]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/CodeGen/MachineInstr.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / CodeGen / MachineInstr.cpp
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Metadata.h"
20 #include "llvm/Module.h"
21 #include "llvm/Type.h"
22 #include "llvm/Value.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/DebugInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 using namespace llvm;
44
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48
49 /// AddRegOperandToRegInfo - Add this register operand to the specified
50 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
51 /// explicitly nulled out.
52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
53   assert(isReg() && "Can only add reg operand to use lists");
54   
55   // If the reginfo pointer is null, just explicitly null out or next/prev
56   // pointers, to ensure they are not garbage.
57   if (RegInfo == 0) {
58     Contents.Reg.Prev = 0;
59     Contents.Reg.Next = 0;
60     return;
61   }
62   
63   // Otherwise, add this operand to the head of the registers use/def list.
64   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
65   
66   // For SSA values, we prefer to keep the definition at the start of the list.
67   // we do this by skipping over the definition if it is at the head of the
68   // list.
69   if (*Head && (*Head)->isDef())
70     Head = &(*Head)->Contents.Reg.Next;
71   
72   Contents.Reg.Next = *Head;
73   if (Contents.Reg.Next) {
74     assert(getReg() == Contents.Reg.Next->getReg() &&
75            "Different regs on the same list!");
76     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
77   }
78   
79   Contents.Reg.Prev = Head;
80   *Head = this;
81 }
82
83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
84 /// MachineRegisterInfo it is linked with.
85 void MachineOperand::RemoveRegOperandFromRegInfo() {
86   assert(isOnRegUseList() && "Reg operand is not on a use list");
87   // Unlink this from the doubly linked list of operands.
88   MachineOperand *NextOp = Contents.Reg.Next;
89   *Contents.Reg.Prev = NextOp; 
90   if (NextOp) {
91     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
92     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
93   }
94   Contents.Reg.Prev = 0;
95   Contents.Reg.Next = 0;
96 }
97
98 void MachineOperand::setReg(unsigned Reg) {
99   if (getReg() == Reg) return; // No change.
100   
101   // Otherwise, we have to change the register.  If this operand is embedded
102   // into a machine function, we need to update the old and new register's
103   // use/def lists.
104   if (MachineInstr *MI = getParent())
105     if (MachineBasicBlock *MBB = MI->getParent())
106       if (MachineFunction *MF = MBB->getParent()) {
107         RemoveRegOperandFromRegInfo();
108         SmallContents.RegNo = Reg;
109         AddRegOperandToRegInfo(&MF->getRegInfo());
110         return;
111       }
112         
113   // Otherwise, just change the register, no problem.  :)
114   SmallContents.RegNo = Reg;
115 }
116
117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
118                                   const TargetRegisterInfo &TRI) {
119   assert(TargetRegisterInfo::isVirtualRegister(Reg));
120   if (SubIdx && getSubReg())
121     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
122   setReg(Reg);
123   if (SubIdx)
124     setSubReg(SubIdx);
125 }
126
127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
128   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
129   if (getSubReg()) {
130     Reg = TRI.getSubReg(Reg, getSubReg());
131     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
132     // That won't happen in legal code.
133     setSubReg(0);
134   }
135   setReg(Reg);
136 }
137
138 /// ChangeToImmediate - Replace this operand with a new immediate operand of
139 /// the specified value.  If an operand is known to be an immediate already,
140 /// the setImm method should be used.
141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
142   // If this operand is currently a register operand, and if this is in a
143   // function, deregister the operand from the register's use/def list.
144   if (isReg() && getParent() && getParent()->getParent() &&
145       getParent()->getParent()->getParent())
146     RemoveRegOperandFromRegInfo();
147   
148   OpKind = MO_Immediate;
149   Contents.ImmVal = ImmVal;
150 }
151
152 /// ChangeToRegister - Replace this operand with a new register operand of
153 /// the specified value.  If an operand is known to be an register already,
154 /// the setReg method should be used.
155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
156                                       bool isKill, bool isDead, bool isUndef,
157                                       bool isDebug) {
158   // If this operand is already a register operand, use setReg to update the 
159   // register's use/def lists.
160   if (isReg()) {
161     assert(!isEarlyClobber());
162     setReg(Reg);
163   } else {
164     // Otherwise, change this to a register and set the reg#.
165     OpKind = MO_Register;
166     SmallContents.RegNo = Reg;
167
168     // If this operand is embedded in a function, add the operand to the
169     // register's use/def list.
170     if (MachineInstr *MI = getParent())
171       if (MachineBasicBlock *MBB = MI->getParent())
172         if (MachineFunction *MF = MBB->getParent())
173           AddRegOperandToRegInfo(&MF->getRegInfo());
174   }
175
176   IsDef = isDef;
177   IsImp = isImp;
178   IsKill = isKill;
179   IsDead = isDead;
180   IsUndef = isUndef;
181   IsEarlyClobber = false;
182   IsDebug = isDebug;
183   SubReg = 0;
184 }
185
186 /// isIdenticalTo - Return true if this operand is identical to the specified
187 /// operand.
188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189   if (getType() != Other.getType() ||
190       getTargetFlags() != Other.getTargetFlags())
191     return false;
192   
193   switch (getType()) {
194   default: llvm_unreachable("Unrecognized operand type");
195   case MachineOperand::MO_Register:
196     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
197            getSubReg() == Other.getSubReg();
198   case MachineOperand::MO_Immediate:
199     return getImm() == Other.getImm();
200   case MachineOperand::MO_CImmediate:
201     return getCImm() == Other.getCImm();
202   case MachineOperand::MO_FPImmediate:
203     return getFPImm() == Other.getFPImm();
204   case MachineOperand::MO_MachineBasicBlock:
205     return getMBB() == Other.getMBB();
206   case MachineOperand::MO_FrameIndex:
207     return getIndex() == Other.getIndex();
208   case MachineOperand::MO_ConstantPoolIndex:
209     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210   case MachineOperand::MO_JumpTableIndex:
211     return getIndex() == Other.getIndex();
212   case MachineOperand::MO_GlobalAddress:
213     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214   case MachineOperand::MO_ExternalSymbol:
215     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216            getOffset() == Other.getOffset();
217   case MachineOperand::MO_BlockAddress:
218     return getBlockAddress() == Other.getBlockAddress();
219   case MachineOperand::MO_MCSymbol:
220     return getMCSymbol() == Other.getMCSymbol();
221   case MachineOperand::MO_Metadata:
222     return getMetadata() == Other.getMetadata();
223   }
224 }
225
226 /// print - Print the specified machine operand.
227 ///
228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
229   // If the instruction is embedded into a basic block, we can find the
230   // target info for the instruction.
231   if (!TM)
232     if (const MachineInstr *MI = getParent())
233       if (const MachineBasicBlock *MBB = MI->getParent())
234         if (const MachineFunction *MF = MBB->getParent())
235           TM = &MF->getTarget();
236   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
237
238   switch (getType()) {
239   case MachineOperand::MO_Register:
240     OS << PrintReg(getReg(), TRI, getSubReg());
241
242     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
243         isEarlyClobber()) {
244       OS << '<';
245       bool NeedComma = false;
246       if (isDef()) {
247         if (NeedComma) OS << ',';
248         if (isEarlyClobber())
249           OS << "earlyclobber,";
250         if (isImplicit())
251           OS << "imp-";
252         OS << "def";
253         NeedComma = true;
254       } else if (isImplicit()) {
255           OS << "imp-use";
256           NeedComma = true;
257       }
258
259       if (isKill() || isDead() || isUndef()) {
260         if (NeedComma) OS << ',';
261         if (isKill())  OS << "kill";
262         if (isDead())  OS << "dead";
263         if (isUndef()) {
264           if (isKill() || isDead())
265             OS << ',';
266           OS << "undef";
267         }
268       }
269       OS << '>';
270     }
271     break;
272   case MachineOperand::MO_Immediate:
273     OS << getImm();
274     break;
275   case MachineOperand::MO_CImmediate:
276     getCImm()->getValue().print(OS, false);
277     break;
278   case MachineOperand::MO_FPImmediate:
279     if (getFPImm()->getType()->isFloatTy())
280       OS << getFPImm()->getValueAPF().convertToFloat();
281     else
282       OS << getFPImm()->getValueAPF().convertToDouble();
283     break;
284   case MachineOperand::MO_MachineBasicBlock:
285     OS << "<BB#" << getMBB()->getNumber() << ">";
286     break;
287   case MachineOperand::MO_FrameIndex:
288     OS << "<fi#" << getIndex() << '>';
289     break;
290   case MachineOperand::MO_ConstantPoolIndex:
291     OS << "<cp#" << getIndex();
292     if (getOffset()) OS << "+" << getOffset();
293     OS << '>';
294     break;
295   case MachineOperand::MO_JumpTableIndex:
296     OS << "<jt#" << getIndex() << '>';
297     break;
298   case MachineOperand::MO_GlobalAddress:
299     OS << "<ga:";
300     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
301     if (getOffset()) OS << "+" << getOffset();
302     OS << '>';
303     break;
304   case MachineOperand::MO_ExternalSymbol:
305     OS << "<es:" << getSymbolName();
306     if (getOffset()) OS << "+" << getOffset();
307     OS << '>';
308     break;
309   case MachineOperand::MO_BlockAddress:
310     OS << '<';
311     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
312     OS << '>';
313     break;
314   case MachineOperand::MO_Metadata:
315     OS << '<';
316     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
317     OS << '>';
318     break;
319   case MachineOperand::MO_MCSymbol:
320     OS << "<MCSym=" << *getMCSymbol() << '>';
321     break;
322   default:
323     llvm_unreachable("Unrecognized operand type");
324   }
325   
326   if (unsigned TF = getTargetFlags())
327     OS << "[TF=" << TF << ']';
328 }
329
330 //===----------------------------------------------------------------------===//
331 // MachineMemOperand Implementation
332 //===----------------------------------------------------------------------===//
333
334 /// getAddrSpace - Return the LLVM IR address space number that this pointer
335 /// points into.
336 unsigned MachinePointerInfo::getAddrSpace() const {
337   if (V == 0) return 0;
338   return cast<PointerType>(V->getType())->getAddressSpace();
339 }
340
341 /// getConstantPool - Return a MachinePointerInfo record that refers to the
342 /// constant pool.
343 MachinePointerInfo MachinePointerInfo::getConstantPool() {
344   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
345 }
346
347 /// getFixedStack - Return a MachinePointerInfo record that refers to the
348 /// the specified FrameIndex.
349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
350   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
351 }
352
353 MachinePointerInfo MachinePointerInfo::getJumpTable() {
354   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
355 }
356
357 MachinePointerInfo MachinePointerInfo::getGOT() {
358   return MachinePointerInfo(PseudoSourceValue::getGOT());
359 }
360
361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
362   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
363 }
364
365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
366                                      uint64_t s, unsigned int a,
367                                      const MDNode *TBAAInfo)
368   : PtrInfo(ptrinfo), Size(s),
369     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
370     TBAAInfo(TBAAInfo) {
371   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
372          "invalid pointer value");
373   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
374   assert((isLoad() || isStore()) && "Not a load/store!");
375 }
376
377 /// Profile - Gather unique data for the object.
378 ///
379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
380   ID.AddInteger(getOffset());
381   ID.AddInteger(Size);
382   ID.AddPointer(getValue());
383   ID.AddInteger(Flags);
384 }
385
386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
387   // The Value and Offset may differ due to CSE. But the flags and size
388   // should be the same.
389   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
390   assert(MMO->getSize() == getSize() && "Size mismatch!");
391
392   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
393     // Update the alignment value.
394     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
395       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
396     // Also update the base and offset, because the new alignment may
397     // not be applicable with the old ones.
398     PtrInfo = MMO->PtrInfo;
399   }
400 }
401
402 /// getAlignment - Return the minimum known alignment in bytes of the
403 /// actual memory reference.
404 uint64_t MachineMemOperand::getAlignment() const {
405   return MinAlign(getBaseAlignment(), getOffset());
406 }
407
408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
409   assert((MMO.isLoad() || MMO.isStore()) &&
410          "SV has to be a load, store or both.");
411   
412   if (MMO.isVolatile())
413     OS << "Volatile ";
414
415   if (MMO.isLoad())
416     OS << "LD";
417   if (MMO.isStore())
418     OS << "ST";
419   OS << MMO.getSize();
420   
421   // Print the address information.
422   OS << "[";
423   if (!MMO.getValue())
424     OS << "<unknown>";
425   else
426     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
427
428   // If the alignment of the memory reference itself differs from the alignment
429   // of the base pointer, print the base alignment explicitly, next to the base
430   // pointer.
431   if (MMO.getBaseAlignment() != MMO.getAlignment())
432     OS << "(align=" << MMO.getBaseAlignment() << ")";
433
434   if (MMO.getOffset() != 0)
435     OS << "+" << MMO.getOffset();
436   OS << "]";
437
438   // Print the alignment of the reference.
439   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
440       MMO.getBaseAlignment() != MMO.getSize())
441     OS << "(align=" << MMO.getAlignment() << ")";
442
443   // Print TBAA info.
444   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
445     OS << "(tbaa=";
446     if (TBAAInfo->getNumOperands() > 0)
447       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
448     else
449       OS << "<unknown>";
450     OS << ")";
451   }
452
453   // Print nontemporal info.
454   if (MMO.isNonTemporal())
455     OS << "(nontemporal)";
456
457   return OS;
458 }
459
460 //===----------------------------------------------------------------------===//
461 // MachineInstr Implementation
462 //===----------------------------------------------------------------------===//
463
464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
465 /// MCID NULL and no operands.
466 MachineInstr::MachineInstr()
467   : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
468     MemRefs(0), MemRefsEnd(0),
469     Parent(0) {
470   // Make sure that we get added to a machine basicblock
471   LeakDetector::addGarbageObject(this);
472 }
473
474 void MachineInstr::addImplicitDefUseOperands() {
475   if (MCID->ImplicitDefs)
476     for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
477       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
478   if (MCID->ImplicitUses)
479     for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
480       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
481 }
482
483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
484 /// implicit operands. It reserves space for the number of operands specified by
485 /// the MCInstrDesc.
486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
487   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
488     MemRefs(0), MemRefsEnd(0), Parent(0) {
489   if (!NoImp)
490     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
491   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
492   if (!NoImp)
493     addImplicitDefUseOperands();
494   // Make sure that we get added to a machine basicblock
495   LeakDetector::addGarbageObject(this);
496 }
497
498 /// MachineInstr ctor - As above, but with a DebugLoc.
499 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
500                            bool NoImp)
501   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
502     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
503   if (!NoImp)
504     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
505   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
506   if (!NoImp)
507     addImplicitDefUseOperands();
508   // Make sure that we get added to a machine basicblock
509   LeakDetector::addGarbageObject(this);
510 }
511
512 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
513 /// that the MachineInstr is created and added to the end of the specified 
514 /// basic block.
515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
516   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
517     MemRefs(0), MemRefsEnd(0), Parent(0) {
518   assert(MBB && "Cannot use inserting ctor with null basic block!");
519   NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
520   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
521   addImplicitDefUseOperands();
522   // Make sure that we get added to a machine basicblock
523   LeakDetector::addGarbageObject(this);
524   MBB->push_back(this);  // Add instruction to end of basic block!
525 }
526
527 /// MachineInstr ctor - As above, but with a DebugLoc.
528 ///
529 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
530                            const MCInstrDesc &tid)
531   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
532     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
533   assert(MBB && "Cannot use inserting ctor with null basic block!");
534   NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
535   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
536   addImplicitDefUseOperands();
537   // Make sure that we get added to a machine basicblock
538   LeakDetector::addGarbageObject(this);
539   MBB->push_back(this);  // Add instruction to end of basic block!
540 }
541
542 /// MachineInstr ctor - Copies MachineInstr arg exactly
543 ///
544 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
545   : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
546     MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
547     Parent(0), debugLoc(MI.getDebugLoc()) {
548   Operands.reserve(MI.getNumOperands());
549
550   // Add operands
551   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
552     addOperand(MI.getOperand(i));
553   NumImplicitOps = MI.NumImplicitOps;
554
555   // Copy all the flags.
556   Flags = MI.Flags;
557
558   // Set parent to null.
559   Parent = 0;
560
561   LeakDetector::addGarbageObject(this);
562 }
563
564 MachineInstr::~MachineInstr() {
565   LeakDetector::removeGarbageObject(this);
566 #ifndef NDEBUG
567   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
568     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
569     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
570            "Reg operand def/use list corrupted");
571   }
572 #endif
573 }
574
575 /// getRegInfo - If this instruction is embedded into a MachineFunction,
576 /// return the MachineRegisterInfo object for the current function, otherwise
577 /// return null.
578 MachineRegisterInfo *MachineInstr::getRegInfo() {
579   if (MachineBasicBlock *MBB = getParent())
580     return &MBB->getParent()->getRegInfo();
581   return 0;
582 }
583
584 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
585 /// this instruction from their respective use lists.  This requires that the
586 /// operands already be on their use lists.
587 void MachineInstr::RemoveRegOperandsFromUseLists() {
588   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
589     if (Operands[i].isReg())
590       Operands[i].RemoveRegOperandFromRegInfo();
591   }
592 }
593
594 /// AddRegOperandsToUseLists - Add all of the register operands in
595 /// this instruction from their respective use lists.  This requires that the
596 /// operands not be on their use lists yet.
597 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
598   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
599     if (Operands[i].isReg())
600       Operands[i].AddRegOperandToRegInfo(&RegInfo);
601   }
602 }
603
604
605 /// addOperand - Add the specified operand to the instruction.  If it is an
606 /// implicit operand, it is added to the end of the operand list.  If it is
607 /// an explicit operand it is added at the end of the explicit operand list
608 /// (before the first implicit operand). 
609 void MachineInstr::addOperand(const MachineOperand &Op) {
610   bool isImpReg = Op.isReg() && Op.isImplicit();
611   assert((isImpReg || !OperandsComplete()) &&
612          "Trying to add an operand to a machine instr that is already done!");
613
614   MachineRegisterInfo *RegInfo = getRegInfo();
615
616   // If we are adding the operand to the end of the list, our job is simpler.
617   // This is true most of the time, so this is a reasonable optimization.
618   if (isImpReg || NumImplicitOps == 0) {
619     // We can only do this optimization if we know that the operand list won't
620     // reallocate.
621     if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
622       Operands.push_back(Op);
623     
624       // Set the parent of the operand.
625       Operands.back().ParentMI = this;
626   
627       // If the operand is a register, update the operand's use list.
628       if (Op.isReg()) {
629         Operands.back().AddRegOperandToRegInfo(RegInfo);
630         // If the register operand is flagged as early, mark the operand as such
631         unsigned OpNo = Operands.size() - 1;
632         if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
633           Operands[OpNo].setIsEarlyClobber(true);
634       }
635       return;
636     }
637   }
638   
639   // Otherwise, we have to insert a real operand before any implicit ones.
640   unsigned OpNo = Operands.size()-NumImplicitOps;
641
642   // If this instruction isn't embedded into a function, then we don't need to
643   // update any operand lists.
644   if (RegInfo == 0) {
645     // Simple insertion, no reginfo update needed for other register operands.
646     Operands.insert(Operands.begin()+OpNo, Op);
647     Operands[OpNo].ParentMI = this;
648
649     // Do explicitly set the reginfo for this operand though, to ensure the
650     // next/prev fields are properly nulled out.
651     if (Operands[OpNo].isReg()) {
652       Operands[OpNo].AddRegOperandToRegInfo(0);
653       // If the register operand is flagged as early, mark the operand as such
654       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
655         Operands[OpNo].setIsEarlyClobber(true);
656     }
657
658   } else if (Operands.size()+1 <= Operands.capacity()) {
659     // Otherwise, we have to remove register operands from their register use
660     // list, add the operand, then add the register operands back to their use
661     // list.  This also must handle the case when the operand list reallocates
662     // to somewhere else.
663   
664     // If insertion of this operand won't cause reallocation of the operand
665     // list, just remove the implicit operands, add the operand, then re-add all
666     // the rest of the operands.
667     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
668       assert(Operands[i].isReg() && "Should only be an implicit reg!");
669       Operands[i].RemoveRegOperandFromRegInfo();
670     }
671     
672     // Add the operand.  If it is a register, add it to the reg list.
673     Operands.insert(Operands.begin()+OpNo, Op);
674     Operands[OpNo].ParentMI = this;
675
676     if (Operands[OpNo].isReg()) {
677       Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
678       // If the register operand is flagged as early, mark the operand as such
679       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
680         Operands[OpNo].setIsEarlyClobber(true);
681     }
682     
683     // Re-add all the implicit ops.
684     for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
685       assert(Operands[i].isReg() && "Should only be an implicit reg!");
686       Operands[i].AddRegOperandToRegInfo(RegInfo);
687     }
688   } else {
689     // Otherwise, we will be reallocating the operand list.  Remove all reg
690     // operands from their list, then readd them after the operand list is
691     // reallocated.
692     RemoveRegOperandsFromUseLists();
693     
694     Operands.insert(Operands.begin()+OpNo, Op);
695     Operands[OpNo].ParentMI = this;
696   
697     // Re-add all the operands.
698     AddRegOperandsToUseLists(*RegInfo);
699
700       // If the register operand is flagged as early, mark the operand as such
701     if (Operands[OpNo].isReg()
702         && MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
703       Operands[OpNo].setIsEarlyClobber(true);
704   }
705 }
706
707 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
708 /// fewer operand than it started with.
709 ///
710 void MachineInstr::RemoveOperand(unsigned OpNo) {
711   assert(OpNo < Operands.size() && "Invalid operand number");
712   
713   // Special case removing the last one.
714   if (OpNo == Operands.size()-1) {
715     // If needed, remove from the reg def/use list.
716     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
717       Operands.back().RemoveRegOperandFromRegInfo();
718     
719     Operands.pop_back();
720     return;
721   }
722
723   // Otherwise, we are removing an interior operand.  If we have reginfo to
724   // update, remove all operands that will be shifted down from their reg lists,
725   // move everything down, then re-add them.
726   MachineRegisterInfo *RegInfo = getRegInfo();
727   if (RegInfo) {
728     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
729       if (Operands[i].isReg())
730         Operands[i].RemoveRegOperandFromRegInfo();
731     }
732   }
733   
734   Operands.erase(Operands.begin()+OpNo);
735
736   if (RegInfo) {
737     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
738       if (Operands[i].isReg())
739         Operands[i].AddRegOperandToRegInfo(RegInfo);
740     }
741   }
742 }
743
744 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
745 /// This function should be used only occasionally. The setMemRefs function
746 /// is the primary method for setting up a MachineInstr's MemRefs list.
747 void MachineInstr::addMemOperand(MachineFunction &MF,
748                                  MachineMemOperand *MO) {
749   mmo_iterator OldMemRefs = MemRefs;
750   mmo_iterator OldMemRefsEnd = MemRefsEnd;
751
752   size_t NewNum = (MemRefsEnd - MemRefs) + 1;
753   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
754   mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
755
756   std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
757   NewMemRefs[NewNum - 1] = MO;
758
759   MemRefs = NewMemRefs;
760   MemRefsEnd = NewMemRefsEnd;
761 }
762
763 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
764                                  MICheckType Check) const {
765   // If opcodes or number of operands are not the same then the two
766   // instructions are obviously not identical.
767   if (Other->getOpcode() != getOpcode() ||
768       Other->getNumOperands() != getNumOperands())
769     return false;
770
771   // Check operands to make sure they match.
772   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
773     const MachineOperand &MO = getOperand(i);
774     const MachineOperand &OMO = Other->getOperand(i);
775     if (!MO.isReg()) {
776       if (!MO.isIdenticalTo(OMO))
777         return false;
778       continue;
779     }
780
781     // Clients may or may not want to ignore defs when testing for equality.
782     // For example, machine CSE pass only cares about finding common
783     // subexpressions, so it's safe to ignore virtual register defs.
784     if (MO.isDef()) {
785       if (Check == IgnoreDefs)
786         continue;
787       else if (Check == IgnoreVRegDefs) {
788         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
789             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
790           if (MO.getReg() != OMO.getReg())
791             return false;
792       } else {
793         if (!MO.isIdenticalTo(OMO))
794           return false;
795         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
796           return false;
797       }
798     } else {
799       if (!MO.isIdenticalTo(OMO))
800         return false;
801       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
802         return false;
803     }
804   }
805   // If DebugLoc does not match then two dbg.values are not identical.
806   if (isDebugValue())
807     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
808         && getDebugLoc() != Other->getDebugLoc())
809       return false;
810   return true;
811 }
812
813 /// removeFromParent - This method unlinks 'this' from the containing basic
814 /// block, and returns it, but does not delete it.
815 MachineInstr *MachineInstr::removeFromParent() {
816   assert(getParent() && "Not embedded in a basic block!");
817   getParent()->remove(this);
818   return this;
819 }
820
821
822 /// eraseFromParent - This method unlinks 'this' from the containing basic
823 /// block, and deletes it.
824 void MachineInstr::eraseFromParent() {
825   assert(getParent() && "Not embedded in a basic block!");
826   getParent()->erase(this);
827 }
828
829
830 /// OperandComplete - Return true if it's illegal to add a new operand
831 ///
832 bool MachineInstr::OperandsComplete() const {
833   unsigned short NumOperands = MCID->getNumOperands();
834   if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
835     return true;  // Broken: we have all the operands of this instruction!
836   return false;
837 }
838
839 /// getNumExplicitOperands - Returns the number of non-implicit operands.
840 ///
841 unsigned MachineInstr::getNumExplicitOperands() const {
842   unsigned NumOperands = MCID->getNumOperands();
843   if (!MCID->isVariadic())
844     return NumOperands;
845
846   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
847     const MachineOperand &MO = getOperand(i);
848     if (!MO.isReg() || !MO.isImplicit())
849       NumOperands++;
850   }
851   return NumOperands;
852 }
853
854 bool MachineInstr::isStackAligningInlineAsm() const {
855   if (isInlineAsm()) {
856     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
857     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
858       return true;
859   }
860   return false;
861 }
862
863 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
864 /// the specific register or -1 if it is not found. It further tightens
865 /// the search criteria to a use that kills the register if isKill is true.
866 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
867                                           const TargetRegisterInfo *TRI) const {
868   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
869     const MachineOperand &MO = getOperand(i);
870     if (!MO.isReg() || !MO.isUse())
871       continue;
872     unsigned MOReg = MO.getReg();
873     if (!MOReg)
874       continue;
875     if (MOReg == Reg ||
876         (TRI &&
877          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
878          TargetRegisterInfo::isPhysicalRegister(Reg) &&
879          TRI->isSubRegister(MOReg, Reg)))
880       if (!isKill || MO.isKill())
881         return i;
882   }
883   return -1;
884 }
885
886 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
887 /// indicating if this instruction reads or writes Reg. This also considers
888 /// partial defines.
889 std::pair<bool,bool>
890 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
891                                          SmallVectorImpl<unsigned> *Ops) const {
892   bool PartDef = false; // Partial redefine.
893   bool FullDef = false; // Full define.
894   bool Use = false;
895
896   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
897     const MachineOperand &MO = getOperand(i);
898     if (!MO.isReg() || MO.getReg() != Reg)
899       continue;
900     if (Ops)
901       Ops->push_back(i);
902     if (MO.isUse())
903       Use |= !MO.isUndef();
904     else if (MO.getSubReg())
905       PartDef = true;
906     else
907       FullDef = true;
908   }
909   // A partial redefine uses Reg unless there is also a full define.
910   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
911 }
912
913 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
914 /// the specified register or -1 if it is not found. If isDead is true, defs
915 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
916 /// also checks if there is a def of a super-register.
917 int
918 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
919                                         const TargetRegisterInfo *TRI) const {
920   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
921   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
922     const MachineOperand &MO = getOperand(i);
923     if (!MO.isReg() || !MO.isDef())
924       continue;
925     unsigned MOReg = MO.getReg();
926     bool Found = (MOReg == Reg);
927     if (!Found && TRI && isPhys &&
928         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
929       if (Overlap)
930         Found = TRI->regsOverlap(MOReg, Reg);
931       else
932         Found = TRI->isSubRegister(MOReg, Reg);
933     }
934     if (Found && (!isDead || MO.isDead()))
935       return i;
936   }
937   return -1;
938 }
939
940 /// findFirstPredOperandIdx() - Find the index of the first operand in the
941 /// operand list that is used to represent the predicate. It returns -1 if
942 /// none is found.
943 int MachineInstr::findFirstPredOperandIdx() const {
944   const MCInstrDesc &MCID = getDesc();
945   if (MCID.isPredicable()) {
946     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
947       if (MCID.OpInfo[i].isPredicate())
948         return i;
949   }
950
951   return -1;
952 }
953   
954 /// isRegTiedToUseOperand - Given the index of a register def operand,
955 /// check if the register def is tied to a source operand, due to either
956 /// two-address elimination or inline assembly constraints. Returns the
957 /// first tied use operand index by reference is UseOpIdx is not null.
958 bool MachineInstr::
959 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
960   if (isInlineAsm()) {
961     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
962     const MachineOperand &MO = getOperand(DefOpIdx);
963     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
964       return false;
965     // Determine the actual operand index that corresponds to this index.
966     unsigned DefNo = 0;
967     unsigned DefPart = 0;
968     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
969          i < e; ) {
970       const MachineOperand &FMO = getOperand(i);
971       // After the normal asm operands there may be additional imp-def regs.
972       if (!FMO.isImm())
973         return false;
974       // Skip over this def.
975       unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
976       unsigned PrevDef = i + 1;
977       i = PrevDef + NumOps;
978       if (i > DefOpIdx) {
979         DefPart = DefOpIdx - PrevDef;
980         break;
981       }
982       ++DefNo;
983     }
984     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
985          i != e; ++i) {
986       const MachineOperand &FMO = getOperand(i);
987       if (!FMO.isImm())
988         continue;
989       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
990         continue;
991       unsigned Idx;
992       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
993           Idx == DefNo) {
994         if (UseOpIdx)
995           *UseOpIdx = (unsigned)i + 1 + DefPart;
996         return true;
997       }
998     }
999     return false;
1000   }
1001
1002   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1003   const MCInstrDesc &MCID = getDesc();
1004   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1005     const MachineOperand &MO = getOperand(i);
1006     if (MO.isReg() && MO.isUse() &&
1007         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1008       if (UseOpIdx)
1009         *UseOpIdx = (unsigned)i;
1010       return true;
1011     }
1012   }
1013   return false;
1014 }
1015
1016 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1017 /// is a register use and it is tied to an def operand. It also returns the def
1018 /// operand index by reference.
1019 bool MachineInstr::
1020 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1021   if (isInlineAsm()) {
1022     const MachineOperand &MO = getOperand(UseOpIdx);
1023     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1024       return false;
1025
1026     // Find the flag operand corresponding to UseOpIdx
1027     unsigned FlagIdx, NumOps=0;
1028     for (FlagIdx = InlineAsm::MIOp_FirstOperand;
1029          FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
1030       const MachineOperand &UFMO = getOperand(FlagIdx);
1031       // After the normal asm operands there may be additional imp-def regs.
1032       if (!UFMO.isImm())
1033         return false;
1034       NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
1035       assert(NumOps < getNumOperands() && "Invalid inline asm flag");
1036       if (UseOpIdx < FlagIdx+NumOps+1)
1037         break;
1038     }
1039     if (FlagIdx >= UseOpIdx)
1040       return false;
1041     const MachineOperand &UFMO = getOperand(FlagIdx);
1042     unsigned DefNo;
1043     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1044       if (!DefOpIdx)
1045         return true;
1046
1047       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1048       // Remember to adjust the index. First operand is asm string, second is
1049       // the HasSideEffects and AlignStack bits, then there is a flag for each.
1050       while (DefNo) {
1051         const MachineOperand &FMO = getOperand(DefIdx);
1052         assert(FMO.isImm());
1053         // Skip over this def.
1054         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1055         --DefNo;
1056       }
1057       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1058       return true;
1059     }
1060     return false;
1061   }
1062
1063   const MCInstrDesc &MCID = getDesc();
1064   if (UseOpIdx >= MCID.getNumOperands())
1065     return false;
1066   const MachineOperand &MO = getOperand(UseOpIdx);
1067   if (!MO.isReg() || !MO.isUse())
1068     return false;
1069   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1070   if (DefIdx == -1)
1071     return false;
1072   if (DefOpIdx)
1073     *DefOpIdx = (unsigned)DefIdx;
1074   return true;
1075 }
1076
1077 /// clearKillInfo - Clears kill flags on all operands.
1078 ///
1079 void MachineInstr::clearKillInfo() {
1080   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1081     MachineOperand &MO = getOperand(i);
1082     if (MO.isReg() && MO.isUse())
1083       MO.setIsKill(false);
1084   }
1085 }
1086
1087 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1088 ///
1089 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1090   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1091     const MachineOperand &MO = MI->getOperand(i);
1092     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1093       continue;
1094     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1095       MachineOperand &MOp = getOperand(j);
1096       if (!MOp.isIdenticalTo(MO))
1097         continue;
1098       if (MO.isKill())
1099         MOp.setIsKill();
1100       else
1101         MOp.setIsDead();
1102       break;
1103     }
1104   }
1105 }
1106
1107 /// copyPredicates - Copies predicate operand(s) from MI.
1108 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1109   const MCInstrDesc &MCID = MI->getDesc();
1110   if (!MCID.isPredicable())
1111     return;
1112   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1113     if (MCID.OpInfo[i].isPredicate()) {
1114       // Predicated operands must be last operands.
1115       addOperand(MI->getOperand(i));
1116     }
1117   }
1118 }
1119
1120 void MachineInstr::substituteRegister(unsigned FromReg,
1121                                       unsigned ToReg,
1122                                       unsigned SubIdx,
1123                                       const TargetRegisterInfo &RegInfo) {
1124   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1125     if (SubIdx)
1126       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1127     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1128       MachineOperand &MO = getOperand(i);
1129       if (!MO.isReg() || MO.getReg() != FromReg)
1130         continue;
1131       MO.substPhysReg(ToReg, RegInfo);
1132     }
1133   } else {
1134     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1135       MachineOperand &MO = getOperand(i);
1136       if (!MO.isReg() || MO.getReg() != FromReg)
1137         continue;
1138       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1139     }
1140   }
1141 }
1142
1143 /// isSafeToMove - Return true if it is safe to move this instruction. If
1144 /// SawStore is set to true, it means that there is a store (or call) between
1145 /// the instruction's location and its intended destination.
1146 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1147                                 AliasAnalysis *AA,
1148                                 bool &SawStore) const {
1149   // Ignore stuff that we obviously can't move.
1150   if (MCID->mayStore() || MCID->isCall()) {
1151     SawStore = true;
1152     return false;
1153   }
1154
1155   if (isLabel() || isDebugValue() ||
1156       MCID->isTerminator() || hasUnmodeledSideEffects())
1157     return false;
1158
1159   // See if this instruction does a load.  If so, we have to guarantee that the
1160   // loaded value doesn't change between the load and the its intended
1161   // destination. The check for isInvariantLoad gives the targe the chance to
1162   // classify the load as always returning a constant, e.g. a constant pool
1163   // load.
1164   if (MCID->mayLoad() && !isInvariantLoad(AA))
1165     // Otherwise, this is a real load.  If there is a store between the load and
1166     // end of block, or if the load is volatile, we can't move it.
1167     return !SawStore && !hasVolatileMemoryRef();
1168
1169   return true;
1170 }
1171
1172 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1173 /// instruction which defined the specified register instead of copying it.
1174 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1175                                  AliasAnalysis *AA,
1176                                  unsigned DstReg) const {
1177   bool SawStore = false;
1178   if (!TII->isTriviallyReMaterializable(this, AA) ||
1179       !isSafeToMove(TII, AA, SawStore))
1180     return false;
1181   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1182     const MachineOperand &MO = getOperand(i);
1183     if (!MO.isReg())
1184       continue;
1185     // FIXME: For now, do not remat any instruction with register operands.
1186     // Later on, we can loosen the restriction is the register operands have
1187     // not been modified between the def and use. Note, this is different from
1188     // MachineSink because the code is no longer in two-address form (at least
1189     // partially).
1190     if (MO.isUse())
1191       return false;
1192     else if (!MO.isDead() && MO.getReg() != DstReg)
1193       return false;
1194   }
1195   return true;
1196 }
1197
1198 /// hasVolatileMemoryRef - Return true if this instruction may have a
1199 /// volatile memory reference, or if the information describing the
1200 /// memory reference is not available. Return false if it is known to
1201 /// have no volatile memory references.
1202 bool MachineInstr::hasVolatileMemoryRef() const {
1203   // An instruction known never to access memory won't have a volatile access.
1204   if (!MCID->mayStore() &&
1205       !MCID->mayLoad() &&
1206       !MCID->isCall() &&
1207       !hasUnmodeledSideEffects())
1208     return false;
1209
1210   // Otherwise, if the instruction has no memory reference information,
1211   // conservatively assume it wasn't preserved.
1212   if (memoperands_empty())
1213     return true;
1214   
1215   // Check the memory reference information for volatile references.
1216   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1217     if ((*I)->isVolatile())
1218       return true;
1219
1220   return false;
1221 }
1222
1223 /// isInvariantLoad - Return true if this instruction is loading from a
1224 /// location whose value is invariant across the function.  For example,
1225 /// loading a value from the constant pool or from the argument area
1226 /// of a function if it does not change.  This should only return true of
1227 /// *all* loads the instruction does are invariant (if it does multiple loads).
1228 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1229   // If the instruction doesn't load at all, it isn't an invariant load.
1230   if (!MCID->mayLoad())
1231     return false;
1232
1233   // If the instruction has lost its memoperands, conservatively assume that
1234   // it may not be an invariant load.
1235   if (memoperands_empty())
1236     return false;
1237
1238   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1239
1240   for (mmo_iterator I = memoperands_begin(),
1241        E = memoperands_end(); I != E; ++I) {
1242     if ((*I)->isVolatile()) return false;
1243     if ((*I)->isStore()) return false;
1244
1245     if (const Value *V = (*I)->getValue()) {
1246       // A load from a constant PseudoSourceValue is invariant.
1247       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1248         if (PSV->isConstant(MFI))
1249           continue;
1250       // If we have an AliasAnalysis, ask it whether the memory is constant.
1251       if (AA && AA->pointsToConstantMemory(
1252                       AliasAnalysis::Location(V, (*I)->getSize(),
1253                                               (*I)->getTBAAInfo())))
1254         continue;
1255     }
1256
1257     // Otherwise assume conservatively.
1258     return false;
1259   }
1260
1261   // Everything checks out.
1262   return true;
1263 }
1264
1265 /// isConstantValuePHI - If the specified instruction is a PHI that always
1266 /// merges together the same virtual register, return the register, otherwise
1267 /// return 0.
1268 unsigned MachineInstr::isConstantValuePHI() const {
1269   if (!isPHI())
1270     return 0;
1271   assert(getNumOperands() >= 3 &&
1272          "It's illegal to have a PHI without source operands");
1273
1274   unsigned Reg = getOperand(1).getReg();
1275   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1276     if (getOperand(i).getReg() != Reg)
1277       return 0;
1278   return Reg;
1279 }
1280
1281 bool MachineInstr::hasUnmodeledSideEffects() const {
1282   if (getDesc().hasUnmodeledSideEffects())
1283     return true;
1284   if (isInlineAsm()) {
1285     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1286     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1287       return true;
1288   }
1289
1290   return false;
1291 }
1292
1293 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1294 ///
1295 bool MachineInstr::allDefsAreDead() const {
1296   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1297     const MachineOperand &MO = getOperand(i);
1298     if (!MO.isReg() || MO.isUse())
1299       continue;
1300     if (!MO.isDead())
1301       return false;
1302   }
1303   return true;
1304 }
1305
1306 /// copyImplicitOps - Copy implicit register operands from specified
1307 /// instruction to this instruction.
1308 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1309   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1310        i != e; ++i) {
1311     const MachineOperand &MO = MI->getOperand(i);
1312     if (MO.isReg() && MO.isImplicit())
1313       addOperand(MO);
1314   }
1315 }
1316
1317 void MachineInstr::dump() const {
1318   dbgs() << "  " << *this;
1319 }
1320
1321 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 
1322                          raw_ostream &CommentOS) {
1323   const LLVMContext &Ctx = MF->getFunction()->getContext();
1324   if (!DL.isUnknown()) {          // Print source line info.
1325     DIScope Scope(DL.getScope(Ctx));
1326     // Omit the directory, because it's likely to be long and uninteresting.
1327     if (Scope.Verify())
1328       CommentOS << Scope.getFilename();
1329     else
1330       CommentOS << "<unknown>";
1331     CommentOS << ':' << DL.getLine();
1332     if (DL.getCol() != 0)
1333       CommentOS << ':' << DL.getCol();
1334     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1335     if (!InlinedAtDL.isUnknown()) {
1336       CommentOS << " @[ ";
1337       printDebugLoc(InlinedAtDL, MF, CommentOS);
1338       CommentOS << " ]";
1339     }
1340   }
1341 }
1342
1343 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1344   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1345   const MachineFunction *MF = 0;
1346   const MachineRegisterInfo *MRI = 0;
1347   if (const MachineBasicBlock *MBB = getParent()) {
1348     MF = MBB->getParent();
1349     if (!TM && MF)
1350       TM = &MF->getTarget();
1351     if (MF)
1352       MRI = &MF->getRegInfo();
1353   }
1354
1355   // Save a list of virtual registers.
1356   SmallVector<unsigned, 8> VirtRegs;
1357
1358   // Print explicitly defined operands on the left of an assignment syntax.
1359   unsigned StartOp = 0, e = getNumOperands();
1360   for (; StartOp < e && getOperand(StartOp).isReg() &&
1361          getOperand(StartOp).isDef() &&
1362          !getOperand(StartOp).isImplicit();
1363        ++StartOp) {
1364     if (StartOp != 0) OS << ", ";
1365     getOperand(StartOp).print(OS, TM);
1366     unsigned Reg = getOperand(StartOp).getReg();
1367     if (TargetRegisterInfo::isVirtualRegister(Reg))
1368       VirtRegs.push_back(Reg);
1369   }
1370
1371   if (StartOp != 0)
1372     OS << " = ";
1373
1374   // Print the opcode name.
1375   OS << getDesc().getName();
1376
1377   // Print the rest of the operands.
1378   bool OmittedAnyCallClobbers = false;
1379   bool FirstOp = true;
1380   unsigned AsmDescOp = ~0u;
1381   unsigned AsmOpCount = 0;
1382
1383   if (isInlineAsm()) {
1384     // Print asm string.
1385     OS << " ";
1386     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1387
1388     // Print HasSideEffects, IsAlignStack
1389     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1390     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1391       OS << " [sideeffect]";
1392     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1393       OS << " [alignstack]";
1394
1395     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1396     FirstOp = false;
1397   }
1398
1399
1400   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1401     const MachineOperand &MO = getOperand(i);
1402
1403     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1404       VirtRegs.push_back(MO.getReg());
1405
1406     // Omit call-clobbered registers which aren't used anywhere. This makes
1407     // call instructions much less noisy on targets where calls clobber lots
1408     // of registers. Don't rely on MO.isDead() because we may be called before
1409     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1410     if (MF && getDesc().isCall() &&
1411         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1412       unsigned Reg = MO.getReg();
1413       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1414         const MachineRegisterInfo &MRI = MF->getRegInfo();
1415         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1416           bool HasAliasLive = false;
1417           for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1418                unsigned AliasReg = *Alias; ++Alias)
1419             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1420               HasAliasLive = true;
1421               break;
1422             }
1423           if (!HasAliasLive) {
1424             OmittedAnyCallClobbers = true;
1425             continue;
1426           }
1427         }
1428       }
1429     }
1430
1431     if (FirstOp) FirstOp = false; else OS << ",";
1432     OS << " ";
1433     if (i < getDesc().NumOperands) {
1434       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1435       if (MCOI.isPredicate())
1436         OS << "pred:";
1437       if (MCOI.isOptionalDef())
1438         OS << "opt:";
1439     }
1440     if (isDebugValue() && MO.isMetadata()) {
1441       // Pretty print DBG_VALUE instructions.
1442       const MDNode *MD = MO.getMetadata();
1443       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1444         OS << "!\"" << MDS->getString() << '\"';
1445       else
1446         MO.print(OS, TM);
1447     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1448       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1449     } else if (i == AsmDescOp && MO.isImm()) {
1450       // Pretty print the inline asm operand descriptor.
1451       OS << '$' << AsmOpCount++;
1452       unsigned Flag = MO.getImm();
1453       switch (InlineAsm::getKind(Flag)) {
1454       case InlineAsm::Kind_RegUse:             OS << ":[reguse]"; break;
1455       case InlineAsm::Kind_RegDef:             OS << ":[regdef]"; break;
1456       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break;
1457       case InlineAsm::Kind_Clobber:            OS << ":[clobber]"; break;
1458       case InlineAsm::Kind_Imm:                OS << ":[imm]"; break;
1459       case InlineAsm::Kind_Mem:                OS << ":[mem]"; break;
1460       default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break;
1461       }
1462
1463       unsigned TiedTo = 0;
1464       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1465         OS << " [tiedto:$" << TiedTo << ']';
1466
1467       // Compute the index of the next operand descriptor.
1468       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1469     } else
1470       MO.print(OS, TM);
1471   }
1472
1473   // Briefly indicate whether any call clobbers were omitted.
1474   if (OmittedAnyCallClobbers) {
1475     if (!FirstOp) OS << ",";
1476     OS << " ...";
1477   }
1478
1479   bool HaveSemi = false;
1480   if (Flags) {
1481     if (!HaveSemi) OS << ";"; HaveSemi = true;
1482     OS << " flags: ";
1483
1484     if (Flags & FrameSetup)
1485       OS << "FrameSetup";
1486   }
1487
1488   if (!memoperands_empty()) {
1489     if (!HaveSemi) OS << ";"; HaveSemi = true;
1490
1491     OS << " mem:";
1492     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1493          i != e; ++i) {
1494       OS << **i;
1495       if (llvm::next(i) != e)
1496         OS << " ";
1497     }
1498   }
1499
1500   // Print the regclass of any virtual registers encountered.
1501   if (MRI && !VirtRegs.empty()) {
1502     if (!HaveSemi) OS << ";"; HaveSemi = true;
1503     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1504       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1505       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1506       for (unsigned j = i+1; j != VirtRegs.size();) {
1507         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1508           ++j;
1509           continue;
1510         }
1511         if (VirtRegs[i] != VirtRegs[j])
1512           OS << "," << PrintReg(VirtRegs[j]);
1513         VirtRegs.erase(VirtRegs.begin()+j);
1514       }
1515     }
1516   }
1517
1518   // Print debug location information.
1519   if (!debugLoc.isUnknown() && MF) {
1520     if (!HaveSemi) OS << ";"; HaveSemi = true;
1521     OS << " dbg:";
1522     printDebugLoc(debugLoc, MF, OS);
1523   }
1524
1525   OS << '\n';
1526 }
1527
1528 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1529                                      const TargetRegisterInfo *RegInfo,
1530                                      bool AddIfNotFound) {
1531   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1532   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1533   bool Found = false;
1534   SmallVector<unsigned,4> DeadOps;
1535   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1536     MachineOperand &MO = getOperand(i);
1537     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1538       continue;
1539     unsigned Reg = MO.getReg();
1540     if (!Reg)
1541       continue;
1542
1543     if (Reg == IncomingReg) {
1544       if (!Found) {
1545         if (MO.isKill())
1546           // The register is already marked kill.
1547           return true;
1548         if (isPhysReg && isRegTiedToDefOperand(i))
1549           // Two-address uses of physregs must not be marked kill.
1550           return true;
1551         MO.setIsKill();
1552         Found = true;
1553       }
1554     } else if (hasAliases && MO.isKill() &&
1555                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1556       // A super-register kill already exists.
1557       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1558         return true;
1559       if (RegInfo->isSubRegister(IncomingReg, Reg))
1560         DeadOps.push_back(i);
1561     }
1562   }
1563
1564   // Trim unneeded kill operands.
1565   while (!DeadOps.empty()) {
1566     unsigned OpIdx = DeadOps.back();
1567     if (getOperand(OpIdx).isImplicit())
1568       RemoveOperand(OpIdx);
1569     else
1570       getOperand(OpIdx).setIsKill(false);
1571     DeadOps.pop_back();
1572   }
1573
1574   // If not found, this means an alias of one of the operands is killed. Add a
1575   // new implicit operand if required.
1576   if (!Found && AddIfNotFound) {
1577     addOperand(MachineOperand::CreateReg(IncomingReg,
1578                                          false /*IsDef*/,
1579                                          true  /*IsImp*/,
1580                                          true  /*IsKill*/));
1581     return true;
1582   }
1583   return Found;
1584 }
1585
1586 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1587                                    const TargetRegisterInfo *RegInfo,
1588                                    bool AddIfNotFound) {
1589   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1590   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1591   bool Found = false;
1592   SmallVector<unsigned,4> DeadOps;
1593   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1594     MachineOperand &MO = getOperand(i);
1595     if (!MO.isReg() || !MO.isDef())
1596       continue;
1597     unsigned Reg = MO.getReg();
1598     if (!Reg)
1599       continue;
1600
1601     if (Reg == IncomingReg) {
1602       MO.setIsDead();
1603       Found = true;
1604     } else if (hasAliases && MO.isDead() &&
1605                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1606       // There exists a super-register that's marked dead.
1607       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1608         return true;
1609       if (RegInfo->getSubRegisters(IncomingReg) &&
1610           RegInfo->getSuperRegisters(Reg) &&
1611           RegInfo->isSubRegister(IncomingReg, Reg))
1612         DeadOps.push_back(i);
1613     }
1614   }
1615
1616   // Trim unneeded dead operands.
1617   while (!DeadOps.empty()) {
1618     unsigned OpIdx = DeadOps.back();
1619     if (getOperand(OpIdx).isImplicit())
1620       RemoveOperand(OpIdx);
1621     else
1622       getOperand(OpIdx).setIsDead(false);
1623     DeadOps.pop_back();
1624   }
1625
1626   // If not found, this means an alias of one of the operands is dead. Add a
1627   // new implicit operand if required.
1628   if (Found || !AddIfNotFound)
1629     return Found;
1630     
1631   addOperand(MachineOperand::CreateReg(IncomingReg,
1632                                        true  /*IsDef*/,
1633                                        true  /*IsImp*/,
1634                                        false /*IsKill*/,
1635                                        true  /*IsDead*/));
1636   return true;
1637 }
1638
1639 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1640                                       const TargetRegisterInfo *RegInfo) {
1641   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1642     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1643     if (MO)
1644       return;
1645   } else {
1646     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1647       const MachineOperand &MO = getOperand(i);
1648       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1649           MO.getSubReg() == 0)
1650         return;
1651     }
1652   }
1653   addOperand(MachineOperand::CreateReg(IncomingReg,
1654                                        true  /*IsDef*/,
1655                                        true  /*IsImp*/));
1656 }
1657
1658 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1659                                          const TargetRegisterInfo &TRI) {
1660   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1661     MachineOperand &MO = getOperand(i);
1662     if (!MO.isReg() || !MO.isDef()) continue;
1663     unsigned Reg = MO.getReg();
1664     if (Reg == 0) continue;
1665     bool Dead = true;
1666     for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1667          E = UsedRegs.end(); I != E; ++I)
1668       if (TRI.regsOverlap(*I, Reg)) {
1669         Dead = false;
1670         break;
1671       }
1672     // If there are no uses, including partial uses, the def is dead.
1673     if (Dead) MO.setIsDead();
1674   }
1675 }
1676
1677 unsigned
1678 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1679   unsigned Hash = MI->getOpcode() * 37;
1680   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1681     const MachineOperand &MO = MI->getOperand(i);
1682     uint64_t Key = (uint64_t)MO.getType() << 32;
1683     switch (MO.getType()) {
1684     default: break;
1685     case MachineOperand::MO_Register:
1686       if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1687         continue;  // Skip virtual register defs.
1688       Key |= MO.getReg();
1689       break;
1690     case MachineOperand::MO_Immediate:
1691       Key |= MO.getImm();
1692       break;
1693     case MachineOperand::MO_FrameIndex:
1694     case MachineOperand::MO_ConstantPoolIndex:
1695     case MachineOperand::MO_JumpTableIndex:
1696       Key |= MO.getIndex();
1697       break;
1698     case MachineOperand::MO_MachineBasicBlock:
1699       Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1700       break;
1701     case MachineOperand::MO_GlobalAddress:
1702       Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1703       break;
1704     case MachineOperand::MO_BlockAddress:
1705       Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1706       break;
1707     case MachineOperand::MO_MCSymbol:
1708       Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1709       break;
1710     }
1711     Key += ~(Key << 32);
1712     Key ^= (Key >> 22);
1713     Key += ~(Key << 13);
1714     Key ^= (Key >> 8);
1715     Key += (Key << 3);
1716     Key ^= (Key >> 15);
1717     Key += ~(Key << 27);
1718     Key ^= (Key >> 31);
1719     Hash = (unsigned)Key + Hash * 37;
1720   }
1721   return Hash;
1722 }
1723
1724 void MachineInstr::emitError(StringRef Msg) const {
1725   // Find the source location cookie.
1726   unsigned LocCookie = 0;
1727   const MDNode *LocMD = 0;
1728   for (unsigned i = getNumOperands(); i != 0; --i) {
1729     if (getOperand(i-1).isMetadata() &&
1730         (LocMD = getOperand(i-1).getMetadata()) &&
1731         LocMD->getNumOperands() != 0) {
1732       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1733         LocCookie = CI->getZExtValue();
1734         break;
1735       }
1736     }
1737   }
1738
1739   if (const MachineBasicBlock *MBB = getParent())
1740     if (const MachineFunction *MF = MBB->getParent())
1741       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1742   report_fatal_error(Msg);
1743 }