]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - cddl/contrib/opensolaris/lib/libzpool/common/taskq.c
MFC r258630: 734 taskq_dispatch_prealloc() desired
[FreeBSD/stable/9.git] / cddl / contrib / opensolaris / lib / libzpool / common / taskq.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30
31 int taskq_now;
32 taskq_t *system_taskq;
33
34 #define TASKQ_ACTIVE    0x00010000
35
36 struct taskq {
37         kmutex_t        tq_lock;
38         krwlock_t       tq_threadlock;
39         kcondvar_t      tq_dispatch_cv;
40         kcondvar_t      tq_wait_cv;
41         thread_t        *tq_threadlist;
42         int             tq_flags;
43         int             tq_active;
44         int             tq_nthreads;
45         int             tq_nalloc;
46         int             tq_minalloc;
47         int             tq_maxalloc;
48         kcondvar_t      tq_maxalloc_cv;
49         int             tq_maxalloc_wait;
50         taskq_ent_t     *tq_freelist;
51         taskq_ent_t     tq_task;
52 };
53
54 static taskq_ent_t *
55 task_alloc(taskq_t *tq, int tqflags)
56 {
57         taskq_ent_t *t;
58         int rv;
59
60 again:  if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
61                 tq->tq_freelist = t->tqent_next;
62         } else {
63                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
64                         if (!(tqflags & KM_SLEEP))
65                                 return (NULL);
66
67                         /*
68                          * We don't want to exceed tq_maxalloc, but we can't
69                          * wait for other tasks to complete (and thus free up
70                          * task structures) without risking deadlock with
71                          * the caller.  So, we just delay for one second
72                          * to throttle the allocation rate. If we have tasks
73                          * complete before one second timeout expires then
74                          * taskq_ent_free will signal us and we will
75                          * immediately retry the allocation.
76                          */
77                         tq->tq_maxalloc_wait++;
78                         rv = cv_timedwait(&tq->tq_maxalloc_cv,
79                             &tq->tq_lock, ddi_get_lbolt() + hz);
80                         tq->tq_maxalloc_wait--;
81                         if (rv > 0)
82                                 goto again;             /* signaled */
83                 }
84                 mutex_exit(&tq->tq_lock);
85
86                 t = kmem_alloc(sizeof (taskq_ent_t), tqflags & KM_SLEEP);
87
88                 mutex_enter(&tq->tq_lock);
89                 if (t != NULL)
90                         tq->tq_nalloc++;
91         }
92         return (t);
93 }
94
95 static void
96 task_free(taskq_t *tq, taskq_ent_t *t)
97 {
98         if (tq->tq_nalloc <= tq->tq_minalloc) {
99                 t->tqent_next = tq->tq_freelist;
100                 tq->tq_freelist = t;
101         } else {
102                 tq->tq_nalloc--;
103                 mutex_exit(&tq->tq_lock);
104                 kmem_free(t, sizeof (taskq_ent_t));
105                 mutex_enter(&tq->tq_lock);
106         }
107
108         if (tq->tq_maxalloc_wait)
109                 cv_signal(&tq->tq_maxalloc_cv);
110 }
111
112 taskqid_t
113 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
114 {
115         taskq_ent_t *t;
116
117         if (taskq_now) {
118                 func(arg);
119                 return (1);
120         }
121
122         mutex_enter(&tq->tq_lock);
123         ASSERT(tq->tq_flags & TASKQ_ACTIVE);
124         if ((t = task_alloc(tq, tqflags)) == NULL) {
125                 mutex_exit(&tq->tq_lock);
126                 return (0);
127         }
128         if (tqflags & TQ_FRONT) {
129                 t->tqent_next = tq->tq_task.tqent_next;
130                 t->tqent_prev = &tq->tq_task;
131         } else {
132                 t->tqent_next = &tq->tq_task;
133                 t->tqent_prev = tq->tq_task.tqent_prev;
134         }
135         t->tqent_next->tqent_prev = t;
136         t->tqent_prev->tqent_next = t;
137         t->tqent_func = func;
138         t->tqent_arg = arg;
139         cv_signal(&tq->tq_dispatch_cv);
140         mutex_exit(&tq->tq_lock);
141         return (1);
142 }
143
144 void
145 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
146     taskq_ent_t *t)
147 {
148         ASSERT(func != NULL);
149         ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
150
151         /*
152          * Mark it as a prealloc'd task.  This is important
153          * to ensure that we don't free it later.
154          */
155         t->tqent_flags |= TQENT_FLAG_PREALLOC;
156         /*
157          * Enqueue the task to the underlying queue.
158          */
159         mutex_enter(&tq->tq_lock);
160
161         if (flags & TQ_FRONT) {
162                 t->tqent_next = tq->tq_task.tqent_next;
163                 t->tqent_prev = &tq->tq_task;
164         } else {
165                 t->tqent_next = &tq->tq_task;
166                 t->tqent_prev = tq->tq_task.tqent_prev;
167         }
168         t->tqent_next->tqent_prev = t;
169         t->tqent_prev->tqent_next = t;
170         t->tqent_func = func;
171         t->tqent_arg = arg;
172         cv_signal(&tq->tq_dispatch_cv);
173         mutex_exit(&tq->tq_lock);
174 }
175
176 void
177 taskq_wait(taskq_t *tq)
178 {
179         mutex_enter(&tq->tq_lock);
180         while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
181                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
182         mutex_exit(&tq->tq_lock);
183 }
184
185 static void *
186 taskq_thread(void *arg)
187 {
188         taskq_t *tq = arg;
189         taskq_ent_t *t;
190         boolean_t prealloc;
191
192         mutex_enter(&tq->tq_lock);
193         while (tq->tq_flags & TASKQ_ACTIVE) {
194                 if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
195                         if (--tq->tq_active == 0)
196                                 cv_broadcast(&tq->tq_wait_cv);
197                         cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
198                         tq->tq_active++;
199                         continue;
200                 }
201                 t->tqent_prev->tqent_next = t->tqent_next;
202                 t->tqent_next->tqent_prev = t->tqent_prev;
203                 t->tqent_next = NULL;
204                 t->tqent_prev = NULL;
205                 prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
206                 mutex_exit(&tq->tq_lock);
207
208                 rw_enter(&tq->tq_threadlock, RW_READER);
209                 t->tqent_func(t->tqent_arg);
210                 rw_exit(&tq->tq_threadlock);
211
212                 mutex_enter(&tq->tq_lock);
213                 if (!prealloc)
214                         task_free(tq, t);
215         }
216         tq->tq_nthreads--;
217         cv_broadcast(&tq->tq_wait_cv);
218         mutex_exit(&tq->tq_lock);
219         return (NULL);
220 }
221
222 /*ARGSUSED*/
223 taskq_t *
224 taskq_create(const char *name, int nthreads, pri_t pri,
225         int minalloc, int maxalloc, uint_t flags)
226 {
227         taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
228         int t;
229
230         if (flags & TASKQ_THREADS_CPU_PCT) {
231                 int pct;
232                 ASSERT3S(nthreads, >=, 0);
233                 ASSERT3S(nthreads, <=, 100);
234                 pct = MIN(nthreads, 100);
235                 pct = MAX(pct, 0);
236
237                 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
238                 nthreads = MAX(nthreads, 1);    /* need at least 1 thread */
239         } else {
240                 ASSERT3S(nthreads, >=, 1);
241         }
242
243         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
244         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
245         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
246         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
247         cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
248         tq->tq_flags = flags | TASKQ_ACTIVE;
249         tq->tq_active = nthreads;
250         tq->tq_nthreads = nthreads;
251         tq->tq_minalloc = minalloc;
252         tq->tq_maxalloc = maxalloc;
253         tq->tq_task.tqent_next = &tq->tq_task;
254         tq->tq_task.tqent_prev = &tq->tq_task;
255         tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
256
257         if (flags & TASKQ_PREPOPULATE) {
258                 mutex_enter(&tq->tq_lock);
259                 while (minalloc-- > 0)
260                         task_free(tq, task_alloc(tq, KM_SLEEP));
261                 mutex_exit(&tq->tq_lock);
262         }
263
264         for (t = 0; t < nthreads; t++)
265                 (void) thr_create(0, 0, taskq_thread,
266                     tq, THR_BOUND, &tq->tq_threadlist[t]);
267
268         return (tq);
269 }
270
271 void
272 taskq_destroy(taskq_t *tq)
273 {
274         int t;
275         int nthreads = tq->tq_nthreads;
276
277         taskq_wait(tq);
278
279         mutex_enter(&tq->tq_lock);
280
281         tq->tq_flags &= ~TASKQ_ACTIVE;
282         cv_broadcast(&tq->tq_dispatch_cv);
283
284         while (tq->tq_nthreads != 0)
285                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
286
287         tq->tq_minalloc = 0;
288         while (tq->tq_nalloc != 0) {
289                 ASSERT(tq->tq_freelist != NULL);
290                 task_free(tq, task_alloc(tq, KM_SLEEP));
291         }
292
293         mutex_exit(&tq->tq_lock);
294
295         for (t = 0; t < nthreads; t++)
296                 (void) thr_join(tq->tq_threadlist[t], NULL, NULL);
297
298         kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
299
300         rw_destroy(&tq->tq_threadlock);
301         mutex_destroy(&tq->tq_lock);
302         cv_destroy(&tq->tq_dispatch_cv);
303         cv_destroy(&tq->tq_wait_cv);
304         cv_destroy(&tq->tq_maxalloc_cv);
305
306         kmem_free(tq, sizeof (taskq_t));
307 }
308
309 int
310 taskq_member(taskq_t *tq, void *t)
311 {
312         int i;
313
314         if (taskq_now)
315                 return (1);
316
317         for (i = 0; i < tq->tq_nthreads; i++)
318                 if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
319                         return (1);
320
321         return (0);
322 }
323
324 void
325 system_taskq_init(void)
326 {
327         system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
328             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
329 }
330
331 void
332 system_taskq_fini(void)
333 {
334         taskq_destroy(system_taskq);
335         system_taskq = NULL; /* defensive */
336 }