          */
768         vm_pager_deallocate(object);
769         VM_OBJECT_UNLOCK(object);
770
771         vm_object_destroy(object);
772 }
773
774 static boolean_t
775 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
776 {
777
778         /*
779          * If we have been asked to skip nosync pages and this is a
780          * nosync page, skip it.  Note that the object flags were not
781          * cleared in this case so we do not have to set them.
782          */
783         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
784                 *clearobjflags = 0;
785                 return (FALSE);
786         } else {
787                 pmap_remove_write(p);
788                 return (p->dirty != 0);
789         }
790 }
791
792 /*
793  *      vm_object_page_clean
794  *
795  *      Clean all dirty pages in the specified range of object.  Leaves page 
796  *      on whatever queue it is currently on.   If NOSYNC is set then do not
797  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
798  *      leaving the object dirty.
799  *
800  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
801  *      synchronous clustering mode implementation.
802  *
803  *      Odd semantics: if start == end, we clean everything.
804  *
805  *      The object must be locked.
806  */
807 void
808 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
809     int flags)
810 {
811         vm_page_t np, p;
812         vm_pindex_t pi, tend;
813         int clearobjflags, curgeneration, n, pagerflags;
814
815         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
816         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
817         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
818             object->resident_page_count == 0)
819                 return;
820
821         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
822             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
823         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
824
825         tend = (end == 0) ? object->size : end;
826
827         vm_object_set_flag(object, OBJ_CLEANING);
828
829         vm_page_lock_queues();
830
831         /*
832          * Make the page read-only so we can then clear the object flags.
833          *
834          * However, if this is a nosync mmap then the object is likely to 
835          * stay dirty so do not mess with the page and do not clear the
836          * object flags.
837          */
838         clearobjflags = 1;
839
840 rescan:
841         curgeneration = object->generation;
842
843         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
844                 pi = p->pindex;
845                 if (pi >= tend)
846                         break;
847                 np = TAILQ_NEXT(p, listq);
848                 if (p->valid == 0)
849                         continue;
850                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
851                         vm_page_lock_queues();
852                         if (object->generation != curgeneration)
853                                 goto rescan;
854                         np = vm_page_find_least(object, pi);
855                         continue;
856                 }
857                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
858                         continue;
859
860                 n = vm_object_page_collect_flush(object, p, pagerflags,
861                     flags, &clearobjflags);
862                 if (object->generation != curgeneration)
863                         goto rescan;
864
865                 /*
866                  * If the VOP_PUTPAGES() did a truncated write, so
867                  * that even the first page of the run is not fully
868                  * written, vm_pageout_flush() returns 0 as the run
869                  * length.  Since the condition that caused truncated
870                  * write may be permanent, e.g. exhausted free space,
871                  * accepting n == 0 would cause an infinite loop.
872                  *
873                  * Forwarding the iterator leaves the unwritten page
874                  * behind, but there is not much we can do there if
875                  * filesystem refuses to write it.
876                  */
877                 if (n == 0)
878                         n = 1;
879                 np = vm_page_find_least(object, pi + n);
880         }
881         vm_page_unlock_queues();
882 #if 0
883         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
884 #endif
885
886         vm_object_clear_flag(object, OBJ_CLEANING);
887         if (clearobjflags && start == 0 && tend == object->size)
888                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
889 }
890
891 static int
892 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
893     int flags, int *clearobjflags)
894 {
895         vm_page_t ma[vm_pageout_page_count], p_first, tp;
896         int count, i, mreq, runlen;
897
898         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
899
900         count = 1;
901         mreq = 0;
902
903         for (tp = p; count < vm_pageout_page_count; count++) {
904                 tp = vm_page_next(tp);
905                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
906                         break;
907                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
908                         break;
909         }
910
911         for (p_first = p; count < vm_pageout_page_count; count++) {
912                 tp = vm_page_prev(p_first);
913                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
914                         break;
915                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
916                         break;
917                 p_first = tp;
918                 mreq++;
919         }
920
921         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
922                 ma[i] = tp;
923
924         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
925         return (runlen);
926 }
927
928 /*
929  * Note that there is absolutely no sense in writing out
930  * anonymous objects, so we track down the vnode object
931  * to write out.
932  * We invalidate (remove) all pages from the address space
933  * for semantic correctness.
934  *
935  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
936  * may start out with a NULL object.
937  */
938 void
939 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
940     boolean_t syncio, boolean_t invalidate)
941 {
942         vm_object_t backing_object;
943         struct vnode *vp;
944         struct mount *mp;
945         int flags, fsync_after;
946
947         if (object == NULL)
948                 return;
949         VM_OBJECT_LOCK(object);
950         while ((backing_object = object->backing_object) != NULL) {
951                 VM_OBJECT_LOCK(backing_object);
952                 offset += object->backing_object_offset;
953                 VM_OBJECT_UNLOCK(object);
954                 object = backing_object;
955                 if (object->size < OFF_TO_IDX(offset + size))
956                         size = IDX_TO_OFF(object->size) - offset;
957         }
958         /*
959          * Flush pages if writing is allowed, invalidate them
960          * if invalidation requested.  Pages undergoing I/O
961          * will be ignored by vm_object_page_remove().
962          *
963          * We cannot lock the vnode and then wait for paging
964          * to complete without deadlocking against vm_fault.
965          * Instead we simply call vm_object_page_remove() and
966          * allow it to block internally on a page-by-page
967          * basis when it encounters pages undergoing async
968          * I/O.
969          */
970         if (object->type == OBJT_VNODE &&
971             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
972                 int vfslocked;
973                 vp = object->handle;
974                 VM_OBJECT_UNLOCK(object);
975                 (void) vn_start_write(vp, &mp, V_WAIT);
976                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
977                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
978                 if (syncio && !invalidate && offset == 0 &&
979                     OFF_TO_IDX(size) == object->size) {
980                         /*
981                          * If syncing the whole mapping of the file,
982                          * it is faster to schedule all the writes in
983                          * async mode, also allowing the clustering,
984                          * and then wait for i/o to complete.
985                          */
986                         flags = 0;
987                         fsync_after = TRUE;
988                 } else {
989                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
990                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
991                         fsync_after = FALSE;
992                 }
993                 VM_OBJECT_LOCK(object);
994                 vm_object_page_clean(object,
995                     OFF_TO_IDX(offset),
996                     OFF_TO_IDX(offset + size + PAGE_MASK),
997                     flags);
998                 VM_OBJECT_UNLOCK(object);
999                 if (fsync_after)
1000                         (void) VOP_FSYNC(vp, MNT_WAIT, curthread);
1001                 VOP_UNLOCK(vp, 0);
1002                 VFS_UNLOCK_GIANT(vfslocked);
1003                 vn_finished_write(mp);
1004                 VM_OBJECT_LOCK(object);
1005         }
1006         if ((object->type == OBJT_VNODE ||
1007              object->type == OBJT_DEVICE) && invalidate) {
1008                 boolean_t purge;
1009                 purge = old_msync || (object->type == OBJT_DEVICE);
1010                 vm_object_page_remove(object,
1011                     OFF_TO_IDX(offset),
1012                     OFF_TO_IDX(offset + size + PAGE_MASK),
1013                     purge ? FALSE : TRUE);
1014         }
1015         VM_OBJECT_UNLOCK(object);
1016 }
1017
1018 /*
1019  *      vm_object_madvise:
1020  *
1021  *      Implements the madvise function at the object/page level.
1022  *
1023  *      MADV_WILLNEED   (any object)
1024  *
1025  *          Activate the specified pages if they are resident.
1026  *
1027  *      MADV_DONTNEED   (any object)
1028  *
1029  *          Deactivate the specified pages if they are resident.
1030  *
1031  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1032  *                       OBJ_ONEMAPPING only)
1033  *
1034  *          Deactivate and clean the specified pages if they are
1035  *          resident.  This permits the process to reuse the pages
1036  *          without faulting or the kernel to reclaim the pages
1037  *          without I/O.
1038  */
1039 void
1040 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1041 {
1042         vm_pindex_t end, tpindex;
1043         vm_object_t backing_object, tobject;
1044         vm_page_t m;
1045
1046         if (object == NULL)
1047                 return;
1048         VM_OBJECT_LOCK(object);
1049         end = pindex + count;
1050         /*
1051          * Locate and adjust resident pages
1052          */
1053         for (; pindex < end; pindex += 1) {
1054 relookup:
1055                 tobject = object;
1056                 tpindex = pindex;
1057 shadowlookup:
1058                 /*
1059                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1060                  * and those pages must be OBJ_ONEMAPPING.
1061                  */
1062                 if (advise == MADV_FREE) {
1063                         if ((tobject->type != OBJT_DEFAULT &&
1064                              tobject->type != OBJT_SWAP) ||
1065                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1066                                 goto unlock_tobject;
1067                         }
1068                 } else if (tobject->type == OBJT_PHYS)
1069                         goto unlock_tobject;
1070                 m = vm_page_lookup(tobject, tpindex);
1071                 if (m == NULL && advise == MADV_WILLNEED) {
1072                         /*
1073                          * If the page is cached, reactivate it.
1074                          */
1075                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1076                             VM_ALLOC_NOBUSY);
1077                 }
1078                 if (m == NULL) {
1079                         /*
1080                          * There may be swap even if there is no backing page
1081                          */
1082                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1083                                 swap_pager_freespace(tobject, tpindex, 1);
1084                         /*
1085                          * next object
1086                          */
1087                         backing_object = tobject->backing_object;
1088                         if (backing_object == NULL)
1089                                 goto unlock_tobject;
1090                         VM_OBJECT_LOCK(backing_object);
1091                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1092                         if (tobject != object)
1093                                 VM_OBJECT_UNLOCK(tobject);
1094                         tobject = backing_object;
1095                         goto shadowlookup;
1096                 } else if (m->valid != VM_PAGE_BITS_ALL)
1097                         goto unlock_tobject;
1098                 /*
1099                  * If the page is not in a normal state, skip it.
1100                  */
1101                 vm_page_lock_queues();
1102                 if (m->hold_count != 0 || m->wire_count != 0) {
1103                         vm_page_unlock_queues();
1104                         goto unlock_tobject;
1105                 }
1106                 if ((m->oflags & VPO_BUSY) || m->busy) {
1107                         if (advise == MADV_WILLNEED)
1108                                 /*
1109                                  * Reference the page before unlocking and
1110                                  * sleeping so that the page daemon is less
1111                                  * likely to reclaim it. 
1112                                  */
1113                                 vm_page_flag_set(m, PG_REFERENCED);
1114                         vm_page_unlock_queues();
1115                         if (object != tobject)
1116                                 VM_OBJECT_UNLOCK(object);
1117                         m->oflags |= VPO_WANTED;
1118                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1119                             0);
1120                         VM_OBJECT_LOCK(object);
1121                         goto relookup;
1122                 }
1123                 if (advise == MADV_WILLNEED) {
1124                         vm_page_activate(m);
1125                 } else if (advise == MADV_DONTNEED) {
1126                         vm_page_dontneed(m);
1127                 } else if (advise == MADV_FREE) {
1128                         /*
1129                          * Mark the page clean.  This will allow the page
1130                          * to be freed up by the system.  However, such pages
1131                          * are often reused quickly by malloc()/free()
1132                          * so we do not do anything that would cause
1133                          * a page fault if we can help it.
1134                          *
1135                          * Specifically, we do not try to actually free
1136                          * the page now nor do we try to put it in the
1137                          * cache (which would cause a page fault on reuse).
1138                          *
1139                          * But we do make the page is freeable as we
1140                          * can without actually taking the step of unmapping
1141                          * it.
1142                          */
1143                         pmap_clear_modify(m);
1144                         m->dirty = 0;
1145                         m->act_count = 0;
1146                         vm_page_dontneed(m);
1147                 }
1148                 vm_page_unlock_queues();
1149                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1150                         swap_pager_freespace(tobject, tpindex, 1);
1151 unlock_tobject:
1152                 if (tobject != object)
1153                         VM_OBJECT_UNLOCK(tobject);
1154         }       
1155         VM_OBJECT_UNLOCK(object);
1156 }
1157
1158 /*
1159  *      vm_object_shadow:
1160  *
1161  *      Create a new object which is backed by the
1162  *      specified existing object range.  The source
1163  *      object reference is deallocated.
1164  *
1165  *      The new object and offset into that object
1166  *      are returned in the source parameters.
1167  */
1168 void
1169 vm_object_shadow(
1170         vm_object_t *object,    /* IN/OUT */
1171         vm_ooffset_t *offset,   /* IN/OUT */
1172         vm_size_t length)
1173 {
1174         vm_object_t source;
1175         vm_object_t result;
1176
1177         source = *object;
1178
1179         /*
1180          * Don't create the new object if the old object isn't shared.
1181          */
1182         if (source != NULL) {
1183                 VM_OBJECT_LOCK(source);
1184                 if (source->ref_count == 1 &&
1185                     source->handle == NULL &&
1186                     (source->type == OBJT_DEFAULT ||
1187                      source->type == OBJT_SWAP)) {
1188                         VM_OBJECT_UNLOCK(source);
1189                         return;
1190                 }
1191                 VM_OBJECT_UNLOCK(source);
1192         }
1193
1194         /*
1195          * Allocate a new object with the given length.
1196          */
1197         result = vm_object_allocate(OBJT_DEFAULT, length);
1198
1199         /*
1200          * The new object shadows the source object, adding a reference to it.
1201          * Our caller changes his reference to point to the new object,
1202          * removing a reference to the source object.  Net result: no change
1203          * of reference count.
1204          *
1205          * Try to optimize the result object's page color when shadowing
1206          * in order to maintain page coloring consistency in the combined 
1207          * shadowed object.
1208          */
1209         result->backing_object = source;
1210         /*
1211          * Store the offset into the source object, and fix up the offset into
1212          * the new object.
1213          */
1214         result->backing_object_offset = *offset;
1215         if (source != NULL) {
1216                 VM_OBJECT_LOCK(source);
1217                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1218                 source->shadow_count++;
1219 #if VM_NRESERVLEVEL > 0
1220                 result->flags |= source->flags & OBJ_COLORED;
1221                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1222                     ((1 << (VM_NFREEORDER - 1)) - 1);
1223 #endif
1224                 VM_OBJECT_UNLOCK(source);
1225         }
1226
1227
1228         /*
1229          * Return the new things
1230          */
1231         *offset = 0;
1232         *object = result;
1233 }
1234
1235 /*
1236  *      vm_object_split:
1237  *
1238  * Split the pages in a map entry into a new object.  This affords
1239  * easier removal of unused pages, and keeps object inheritance from
1240  * being a negative impact on memory usage.
1241  */
1242 void
1243 vm_object_split(vm_map_entry_t entry)
1244 {
1245         vm_page_t m, m_next;
1246         vm_object_t orig_object, new_object, source;
1247         vm_pindex_t idx, offidxstart;
1248         vm_size_t size;
1249
1250         orig_object = entry->object.vm_object;
1251         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1252                 return;
1253         if (orig_object->ref_count <= 1)
1254                 return;
1255         VM_OBJECT_UNLOCK(orig_object);
1256
1257         offidxstart = OFF_TO_IDX(entry->offset);
1258         size = atop(entry->end - entry->start);
1259
1260         /*
1261          * If swap_pager_copy() is later called, it will convert new_object
1262          * into a swap object.
1263          */
1264         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1265
1266         /*
1267          * At this point, the new object is still private, so the order in
1268          * which the original and new objects are locked does not matter.
1269          */
1270         VM_OBJECT_LOCK(new_object);
1271         VM_OBJECT_LOCK(orig_object);
1272         source = orig_object->backing_object;
1273         if (source != NULL) {
1274                 VM_OBJECT_LOCK(source);
1275                 if ((source->flags & OBJ_DEAD) != 0) {
1276                         VM_OBJECT_UNLOCK(source);
1277                         VM_OBJECT_UNLOCK(orig_object);
1278                         VM_OBJECT_UNLOCK(new_object);
1279                         vm_object_deallocate(new_object);
1280                         VM_OBJECT_LOCK(orig_object);
1281                         return;
1282                 }
1283                 LIST_INSERT_HEAD(&source->shadow_head,
1284                                   new_object, shadow_list);
1285                 source->shadow_count++;
1286                 vm_object_reference_locked(source);     /* for new_object */
1287                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1288                 VM_OBJECT_UNLOCK(source);
1289                 new_object->backing_object_offset = 
1290                         orig_object->backing_object_offset + entry->offset;
1291                 new_object->backing_object = source;
1292         }
1293         if (orig_object->uip != NULL) {
1294                 new_object->uip = orig_object->uip;
1295                 uihold(orig_object->uip);
1296                 new_object->charge = ptoa(size);
1297                 KASSERT(orig_object->charge >= ptoa(size),
1298                     ("orig_object->charge < 0"));
1299                 orig_object->charge -= ptoa(size);
1300         }
1301 retry:
1302         m = vm_page_find_least(orig_object, offidxstart);
1303         vm_page_lock_queues();
1304         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1305             m = m_next) {
1306                 m_next = TAILQ_NEXT(m, listq);
1307
1308                 /*
1309                  * We must wait for pending I/O to complete before we can
1310                  * rename the page.
1311                  *
1312                  * We do not have to VM_PROT_NONE the page as mappings should
1313                  * not be changed by this operation.
1314                  */
1315                 if ((m->oflags & VPO_BUSY) || m->busy) {
1316                         vm_page_unlock_queues();
1317                         VM_OBJECT_UNLOCK(new_object);
1318                         m->oflags |= VPO_WANTED;
1319                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1320                         VM_OBJECT_LOCK(new_object);
1321                         goto retry;
1322                 }
1323                 vm_page_rename(m, new_object, idx);
1324                 /* page automatically made dirty by rename and cache handled */
1325                 vm_page_busy(m);
1326         }
1327         vm_page_unlock_queues();
1328         if (orig_object->type == OBJT_SWAP) {
1329                 /*
1330                  * swap_pager_copy() can sleep, in which case the orig_object's
1331                  * and new_object's locks are released and reacquired. 
1332                  */
1333                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1334
1335                 /*
1336                  * Transfer any cached pages from orig_object to new_object.
1337                  */
1338                 if (__predict_false(orig_object->cache != NULL))
1339                         vm_page_cache_transfer(orig_object, offidxstart,
1340                             new_object);
1341         }
1342         VM_OBJECT_UNLOCK(orig_object);
1343         TAILQ_FOREACH(m, &new_object->memq, listq)
1344                 vm_page_wakeup(m);
1345         VM_OBJECT_UNLOCK(new_object);
1346         entry->object.vm_object = new_object;
1347         entry->offset = 0LL;
1348         vm_object_deallocate(orig_object);
1349         VM_OBJECT_LOCK(new_object);
1350 }
1351
1352 #define OBSC_TEST_ALL_SHADOWED  0x0001
1353 #define OBSC_COLLAPSE_NOWAIT    0x0002
1354 #define OBSC_COLLAPSE_WAIT      0x0004
1355
1356 static int
1357 vm_object_backing_scan(vm_object_t object, int op)
1358 {
1359         int r = 1;
1360         vm_page_t p;
1361         vm_object_t backing_object;
1362         vm_pindex_t backing_offset_index;
1363
1364         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1365         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1366
1367         backing_object = object->backing_object;
1368         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1369
1370         /*
1371          * Initial conditions
1372          */
1373         if (op & OBSC_TEST_ALL_SHADOWED) {
1374                 /*
1375                  * We do not want to have to test for the existence of cache
1376                  * or swap pages in the backing object.  XXX but with the
1377                  * new swapper this would be pretty easy to do.
1378                  *
1379                  * XXX what about anonymous MAP_SHARED memory that hasn't
1380                  * been ZFOD faulted yet?  If we do not test for this, the
1381                  * shadow test may succeed! XXX
1382                  */
1383                 if (backing_object->type != OBJT_DEFAULT) {
1384                         return (0);
1385                 }
1386         }
1387         if (op & OBSC_COLLAPSE_WAIT) {
1388                 vm_object_set_flag(backing_object, OBJ_DEAD);
1389         }
1390
1391         /*
1392          * Our scan
1393          */
1394         p = TAILQ_FIRST(&backing_object->memq);
1395         while (p) {
1396                 vm_page_t next = TAILQ_NEXT(p, listq);
1397                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1398
1399                 if (op & OBSC_TEST_ALL_SHADOWED) {
1400                         vm_page_t pp;
1401
1402                         /*
1403                          * Ignore pages outside the parent object's range
1404                          * and outside the parent object's mapping of the 
1405                          * backing object.
1406                          *
1407                          * note that we do not busy the backing object's
1408                          * page.
1409                          */
1410                         if (
1411                             p->pindex < backing_offset_index ||
1412                             new_pindex >= object->size
1413                         ) {
1414                                 p = next;
1415                                 continue;
1416                         }
1417
1418                         /*
1419                          * See if the parent has the page or if the parent's
1420                          * object pager has the page.  If the parent has the
1421                          * page but the page is not valid, the parent's
1422                          * object pager must have the page.
1423                          *
1424                          * If this fails, the parent does not completely shadow
1425                          * the object and we might as well give up now.
1426                          */
1427
1428                         pp = vm_page_lookup(object, new_pindex);
1429                         if (
1430                             (pp == NULL || pp->valid == 0) &&
1431                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1432                         ) {
1433                                 r = 0;
1434                                 break;
1435                         }
1436                 }
1437
1438                 /*
1439                  * Check for busy page
1440                  */
1441                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1442                         vm_page_t pp;
1443
1444                         if (op & OBSC_COLLAPSE_NOWAIT) {
1445                                 if ((p->oflags & VPO_BUSY) ||
1446                                     !p->valid || 
1447                                     p->busy) {
1448                                         p = next;
1449                                         continue;
1450                                 }
1451                         } else if (op & OBSC_COLLAPSE_WAIT) {
1452                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1453                                         VM_OBJECT_UNLOCK(object);
1454                                         p->oflags |= VPO_WANTED;
1455                                         msleep(p, VM_OBJECT_MTX(backing_object),
1456                                             PDROP | PVM, "vmocol", 0);
1457                                         VM_OBJECT_LOCK(object);
1458                                         VM_OBJECT_LOCK(backing_object);
1459                                         /*
1460                                          * If we slept, anything could have
1461                                          * happened.  Since the object is
1462                                          * marked dead, the backing offset
1463                                          * should not have changed so we
1464                                          * just restart our scan.
1465                                          */
1466                                         p = TAILQ_FIRST(&backing_object->memq);
1467                                         continue;
1468                                 }
1469                         }
1470
1471                         KASSERT(
1472                             p->object == backing_object,
1473                             ("vm_object_backing_scan: object mismatch")
1474                         );
1475
1476                         /*
1477                          * Destroy any associated swap
1478                          */
1479                         if (backing_object->type == OBJT_SWAP) {
1480                                 swap_pager_freespace(
1481                                     backing_object, 
1482                                     p->pindex,
1483                                     1
1484                                 );
1485                         }
1486
1487                         if (
1488                             p->pindex < backing_offset_index ||
1489                             new_pindex >= object->size
1490                         ) {
1491                                 /*
1492                                  * Page is out of the parent object's range, we 
1493                                  * can simply destroy it. 
1494                                  */
1495                                 vm_page_lock_queues();
1496                                 KASSERT(!pmap_page_is_mapped(p),
1497                                     ("freeing mapped page %p", p));
1498                                 if (p->wire_count == 0)
1499                                         vm_page_free(p);
1500                                 else
1501                                         vm_page_remove(p);
1502                                 vm_page_unlock_queues();
1503                                 p = next;
1504                                 continue;
1505                         }
1506
1507                         pp = vm_page_lookup(object, new_pindex);
1508                         if (
1509                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1510                             (pp != NULL && pp->valid == 0)
1511                         ) {
1512                                 /*
1513                                  * The page in the parent is not (yet) valid.
1514                                  * We don't know anything about the state of
1515                                  * the original page.  It might be mapped,
1516                                  * so we must avoid the next if here.
1517                                  *
1518                                  * This is due to a race in vm_fault() where
1519                                  * we must unbusy the original (backing_obj)
1520                                  * page before we can (re)lock the parent.
1521                                  * Hence we can get here.
1522                                  */
1523                                 p = next;
1524                                 continue;
1525                         }
1526                         if (
1527                             pp != NULL ||
1528                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1529                         ) {
1530                                 /*
1531                                  * page already exists in parent OR swap exists
1532                                  * for this location in the parent.  Destroy 
1533                                  * the original page from the backing object.
1534                                  *
1535                                  * Leave the parent's page alone
1536                                  */
1537                                 vm_page_lock_queues();
1538                                 KASSERT(!pmap_page_is_mapped(p),
1539                                     ("freeing mapped page %p", p));
1540                                 if (p->wire_count == 0)
1541                                         vm_page_free(p);
1542                                 else
1543                                         vm_page_remove(p);
1544                                 vm_page_unlock_queues();
1545                                 p = next;
1546                                 continue;
1547                         }
1548
1549 #if VM_NRESERVLEVEL > 0
1550                         /*
1551                          * Rename the reservation.
1552                          */
1553                         vm_reserv_rename(p, object, backing_object,
1554                             backing_offset_index);
1555 #endif
1556
1557                         /*
1558                          * Page does not exist in parent, rename the
1559                          * page from the backing object to the main object. 
1560                          *
1561                          * If the page was mapped to a process, it can remain 
1562                          * mapped through the rename.
1563                          */
1564                         vm_page_lock_queues();
1565                         vm_page_rename(p, object, new_pindex);
1566                         vm_page_unlock_queues();
1567                         /* page automatically made dirty by rename */
1568                 }
1569                 p = next;
1570         }
1571         return (r);
1572 }
1573
1574
1575 /*
1576  * this version of collapse allows the operation to occur earlier and
1577  * when paging_in_progress is true for an object...  This is not a complete
1578  * operation, but should plug 99.9% of the rest of the leaks.
1579  */
1580 static void
1581 vm_object_qcollapse(vm_object_t object)
1582 {
1583         vm_object_t backing_object = object->backing_object;
1584
1585         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1586         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1587
1588         if (backing_object->ref_count != 1)
1589                 return;
1590
1591         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1592 }
1593
1594 /*
1595  *      vm_object_collapse:
1596  *
1597  *      Collapse an object with the object backing it.
1598  *      Pages in the backing object are moved into the
1599  *      parent, and the backing object is deallocated.
1600  */
1601 void
1602 vm_object_collapse(vm_object_t object)
1603 {
1604         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1605         
1606         while (TRUE) {
1607                 vm_object_t backing_object;
1608
1609                 /*
1610                  * Verify that the conditions are right for collapse:
1611                  *
1612                  * The object exists and the backing object exists.
1613                  */
1614                 if ((backing_object = object->backing_object) == NULL)
1615                         break;
1616
1617                 /*
1618                  * we check the backing object first, because it is most likely
1619                  * not collapsable.
1620                  */
1621                 VM_OBJECT_LOCK(backing_object);
1622                 if (backing_object->handle != NULL ||
1623                     (backing_object->type != OBJT_DEFAULT &&
1624                      backing_object->type != OBJT_SWAP) ||
1625                     (backing_object->flags & OBJ_DEAD) ||
1626                     object->handle != NULL ||
1627                     (object->type != OBJT_DEFAULT &&
1628                      object->type != OBJT_SWAP) ||
1629                     (object->flags & OBJ_DEAD)) {
1630                         VM_OBJECT_UNLOCK(backing_object);
1631                         break;
1632                 }
1633
1634                 if (
1635                     object->paging_in_progress != 0 ||
1636                     backing_object->paging_in_progress != 0
1637                 ) {
1638                         vm_object_qcollapse(object);
1639                         VM_OBJECT_UNLOCK(backing_object);
1640                         break;
1641                 }
1642                 /*
1643                  * We know that we can either collapse the backing object (if
1644                  * the parent is the only reference to it) or (perhaps) have
1645                  * the parent bypass the object if the parent happens to shadow
1646                  * all the resident pages in the entire backing object.
1647                  *
1648                  * This is ignoring pager-backed pages such as swap pages.
1649                  * vm_object_backing_scan fails the shadowing test in this
1650                  * case.
1651                  */
1652                 if (backing_object->ref_count == 1) {
1653                         /*
1654                          * If there is exactly one reference to the backing
1655                          * object, we can collapse it into the parent.  
1656                          */
1657                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1658
1659 #if VM_NRESERVLEVEL > 0
1660                         /*
1661                          * Break any reservations from backing_object.
1662                          */
1663                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1664                                 vm_reserv_break_all(backing_object);
1665 #endif
1666
1667                         /*
1668                          * Move the pager from backing_object to object.
1669                          */
1670                         if (backing_object->type == OBJT_SWAP) {
1671                                 /*
1672                                  * swap_pager_copy() can sleep, in which case
1673                                  * the backing_object's and object's locks are
1674                                  * released and reacquired.
1675                                  */
1676                                 swap_pager_copy(
1677                                     backing_object,
1678                                     object,
1679                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1680
1681                                 /*
1682                                  * Free any cached pages from backing_object.
1683                                  */
1684                                 if (__predict_false(backing_object->cache != NULL))
1685                                         vm_page_cache_free(backing_object, 0, 0);
1686                         }
1687                         /*
1688                          * Object now shadows whatever backing_object did.
1689                          * Note that the reference to 
1690                          * backing_object->backing_object moves from within 
1691                          * backing_object to within object.
1692                          */
1693                         LIST_REMOVE(object, shadow_list);
1694                         backing_object->shadow_count--;
1695                         if (backing_object->backing_object) {
1696                                 VM_OBJECT_LOCK(backing_object->backing_object);
1697                                 LIST_REMOVE(backing_object, shadow_list);
1698                                 LIST_INSERT_HEAD(
1699                                     &backing_object->backing_object->shadow_head,
1700                                     object, shadow_list);
1701                                 /*
1702                                  * The shadow_count has not changed.
1703                                  */
1704                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1705                         }
1706                         object->backing_object = backing_object->backing_object;
1707                         object->backing_object_offset +=
1708                             backing_object->backing_object_offset;
1709
1710                         /*
1711                          * Discard backing_object.
1712                          *
1713                          * Since the backing object has no pages, no pager left,
1714                          * and no object references within it, all that is
1715                          * necessary is to dispose of it.
1716                          */
1717                         KASSERT(backing_object->ref_count == 1, (
1718 "backing_object %p was somehow re-referenced during collapse!",
1719                             backing_object));
1720                         VM_OBJECT_UNLOCK(backing_object);
1721                         vm_object_destroy(backing_object);
1722
1723                         object_collapses++;
1724                 } else {
1725                         vm_object_t new_backing_object;
1726
1727                         /*
1728                          * If we do not entirely shadow the backing object,
1729                          * there is nothing we can do so we give up.
1730                          */
1731                         if (object->resident_page_count != object->size &&
1732                             vm_object_backing_scan(object,
1733                             OBSC_TEST_ALL_SHADOWED) == 0) {
1734                                 VM_OBJECT_UNLOCK(backing_object);
1735                                 break;
1736                         }
1737
1738                         /*
1739                          * Make the parent shadow the next object in the
1740                          * chain.  Deallocating backing_object will not remove
1741                          * it, since its reference count is at least 2.
1742                          */
1743                         LIST_REMOVE(object, shadow_list);
1744                         backing_object->shadow_count--;
1745
1746                         new_backing_object = backing_object->backing_object;
1747                         if ((object->backing_object = new_backing_object) != NULL) {
1748                                 VM_OBJECT_LOCK(new_backing_object);
1749                                 LIST_INSERT_HEAD(
1750                                     &new_backing_object->shadow_head,
1751                                     object,
1752                                     shadow_list
1753                                 );
1754                                 new_backing_object->shadow_count++;
1755                                 vm_object_reference_locked(new_backing_object);
1756                                 VM_OBJECT_UNLOCK(new_backing_object);
1757                                 object->backing_object_offset +=
1758                                         backing_object->backing_object_offset;
1759                         }
1760
1761                         /*
1762                          * Drop the reference count on backing_object. Since
1763                          * its ref_count was at least 2, it will not vanish.
1764                          */
1765                         backing_object->ref_count--;
1766                         VM_OBJECT_UNLOCK(backing_object);
1767                         object_bypasses++;
1768                 }
1769
1770                 /*
1771                  * Try again with this object's new backing object.
1772                  */
1773         }
1774 }
1775
1776 /*
1777  *      vm_object_page_remove:
1778  *
1779  *      For the given object, either frees or invalidates each of the
1780  *      specified pages.  In general, a page is freed.  However, if a
1781  *      page is wired for any reason other than the existence of a
1782  *      managed, wired mapping, then it may be invalidated but not
1783  *      removed from the object.  Pages are specified by the given
1784  *      range ["start", "end") and Boolean "clean_only".  As a
1785  *      special case, if "end" is zero, then the range extends from
1786  *      "start" to the end of the object.  If "clean_only" is TRUE,
1787  *      then only the non-dirty pages within the specified range are
1788  *      affected.
1789  *
1790  *      In general, this operation should only be performed on objects
1791  *      that contain managed pages.  There are two exceptions.  First,
1792  *      it may be performed on the kernel and kmem objects.  Second,
1793  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1794  *      device-backed pages.  In both of these cases, "clean_only"
1795  *      must be FALSE.
1796  *
1797  *      The object must be locked.
1798  */
1799 void
1800 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1801     boolean_t clean_only)
1802 {
1803         vm_page_t p, next;
1804         int wirings;
1805
1806         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1807         if (object->resident_page_count == 0)
1808                 goto skipmemq;
1809
1810         /*
1811          * Since physically-backed objects do not use managed pages, we can't
1812          * remove pages from the object (we must instead remove the page
1813          * references, and then destroy the object).
1814          */
1815         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1816             object == kmem_object,
1817             ("attempt to remove pages from a physical object"));
1818
1819         vm_object_pip_add(object, 1);
1820 again:
1821         p = vm_page_find_least(object, start);
1822         vm_page_lock_queues();
1823         /*
1824          * Assert: the variable p is either (1) the page with the
1825          * least pindex greater than or equal to the parameter pindex
1826          * or (2) NULL.
1827          */
1828         for (;
1829              p != NULL && (p->pindex < end || end == 0);
1830              p = next) {
1831                 next = TAILQ_NEXT(p, listq);
1832
1833                 /*
1834                  * If the page is wired for any reason besides the
1835                  * existence of managed, wired mappings, then it cannot
1836                  * be freed.  For example, fictitious pages, which
1837                  * represent device memory, are inherently wired and
1838                  * cannot be freed.  They can, however, be invalidated
1839                  * if "clean_only" is FALSE.
1840                  */
1841                 if ((wirings = p->wire_count) != 0 &&
1842                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1843                         /* Fictitious pages do not have managed mappings. */
1844                         if ((p->flags & PG_FICTITIOUS) == 0)
1845                                 pmap_remove_all(p);
1846                         /* Account for removal of managed, wired mappings. */
1847                         p->wire_count -= wirings;
1848                         if (!clean_only) {
1849                                 p->valid = 0;
1850                                 vm_page_undirty(p);
1851                         }
1852                         continue;
1853                 }
1854                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1855                         goto again;
1856                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1857                     ("vm_object_page_remove: page %p is fictitious", p));
1858                 if (clean_only && p->valid) {
1859                         pmap_remove_write(p);
1860                         if (p->dirty)
1861                                 continue;
1862                 }
1863                 pmap_remove_all(p);
1864                 /* Account for removal of managed, wired mappings. */
1865                 if (wirings != 0)
1866                         p->wire_count -= wirings;
1867                 vm_page_free(p);
1868         }
1869         vm_page_unlock_queues();
1870         vm_object_pip_wakeup(object);
1871 skipmemq:
1872         if (__predict_false(object->cache != NULL))
1873                 vm_page_cache_free(object, start, end);
1874 }
1875
1876 /*
1877  *      vm_object_page_cache:
1878  *
1879  *      For the given object, attempt to move the specified clean
1880  *      pages to the cache queue.  If a page is wired for any reason,
1881  *      then it will not be changed.  Pages are specified by the given
1882  *      range ["start", "end").  As a special case, if "end" is zero,
1883  *      then the range extends from "start" to the end of the object.
1884  *      Any mappings to the specified pages are removed before the
1885  *      pages are moved to the cache queue.
1886  *
1887  *      This operation should only be performed on objects that
1888  *      contain managed pages.
1889  *
1890  *      The object must be locked.
1891  */
1892 void
1893 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1894 {
1895         vm_page_t p, next;
1896
1897         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1898         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1899             object->type != OBJT_PHYS),
1900             ("vm_object_page_cache: illegal object %p", object));
1901         if (object->resident_page_count == 0)
1902                 return;
1903         p = vm_page_find_least(object, start);
1904
1905         /*
1906          * Here, the variable "p" is either (1) the page with the least pindex
1907          * greater than or equal to the parameter "start" or (2) NULL. 
1908          */
1909         vm_page_lock_queues();
1910         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1911                 next = TAILQ_NEXT(p, listq);
1912
1913                 vm_page_try_to_cache(p);
1914         }
1915         vm_page_unlock_queues();
1916 }
1917
1918 /*
1919  *      Populate the specified range of the object with valid pages.  Returns
1920  *      TRUE if the range is successfully populated and FALSE otherwise.
1921  *
1922  *      Note: This function should be optimized to pass a larger array of
1923  *      pages to vm_pager_get_pages() before it is applied to a non-
1924  *      OBJT_DEVICE object.
1925  *
1926  *      The object must be locked.
1927  */
1928 boolean_t
1929 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1930 {
1931         vm_page_t m, ma[1];
1932         vm_pindex_t pindex;
1933         int rv;
1934
1935         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1936         for (pindex = start; pindex < end; pindex++) {
1937                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1938                     VM_ALLOC_RETRY);
1939                 if (m->valid != VM_PAGE_BITS_ALL) {
1940                         ma[0] = m;
1941                         rv = vm_pager_get_pages(object, ma, 1, 0);
1942                         m = vm_page_lookup(object, pindex);
1943                         if (m == NULL)
1944                                 break;
1945                         if (rv != VM_PAGER_OK) {
1946                                 vm_page_lock_queues();
1947                                 vm_page_free(m);
1948                                 vm_page_unlock_queues();
1949                                 break;
1950                         }
1951                 }
1952                 /*
1953                  * Keep "m" busy because a subsequent iteration may unlock
1954                  * the object.
1955                  */
1956         }
1957         if (pindex > start) {
1958                 m = vm_page_lookup(object, start);
1959                 while (m != NULL && m->pindex < pindex) {
1960                         vm_page_wakeup(m);
1961                         m = TAILQ_NEXT(m, listq);
1962                 }
1963         }
1964         return (pindex == end);
1965 }
1966
1967 /*
1968  *      Routine:        vm_object_coalesce
1969  *      Function:       Coalesces two objects backing up adjoining
1970  *                      regions of memory into a single object.
1971  *
1972  *      returns TRUE if objects were combined.
1973  *
1974  *      NOTE:   Only works at the moment if the second object is NULL -
1975  *              if it's not, which object do we lock first?
1976  *
1977  *      Parameters:
1978  *              prev_object     First object to coalesce
1979  *              prev_offset     Offset into prev_object
1980  *              prev_size       Size of reference to prev_object
1981  *              next_size       Size of reference to the second object
1982  *              reserved        Indicator that extension region has
1983  *                              swap accounted for
1984  *
1985  *      Conditions:
1986  *      The object must *not* be locked.
1987  */
1988 boolean_t
1989 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1990     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1991 {
1992         vm_pindex_t next_pindex;
1993
1994         if (prev_object == NULL)
1995                 return (TRUE);
1996         VM_OBJECT_LOCK(prev_object);
1997         if (prev_object->type != OBJT_DEFAULT &&
1998             prev_object->type != OBJT_SWAP) {
1999                 VM_OBJECT_UNLOCK(prev_object);
2000                 return (FALSE);
2001         }
2002
2003         /*
2004          * Try to collapse the object first
2005          */
2006         vm_object_collapse(prev_object);
2007
2008         /*
2009          * Can't coalesce if: . more than one reference . paged out . shadows
2010          * another object . has a copy elsewhere (any of which mean that the
2011          * pages not mapped to prev_entry may be in use anyway)
2012          */
2013         if (prev_object->backing_object != NULL) {
2014                 VM_OBJECT_UNLOCK(prev_object);
2015                 return (FALSE);
2016         }
2017
2018         prev_size >>= PAGE_SHIFT;
2019         next_size >>= PAGE_SHIFT;
2020         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2021
2022         if ((prev_object->ref_count > 1) &&
2023             (prev_object->size != next_pindex)) {
2024                 VM_OBJECT_UNLOCK(prev_object);
2025                 return (FALSE);
2026         }
2027
2028         /*
2029          * Account for the charge.
2030          */
2031         if (prev_object->uip != NULL) {
2032
2033                 /*
2034                  * If prev_object was charged, then this mapping,
2035                  * althought not charged now, may become writable
2036                  * later. Non-NULL uip in the object would prevent
2037                  * swap reservation during enabling of the write
2038                  * access, so reserve swap now. Failed reservation
2039                  * cause allocation of the separate object for the map
2040                  * entry, and swap reservation for this entry is
2041                  * managed in appropriate time.
2042                  */
2043                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
2044                     prev_object->uip)) {
2045                         return (FALSE);
2046                 }
2047                 prev_object->charge += ptoa(next_size);
2048         }
2049
2050         /*
2051          * Remove any pages that may still be in the object from a previous
2052          * deallocation.
2053          */
2054         if (next_pindex < prev_object->size) {
2055                 vm_object_page_remove(prev_object,
2056                                       next_pindex,
2057                                       next_pindex + next_size, FALSE);
2058                 if (prev_object->type == OBJT_SWAP)
2059                         swap_pager_freespace(prev_object,
2060                                              next_pindex, next_size);
2061 #if 0
2062                 if (prev_object->uip != NULL) {
2063                         KASSERT(prev_object->charge >=
2064                             ptoa(prev_object->size - next_pindex),
2065                             ("object %p overcharged 1 %jx %jx", prev_object,
2066                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2067                         prev_object->charge -= ptoa(prev_object->size -
2068                             next_pindex);
2069                 }
2070 #endif
2071         }
2072
2073         /*
2074          * Extend the object if necessary.
2075          */
2076         if (next_pindex + next_size > prev_object->size)
2077                 prev_object->size = next_pindex + next_size;
2078
2079         VM_OBJECT_UNLOCK(prev_object);
2080         return (TRUE);
2081 }
2082
2083 void
2084 vm_object_set_writeable_dirty(vm_object_t object)
2085 {
2086
2087         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2088         if (object->type != OBJT_VNODE)
2089                 return;
2090         object->generation++;
2091         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2092                 return;
2093         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2094 }
2095
2096 #include "opt_ddb.h"
2097 #ifdef DDB
2098 #include <sys/kernel.h>
2099
2100 #include <sys/cons.h>
2101
2102 #include <ddb/ddb.h>
2103
2104 static int
2105 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2106 {
2107         vm_map_t tmpm;
2108         vm_map_entry_t tmpe;
2109         vm_object_t obj;
2110         int entcount;
2111
2112         if (map == 0)
2113                 return 0;
2114
2115         if (entry == 0) {
2116                 tmpe = map->header.next;
2117                 entcount = map->nentries;
2118                 while (entcount-- && (tmpe != &map->header)) {
2119                         if (_vm_object_in_map(map, object, tmpe)) {
2120                                 return 1;
2121                         }
2122                         tmpe = tmpe->next;
2123                 }
2124         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2125                 tmpm = entry->object.sub_map;
2126                 tmpe = tmpm->header.next;
2127                 entcount = tmpm->nentries;
2128                 while (entcount-- && tmpe != &tmpm->header) {
2129                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2130                                 return 1;
2131                         }
2132                         tmpe = tmpe->next;
2133                 }
2134         } else if ((obj = entry->object.vm_object) != NULL) {
2135                 for (; obj; obj = obj->backing_object)
2136                         if (obj == object) {
2137                                 return 1;
2138                         }
2139         }
2140         return 0;
2141 }
2142
2143 static int
2144 vm_object_in_map(vm_object_t object)
2145 {
2146         struct proc *p;
2147
2148         /* sx_slock(&allproc_lock); */
2149         FOREACH_PROC_IN_SYSTEM(p) {
2150                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2151                         continue;
2152                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2153                         /* sx_sunlock(&allproc_lock); */
2154                         return 1;
2155                 }
2156         }
2157         /* sx_sunlock(&allproc_lock); */
2158         if (_vm_object_in_map(kernel_map, object, 0))
2159                 return 1;
2160         if (_vm_object_in_map(kmem_map, object, 0))
2161                 return 1;
2162         if (_vm_object_in_map(pager_map, object, 0))
2163                 return 1;
2164         if (_vm_object_in_map(buffer_map, object, 0))
2165                 return 1;
2166         return 0;
2167 }
2168
2169 DB_SHOW_COMMAND(vmochk, vm_object_check)
2170 {
2171         vm_object_t object;
2172
2173         /*
2174          * make sure that internal objs are in a map somewhere
2175          * and none have zero ref counts.
2176          */
2177         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2178                 if (object->handle == NULL &&
2179                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2180                         if (object->ref_count == 0) {
2181                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2182                                         (long)object->size);
2183                         }
2184                         if (!vm_object_in_map(object)) {
2185                                 db_printf(
2186                         "vmochk: internal obj is not in a map: "
2187                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2188                                     object->ref_count, (u_long)object->size, 
2189                                     (u_long)object->size,
2190                                     (void *)object->backing_object);
2191                         }
2192                 }
2193         }
2194 }
2195
2196 /*
2197  *      vm_object_print:        [ debug ]
2198  */
2199 DB_SHOW_COMMAND(object, vm_object_print_static)
2200 {
2201         /* XXX convert args. */
2202         vm_object_t object = (vm_object_t)addr;
2203         boolean_t full = have_addr;
2204
2205         vm_page_t p;
2206
2207         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2208 #define count   was_count
2209
2210         int count;
2211
2212         if (object == NULL)
2213                 return;
2214
2215         db_iprintf(
2216             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2217             object, (int)object->type, (uintmax_t)object->size,
2218             object->resident_page_count, object->ref_count, object->flags,
2219             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2220         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2221             object->shadow_count, 
2222             object->backing_object ? object->backing_object->ref_count : 0,
2223             object->backing_object, (uintmax_t)object->backing_object_offset);
2224
2225         if (!full)
2226                 return;
2227
2228         db_indent += 2;
2229         count = 0;
2230         TAILQ_FOREACH(p, &object->memq, listq) {
2231                 if (count == 0)
2232                         db_iprintf("memory:=");
2233                 else if (count == 6) {
2234                         db_printf("\n");
2235                         db_iprintf(" ...");
2236                         count = 0;
2237                 } else
2238                         db_printf(",");
2239                 count++;
2240
2241                 db_printf("(off=0x%jx,page=0x%jx)",
2242                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2243         }
2244         if (count != 0)
2245                 db_printf("\n");
2246         db_indent -= 2;
2247 }
2248
2249 /* XXX. */
2250 #undef count
2251
2252 /* XXX need this non-static entry for calling from vm_map_print. */
2253 void
2254 vm_object_print(
2255         /* db_expr_t */ long addr,
2256         boolean_t have_addr,
2257         /* db_expr_t */ long count,
2258         char *modif)
2259 {
2260         vm_object_print_static(addr, have_addr, count, modif);
2261 }
2262
2263 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2264 {
2265         vm_object_t object;
2266         vm_pindex_t fidx;
2267         vm_paddr_t pa;
2268         vm_page_t m, prev_m;
2269         int rcount, nl, c;
2270
2271         nl = 0;
2272         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2273                 db_printf("new object: %p\n", (void *)object);
2274                 if (nl > 18) {
2275                         c = cngetc();
2276                         if (c != ' ')
2277                                 return;
2278                         nl = 0;
2279                 }
2280                 nl++;
2281                 rcount = 0;
2282                 fidx = 0;
2283                 pa = -1;
2284                 TAILQ_FOREACH(m, &object->memq, listq) {
2285                         if (m->pindex > 128)
2286                                 break;
2287                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2288                             prev_m->pindex + 1 != m->pindex) {
2289                                 if (rcount) {
2290                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2291                                                 (long)fidx, rcount, (long)pa);
2292                                         if (nl > 18) {
2293                                                 c = cngetc();
2294                                                 if (c != ' ')
2295                                                         return;
2296                                                 nl = 0;
2297                                         }
2298                                         nl++;
2299                                         rcount = 0;
2300                                 }
2301                         }                               
2302                         if (rcount &&
2303                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2304                                 ++rcount;
2305                                 continue;
2306                         }
2307                         if (rcount) {
2308                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2309                                         (long)fidx, rcount, (long)pa);
2310                                 if (nl > 18) {
2311                                         c = cngetc();
2312                                         if (c != ' ')
2313                                                 return;
2314                                         nl = 0;
2315                                 }
2316                                 nl++;
2317                         }
2318                         fidx = m->pindex;
2319                         pa = VM_PAGE_TO_PHYS(m);
2320                         rcount = 1;
2321                 }
2322                 if (rcount) {
2323                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2324                                 (long)fidx, rcount, (long)pa);
2325                         if (nl > 18) {
2326                                 c = cngetc();
2327                                 if (c != ' ')
2328                                         return;
2329                                 nl = 0;
2330                         }
2331                         nl++;
2332                 }
2333         }
2334 }
2335 #endif /* DDB */