]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/Analysis/InstructionSimplify.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / Analysis / InstructionSimplify.cpp
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/PatternMatch.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/Target/TargetData.h"
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33
34 enum { RecursionLimit = 3 };
35
36 STATISTIC(NumExpand,  "Number of expansions");
37 STATISTIC(NumFactor , "Number of factorizations");
38 STATISTIC(NumReassoc, "Number of reassociations");
39
40 static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41                               const DominatorTree *, unsigned);
42 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
43                             const DominatorTree *, unsigned);
44 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
45                               const DominatorTree *, unsigned);
46 static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
47                              const DominatorTree *, unsigned);
48 static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
49                               const DominatorTree *, unsigned);
50
51 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
52 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
53   Instruction *I = dyn_cast<Instruction>(V);
54   if (!I)
55     // Arguments and constants dominate all instructions.
56     return true;
57
58   // If we have a DominatorTree then do a precise test.
59   if (DT)
60     return DT->dominates(I, P);
61
62   // Otherwise, if the instruction is in the entry block, and is not an invoke,
63   // then it obviously dominates all phi nodes.
64   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
65       !isa<InvokeInst>(I))
66     return true;
67
68   return false;
69 }
70
71 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
72 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
73 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
74 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
75 /// Returns the simplified value, or null if no simplification was performed.
76 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
77                           unsigned OpcToExpand, const TargetData *TD,
78                           const DominatorTree *DT, unsigned MaxRecurse) {
79   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
80   // Recursion is always used, so bail out at once if we already hit the limit.
81   if (!MaxRecurse--)
82     return 0;
83
84   // Check whether the expression has the form "(A op' B) op C".
85   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
86     if (Op0->getOpcode() == OpcodeToExpand) {
87       // It does!  Try turning it into "(A op C) op' (B op C)".
88       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
89       // Do "A op C" and "B op C" both simplify?
90       if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
91         if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
92           // They do! Return "L op' R" if it simplifies or is already available.
93           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
94           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
95                                      && L == B && R == A)) {
96             ++NumExpand;
97             return LHS;
98           }
99           // Otherwise return "L op' R" if it simplifies.
100           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
101                                        MaxRecurse)) {
102             ++NumExpand;
103             return V;
104           }
105         }
106     }
107
108   // Check whether the expression has the form "A op (B op' C)".
109   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
110     if (Op1->getOpcode() == OpcodeToExpand) {
111       // It does!  Try turning it into "(A op B) op' (A op C)".
112       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
113       // Do "A op B" and "A op C" both simplify?
114       if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
115         if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
116           // They do! Return "L op' R" if it simplifies or is already available.
117           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
118           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
119                                      && L == C && R == B)) {
120             ++NumExpand;
121             return RHS;
122           }
123           // Otherwise return "L op' R" if it simplifies.
124           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
125                                        MaxRecurse)) {
126             ++NumExpand;
127             return V;
128           }
129         }
130     }
131
132   return 0;
133 }
134
135 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
136 /// using the operation OpCodeToExtract.  For example, when Opcode is Add and
137 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
138 /// Returns the simplified value, or null if no simplification was performed.
139 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
140                              unsigned OpcToExtract, const TargetData *TD,
141                              const DominatorTree *DT, unsigned MaxRecurse) {
142   Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
143   // Recursion is always used, so bail out at once if we already hit the limit.
144   if (!MaxRecurse--)
145     return 0;
146
147   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
148   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
149
150   if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
151       !Op1 || Op1->getOpcode() != OpcodeToExtract)
152     return 0;
153
154   // The expression has the form "(A op' B) op (C op' D)".
155   Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
156   Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
157
158   // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
159   // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
160   // commutative case, "(A op' B) op (C op' A)"?
161   if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
162     Value *DD = A == C ? D : C;
163     // Form "A op' (B op DD)" if it simplifies completely.
164     // Does "B op DD" simplify?
165     if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
166       // It does!  Return "A op' V" if it simplifies or is already available.
167       // If V equals B then "A op' V" is just the LHS.  If V equals DD then
168       // "A op' V" is just the RHS.
169       if (V == B || V == DD) {
170         ++NumFactor;
171         return V == B ? LHS : RHS;
172       }
173       // Otherwise return "A op' V" if it simplifies.
174       if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
175         ++NumFactor;
176         return W;
177       }
178     }
179   }
180
181   // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
182   // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
183   // commutative case, "(A op' B) op (B op' D)"?
184   if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
185     Value *CC = B == D ? C : D;
186     // Form "(A op CC) op' B" if it simplifies completely..
187     // Does "A op CC" simplify?
188     if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
189       // It does!  Return "V op' B" if it simplifies or is already available.
190       // If V equals A then "V op' B" is just the LHS.  If V equals CC then
191       // "V op' B" is just the RHS.
192       if (V == A || V == CC) {
193         ++NumFactor;
194         return V == A ? LHS : RHS;
195       }
196       // Otherwise return "V op' B" if it simplifies.
197       if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
198         ++NumFactor;
199         return W;
200       }
201     }
202   }
203
204   return 0;
205 }
206
207 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
208 /// operations.  Returns the simpler value, or null if none was found.
209 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
210                                        const TargetData *TD,
211                                        const DominatorTree *DT,
212                                        unsigned MaxRecurse) {
213   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
214   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
215
216   // Recursion is always used, so bail out at once if we already hit the limit.
217   if (!MaxRecurse--)
218     return 0;
219
220   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
221   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
222
223   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
224   if (Op0 && Op0->getOpcode() == Opcode) {
225     Value *A = Op0->getOperand(0);
226     Value *B = Op0->getOperand(1);
227     Value *C = RHS;
228
229     // Does "B op C" simplify?
230     if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
231       // It does!  Return "A op V" if it simplifies or is already available.
232       // If V equals B then "A op V" is just the LHS.
233       if (V == B) return LHS;
234       // Otherwise return "A op V" if it simplifies.
235       if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
236         ++NumReassoc;
237         return W;
238       }
239     }
240   }
241
242   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
243   if (Op1 && Op1->getOpcode() == Opcode) {
244     Value *A = LHS;
245     Value *B = Op1->getOperand(0);
246     Value *C = Op1->getOperand(1);
247
248     // Does "A op B" simplify?
249     if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
250       // It does!  Return "V op C" if it simplifies or is already available.
251       // If V equals B then "V op C" is just the RHS.
252       if (V == B) return RHS;
253       // Otherwise return "V op C" if it simplifies.
254       if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
255         ++NumReassoc;
256         return W;
257       }
258     }
259   }
260
261   // The remaining transforms require commutativity as well as associativity.
262   if (!Instruction::isCommutative(Opcode))
263     return 0;
264
265   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
266   if (Op0 && Op0->getOpcode() == Opcode) {
267     Value *A = Op0->getOperand(0);
268     Value *B = Op0->getOperand(1);
269     Value *C = RHS;
270
271     // Does "C op A" simplify?
272     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
273       // It does!  Return "V op B" if it simplifies or is already available.
274       // If V equals A then "V op B" is just the LHS.
275       if (V == A) return LHS;
276       // Otherwise return "V op B" if it simplifies.
277       if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
278         ++NumReassoc;
279         return W;
280       }
281     }
282   }
283
284   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
285   if (Op1 && Op1->getOpcode() == Opcode) {
286     Value *A = LHS;
287     Value *B = Op1->getOperand(0);
288     Value *C = Op1->getOperand(1);
289
290     // Does "C op A" simplify?
291     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
292       // It does!  Return "B op V" if it simplifies or is already available.
293       // If V equals C then "B op V" is just the RHS.
294       if (V == C) return RHS;
295       // Otherwise return "B op V" if it simplifies.
296       if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
297         ++NumReassoc;
298         return W;
299       }
300     }
301   }
302
303   return 0;
304 }
305
306 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
307 /// instruction as an operand, try to simplify the binop by seeing whether
308 /// evaluating it on both branches of the select results in the same value.
309 /// Returns the common value if so, otherwise returns null.
310 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
311                                     const TargetData *TD,
312                                     const DominatorTree *DT,
313                                     unsigned MaxRecurse) {
314   // Recursion is always used, so bail out at once if we already hit the limit.
315   if (!MaxRecurse--)
316     return 0;
317
318   SelectInst *SI;
319   if (isa<SelectInst>(LHS)) {
320     SI = cast<SelectInst>(LHS);
321   } else {
322     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
323     SI = cast<SelectInst>(RHS);
324   }
325
326   // Evaluate the BinOp on the true and false branches of the select.
327   Value *TV;
328   Value *FV;
329   if (SI == LHS) {
330     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
331     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
332   } else {
333     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
334     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
335   }
336
337   // If they simplified to the same value, then return the common value.
338   // If they both failed to simplify then return null.
339   if (TV == FV)
340     return TV;
341
342   // If one branch simplified to undef, return the other one.
343   if (TV && isa<UndefValue>(TV))
344     return FV;
345   if (FV && isa<UndefValue>(FV))
346     return TV;
347
348   // If applying the operation did not change the true and false select values,
349   // then the result of the binop is the select itself.
350   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
351     return SI;
352
353   // If one branch simplified and the other did not, and the simplified
354   // value is equal to the unsimplified one, return the simplified value.
355   // For example, select (cond, X, X & Z) & Z -> X & Z.
356   if ((FV && !TV) || (TV && !FV)) {
357     // Check that the simplified value has the form "X op Y" where "op" is the
358     // same as the original operation.
359     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
360     if (Simplified && Simplified->getOpcode() == Opcode) {
361       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
362       // We already know that "op" is the same as for the simplified value.  See
363       // if the operands match too.  If so, return the simplified value.
364       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
365       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
366       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
367       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
368           Simplified->getOperand(1) == UnsimplifiedRHS)
369         return Simplified;
370       if (Simplified->isCommutative() &&
371           Simplified->getOperand(1) == UnsimplifiedLHS &&
372           Simplified->getOperand(0) == UnsimplifiedRHS)
373         return Simplified;
374     }
375   }
376
377   return 0;
378 }
379
380 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
381 /// try to simplify the comparison by seeing whether both branches of the select
382 /// result in the same value.  Returns the common value if so, otherwise returns
383 /// null.
384 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
385                                   Value *RHS, const TargetData *TD,
386                                   const DominatorTree *DT,
387                                   unsigned MaxRecurse) {
388   // Recursion is always used, so bail out at once if we already hit the limit.
389   if (!MaxRecurse--)
390     return 0;
391
392   // Make sure the select is on the LHS.
393   if (!isa<SelectInst>(LHS)) {
394     std::swap(LHS, RHS);
395     Pred = CmpInst::getSwappedPredicate(Pred);
396   }
397   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
398   SelectInst *SI = cast<SelectInst>(LHS);
399
400   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
401   // Does "cmp TV, RHS" simplify?
402   if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
403                                     MaxRecurse)) {
404     // It does!  Does "cmp FV, RHS" simplify?
405     if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
406                                       MaxRecurse)) {
407       // It does!  If they simplified to the same value, then use it as the
408       // result of the original comparison.
409       if (TCmp == FCmp)
410         return TCmp;
411       Value *Cond = SI->getCondition();
412       // If the false value simplified to false, then the result of the compare
413       // is equal to "Cond && TCmp".  This also catches the case when the false
414       // value simplified to false and the true value to true, returning "Cond".
415       if (match(FCmp, m_Zero()))
416         if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
417           return V;
418       // If the true value simplified to true, then the result of the compare
419       // is equal to "Cond || FCmp".
420       if (match(TCmp, m_One()))
421         if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
422           return V;
423       // Finally, if the false value simplified to true and the true value to
424       // false, then the result of the compare is equal to "!Cond".
425       if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
426         if (Value *V =
427             SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
428                             TD, DT, MaxRecurse))
429           return V;
430     }
431   }
432
433   return 0;
434 }
435
436 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
437 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
438 /// it on the incoming phi values yields the same result for every value.  If so
439 /// returns the common value, otherwise returns null.
440 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
441                                  const TargetData *TD, const DominatorTree *DT,
442                                  unsigned MaxRecurse) {
443   // Recursion is always used, so bail out at once if we already hit the limit.
444   if (!MaxRecurse--)
445     return 0;
446
447   PHINode *PI;
448   if (isa<PHINode>(LHS)) {
449     PI = cast<PHINode>(LHS);
450     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
451     if (!ValueDominatesPHI(RHS, PI, DT))
452       return 0;
453   } else {
454     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
455     PI = cast<PHINode>(RHS);
456     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
457     if (!ValueDominatesPHI(LHS, PI, DT))
458       return 0;
459   }
460
461   // Evaluate the BinOp on the incoming phi values.
462   Value *CommonValue = 0;
463   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
464     Value *Incoming = PI->getIncomingValue(i);
465     // If the incoming value is the phi node itself, it can safely be skipped.
466     if (Incoming == PI) continue;
467     Value *V = PI == LHS ?
468       SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
469       SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
470     // If the operation failed to simplify, or simplified to a different value
471     // to previously, then give up.
472     if (!V || (CommonValue && V != CommonValue))
473       return 0;
474     CommonValue = V;
475   }
476
477   return CommonValue;
478 }
479
480 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
481 /// try to simplify the comparison by seeing whether comparing with all of the
482 /// incoming phi values yields the same result every time.  If so returns the
483 /// common result, otherwise returns null.
484 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
485                                const TargetData *TD, const DominatorTree *DT,
486                                unsigned MaxRecurse) {
487   // Recursion is always used, so bail out at once if we already hit the limit.
488   if (!MaxRecurse--)
489     return 0;
490
491   // Make sure the phi is on the LHS.
492   if (!isa<PHINode>(LHS)) {
493     std::swap(LHS, RHS);
494     Pred = CmpInst::getSwappedPredicate(Pred);
495   }
496   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
497   PHINode *PI = cast<PHINode>(LHS);
498
499   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
500   if (!ValueDominatesPHI(RHS, PI, DT))
501     return 0;
502
503   // Evaluate the BinOp on the incoming phi values.
504   Value *CommonValue = 0;
505   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
506     Value *Incoming = PI->getIncomingValue(i);
507     // If the incoming value is the phi node itself, it can safely be skipped.
508     if (Incoming == PI) continue;
509     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
510     // If the operation failed to simplify, or simplified to a different value
511     // to previously, then give up.
512     if (!V || (CommonValue && V != CommonValue))
513       return 0;
514     CommonValue = V;
515   }
516
517   return CommonValue;
518 }
519
520 /// SimplifyAddInst - Given operands for an Add, see if we can
521 /// fold the result.  If not, this returns null.
522 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
523                               const TargetData *TD, const DominatorTree *DT,
524                               unsigned MaxRecurse) {
525   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
526     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
527       Constant *Ops[] = { CLHS, CRHS };
528       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
529                                       Ops, 2, TD);
530     }
531
532     // Canonicalize the constant to the RHS.
533     std::swap(Op0, Op1);
534   }
535
536   // X + undef -> undef
537   if (match(Op1, m_Undef()))
538     return Op1;
539
540   // X + 0 -> X
541   if (match(Op1, m_Zero()))
542     return Op0;
543
544   // X + (Y - X) -> Y
545   // (Y - X) + X -> Y
546   // Eg: X + -X -> 0
547   Value *Y = 0;
548   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
549       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
550     return Y;
551
552   // X + ~X -> -1   since   ~X = -X-1
553   if (match(Op0, m_Not(m_Specific(Op1))) ||
554       match(Op1, m_Not(m_Specific(Op0))))
555     return Constant::getAllOnesValue(Op0->getType());
556
557   /// i1 add -> xor.
558   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
559     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
560       return V;
561
562   // Try some generic simplifications for associative operations.
563   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
564                                           MaxRecurse))
565     return V;
566
567   // Mul distributes over Add.  Try some generic simplifications based on this.
568   if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
569                                 TD, DT, MaxRecurse))
570     return V;
571
572   // Threading Add over selects and phi nodes is pointless, so don't bother.
573   // Threading over the select in "A + select(cond, B, C)" means evaluating
574   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
575   // only if B and C are equal.  If B and C are equal then (since we assume
576   // that operands have already been simplified) "select(cond, B, C)" should
577   // have been simplified to the common value of B and C already.  Analysing
578   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
579   // for threading over phi nodes.
580
581   return 0;
582 }
583
584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
585                              const TargetData *TD, const DominatorTree *DT) {
586   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
587 }
588
589 /// SimplifySubInst - Given operands for a Sub, see if we can
590 /// fold the result.  If not, this returns null.
591 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
592                               const TargetData *TD, const DominatorTree *DT,
593                               unsigned MaxRecurse) {
594   if (Constant *CLHS = dyn_cast<Constant>(Op0))
595     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596       Constant *Ops[] = { CLHS, CRHS };
597       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
598                                       Ops, 2, TD);
599     }
600
601   // X - undef -> undef
602   // undef - X -> undef
603   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
604     return UndefValue::get(Op0->getType());
605
606   // X - 0 -> X
607   if (match(Op1, m_Zero()))
608     return Op0;
609
610   // X - X -> 0
611   if (Op0 == Op1)
612     return Constant::getNullValue(Op0->getType());
613
614   // (X*2) - X -> X
615   // (X<<1) - X -> X
616   Value *X = 0;
617   if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
618       match(Op0, m_Shl(m_Specific(Op1), m_One())))
619     return Op1;
620
621   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
622   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
623   Value *Y = 0, *Z = Op1;
624   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
625     // See if "V === Y - Z" simplifies.
626     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
627       // It does!  Now see if "X + V" simplifies.
628       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
629                                    MaxRecurse-1)) {
630         // It does, we successfully reassociated!
631         ++NumReassoc;
632         return W;
633       }
634     // See if "V === X - Z" simplifies.
635     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
636       // It does!  Now see if "Y + V" simplifies.
637       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
638                                    MaxRecurse-1)) {
639         // It does, we successfully reassociated!
640         ++NumReassoc;
641         return W;
642       }
643   }
644
645   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
646   // For example, X - (X + 1) -> -1
647   X = Op0;
648   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
649     // See if "V === X - Y" simplifies.
650     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
651       // It does!  Now see if "V - Z" simplifies.
652       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
653                                    MaxRecurse-1)) {
654         // It does, we successfully reassociated!
655         ++NumReassoc;
656         return W;
657       }
658     // See if "V === X - Z" simplifies.
659     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
660       // It does!  Now see if "V - Y" simplifies.
661       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
662                                    MaxRecurse-1)) {
663         // It does, we successfully reassociated!
664         ++NumReassoc;
665         return W;
666       }
667   }
668
669   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
670   // For example, X - (X - Y) -> Y.
671   Z = Op0;
672   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
673     // See if "V === Z - X" simplifies.
674     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
675       // It does!  Now see if "V + Y" simplifies.
676       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
677                                    MaxRecurse-1)) {
678         // It does, we successfully reassociated!
679         ++NumReassoc;
680         return W;
681       }
682
683   // Mul distributes over Sub.  Try some generic simplifications based on this.
684   if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
685                                 TD, DT, MaxRecurse))
686     return V;
687
688   // i1 sub -> xor.
689   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
690     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
691       return V;
692
693   // Threading Sub over selects and phi nodes is pointless, so don't bother.
694   // Threading over the select in "A - select(cond, B, C)" means evaluating
695   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
696   // only if B and C are equal.  If B and C are equal then (since we assume
697   // that operands have already been simplified) "select(cond, B, C)" should
698   // have been simplified to the common value of B and C already.  Analysing
699   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
700   // for threading over phi nodes.
701
702   return 0;
703 }
704
705 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
706                              const TargetData *TD, const DominatorTree *DT) {
707   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
708 }
709
710 /// SimplifyMulInst - Given operands for a Mul, see if we can
711 /// fold the result.  If not, this returns null.
712 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
713                               const DominatorTree *DT, unsigned MaxRecurse) {
714   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
715     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
716       Constant *Ops[] = { CLHS, CRHS };
717       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
718                                       Ops, 2, TD);
719     }
720
721     // Canonicalize the constant to the RHS.
722     std::swap(Op0, Op1);
723   }
724
725   // X * undef -> 0
726   if (match(Op1, m_Undef()))
727     return Constant::getNullValue(Op0->getType());
728
729   // X * 0 -> 0
730   if (match(Op1, m_Zero()))
731     return Op1;
732
733   // X * 1 -> X
734   if (match(Op1, m_One()))
735     return Op0;
736
737   // (X / Y) * Y -> X if the division is exact.
738   Value *X = 0, *Y = 0;
739   if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
740       (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
741     BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
742     if (Div->isExact())
743       return X;
744   }
745
746   // i1 mul -> and.
747   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
748     if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
749       return V;
750
751   // Try some generic simplifications for associative operations.
752   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
753                                           MaxRecurse))
754     return V;
755
756   // Mul distributes over Add.  Try some generic simplifications based on this.
757   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
758                              TD, DT, MaxRecurse))
759     return V;
760
761   // If the operation is with the result of a select instruction, check whether
762   // operating on either branch of the select always yields the same value.
763   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
764     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
765                                          MaxRecurse))
766       return V;
767
768   // If the operation is with the result of a phi instruction, check whether
769   // operating on all incoming values of the phi always yields the same value.
770   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
771     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
772                                       MaxRecurse))
773       return V;
774
775   return 0;
776 }
777
778 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
779                              const DominatorTree *DT) {
780   return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
781 }
782
783 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
784 /// fold the result.  If not, this returns null.
785 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
786                           const TargetData *TD, const DominatorTree *DT,
787                           unsigned MaxRecurse) {
788   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
789     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
790       Constant *Ops[] = { C0, C1 };
791       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
792     }
793   }
794
795   bool isSigned = Opcode == Instruction::SDiv;
796
797   // X / undef -> undef
798   if (match(Op1, m_Undef()))
799     return Op1;
800
801   // undef / X -> 0
802   if (match(Op0, m_Undef()))
803     return Constant::getNullValue(Op0->getType());
804
805   // 0 / X -> 0, we don't need to preserve faults!
806   if (match(Op0, m_Zero()))
807     return Op0;
808
809   // X / 1 -> X
810   if (match(Op1, m_One()))
811     return Op0;
812
813   if (Op0->getType()->isIntegerTy(1))
814     // It can't be division by zero, hence it must be division by one.
815     return Op0;
816
817   // X / X -> 1
818   if (Op0 == Op1)
819     return ConstantInt::get(Op0->getType(), 1);
820
821   // (X * Y) / Y -> X if the multiplication does not overflow.
822   Value *X = 0, *Y = 0;
823   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
824     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
825     BinaryOperator *Mul = cast<BinaryOperator>(Op0);
826     // If the Mul knows it does not overflow, then we are good to go.
827     if ((isSigned && Mul->hasNoSignedWrap()) ||
828         (!isSigned && Mul->hasNoUnsignedWrap()))
829       return X;
830     // If X has the form X = A / Y then X * Y cannot overflow.
831     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
832       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
833         return X;
834   }
835
836   // (X rem Y) / Y -> 0
837   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
838       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
839     return Constant::getNullValue(Op0->getType());
840
841   // If the operation is with the result of a select instruction, check whether
842   // operating on either branch of the select always yields the same value.
843   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
844     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
845       return V;
846
847   // If the operation is with the result of a phi instruction, check whether
848   // operating on all incoming values of the phi always yields the same value.
849   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
850     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
851       return V;
852
853   return 0;
854 }
855
856 /// SimplifySDivInst - Given operands for an SDiv, see if we can
857 /// fold the result.  If not, this returns null.
858 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
859                                const DominatorTree *DT, unsigned MaxRecurse) {
860   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
861     return V;
862
863   return 0;
864 }
865
866 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
867                               const DominatorTree *DT) {
868   return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
869 }
870
871 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
872 /// fold the result.  If not, this returns null.
873 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
874                                const DominatorTree *DT, unsigned MaxRecurse) {
875   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
876     return V;
877
878   return 0;
879 }
880
881 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
882                               const DominatorTree *DT) {
883   return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
884 }
885
886 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
887                                const DominatorTree *, unsigned) {
888   // undef / X -> undef    (the undef could be a snan).
889   if (match(Op0, m_Undef()))
890     return Op0;
891
892   // X / undef -> undef
893   if (match(Op1, m_Undef()))
894     return Op1;
895
896   return 0;
897 }
898
899 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
900                               const DominatorTree *DT) {
901   return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
902 }
903
904 /// SimplifyRem - Given operands for an SRem or URem, see if we can
905 /// fold the result.  If not, this returns null.
906 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
907                           const TargetData *TD, const DominatorTree *DT,
908                           unsigned MaxRecurse) {
909   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
910     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
911       Constant *Ops[] = { C0, C1 };
912       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
913     }
914   }
915
916   // X % undef -> undef
917   if (match(Op1, m_Undef()))
918     return Op1;
919
920   // undef % X -> 0
921   if (match(Op0, m_Undef()))
922     return Constant::getNullValue(Op0->getType());
923
924   // 0 % X -> 0, we don't need to preserve faults!
925   if (match(Op0, m_Zero()))
926     return Op0;
927
928   // X % 0 -> undef, we don't need to preserve faults!
929   if (match(Op1, m_Zero()))
930     return UndefValue::get(Op0->getType());
931
932   // X % 1 -> 0
933   if (match(Op1, m_One()))
934     return Constant::getNullValue(Op0->getType());
935
936   if (Op0->getType()->isIntegerTy(1))
937     // It can't be remainder by zero, hence it must be remainder by one.
938     return Constant::getNullValue(Op0->getType());
939
940   // X % X -> 0
941   if (Op0 == Op1)
942     return Constant::getNullValue(Op0->getType());
943
944   // If the operation is with the result of a select instruction, check whether
945   // operating on either branch of the select always yields the same value.
946   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
947     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
948       return V;
949
950   // If the operation is with the result of a phi instruction, check whether
951   // operating on all incoming values of the phi always yields the same value.
952   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
953     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
954       return V;
955
956   return 0;
957 }
958
959 /// SimplifySRemInst - Given operands for an SRem, see if we can
960 /// fold the result.  If not, this returns null.
961 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
962                                const DominatorTree *DT, unsigned MaxRecurse) {
963   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
964     return V;
965
966   return 0;
967 }
968
969 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
970                               const DominatorTree *DT) {
971   return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
972 }
973
974 /// SimplifyURemInst - Given operands for a URem, see if we can
975 /// fold the result.  If not, this returns null.
976 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
977                                const DominatorTree *DT, unsigned MaxRecurse) {
978   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
979     return V;
980
981   return 0;
982 }
983
984 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
985                               const DominatorTree *DT) {
986   return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
987 }
988
989 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
990                                const DominatorTree *, unsigned) {
991   // undef % X -> undef    (the undef could be a snan).
992   if (match(Op0, m_Undef()))
993     return Op0;
994
995   // X % undef -> undef
996   if (match(Op1, m_Undef()))
997     return Op1;
998
999   return 0;
1000 }
1001
1002 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1003                               const DominatorTree *DT) {
1004   return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
1005 }
1006
1007 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1008 /// fold the result.  If not, this returns null.
1009 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1010                             const TargetData *TD, const DominatorTree *DT,
1011                             unsigned MaxRecurse) {
1012   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1013     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1014       Constant *Ops[] = { C0, C1 };
1015       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
1016     }
1017   }
1018
1019   // 0 shift by X -> 0
1020   if (match(Op0, m_Zero()))
1021     return Op0;
1022
1023   // X shift by 0 -> X
1024   if (match(Op1, m_Zero()))
1025     return Op0;
1026
1027   // X shift by undef -> undef because it may shift by the bitwidth.
1028   if (match(Op1, m_Undef()))
1029     return Op1;
1030
1031   // Shifting by the bitwidth or more is undefined.
1032   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1033     if (CI->getValue().getLimitedValue() >=
1034         Op0->getType()->getScalarSizeInBits())
1035       return UndefValue::get(Op0->getType());
1036
1037   // If the operation is with the result of a select instruction, check whether
1038   // operating on either branch of the select always yields the same value.
1039   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1040     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1041       return V;
1042
1043   // If the operation is with the result of a phi instruction, check whether
1044   // operating on all incoming values of the phi always yields the same value.
1045   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1046     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1047       return V;
1048
1049   return 0;
1050 }
1051
1052 /// SimplifyShlInst - Given operands for an Shl, see if we can
1053 /// fold the result.  If not, this returns null.
1054 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1055                               const TargetData *TD, const DominatorTree *DT,
1056                               unsigned MaxRecurse) {
1057   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
1058     return V;
1059
1060   // undef << X -> 0
1061   if (match(Op0, m_Undef()))
1062     return Constant::getNullValue(Op0->getType());
1063
1064   // (X >> A) << A -> X
1065   Value *X;
1066   if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
1067       cast<PossiblyExactOperator>(Op0)->isExact())
1068     return X;
1069   return 0;
1070 }
1071
1072 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1073                              const TargetData *TD, const DominatorTree *DT) {
1074   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
1075 }
1076
1077 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1078 /// fold the result.  If not, this returns null.
1079 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1080                                const TargetData *TD, const DominatorTree *DT,
1081                                unsigned MaxRecurse) {
1082   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
1083     return V;
1084
1085   // undef >>l X -> 0
1086   if (match(Op0, m_Undef()))
1087     return Constant::getNullValue(Op0->getType());
1088
1089   // (X << A) >> A -> X
1090   Value *X;
1091   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1092       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1093     return X;
1094
1095   return 0;
1096 }
1097
1098 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1099                               const TargetData *TD, const DominatorTree *DT) {
1100   return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1101 }
1102
1103 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1104 /// fold the result.  If not, this returns null.
1105 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1106                                const TargetData *TD, const DominatorTree *DT,
1107                                unsigned MaxRecurse) {
1108   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
1109     return V;
1110
1111   // all ones >>a X -> all ones
1112   if (match(Op0, m_AllOnes()))
1113     return Op0;
1114
1115   // undef >>a X -> all ones
1116   if (match(Op0, m_Undef()))
1117     return Constant::getAllOnesValue(Op0->getType());
1118
1119   // (X << A) >> A -> X
1120   Value *X;
1121   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1122       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1123     return X;
1124
1125   return 0;
1126 }
1127
1128 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1129                               const TargetData *TD, const DominatorTree *DT) {
1130   return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1131 }
1132
1133 /// SimplifyAndInst - Given operands for an And, see if we can
1134 /// fold the result.  If not, this returns null.
1135 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1136                               const DominatorTree *DT, unsigned MaxRecurse) {
1137   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1138     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1139       Constant *Ops[] = { CLHS, CRHS };
1140       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1141                                       Ops, 2, TD);
1142     }
1143
1144     // Canonicalize the constant to the RHS.
1145     std::swap(Op0, Op1);
1146   }
1147
1148   // X & undef -> 0
1149   if (match(Op1, m_Undef()))
1150     return Constant::getNullValue(Op0->getType());
1151
1152   // X & X = X
1153   if (Op0 == Op1)
1154     return Op0;
1155
1156   // X & 0 = 0
1157   if (match(Op1, m_Zero()))
1158     return Op1;
1159
1160   // X & -1 = X
1161   if (match(Op1, m_AllOnes()))
1162     return Op0;
1163
1164   // A & ~A  =  ~A & A  =  0
1165   if (match(Op0, m_Not(m_Specific(Op1))) ||
1166       match(Op1, m_Not(m_Specific(Op0))))
1167     return Constant::getNullValue(Op0->getType());
1168
1169   // (A | ?) & A = A
1170   Value *A = 0, *B = 0;
1171   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1172       (A == Op1 || B == Op1))
1173     return Op1;
1174
1175   // A & (A | ?) = A
1176   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1177       (A == Op0 || B == Op0))
1178     return Op0;
1179
1180   // Try some generic simplifications for associative operations.
1181   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1182                                           MaxRecurse))
1183     return V;
1184
1185   // And distributes over Or.  Try some generic simplifications based on this.
1186   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1187                              TD, DT, MaxRecurse))
1188     return V;
1189
1190   // And distributes over Xor.  Try some generic simplifications based on this.
1191   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1192                              TD, DT, MaxRecurse))
1193     return V;
1194
1195   // Or distributes over And.  Try some generic simplifications based on this.
1196   if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1197                                 TD, DT, MaxRecurse))
1198     return V;
1199
1200   // If the operation is with the result of a select instruction, check whether
1201   // operating on either branch of the select always yields the same value.
1202   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1203     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
1204                                          MaxRecurse))
1205       return V;
1206
1207   // If the operation is with the result of a phi instruction, check whether
1208   // operating on all incoming values of the phi always yields the same value.
1209   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1210     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
1211                                       MaxRecurse))
1212       return V;
1213
1214   return 0;
1215 }
1216
1217 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1218                              const DominatorTree *DT) {
1219   return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
1220 }
1221
1222 /// SimplifyOrInst - Given operands for an Or, see if we can
1223 /// fold the result.  If not, this returns null.
1224 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1225                              const DominatorTree *DT, unsigned MaxRecurse) {
1226   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1227     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1228       Constant *Ops[] = { CLHS, CRHS };
1229       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1230                                       Ops, 2, TD);
1231     }
1232
1233     // Canonicalize the constant to the RHS.
1234     std::swap(Op0, Op1);
1235   }
1236
1237   // X | undef -> -1
1238   if (match(Op1, m_Undef()))
1239     return Constant::getAllOnesValue(Op0->getType());
1240
1241   // X | X = X
1242   if (Op0 == Op1)
1243     return Op0;
1244
1245   // X | 0 = X
1246   if (match(Op1, m_Zero()))
1247     return Op0;
1248
1249   // X | -1 = -1
1250   if (match(Op1, m_AllOnes()))
1251     return Op1;
1252
1253   // A | ~A  =  ~A | A  =  -1
1254   if (match(Op0, m_Not(m_Specific(Op1))) ||
1255       match(Op1, m_Not(m_Specific(Op0))))
1256     return Constant::getAllOnesValue(Op0->getType());
1257
1258   // (A & ?) | A = A
1259   Value *A = 0, *B = 0;
1260   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1261       (A == Op1 || B == Op1))
1262     return Op1;
1263
1264   // A | (A & ?) = A
1265   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1266       (A == Op0 || B == Op0))
1267     return Op0;
1268
1269   // ~(A & ?) | A = -1
1270   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1271       (A == Op1 || B == Op1))
1272     return Constant::getAllOnesValue(Op1->getType());
1273
1274   // A | ~(A & ?) = -1
1275   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1276       (A == Op0 || B == Op0))
1277     return Constant::getAllOnesValue(Op0->getType());
1278
1279   // Try some generic simplifications for associative operations.
1280   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1281                                           MaxRecurse))
1282     return V;
1283
1284   // Or distributes over And.  Try some generic simplifications based on this.
1285   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1286                              TD, DT, MaxRecurse))
1287     return V;
1288
1289   // And distributes over Or.  Try some generic simplifications based on this.
1290   if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1291                                 TD, DT, MaxRecurse))
1292     return V;
1293
1294   // If the operation is with the result of a select instruction, check whether
1295   // operating on either branch of the select always yields the same value.
1296   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1297     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1298                                          MaxRecurse))
1299       return V;
1300
1301   // If the operation is with the result of a phi instruction, check whether
1302   // operating on all incoming values of the phi always yields the same value.
1303   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1304     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1305                                       MaxRecurse))
1306       return V;
1307
1308   return 0;
1309 }
1310
1311 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1312                             const DominatorTree *DT) {
1313   return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1314 }
1315
1316 /// SimplifyXorInst - Given operands for a Xor, see if we can
1317 /// fold the result.  If not, this returns null.
1318 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1319                               const DominatorTree *DT, unsigned MaxRecurse) {
1320   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1321     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1322       Constant *Ops[] = { CLHS, CRHS };
1323       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1324                                       Ops, 2, TD);
1325     }
1326
1327     // Canonicalize the constant to the RHS.
1328     std::swap(Op0, Op1);
1329   }
1330
1331   // A ^ undef -> undef
1332   if (match(Op1, m_Undef()))
1333     return Op1;
1334
1335   // A ^ 0 = A
1336   if (match(Op1, m_Zero()))
1337     return Op0;
1338
1339   // A ^ A = 0
1340   if (Op0 == Op1)
1341     return Constant::getNullValue(Op0->getType());
1342
1343   // A ^ ~A  =  ~A ^ A  =  -1
1344   if (match(Op0, m_Not(m_Specific(Op1))) ||
1345       match(Op1, m_Not(m_Specific(Op0))))
1346     return Constant::getAllOnesValue(Op0->getType());
1347
1348   // Try some generic simplifications for associative operations.
1349   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1350                                           MaxRecurse))
1351     return V;
1352
1353   // And distributes over Xor.  Try some generic simplifications based on this.
1354   if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1355                                 TD, DT, MaxRecurse))
1356     return V;
1357
1358   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1359   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1360   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1361   // only if B and C are equal.  If B and C are equal then (since we assume
1362   // that operands have already been simplified) "select(cond, B, C)" should
1363   // have been simplified to the common value of B and C already.  Analysing
1364   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1365   // for threading over phi nodes.
1366
1367   return 0;
1368 }
1369
1370 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1371                              const DominatorTree *DT) {
1372   return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1373 }
1374
1375 static const Type *GetCompareTy(Value *Op) {
1376   return CmpInst::makeCmpResultType(Op->getType());
1377 }
1378
1379 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1380 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1381 /// otherwise return null.  Helper function for analyzing max/min idioms.
1382 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1383                                          Value *LHS, Value *RHS) {
1384   SelectInst *SI = dyn_cast<SelectInst>(V);
1385   if (!SI)
1386     return 0;
1387   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1388   if (!Cmp)
1389     return 0;
1390   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1391   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1392     return Cmp;
1393   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1394       LHS == CmpRHS && RHS == CmpLHS)
1395     return Cmp;
1396   return 0;
1397 }
1398
1399 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1400 /// fold the result.  If not, this returns null.
1401 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1402                                const TargetData *TD, const DominatorTree *DT,
1403                                unsigned MaxRecurse) {
1404   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1405   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1406
1407   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1408     if (Constant *CRHS = dyn_cast<Constant>(RHS))
1409       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1410
1411     // If we have a constant, make sure it is on the RHS.
1412     std::swap(LHS, RHS);
1413     Pred = CmpInst::getSwappedPredicate(Pred);
1414   }
1415
1416   const Type *ITy = GetCompareTy(LHS); // The return type.
1417   const Type *OpTy = LHS->getType();   // The operand type.
1418
1419   // icmp X, X -> true/false
1420   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1421   // because X could be 0.
1422   if (LHS == RHS || isa<UndefValue>(RHS))
1423     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1424
1425   // Special case logic when the operands have i1 type.
1426   if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1427        cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1428     switch (Pred) {
1429     default: break;
1430     case ICmpInst::ICMP_EQ:
1431       // X == 1 -> X
1432       if (match(RHS, m_One()))
1433         return LHS;
1434       break;
1435     case ICmpInst::ICMP_NE:
1436       // X != 0 -> X
1437       if (match(RHS, m_Zero()))
1438         return LHS;
1439       break;
1440     case ICmpInst::ICMP_UGT:
1441       // X >u 0 -> X
1442       if (match(RHS, m_Zero()))
1443         return LHS;
1444       break;
1445     case ICmpInst::ICMP_UGE:
1446       // X >=u 1 -> X
1447       if (match(RHS, m_One()))
1448         return LHS;
1449       break;
1450     case ICmpInst::ICMP_SLT:
1451       // X <s 0 -> X
1452       if (match(RHS, m_Zero()))
1453         return LHS;
1454       break;
1455     case ICmpInst::ICMP_SLE:
1456       // X <=s -1 -> X
1457       if (match(RHS, m_One()))
1458         return LHS;
1459       break;
1460     }
1461   }
1462
1463   // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1464   // different addresses, and what's more the address of a stack variable is
1465   // never null or equal to the address of a global.  Note that generalizing
1466   // to the case where LHS is a global variable address or null is pointless,
1467   // since if both LHS and RHS are constants then we already constant folded
1468   // the compare, and if only one of them is then we moved it to RHS already.
1469   if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1470                                isa<ConstantPointerNull>(RHS)))
1471     // We already know that LHS != RHS.
1472     return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1473
1474   // If we are comparing with zero then try hard since this is a common case.
1475   if (match(RHS, m_Zero())) {
1476     bool LHSKnownNonNegative, LHSKnownNegative;
1477     switch (Pred) {
1478     default:
1479       assert(false && "Unknown ICmp predicate!");
1480     case ICmpInst::ICMP_ULT:
1481       // getNullValue also works for vectors, unlike getFalse.
1482       return Constant::getNullValue(ITy);
1483     case ICmpInst::ICMP_UGE:
1484       // getAllOnesValue also works for vectors, unlike getTrue.
1485       return ConstantInt::getAllOnesValue(ITy);
1486     case ICmpInst::ICMP_EQ:
1487     case ICmpInst::ICMP_ULE:
1488       if (isKnownNonZero(LHS, TD))
1489         return Constant::getNullValue(ITy);
1490       break;
1491     case ICmpInst::ICMP_NE:
1492     case ICmpInst::ICMP_UGT:
1493       if (isKnownNonZero(LHS, TD))
1494         return ConstantInt::getAllOnesValue(ITy);
1495       break;
1496     case ICmpInst::ICMP_SLT:
1497       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1498       if (LHSKnownNegative)
1499         return ConstantInt::getAllOnesValue(ITy);
1500       if (LHSKnownNonNegative)
1501         return Constant::getNullValue(ITy);
1502       break;
1503     case ICmpInst::ICMP_SLE:
1504       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1505       if (LHSKnownNegative)
1506         return ConstantInt::getAllOnesValue(ITy);
1507       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1508         return Constant::getNullValue(ITy);
1509       break;
1510     case ICmpInst::ICMP_SGE:
1511       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1512       if (LHSKnownNegative)
1513         return Constant::getNullValue(ITy);
1514       if (LHSKnownNonNegative)
1515         return ConstantInt::getAllOnesValue(ITy);
1516       break;
1517     case ICmpInst::ICMP_SGT:
1518       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1519       if (LHSKnownNegative)
1520         return Constant::getNullValue(ITy);
1521       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1522         return ConstantInt::getAllOnesValue(ITy);
1523       break;
1524     }
1525   }
1526
1527   // See if we are doing a comparison with a constant integer.
1528   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1529     // Rule out tautological comparisons (eg., ult 0 or uge 0).
1530     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1531     if (RHS_CR.isEmptySet())
1532       return ConstantInt::getFalse(CI->getContext());
1533     if (RHS_CR.isFullSet())
1534       return ConstantInt::getTrue(CI->getContext());
1535
1536     // Many binary operators with constant RHS have easy to compute constant
1537     // range.  Use them to check whether the comparison is a tautology.
1538     uint32_t Width = CI->getBitWidth();
1539     APInt Lower = APInt(Width, 0);
1540     APInt Upper = APInt(Width, 0);
1541     ConstantInt *CI2;
1542     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1543       // 'urem x, CI2' produces [0, CI2).
1544       Upper = CI2->getValue();
1545     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1546       // 'srem x, CI2' produces (-|CI2|, |CI2|).
1547       Upper = CI2->getValue().abs();
1548       Lower = (-Upper) + 1;
1549     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1550       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1551       APInt NegOne = APInt::getAllOnesValue(Width);
1552       if (!CI2->isZero())
1553         Upper = NegOne.udiv(CI2->getValue()) + 1;
1554     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1555       // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1556       APInt IntMin = APInt::getSignedMinValue(Width);
1557       APInt IntMax = APInt::getSignedMaxValue(Width);
1558       APInt Val = CI2->getValue().abs();
1559       if (!Val.isMinValue()) {
1560         Lower = IntMin.sdiv(Val);
1561         Upper = IntMax.sdiv(Val) + 1;
1562       }
1563     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1564       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1565       APInt NegOne = APInt::getAllOnesValue(Width);
1566       if (CI2->getValue().ult(Width))
1567         Upper = NegOne.lshr(CI2->getValue()) + 1;
1568     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1569       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1570       APInt IntMin = APInt::getSignedMinValue(Width);
1571       APInt IntMax = APInt::getSignedMaxValue(Width);
1572       if (CI2->getValue().ult(Width)) {
1573         Lower = IntMin.ashr(CI2->getValue());
1574         Upper = IntMax.ashr(CI2->getValue()) + 1;
1575       }
1576     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1577       // 'or x, CI2' produces [CI2, UINT_MAX].
1578       Lower = CI2->getValue();
1579     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1580       // 'and x, CI2' produces [0, CI2].
1581       Upper = CI2->getValue() + 1;
1582     }
1583     if (Lower != Upper) {
1584       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1585       if (RHS_CR.contains(LHS_CR))
1586         return ConstantInt::getTrue(RHS->getContext());
1587       if (RHS_CR.inverse().contains(LHS_CR))
1588         return ConstantInt::getFalse(RHS->getContext());
1589     }
1590   }
1591
1592   // Compare of cast, for example (zext X) != 0 -> X != 0
1593   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1594     Instruction *LI = cast<CastInst>(LHS);
1595     Value *SrcOp = LI->getOperand(0);
1596     const Type *SrcTy = SrcOp->getType();
1597     const Type *DstTy = LI->getType();
1598
1599     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1600     // if the integer type is the same size as the pointer type.
1601     if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1602         TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1603       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1604         // Transfer the cast to the constant.
1605         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1606                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
1607                                         TD, DT, MaxRecurse-1))
1608           return V;
1609       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1610         if (RI->getOperand(0)->getType() == SrcTy)
1611           // Compare without the cast.
1612           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1613                                           TD, DT, MaxRecurse-1))
1614             return V;
1615       }
1616     }
1617
1618     if (isa<ZExtInst>(LHS)) {
1619       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1620       // same type.
1621       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1622         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1623           // Compare X and Y.  Note that signed predicates become unsigned.
1624           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1625                                           SrcOp, RI->getOperand(0), TD, DT,
1626                                           MaxRecurse-1))
1627             return V;
1628       }
1629       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1630       // too.  If not, then try to deduce the result of the comparison.
1631       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1632         // Compute the constant that would happen if we truncated to SrcTy then
1633         // reextended to DstTy.
1634         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1635         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1636
1637         // If the re-extended constant didn't change then this is effectively
1638         // also a case of comparing two zero-extended values.
1639         if (RExt == CI && MaxRecurse)
1640           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1641                                           SrcOp, Trunc, TD, DT, MaxRecurse-1))
1642             return V;
1643
1644         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1645         // there.  Use this to work out the result of the comparison.
1646         if (RExt != CI) {
1647           switch (Pred) {
1648           default:
1649             assert(false && "Unknown ICmp predicate!");
1650           // LHS <u RHS.
1651           case ICmpInst::ICMP_EQ:
1652           case ICmpInst::ICMP_UGT:
1653           case ICmpInst::ICMP_UGE:
1654             return ConstantInt::getFalse(CI->getContext());
1655
1656           case ICmpInst::ICMP_NE:
1657           case ICmpInst::ICMP_ULT:
1658           case ICmpInst::ICMP_ULE:
1659             return ConstantInt::getTrue(CI->getContext());
1660
1661           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1662           // is non-negative then LHS <s RHS.
1663           case ICmpInst::ICMP_SGT:
1664           case ICmpInst::ICMP_SGE:
1665             return CI->getValue().isNegative() ?
1666               ConstantInt::getTrue(CI->getContext()) :
1667               ConstantInt::getFalse(CI->getContext());
1668
1669           case ICmpInst::ICMP_SLT:
1670           case ICmpInst::ICMP_SLE:
1671             return CI->getValue().isNegative() ?
1672               ConstantInt::getFalse(CI->getContext()) :
1673               ConstantInt::getTrue(CI->getContext());
1674           }
1675         }
1676       }
1677     }
1678
1679     if (isa<SExtInst>(LHS)) {
1680       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1681       // same type.
1682       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1683         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1684           // Compare X and Y.  Note that the predicate does not change.
1685           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1686                                           TD, DT, MaxRecurse-1))
1687             return V;
1688       }
1689       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1690       // too.  If not, then try to deduce the result of the comparison.
1691       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1692         // Compute the constant that would happen if we truncated to SrcTy then
1693         // reextended to DstTy.
1694         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1695         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1696
1697         // If the re-extended constant didn't change then this is effectively
1698         // also a case of comparing two sign-extended values.
1699         if (RExt == CI && MaxRecurse)
1700           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1701                                           MaxRecurse-1))
1702             return V;
1703
1704         // Otherwise the upper bits of LHS are all equal, while RHS has varying
1705         // bits there.  Use this to work out the result of the comparison.
1706         if (RExt != CI) {
1707           switch (Pred) {
1708           default:
1709             assert(false && "Unknown ICmp predicate!");
1710           case ICmpInst::ICMP_EQ:
1711             return ConstantInt::getFalse(CI->getContext());
1712           case ICmpInst::ICMP_NE:
1713             return ConstantInt::getTrue(CI->getContext());
1714
1715           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1716           // LHS >s RHS.
1717           case ICmpInst::ICMP_SGT:
1718           case ICmpInst::ICMP_SGE:
1719             return CI->getValue().isNegative() ?
1720               ConstantInt::getTrue(CI->getContext()) :
1721               ConstantInt::getFalse(CI->getContext());
1722           case ICmpInst::ICMP_SLT:
1723           case ICmpInst::ICMP_SLE:
1724             return CI->getValue().isNegative() ?
1725               ConstantInt::getFalse(CI->getContext()) :
1726               ConstantInt::getTrue(CI->getContext());
1727
1728           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1729           // LHS >u RHS.
1730           case ICmpInst::ICMP_UGT:
1731           case ICmpInst::ICMP_UGE:
1732             // Comparison is true iff the LHS <s 0.
1733             if (MaxRecurse)
1734               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1735                                               Constant::getNullValue(SrcTy),
1736                                               TD, DT, MaxRecurse-1))
1737                 return V;
1738             break;
1739           case ICmpInst::ICMP_ULT:
1740           case ICmpInst::ICMP_ULE:
1741             // Comparison is true iff the LHS >=s 0.
1742             if (MaxRecurse)
1743               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1744                                               Constant::getNullValue(SrcTy),
1745                                               TD, DT, MaxRecurse-1))
1746                 return V;
1747             break;
1748           }
1749         }
1750       }
1751     }
1752   }
1753
1754   // Special logic for binary operators.
1755   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1756   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1757   if (MaxRecurse && (LBO || RBO)) {
1758     // Analyze the case when either LHS or RHS is an add instruction.
1759     Value *A = 0, *B = 0, *C = 0, *D = 0;
1760     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1761     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1762     if (LBO && LBO->getOpcode() == Instruction::Add) {
1763       A = LBO->getOperand(0); B = LBO->getOperand(1);
1764       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1765         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1766         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1767     }
1768     if (RBO && RBO->getOpcode() == Instruction::Add) {
1769       C = RBO->getOperand(0); D = RBO->getOperand(1);
1770       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1771         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1772         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1773     }
1774
1775     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1776     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1777       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1778                                       Constant::getNullValue(RHS->getType()),
1779                                       TD, DT, MaxRecurse-1))
1780         return V;
1781
1782     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1783     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1784       if (Value *V = SimplifyICmpInst(Pred,
1785                                       Constant::getNullValue(LHS->getType()),
1786                                       C == LHS ? D : C, TD, DT, MaxRecurse-1))
1787         return V;
1788
1789     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1790     if (A && C && (A == C || A == D || B == C || B == D) &&
1791         NoLHSWrapProblem && NoRHSWrapProblem) {
1792       // Determine Y and Z in the form icmp (X+Y), (X+Z).
1793       Value *Y = (A == C || A == D) ? B : A;
1794       Value *Z = (C == A || C == B) ? D : C;
1795       if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
1796         return V;
1797     }
1798   }
1799
1800   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1801     bool KnownNonNegative, KnownNegative;
1802     switch (Pred) {
1803     default:
1804       break;
1805     case ICmpInst::ICMP_SGT:
1806     case ICmpInst::ICMP_SGE:
1807       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1808       if (!KnownNonNegative)
1809         break;
1810       // fall-through
1811     case ICmpInst::ICMP_EQ:
1812     case ICmpInst::ICMP_UGT:
1813     case ICmpInst::ICMP_UGE:
1814       // getNullValue also works for vectors, unlike getFalse.
1815       return Constant::getNullValue(ITy);
1816     case ICmpInst::ICMP_SLT:
1817     case ICmpInst::ICMP_SLE:
1818       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1819       if (!KnownNonNegative)
1820         break;
1821       // fall-through
1822     case ICmpInst::ICMP_NE:
1823     case ICmpInst::ICMP_ULT:
1824     case ICmpInst::ICMP_ULE:
1825       // getAllOnesValue also works for vectors, unlike getTrue.
1826       return Constant::getAllOnesValue(ITy);
1827     }
1828   }
1829   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1830     bool KnownNonNegative, KnownNegative;
1831     switch (Pred) {
1832     default:
1833       break;
1834     case ICmpInst::ICMP_SGT:
1835     case ICmpInst::ICMP_SGE:
1836       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1837       if (!KnownNonNegative)
1838         break;
1839       // fall-through
1840     case ICmpInst::ICMP_NE:
1841     case ICmpInst::ICMP_UGT:
1842     case ICmpInst::ICMP_UGE:
1843       // getAllOnesValue also works for vectors, unlike getTrue.
1844       return Constant::getAllOnesValue(ITy);
1845     case ICmpInst::ICMP_SLT:
1846     case ICmpInst::ICMP_SLE:
1847       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1848       if (!KnownNonNegative)
1849         break;
1850       // fall-through
1851     case ICmpInst::ICMP_EQ:
1852     case ICmpInst::ICMP_ULT:
1853     case ICmpInst::ICMP_ULE:
1854       // getNullValue also works for vectors, unlike getFalse.
1855       return Constant::getNullValue(ITy);
1856     }
1857   }
1858
1859   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1860       LBO->getOperand(1) == RBO->getOperand(1)) {
1861     switch (LBO->getOpcode()) {
1862     default: break;
1863     case Instruction::UDiv:
1864     case Instruction::LShr:
1865       if (ICmpInst::isSigned(Pred))
1866         break;
1867       // fall-through
1868     case Instruction::SDiv:
1869     case Instruction::AShr:
1870       if (!LBO->isExact() || !RBO->isExact())
1871         break;
1872       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1873                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
1874         return V;
1875       break;
1876     case Instruction::Shl: {
1877       bool NUW = LBO->hasNoUnsignedWrap() && LBO->hasNoUnsignedWrap();
1878       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
1879       if (!NUW && !NSW)
1880         break;
1881       if (!NSW && ICmpInst::isSigned(Pred))
1882         break;
1883       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1884                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
1885         return V;
1886       break;
1887     }
1888     }
1889   }
1890
1891   // Simplify comparisons involving max/min.
1892   Value *A, *B;
1893   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
1894   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
1895
1896   // Signed variants on "max(a,b)>=a -> true".
1897   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1898     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
1899     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1900     // We analyze this as smax(A, B) pred A.
1901     P = Pred;
1902   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
1903              (A == LHS || B == LHS)) {
1904     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
1905     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1906     // We analyze this as smax(A, B) swapped-pred A.
1907     P = CmpInst::getSwappedPredicate(Pred);
1908   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
1909              (A == RHS || B == RHS)) {
1910     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
1911     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1912     // We analyze this as smax(-A, -B) swapped-pred -A.
1913     // Note that we do not need to actually form -A or -B thanks to EqP.
1914     P = CmpInst::getSwappedPredicate(Pred);
1915   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
1916              (A == LHS || B == LHS)) {
1917     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
1918     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1919     // We analyze this as smax(-A, -B) pred -A.
1920     // Note that we do not need to actually form -A or -B thanks to EqP.
1921     P = Pred;
1922   }
1923   if (P != CmpInst::BAD_ICMP_PREDICATE) {
1924     // Cases correspond to "max(A, B) p A".
1925     switch (P) {
1926     default:
1927       break;
1928     case CmpInst::ICMP_EQ:
1929     case CmpInst::ICMP_SLE:
1930       // Equivalent to "A EqP B".  This may be the same as the condition tested
1931       // in the max/min; if so, we can just return that.
1932       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
1933         return V;
1934       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
1935         return V;
1936       // Otherwise, see if "A EqP B" simplifies.
1937       if (MaxRecurse)
1938         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
1939           return V;
1940       break;
1941     case CmpInst::ICMP_NE:
1942     case CmpInst::ICMP_SGT: {
1943       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
1944       // Equivalent to "A InvEqP B".  This may be the same as the condition
1945       // tested in the max/min; if so, we can just return that.
1946       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
1947         return V;
1948       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
1949         return V;
1950       // Otherwise, see if "A InvEqP B" simplifies.
1951       if (MaxRecurse)
1952         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
1953           return V;
1954       break;
1955     }
1956     case CmpInst::ICMP_SGE:
1957       // Always true.
1958       return Constant::getAllOnesValue(ITy);
1959     case CmpInst::ICMP_SLT:
1960       // Always false.
1961       return Constant::getNullValue(ITy);
1962     }
1963   }
1964
1965   // Unsigned variants on "max(a,b)>=a -> true".
1966   P = CmpInst::BAD_ICMP_PREDICATE;
1967   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1968     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
1969     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1970     // We analyze this as umax(A, B) pred A.
1971     P = Pred;
1972   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
1973              (A == LHS || B == LHS)) {
1974     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
1975     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1976     // We analyze this as umax(A, B) swapped-pred A.
1977     P = CmpInst::getSwappedPredicate(Pred);
1978   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
1979              (A == RHS || B == RHS)) {
1980     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
1981     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
1982     // We analyze this as umax(-A, -B) swapped-pred -A.
1983     // Note that we do not need to actually form -A or -B thanks to EqP.
1984     P = CmpInst::getSwappedPredicate(Pred);
1985   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
1986              (A == LHS || B == LHS)) {
1987     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
1988     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
1989     // We analyze this as umax(-A, -B) pred -A.
1990     // Note that we do not need to actually form -A or -B thanks to EqP.
1991     P = Pred;
1992   }
1993   if (P != CmpInst::BAD_ICMP_PREDICATE) {
1994     // Cases correspond to "max(A, B) p A".
1995     switch (P) {
1996     default:
1997       break;
1998     case CmpInst::ICMP_EQ:
1999     case CmpInst::ICMP_ULE:
2000       // Equivalent to "A EqP B".  This may be the same as the condition tested
2001       // in the max/min; if so, we can just return that.
2002       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2003         return V;
2004       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2005         return V;
2006       // Otherwise, see if "A EqP B" simplifies.
2007       if (MaxRecurse)
2008         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
2009           return V;
2010       break;
2011     case CmpInst::ICMP_NE:
2012     case CmpInst::ICMP_UGT: {
2013       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2014       // Equivalent to "A InvEqP B".  This may be the same as the condition
2015       // tested in the max/min; if so, we can just return that.
2016       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2017         return V;
2018       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2019         return V;
2020       // Otherwise, see if "A InvEqP B" simplifies.
2021       if (MaxRecurse)
2022         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
2023           return V;
2024       break;
2025     }
2026     case CmpInst::ICMP_UGE:
2027       // Always true.
2028       return Constant::getAllOnesValue(ITy);
2029     case CmpInst::ICMP_ULT:
2030       // Always false.
2031       return Constant::getNullValue(ITy);
2032     }
2033   }
2034
2035   // Variants on "max(x,y) >= min(x,z)".
2036   Value *C, *D;
2037   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2038       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2039       (A == C || A == D || B == C || B == D)) {
2040     // max(x, ?) pred min(x, ?).
2041     if (Pred == CmpInst::ICMP_SGE)
2042       // Always true.
2043       return Constant::getAllOnesValue(ITy);
2044     if (Pred == CmpInst::ICMP_SLT)
2045       // Always false.
2046       return Constant::getNullValue(ITy);
2047   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2048              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2049              (A == C || A == D || B == C || B == D)) {
2050     // min(x, ?) pred max(x, ?).
2051     if (Pred == CmpInst::ICMP_SLE)
2052       // Always true.
2053       return Constant::getAllOnesValue(ITy);
2054     if (Pred == CmpInst::ICMP_SGT)
2055       // Always false.
2056       return Constant::getNullValue(ITy);
2057   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2058              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2059              (A == C || A == D || B == C || B == D)) {
2060     // max(x, ?) pred min(x, ?).
2061     if (Pred == CmpInst::ICMP_UGE)
2062       // Always true.
2063       return Constant::getAllOnesValue(ITy);
2064     if (Pred == CmpInst::ICMP_ULT)
2065       // Always false.
2066       return Constant::getNullValue(ITy);
2067   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2068              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2069              (A == C || A == D || B == C || B == D)) {
2070     // min(x, ?) pred max(x, ?).
2071     if (Pred == CmpInst::ICMP_ULE)
2072       // Always true.
2073       return Constant::getAllOnesValue(ITy);
2074     if (Pred == CmpInst::ICMP_UGT)
2075       // Always false.
2076       return Constant::getNullValue(ITy);
2077   }
2078
2079   // If the comparison is with the result of a select instruction, check whether
2080   // comparing with either branch of the select always yields the same value.
2081   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2082     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2083       return V;
2084
2085   // If the comparison is with the result of a phi instruction, check whether
2086   // doing the compare with each incoming phi value yields a common result.
2087   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2088     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2089       return V;
2090
2091   return 0;
2092 }
2093
2094 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2095                               const TargetData *TD, const DominatorTree *DT) {
2096   return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2097 }
2098
2099 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2100 /// fold the result.  If not, this returns null.
2101 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2102                                const TargetData *TD, const DominatorTree *DT,
2103                                unsigned MaxRecurse) {
2104   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2105   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2106
2107   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2108     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2109       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
2110
2111     // If we have a constant, make sure it is on the RHS.
2112     std::swap(LHS, RHS);
2113     Pred = CmpInst::getSwappedPredicate(Pred);
2114   }
2115
2116   // Fold trivial predicates.
2117   if (Pred == FCmpInst::FCMP_FALSE)
2118     return ConstantInt::get(GetCompareTy(LHS), 0);
2119   if (Pred == FCmpInst::FCMP_TRUE)
2120     return ConstantInt::get(GetCompareTy(LHS), 1);
2121
2122   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2123     return UndefValue::get(GetCompareTy(LHS));
2124
2125   // fcmp x,x -> true/false.  Not all compares are foldable.
2126   if (LHS == RHS) {
2127     if (CmpInst::isTrueWhenEqual(Pred))
2128       return ConstantInt::get(GetCompareTy(LHS), 1);
2129     if (CmpInst::isFalseWhenEqual(Pred))
2130       return ConstantInt::get(GetCompareTy(LHS), 0);
2131   }
2132
2133   // Handle fcmp with constant RHS
2134   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2135     // If the constant is a nan, see if we can fold the comparison based on it.
2136     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2137       if (CFP->getValueAPF().isNaN()) {
2138         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2139           return ConstantInt::getFalse(CFP->getContext());
2140         assert(FCmpInst::isUnordered(Pred) &&
2141                "Comparison must be either ordered or unordered!");
2142         // True if unordered.
2143         return ConstantInt::getTrue(CFP->getContext());
2144       }
2145       // Check whether the constant is an infinity.
2146       if (CFP->getValueAPF().isInfinity()) {
2147         if (CFP->getValueAPF().isNegative()) {
2148           switch (Pred) {
2149           case FCmpInst::FCMP_OLT:
2150             // No value is ordered and less than negative infinity.
2151             return ConstantInt::getFalse(CFP->getContext());
2152           case FCmpInst::FCMP_UGE:
2153             // All values are unordered with or at least negative infinity.
2154             return ConstantInt::getTrue(CFP->getContext());
2155           default:
2156             break;
2157           }
2158         } else {
2159           switch (Pred) {
2160           case FCmpInst::FCMP_OGT:
2161             // No value is ordered and greater than infinity.
2162             return ConstantInt::getFalse(CFP->getContext());
2163           case FCmpInst::FCMP_ULE:
2164             // All values are unordered with and at most infinity.
2165             return ConstantInt::getTrue(CFP->getContext());
2166           default:
2167             break;
2168           }
2169         }
2170       }
2171     }
2172   }
2173
2174   // If the comparison is with the result of a select instruction, check whether
2175   // comparing with either branch of the select always yields the same value.
2176   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2177     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2178       return V;
2179
2180   // If the comparison is with the result of a phi instruction, check whether
2181   // doing the compare with each incoming phi value yields a common result.
2182   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2183     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2184       return V;
2185
2186   return 0;
2187 }
2188
2189 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2190                               const TargetData *TD, const DominatorTree *DT) {
2191   return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2192 }
2193
2194 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2195 /// the result.  If not, this returns null.
2196 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2197                                 const TargetData *TD, const DominatorTree *) {
2198   // select true, X, Y  -> X
2199   // select false, X, Y -> Y
2200   if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2201     return CB->getZExtValue() ? TrueVal : FalseVal;
2202
2203   // select C, X, X -> X
2204   if (TrueVal == FalseVal)
2205     return TrueVal;
2206
2207   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2208     if (isa<Constant>(TrueVal))
2209       return TrueVal;
2210     return FalseVal;
2211   }
2212   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2213     return FalseVal;
2214   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2215     return TrueVal;
2216
2217   return 0;
2218 }
2219
2220 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2221 /// fold the result.  If not, this returns null.
2222 Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
2223                              const TargetData *TD, const DominatorTree *) {
2224   // The type of the GEP pointer operand.
2225   const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
2226
2227   // getelementptr P -> P.
2228   if (NumOps == 1)
2229     return Ops[0];
2230
2231   if (isa<UndefValue>(Ops[0])) {
2232     // Compute the (pointer) type returned by the GEP instruction.
2233     const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
2234                                                              NumOps-1);
2235     const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2236     return UndefValue::get(GEPTy);
2237   }
2238
2239   if (NumOps == 2) {
2240     // getelementptr P, 0 -> P.
2241     if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2242       if (C->isZero())
2243         return Ops[0];
2244     // getelementptr P, N -> P if P points to a type of zero size.
2245     if (TD) {
2246       const Type *Ty = PtrTy->getElementType();
2247       if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2248         return Ops[0];
2249     }
2250   }
2251
2252   // Check to see if this is constant foldable.
2253   for (unsigned i = 0; i != NumOps; ++i)
2254     if (!isa<Constant>(Ops[i]))
2255       return 0;
2256
2257   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
2258                                         (Constant *const*)Ops+1, NumOps-1);
2259 }
2260
2261 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2262 static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2263   // If all of the PHI's incoming values are the same then replace the PHI node
2264   // with the common value.
2265   Value *CommonValue = 0;
2266   bool HasUndefInput = false;
2267   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2268     Value *Incoming = PN->getIncomingValue(i);
2269     // If the incoming value is the phi node itself, it can safely be skipped.
2270     if (Incoming == PN) continue;
2271     if (isa<UndefValue>(Incoming)) {
2272       // Remember that we saw an undef value, but otherwise ignore them.
2273       HasUndefInput = true;
2274       continue;
2275     }
2276     if (CommonValue && Incoming != CommonValue)
2277       return 0;  // Not the same, bail out.
2278     CommonValue = Incoming;
2279   }
2280
2281   // If CommonValue is null then all of the incoming values were either undef or
2282   // equal to the phi node itself.
2283   if (!CommonValue)
2284     return UndefValue::get(PN->getType());
2285
2286   // If we have a PHI node like phi(X, undef, X), where X is defined by some
2287   // instruction, we cannot return X as the result of the PHI node unless it
2288   // dominates the PHI block.
2289   if (HasUndefInput)
2290     return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2291
2292   return CommonValue;
2293 }
2294
2295
2296 //=== Helper functions for higher up the class hierarchy.
2297
2298 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2299 /// fold the result.  If not, this returns null.
2300 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2301                             const TargetData *TD, const DominatorTree *DT,
2302                             unsigned MaxRecurse) {
2303   switch (Opcode) {
2304   case Instruction::Add:
2305     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2306                            TD, DT, MaxRecurse);
2307   case Instruction::Sub:
2308     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2309                            TD, DT, MaxRecurse);
2310   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
2311   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
2312   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
2313   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
2314   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
2315   case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
2316   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
2317   case Instruction::Shl:
2318     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2319                            TD, DT, MaxRecurse);
2320   case Instruction::LShr:
2321     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2322   case Instruction::AShr:
2323     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2324   case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
2325   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
2326   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
2327   default:
2328     if (Constant *CLHS = dyn_cast<Constant>(LHS))
2329       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2330         Constant *COps[] = {CLHS, CRHS};
2331         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
2332       }
2333
2334     // If the operation is associative, try some generic simplifications.
2335     if (Instruction::isAssociative(Opcode))
2336       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
2337                                               MaxRecurse))
2338         return V;
2339
2340     // If the operation is with the result of a select instruction, check whether
2341     // operating on either branch of the select always yields the same value.
2342     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2343       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
2344                                            MaxRecurse))
2345         return V;
2346
2347     // If the operation is with the result of a phi instruction, check whether
2348     // operating on all incoming values of the phi always yields the same value.
2349     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2350       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
2351         return V;
2352
2353     return 0;
2354   }
2355 }
2356
2357 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2358                            const TargetData *TD, const DominatorTree *DT) {
2359   return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
2360 }
2361
2362 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2363 /// fold the result.
2364 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2365                               const TargetData *TD, const DominatorTree *DT,
2366                               unsigned MaxRecurse) {
2367   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2368     return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2369   return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2370 }
2371
2372 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2373                              const TargetData *TD, const DominatorTree *DT) {
2374   return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2375 }
2376
2377 /// SimplifyInstruction - See if we can compute a simplified version of this
2378 /// instruction.  If not, this returns null.
2379 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2380                                  const DominatorTree *DT) {
2381   Value *Result;
2382
2383   switch (I->getOpcode()) {
2384   default:
2385     Result = ConstantFoldInstruction(I, TD);
2386     break;
2387   case Instruction::Add:
2388     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2389                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
2390                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2391                              TD, DT);
2392     break;
2393   case Instruction::Sub:
2394     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2395                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
2396                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2397                              TD, DT);
2398     break;
2399   case Instruction::Mul:
2400     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
2401     break;
2402   case Instruction::SDiv:
2403     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2404     break;
2405   case Instruction::UDiv:
2406     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2407     break;
2408   case Instruction::FDiv:
2409     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2410     break;
2411   case Instruction::SRem:
2412     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2413     break;
2414   case Instruction::URem:
2415     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2416     break;
2417   case Instruction::FRem:
2418     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2419     break;
2420   case Instruction::Shl:
2421     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2422                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
2423                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2424                              TD, DT);
2425     break;
2426   case Instruction::LShr:
2427     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2428                               cast<BinaryOperator>(I)->isExact(),
2429                               TD, DT);
2430     break;
2431   case Instruction::AShr:
2432     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2433                               cast<BinaryOperator>(I)->isExact(),
2434                               TD, DT);
2435     break;
2436   case Instruction::And:
2437     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
2438     break;
2439   case Instruction::Or:
2440     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
2441     break;
2442   case Instruction::Xor:
2443     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
2444     break;
2445   case Instruction::ICmp:
2446     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2447                               I->getOperand(0), I->getOperand(1), TD, DT);
2448     break;
2449   case Instruction::FCmp:
2450     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2451                               I->getOperand(0), I->getOperand(1), TD, DT);
2452     break;
2453   case Instruction::Select:
2454     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2455                                 I->getOperand(2), TD, DT);
2456     break;
2457   case Instruction::GetElementPtr: {
2458     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2459     Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
2460     break;
2461   }
2462   case Instruction::PHI:
2463     Result = SimplifyPHINode(cast<PHINode>(I), DT);
2464     break;
2465   }
2466
2467   /// If called on unreachable code, the above logic may report that the
2468   /// instruction simplified to itself.  Make life easier for users by
2469   /// detecting that case here, returning a safe value instead.
2470   return Result == I ? UndefValue::get(I->getType()) : Result;
2471 }
2472
2473 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2474 /// delete the From instruction.  In addition to a basic RAUW, this does a
2475 /// recursive simplification of the newly formed instructions.  This catches
2476 /// things where one simplification exposes other opportunities.  This only
2477 /// simplifies and deletes scalar operations, it does not change the CFG.
2478 ///
2479 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2480                                      const TargetData *TD,
2481                                      const DominatorTree *DT) {
2482   assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2483
2484   // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2485   // we can know if it gets deleted out from under us or replaced in a
2486   // recursive simplification.
2487   WeakVH FromHandle(From);
2488   WeakVH ToHandle(To);
2489
2490   while (!From->use_empty()) {
2491     // Update the instruction to use the new value.
2492     Use &TheUse = From->use_begin().getUse();
2493     Instruction *User = cast<Instruction>(TheUse.getUser());
2494     TheUse = To;
2495
2496     // Check to see if the instruction can be folded due to the operand
2497     // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2498     // the 'or' with -1.
2499     Value *SimplifiedVal;
2500     {
2501       // Sanity check to make sure 'User' doesn't dangle across
2502       // SimplifyInstruction.
2503       AssertingVH<> UserHandle(User);
2504
2505       SimplifiedVal = SimplifyInstruction(User, TD, DT);
2506       if (SimplifiedVal == 0) continue;
2507     }
2508
2509     // Recursively simplify this user to the new value.
2510     ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
2511     From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2512     To = ToHandle;
2513
2514     assert(ToHandle && "To value deleted by recursive simplification?");
2515
2516     // If the recursive simplification ended up revisiting and deleting
2517     // 'From' then we're done.
2518     if (From == 0)
2519       return;
2520   }
2521
2522   // If 'From' has value handles referring to it, do a real RAUW to update them.
2523   From->replaceAllUsesWith(To);
2524
2525   From->eraseFromParent();
2526 }