]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/include/llvm/Target/TargetRegisterInfo.h
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / include / llvm / Target / TargetRegisterInfo.h
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18
19 #include "llvm/MC/MCRegisterInfo.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include <cassert>
25 #include <functional>
26
27 namespace llvm {
28
29 class BitVector;
30 class MachineFunction;
31 class RegScavenger;
32 template<class T> class SmallVectorImpl;
33 class raw_ostream;
34
35 class TargetRegisterClass {
36 public:
37   typedef const unsigned* iterator;
38   typedef const unsigned* const_iterator;
39
40   typedef const EVT* vt_iterator;
41   typedef const TargetRegisterClass* const * sc_iterator;
42 private:
43   unsigned ID;
44   const char *Name;
45   const vt_iterator VTs;
46   const sc_iterator SubClasses;
47   const sc_iterator SuperClasses;
48   const sc_iterator SubRegClasses;
49   const sc_iterator SuperRegClasses;
50   const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
51   const int CopyCost;
52   const bool Allocatable;
53   const iterator RegsBegin, RegsEnd;
54   DenseSet<unsigned> RegSet;
55 public:
56   TargetRegisterClass(unsigned id,
57                       const char *name,
58                       const EVT *vts,
59                       const TargetRegisterClass * const *subcs,
60                       const TargetRegisterClass * const *supcs,
61                       const TargetRegisterClass * const *subregcs,
62                       const TargetRegisterClass * const *superregcs,
63                       unsigned RS, unsigned Al, int CC, bool Allocable,
64                       iterator RB, iterator RE)
65     : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
66     SubRegClasses(subregcs), SuperRegClasses(superregcs),
67     RegSize(RS), Alignment(Al), CopyCost(CC), Allocatable(Allocable),
68     RegsBegin(RB), RegsEnd(RE) {
69       for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
70         RegSet.insert(*I);
71     }
72   virtual ~TargetRegisterClass() {}     // Allow subclasses
73
74   /// getID() - Return the register class ID number.
75   ///
76   unsigned getID() const { return ID; }
77
78   /// getName() - Return the register class name for debugging.
79   ///
80   const char *getName() const { return Name; }
81
82   /// begin/end - Return all of the registers in this class.
83   ///
84   iterator       begin() const { return RegsBegin; }
85   iterator         end() const { return RegsEnd; }
86
87   /// getNumRegs - Return the number of registers in this class.
88   ///
89   unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
90
91   /// getRegister - Return the specified register in the class.
92   ///
93   unsigned getRegister(unsigned i) const {
94     assert(i < getNumRegs() && "Register number out of range!");
95     return RegsBegin[i];
96   }
97
98   /// contains - Return true if the specified register is included in this
99   /// register class.  This does not include virtual registers.
100   bool contains(unsigned Reg) const {
101     return RegSet.count(Reg);
102   }
103
104   /// contains - Return true if both registers are in this class.
105   bool contains(unsigned Reg1, unsigned Reg2) const {
106     return contains(Reg1) && contains(Reg2);
107   }
108
109   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
110   ///
111   bool hasType(EVT vt) const {
112     for(int i = 0; VTs[i] != MVT::Other; ++i)
113       if (VTs[i] == vt)
114         return true;
115     return false;
116   }
117
118   /// vt_begin / vt_end - Loop over all of the value types that can be
119   /// represented by values in this register class.
120   vt_iterator vt_begin() const {
121     return VTs;
122   }
123
124   vt_iterator vt_end() const {
125     vt_iterator I = VTs;
126     while (*I != MVT::Other) ++I;
127     return I;
128   }
129
130   /// subregclasses_begin / subregclasses_end - Loop over all of
131   /// the subreg register classes of this register class.
132   sc_iterator subregclasses_begin() const {
133     return SubRegClasses;
134   }
135
136   sc_iterator subregclasses_end() const {
137     sc_iterator I = SubRegClasses;
138     while (*I != NULL) ++I;
139     return I;
140   }
141
142   /// getSubRegisterRegClass - Return the register class of subregisters with
143   /// index SubIdx, or NULL if no such class exists.
144   const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
145     assert(SubIdx>0 && "Invalid subregister index");
146     return SubRegClasses[SubIdx-1];
147   }
148
149   /// superregclasses_begin / superregclasses_end - Loop over all of
150   /// the superreg register classes of this register class.
151   sc_iterator superregclasses_begin() const {
152     return SuperRegClasses;
153   }
154
155   sc_iterator superregclasses_end() const {
156     sc_iterator I = SuperRegClasses;
157     while (*I != NULL) ++I;
158     return I;
159   }
160
161   /// hasSubClass - return true if the specified TargetRegisterClass
162   /// is a proper subset of this TargetRegisterClass.
163   bool hasSubClass(const TargetRegisterClass *cs) const {
164     for (int i = 0; SubClasses[i] != NULL; ++i)
165       if (SubClasses[i] == cs)
166         return true;
167     return false;
168   }
169
170   /// hasSubClassEq - Returns true if RC is a subclass of or equal to this
171   /// class.
172   bool hasSubClassEq(const TargetRegisterClass *RC) const {
173     return RC == this || hasSubClass(RC);
174   }
175
176   /// subclasses_begin / subclasses_end - Loop over all of the classes
177   /// that are proper subsets of this register class.
178   sc_iterator subclasses_begin() const {
179     return SubClasses;
180   }
181
182   sc_iterator subclasses_end() const {
183     sc_iterator I = SubClasses;
184     while (*I != NULL) ++I;
185     return I;
186   }
187
188   /// hasSuperClass - return true if the specified TargetRegisterClass is a
189   /// proper superset of this TargetRegisterClass.
190   bool hasSuperClass(const TargetRegisterClass *cs) const {
191     for (int i = 0; SuperClasses[i] != NULL; ++i)
192       if (SuperClasses[i] == cs)
193         return true;
194     return false;
195   }
196
197   /// hasSuperClassEq - Returns true if RC is a superclass of or equal to this
198   /// class.
199   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
200     return RC == this || hasSuperClass(RC);
201   }
202
203   /// superclasses_begin / superclasses_end - Loop over all of the classes
204   /// that are proper supersets of this register class.
205   sc_iterator superclasses_begin() const {
206     return SuperClasses;
207   }
208
209   sc_iterator superclasses_end() const {
210     sc_iterator I = SuperClasses;
211     while (*I != NULL) ++I;
212     return I;
213   }
214
215   /// isASubClass - return true if this TargetRegisterClass is a subset
216   /// class of at least one other TargetRegisterClass.
217   bool isASubClass() const {
218     return SuperClasses[0] != 0;
219   }
220
221   /// getRawAllocationOrder - Returns the preferred order for allocating
222   /// registers from this register class in MF. The raw order comes directly
223   /// from the .td file and may include reserved registers that are not
224   /// allocatable. Register allocators should also make sure to allocate
225   /// callee-saved registers only after all the volatiles are used. The
226   /// RegisterClassInfo class provides filtered allocation orders with
227   /// callee-saved registers moved to the end.
228   ///
229   /// The MachineFunction argument can be used to tune the allocatable
230   /// registers based on the characteristics of the function, subtarget, or
231   /// other criteria.
232   ///
233   /// By default, this method returns all registers in the class.
234   ///
235   virtual
236   ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
237     return ArrayRef<unsigned>(begin(), getNumRegs());
238   }
239
240   /// getSize - Return the size of the register in bytes, which is also the size
241   /// of a stack slot allocated to hold a spilled copy of this register.
242   unsigned getSize() const { return RegSize; }
243
244   /// getAlignment - Return the minimum required alignment for a register of
245   /// this class.
246   unsigned getAlignment() const { return Alignment; }
247
248   /// getCopyCost - Return the cost of copying a value between two registers in
249   /// this class. A negative number means the register class is very expensive
250   /// to copy e.g. status flag register classes.
251   int getCopyCost() const { return CopyCost; }
252
253   /// isAllocatable - Return true if this register class may be used to create
254   /// virtual registers.
255   bool isAllocatable() const { return Allocatable; }
256 };
257
258 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
259 /// registers. These are used by codegen, not by MC.
260 struct TargetRegisterInfoDesc {
261   unsigned CostPerUse;          // Extra cost of instructions using register.
262   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
263 };
264
265 /// TargetRegisterInfo base class - We assume that the target defines a static
266 /// array of TargetRegisterDesc objects that represent all of the machine
267 /// registers that the target has.  As such, we simply have to track a pointer
268 /// to this array so that we can turn register number into a register
269 /// descriptor.
270 ///
271 class TargetRegisterInfo : public MCRegisterInfo {
272 public:
273   typedef const TargetRegisterClass * const * regclass_iterator;
274 private:
275   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
276   const char *const *SubRegIndexNames;        // Names of subreg indexes.
277   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
278
279 protected:
280   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
281                      regclass_iterator RegClassBegin,
282                      regclass_iterator RegClassEnd,
283                      const char *const *subregindexnames);
284   virtual ~TargetRegisterInfo();
285 public:
286
287   // Register numbers can represent physical registers, virtual registers, and
288   // sometimes stack slots. The unsigned values are divided into these ranges:
289   //
290   //   0           Not a register, can be used as a sentinel.
291   //   [1;2^30)    Physical registers assigned by TableGen.
292   //   [2^30;2^31) Stack slots. (Rarely used.)
293   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
294   //
295   // Further sentinels can be allocated from the small negative integers.
296   // DenseMapInfo<unsigned> uses -1u and -2u.
297
298   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
299   /// frame index in a variable that normally holds a register. isStackSlot()
300   /// returns true if Reg is in the range used for stack slots.
301   ///
302   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
303   /// slots, so if a variable may contains a stack slot, always check
304   /// isStackSlot() first.
305   ///
306   static bool isStackSlot(unsigned Reg) {
307     return int(Reg) >= (1 << 30);
308   }
309
310   /// stackSlot2Index - Compute the frame index from a register value
311   /// representing a stack slot.
312   static int stackSlot2Index(unsigned Reg) {
313     assert(isStackSlot(Reg) && "Not a stack slot");
314     return int(Reg - (1u << 30));
315   }
316
317   /// index2StackSlot - Convert a non-negative frame index to a stack slot
318   /// register value.
319   static unsigned index2StackSlot(int FI) {
320     assert(FI >= 0 && "Cannot hold a negative frame index.");
321     return FI + (1u << 30);
322   }
323
324   /// isPhysicalRegister - Return true if the specified register number is in
325   /// the physical register namespace.
326   static bool isPhysicalRegister(unsigned Reg) {
327     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
328     return int(Reg) > 0;
329   }
330
331   /// isVirtualRegister - Return true if the specified register number is in
332   /// the virtual register namespace.
333   static bool isVirtualRegister(unsigned Reg) {
334     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
335     return int(Reg) < 0;
336   }
337
338   /// virtReg2Index - Convert a virtual register number to a 0-based index.
339   /// The first virtual register in a function will get the index 0.
340   static unsigned virtReg2Index(unsigned Reg) {
341     assert(isVirtualRegister(Reg) && "Not a virtual register");
342     return Reg & ~(1u << 31);
343   }
344
345   /// index2VirtReg - Convert a 0-based index to a virtual register number.
346   /// This is the inverse operation of VirtReg2IndexFunctor below.
347   static unsigned index2VirtReg(unsigned Index) {
348     return Index | (1u << 31);
349   }
350
351   /// getMinimalPhysRegClass - Returns the Register Class of a physical
352   /// register of the given type, picking the most sub register class of
353   /// the right type that contains this physreg.
354   const TargetRegisterClass *
355     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
356
357   /// getAllocatableSet - Returns a bitset indexed by register number
358   /// indicating if a register is allocatable or not. If a register class is
359   /// specified, returns the subset for the class.
360   BitVector getAllocatableSet(const MachineFunction &MF,
361                               const TargetRegisterClass *RC = NULL) const;
362
363   /// getCostPerUse - Return the additional cost of using this register instead
364   /// of other registers in its class.
365   unsigned getCostPerUse(unsigned RegNo) const {
366     return InfoDesc[RegNo].CostPerUse;
367   }
368
369   /// isInAllocatableClass - Return true if the register is in the allocation
370   /// of any register class.
371   bool isInAllocatableClass(unsigned RegNo) const {
372     return InfoDesc[RegNo].inAllocatableClass;
373   }
374
375   /// getSubRegIndexName - Return the human-readable symbolic target-specific
376   /// name for the specified SubRegIndex.
377   const char *getSubRegIndexName(unsigned SubIdx) const {
378     assert(SubIdx && "This is not a subregister index");
379     return SubRegIndexNames[SubIdx-1];
380   }
381
382   /// regsOverlap - Returns true if the two registers are equal or alias each
383   /// other. The registers may be virtual register.
384   bool regsOverlap(unsigned regA, unsigned regB) const {
385     if (regA == regB) return true;
386     if (isVirtualRegister(regA) || isVirtualRegister(regB))
387       return false;
388     for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
389       if (*regList == regB) return true;
390     }
391     return false;
392   }
393
394   /// isSubRegister - Returns true if regB is a sub-register of regA.
395   ///
396   bool isSubRegister(unsigned regA, unsigned regB) const {
397     return isSuperRegister(regB, regA);
398   }
399
400   /// isSuperRegister - Returns true if regB is a super-register of regA.
401   ///
402   bool isSuperRegister(unsigned regA, unsigned regB) const {
403     for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
404       if (*regList == regB) return true;
405     }
406     return false;
407   }
408
409   /// getCalleeSavedRegs - Return a null-terminated list of all of the
410   /// callee saved registers on this target. The register should be in the
411   /// order of desired callee-save stack frame offset. The first register is
412   /// closed to the incoming stack pointer if stack grows down, and vice versa.
413   virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
414                                                                       const = 0;
415
416
417   /// getReservedRegs - Returns a bitset indexed by physical register number
418   /// indicating if a register is a special register that has particular uses
419   /// and should be considered unavailable at all times, e.g. SP, RA. This is
420   /// used by register scavenger to determine what registers are free.
421   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
422
423   /// getSubReg - Returns the physical register number of sub-register "Index"
424   /// for physical register RegNo. Return zero if the sub-register does not
425   /// exist.
426   virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
427
428   /// getSubRegIndex - For a given register pair, return the sub-register index
429   /// if the second register is a sub-register of the first. Return zero
430   /// otherwise.
431   virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
432
433   /// getMatchingSuperReg - Return a super-register of the specified register
434   /// Reg so its sub-register of index SubIdx is Reg.
435   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
436                                const TargetRegisterClass *RC) const {
437     for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
438       if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
439         return SR;
440     return 0;
441   }
442
443   /// canCombineSubRegIndices - Given a register class and a list of
444   /// subregister indices, return true if it's possible to combine the
445   /// subregister indices into one that corresponds to a larger
446   /// subregister. Return the new subregister index by reference. Note the
447   /// new index may be zero if the given subregisters can be combined to
448   /// form the whole register.
449   virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
450                                        SmallVectorImpl<unsigned> &SubIndices,
451                                        unsigned &NewSubIdx) const {
452     return 0;
453   }
454
455   /// getMatchingSuperRegClass - Return a subclass of the specified register
456   /// class A so that each register in it has a sub-register of the
457   /// specified sub-register index which is in the specified register class B.
458   virtual const TargetRegisterClass *
459   getMatchingSuperRegClass(const TargetRegisterClass *A,
460                            const TargetRegisterClass *B, unsigned Idx) const {
461     return 0;
462   }
463
464   /// composeSubRegIndices - Return the subregister index you get from composing
465   /// two subregister indices.
466   ///
467   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
468   /// returns c. Note that composeSubRegIndices does not tell you about illegal
469   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
470   /// b, composeSubRegIndices doesn't tell you.
471   ///
472   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
473   /// ssub_0:S0 - ssub_3:S3 subregs.
474   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
475   ///
476   virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
477     // This default implementation is correct for most targets.
478     return b;
479   }
480
481   //===--------------------------------------------------------------------===//
482   // Register Class Information
483   //
484
485   /// Register class iterators
486   ///
487   regclass_iterator regclass_begin() const { return RegClassBegin; }
488   regclass_iterator regclass_end() const { return RegClassEnd; }
489
490   unsigned getNumRegClasses() const {
491     return (unsigned)(regclass_end()-regclass_begin());
492   }
493
494   /// getRegClass - Returns the register class associated with the enumeration
495   /// value.  See class MCOperandInfo.
496   const TargetRegisterClass *getRegClass(unsigned i) const {
497     assert(i < getNumRegClasses() && "Register Class ID out of range");
498     return RegClassBegin[i];
499   }
500
501   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
502   /// values.  If a target supports multiple different pointer register classes,
503   /// kind specifies which one is indicated.
504   virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
505     assert(0 && "Target didn't implement getPointerRegClass!");
506     return 0; // Must return a value in order to compile with VS 2005
507   }
508
509   /// getCrossCopyRegClass - Returns a legal register class to copy a register
510   /// in the specified class to or from. If it is possible to copy the register
511   /// directly without using a cross register class copy, return the specified
512   /// RC. Returns NULL if it is not possible to copy between a two registers of
513   /// the specified class.
514   virtual const TargetRegisterClass *
515   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
516     return RC;
517   }
518
519   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
520   /// legal to use in the current sub-target and has the same spill size.
521   /// The returned register class can be used to create virtual registers which
522   /// means that all its registers can be copied and spilled.
523   virtual const TargetRegisterClass*
524   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
525     /// The default implementation is very conservative and doesn't allow the
526     /// register allocator to inflate register classes.
527     return RC;
528   }
529
530   /// getRegPressureLimit - Return the register pressure "high water mark" for
531   /// the specific register class. The scheduler is in high register pressure
532   /// mode (for the specific register class) if it goes over the limit.
533   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
534                                        MachineFunction &MF) const {
535     return 0;
536   }
537
538   /// getRawAllocationOrder - Returns the register allocation order for a
539   /// specified register class with a target-dependent hint. The returned list
540   /// may contain reserved registers that cannot be allocated.
541   ///
542   /// Register allocators need only call this function to resolve
543   /// target-dependent hints, but it should work without hinting as well.
544   virtual ArrayRef<unsigned>
545   getRawAllocationOrder(const TargetRegisterClass *RC,
546                         unsigned HintType, unsigned HintReg,
547                         const MachineFunction &MF) const {
548     return RC->getRawAllocationOrder(MF);
549   }
550
551   /// ResolveRegAllocHint - Resolves the specified register allocation hint
552   /// to a physical register. Returns the physical register if it is successful.
553   virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
554                                        const MachineFunction &MF) const {
555     if (Type == 0 && Reg && isPhysicalRegister(Reg))
556       return Reg;
557     return 0;
558   }
559
560   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
561   /// writing a register from RC in two consecutive instructions.
562   /// This can avoid pipeline stalls on certain architectures.
563   /// It does cause increased register pressure, though.
564   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
565     return false;
566   }
567
568   /// UpdateRegAllocHint - A callback to allow target a chance to update
569   /// register allocation hints when a register is "changed" (e.g. coalesced)
570   /// to another register. e.g. On ARM, some virtual registers should target
571   /// register pairs, if one of pair is coalesced to another register, the
572   /// allocation hint of the other half of the pair should be changed to point
573   /// to the new register.
574   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
575                                   MachineFunction &MF) const {
576     // Do nothing.
577   }
578
579   /// requiresRegisterScavenging - returns true if the target requires (and can
580   /// make use of) the register scavenger.
581   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
582     return false;
583   }
584
585   /// useFPForScavengingIndex - returns true if the target wants to use
586   /// frame pointer based accesses to spill to the scavenger emergency spill
587   /// slot.
588   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
589     return true;
590   }
591
592   /// requiresFrameIndexScavenging - returns true if the target requires post
593   /// PEI scavenging of registers for materializing frame index constants.
594   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
595     return false;
596   }
597
598   /// requiresVirtualBaseRegisters - Returns true if the target wants the
599   /// LocalStackAllocation pass to be run and virtual base registers
600   /// used for more efficient stack access.
601   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
602     return false;
603   }
604
605   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
606   /// the stack frame of the given function for the specified register. e.g. On
607   /// x86, if the frame register is required, the first fixed stack object is
608   /// reserved as its spill slot. This tells PEI not to create a new stack frame
609   /// object for the given register. It should be called only after
610   /// processFunctionBeforeCalleeSavedScan().
611   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
612                                     int &FrameIdx) const {
613     return false;
614   }
615
616   /// needsStackRealignment - true if storage within the function requires the
617   /// stack pointer to be aligned more than the normal calling convention calls
618   /// for.
619   virtual bool needsStackRealignment(const MachineFunction &MF) const {
620     return false;
621   }
622
623   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
624   /// index in the instruction, if there is one.
625   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
626                                            int Idx) const {
627     return 0;
628   }
629
630   /// needsFrameBaseReg - Returns true if the instruction's frame index
631   /// reference would be better served by a base register other than FP
632   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
633   /// references it should create new base registers for.
634   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
635     return false;
636   }
637
638   /// materializeFrameBaseRegister - Insert defining instruction(s) for
639   /// BaseReg to be a pointer to FrameIdx before insertion point I.
640   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
641                                             unsigned BaseReg, int FrameIdx,
642                                             int64_t Offset) const {
643     assert(0 && "materializeFrameBaseRegister does not exist on this target");
644   }
645
646   /// resolveFrameIndex - Resolve a frame index operand of an instruction
647   /// to reference the indicated base register plus offset instead.
648   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
649                                  unsigned BaseReg, int64_t Offset) const {
650     assert(0 && "resolveFrameIndex does not exist on this target");
651   }
652
653   /// isFrameOffsetLegal - Determine whether a given offset immediate is
654   /// encodable to resolve a frame index.
655   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
656                                   int64_t Offset) const {
657     assert(0 && "isFrameOffsetLegal does not exist on this target");
658     return false; // Must return a value in order to compile with VS 2005
659   }
660
661   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
662   /// code insertion to eliminate call frame setup and destroy pseudo
663   /// instructions (but only if the Target is using them).  It is responsible
664   /// for eliminating these instructions, replacing them with concrete
665   /// instructions.  This method need only be implemented if using call frame
666   /// setup/destroy pseudo instructions.
667   ///
668   virtual void
669   eliminateCallFramePseudoInstr(MachineFunction &MF,
670                                 MachineBasicBlock &MBB,
671                                 MachineBasicBlock::iterator MI) const {
672     assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
673   }
674
675
676   /// saveScavengerRegister - Spill the register so it can be used by the
677   /// register scavenger. Return true if the register was spilled, false
678   /// otherwise. If this function does not spill the register, the scavenger
679   /// will instead spill it to the emergency spill slot.
680   ///
681   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
682                                      MachineBasicBlock::iterator I,
683                                      MachineBasicBlock::iterator &UseMI,
684                                      const TargetRegisterClass *RC,
685                                      unsigned Reg) const {
686     return false;
687   }
688
689   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
690   /// frame indices from instructions which may use them.  The instruction
691   /// referenced by the iterator contains an MO_FrameIndex operand which must be
692   /// eliminated by this method.  This method may modify or replace the
693   /// specified instruction, as long as it keeps the iterator pointing at the
694   /// finished product. SPAdj is the SP adjustment due to call frame setup
695   /// instruction.
696   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
697                                    int SPAdj, RegScavenger *RS=NULL) const = 0;
698
699   //===--------------------------------------------------------------------===//
700   /// Debug information queries.
701
702   /// getDwarfRegNum - Map a target register to an equivalent dwarf register
703   /// number.  Returns -1 if there is no equivalent value.  The second
704   /// parameter allows targets to use different numberings for EH info and
705   /// debugging info.
706   virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
707
708   virtual int getLLVMRegNum(unsigned RegNum, bool isEH) const = 0;
709
710   /// getFrameRegister - This method should return the register used as a base
711   /// for values allocated in the current stack frame.
712   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
713
714   /// getRARegister - This method should return the register where the return
715   /// address can be found.
716   virtual unsigned getRARegister() const = 0;
717
718   /// getSEHRegNum - Map a target register to an equivalent SEH register
719   /// number.  Returns -1 if there is no equivalent value.
720   virtual int getSEHRegNum(unsigned i) const {
721     return i;
722   }
723
724   /// getCompactUnwindRegNum - This function maps the register to the number for
725   /// compact unwind encoding. Return -1 if the register isn't valid.
726   virtual int getCompactUnwindRegNum(unsigned, bool) const {
727     return -1;
728   }
729 };
730
731
732 // This is useful when building IndexedMaps keyed on virtual registers
733 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
734   unsigned operator()(unsigned Reg) const {
735     return TargetRegisterInfo::virtReg2Index(Reg);
736   }
737 };
738
739 /// getCommonSubClass - find the largest common subclass of A and B. Return NULL
740 /// if there is no common subclass.
741 const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
742                                              const TargetRegisterClass *B);
743
744 /// PrintReg - Helper class for printing registers on a raw_ostream.
745 /// Prints virtual and physical registers with or without a TRI instance.
746 ///
747 /// The format is:
748 ///   %noreg          - NoRegister
749 ///   %vreg5          - a virtual register.
750 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
751 ///   %EAX            - a physical register
752 ///   %physreg17      - a physical register when no TRI instance given.
753 ///
754 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
755 ///
756 class PrintReg {
757   const TargetRegisterInfo *TRI;
758   unsigned Reg;
759   unsigned SubIdx;
760 public:
761   PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
762     : TRI(tri), Reg(reg), SubIdx(subidx) {}
763   void print(raw_ostream&) const;
764 };
765
766 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
767   PR.print(OS);
768   return OS;
769 }
770
771 } // End llvm namespace
772
773 #endif