]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/CodeGen/MachineSink.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / CodeGen / MachineSink.cpp
1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define DEBUG_TYPE "machine-sink"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34
35 static cl::opt<bool> 
36 SplitEdges("machine-sink-split",
37            cl::desc("Split critical edges during machine sinking"),
38            cl::init(true), cl::Hidden);
39
40 STATISTIC(NumSunk,      "Number of machine instructions sunk");
41 STATISTIC(NumSplit,     "Number of critical edges split");
42 STATISTIC(NumCoalesces, "Number of copies coalesced");
43
44 namespace {
45   class MachineSinking : public MachineFunctionPass {
46     const TargetInstrInfo *TII;
47     const TargetRegisterInfo *TRI;
48     MachineRegisterInfo  *MRI;  // Machine register information
49     MachineDominatorTree *DT;   // Machine dominator tree
50     MachineLoopInfo *LI;
51     AliasAnalysis *AA;
52     BitVector AllocatableSet;   // Which physregs are allocatable?
53
54     // Remember which edges have been considered for breaking.
55     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
56     CEBCandidates;
57
58   public:
59     static char ID; // Pass identification
60     MachineSinking() : MachineFunctionPass(ID) {
61       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
62     }
63
64     virtual bool runOnMachineFunction(MachineFunction &MF);
65
66     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67       AU.setPreservesCFG();
68       MachineFunctionPass::getAnalysisUsage(AU);
69       AU.addRequired<AliasAnalysis>();
70       AU.addRequired<MachineDominatorTree>();
71       AU.addRequired<MachineLoopInfo>();
72       AU.addPreserved<MachineDominatorTree>();
73       AU.addPreserved<MachineLoopInfo>();
74     }
75
76     virtual void releaseMemory() {
77       CEBCandidates.clear();
78     }
79
80   private:
81     bool ProcessBlock(MachineBasicBlock &MBB);
82     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
83                                      MachineBasicBlock *From,
84                                      MachineBasicBlock *To);
85     MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
86                                          MachineBasicBlock *From,
87                                          MachineBasicBlock *To,
88                                          bool BreakPHIEdge);
89     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
90     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
91                                  MachineBasicBlock *DefMBB,
92                                  bool &BreakPHIEdge, bool &LocalUse) const;
93     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
94                                          MachineBasicBlock *MBB);
95   };
96 } // end anonymous namespace
97
98 char MachineSinking::ID = 0;
99 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
100                 "Machine code sinking", false, false)
101 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
102 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
103 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
104 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
105                 "Machine code sinking", false, false)
106
107 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
108
109 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
110                                                      MachineBasicBlock *MBB) {
111   if (!MI->isCopy())
112     return false;
113
114   unsigned SrcReg = MI->getOperand(1).getReg();
115   unsigned DstReg = MI->getOperand(0).getReg();
116   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
117       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
118       !MRI->hasOneNonDBGUse(SrcReg))
119     return false;
120
121   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
122   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
123   if (SRC != DRC)
124     return false;
125
126   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
127   if (DefMI->isCopyLike())
128     return false;
129   DEBUG(dbgs() << "Coalescing: " << *DefMI);
130   DEBUG(dbgs() << "*** to: " << *MI);
131   MRI->replaceRegWith(DstReg, SrcReg);
132   MI->eraseFromParent();
133   ++NumCoalesces;
134   return true;
135 }
136
137 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
138 /// occur in blocks dominated by the specified block. If any use is in the
139 /// definition block, then return false since it is never legal to move def
140 /// after uses.
141 bool
142 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
143                                         MachineBasicBlock *MBB,
144                                         MachineBasicBlock *DefMBB,
145                                         bool &BreakPHIEdge,
146                                         bool &LocalUse) const {
147   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
148          "Only makes sense for vregs");
149
150   if (MRI->use_nodbg_empty(Reg))
151     return true;
152
153   // Ignoring debug uses is necessary so debug info doesn't affect the code.
154   // This may leave a referencing dbg_value in the original block, before
155   // the definition of the vreg.  Dwarf generator handles this although the
156   // user might not get the right info at runtime.
157
158   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
159   // into and they are all PHI nodes. In this case, machine-sink must break
160   // the critical edge first. e.g.
161   //
162   // BB#1: derived from LLVM BB %bb4.preheader
163   //   Predecessors according to CFG: BB#0
164   //     ...
165   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
166   //     ...
167   //     JE_4 <BB#37>, %EFLAGS<imp-use>
168   //   Successors according to CFG: BB#37 BB#2
169   //
170   // BB#2: derived from LLVM BB %bb.nph
171   //   Predecessors according to CFG: BB#0 BB#1
172   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
173   BreakPHIEdge = true;
174   for (MachineRegisterInfo::use_nodbg_iterator
175          I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
176        I != E; ++I) {
177     MachineInstr *UseInst = &*I;
178     MachineBasicBlock *UseBlock = UseInst->getParent();
179     if (!(UseBlock == MBB && UseInst->isPHI() &&
180           UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
181       BreakPHIEdge = false;
182       break;
183     }
184   }
185   if (BreakPHIEdge)
186     return true;
187
188   for (MachineRegisterInfo::use_nodbg_iterator
189          I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
190        I != E; ++I) {
191     // Determine the block of the use.
192     MachineInstr *UseInst = &*I;
193     MachineBasicBlock *UseBlock = UseInst->getParent();
194     if (UseInst->isPHI()) {
195       // PHI nodes use the operand in the predecessor block, not the block with
196       // the PHI.
197       UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
198     } else if (UseBlock == DefMBB) {
199       LocalUse = true;
200       return false;
201     }
202
203     // Check that it dominates.
204     if (!DT->dominates(MBB, UseBlock))
205       return false;
206   }
207
208   return true;
209 }
210
211 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
212   DEBUG(dbgs() << "******** Machine Sinking ********\n");
213
214   const TargetMachine &TM = MF.getTarget();
215   TII = TM.getInstrInfo();
216   TRI = TM.getRegisterInfo();
217   MRI = &MF.getRegInfo();
218   DT = &getAnalysis<MachineDominatorTree>();
219   LI = &getAnalysis<MachineLoopInfo>();
220   AA = &getAnalysis<AliasAnalysis>();
221   AllocatableSet = TRI->getAllocatableSet(MF);
222
223   bool EverMadeChange = false;
224
225   while (1) {
226     bool MadeChange = false;
227
228     // Process all basic blocks.
229     CEBCandidates.clear();
230     for (MachineFunction::iterator I = MF.begin(), E = MF.end();
231          I != E; ++I)
232       MadeChange |= ProcessBlock(*I);
233
234     // If this iteration over the code changed anything, keep iterating.
235     if (!MadeChange) break;
236     EverMadeChange = true;
237   }
238   return EverMadeChange;
239 }
240
241 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
242   // Can't sink anything out of a block that has less than two successors.
243   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
244
245   // Don't bother sinking code out of unreachable blocks. In addition to being
246   // unprofitable, it can also lead to infinite looping, because in an
247   // unreachable loop there may be nowhere to stop.
248   if (!DT->isReachableFromEntry(&MBB)) return false;
249
250   bool MadeChange = false;
251
252   // Walk the basic block bottom-up.  Remember if we saw a store.
253   MachineBasicBlock::iterator I = MBB.end();
254   --I;
255   bool ProcessedBegin, SawStore = false;
256   do {
257     MachineInstr *MI = I;  // The instruction to sink.
258
259     // Predecrement I (if it's not begin) so that it isn't invalidated by
260     // sinking.
261     ProcessedBegin = I == MBB.begin();
262     if (!ProcessedBegin)
263       --I;
264
265     if (MI->isDebugValue())
266       continue;
267
268     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
269     if (Joined) {
270       MadeChange = true;
271       continue;
272     }
273
274     if (SinkInstruction(MI, SawStore))
275       ++NumSunk, MadeChange = true;
276
277     // If we just processed the first instruction in the block, we're done.
278   } while (!ProcessedBegin);
279
280   return MadeChange;
281 }
282
283 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
284                                                  MachineBasicBlock *From,
285                                                  MachineBasicBlock *To) {
286   // FIXME: Need much better heuristics.
287
288   // If the pass has already considered breaking this edge (during this pass
289   // through the function), then let's go ahead and break it. This means
290   // sinking multiple "cheap" instructions into the same block.
291   if (!CEBCandidates.insert(std::make_pair(From, To)))
292     return true;
293
294   if (!MI->isCopy() && !MI->getDesc().isAsCheapAsAMove())
295     return true;
296
297   // MI is cheap, we probably don't want to break the critical edge for it.
298   // However, if this would allow some definitions of its source operands
299   // to be sunk then it's probably worth it.
300   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
301     const MachineOperand &MO = MI->getOperand(i);
302     if (!MO.isReg()) continue;
303     unsigned Reg = MO.getReg();
304     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
305       continue;
306     if (MRI->hasOneNonDBGUse(Reg))
307       return true;
308   }
309
310   return false;
311 }
312
313 MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
314                                                      MachineBasicBlock *FromBB,
315                                                      MachineBasicBlock *ToBB,
316                                                      bool BreakPHIEdge) {
317   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
318     return 0;
319
320   // Avoid breaking back edge. From == To means backedge for single BB loop.
321   if (!SplitEdges || FromBB == ToBB)
322     return 0;
323
324   // Check for backedges of more "complex" loops.
325   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
326       LI->isLoopHeader(ToBB))
327     return 0;
328
329   // It's not always legal to break critical edges and sink the computation
330   // to the edge.
331   //
332   // BB#1:
333   // v1024
334   // Beq BB#3
335   // <fallthrough>
336   // BB#2:
337   // ... no uses of v1024
338   // <fallthrough>
339   // BB#3:
340   // ...
341   //       = v1024
342   //
343   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
344   //
345   // BB#1:
346   // ...
347   // Bne BB#2
348   // BB#4:
349   // v1024 =
350   // B BB#3
351   // BB#2:
352   // ... no uses of v1024
353   // <fallthrough>
354   // BB#3:
355   // ...
356   //       = v1024
357   //
358   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
359   // flow. We need to ensure the new basic block where the computation is
360   // sunk to dominates all the uses.
361   // It's only legal to break critical edge and sink the computation to the
362   // new block if all the predecessors of "To", except for "From", are
363   // not dominated by "From". Given SSA property, this means these
364   // predecessors are dominated by "To".
365   //
366   // There is no need to do this check if all the uses are PHI nodes. PHI
367   // sources are only defined on the specific predecessor edges.
368   if (!BreakPHIEdge) {
369     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
370            E = ToBB->pred_end(); PI != E; ++PI) {
371       if (*PI == FromBB)
372         continue;
373       if (!DT->dominates(ToBB, *PI))
374         return 0;
375     }
376   }
377
378   return FromBB->SplitCriticalEdge(ToBB, this);
379 }
380
381 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
382   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
383 }
384
385 /// SinkInstruction - Determine whether it is safe to sink the specified machine
386 /// instruction out of its current block into a successor.
387 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
388   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
389   // be close to the source to make it easier to coalesce.
390   if (AvoidsSinking(MI, MRI))
391     return false;
392
393   // Check if it's safe to move the instruction.
394   if (!MI->isSafeToMove(TII, AA, SawStore))
395     return false;
396
397   // FIXME: This should include support for sinking instructions within the
398   // block they are currently in to shorten the live ranges.  We often get
399   // instructions sunk into the top of a large block, but it would be better to
400   // also sink them down before their first use in the block.  This xform has to
401   // be careful not to *increase* register pressure though, e.g. sinking
402   // "x = y + z" down if it kills y and z would increase the live ranges of y
403   // and z and only shrink the live range of x.
404
405   // Loop over all the operands of the specified instruction.  If there is
406   // anything we can't handle, bail out.
407   MachineBasicBlock *ParentBlock = MI->getParent();
408
409   // SuccToSinkTo - This is the successor to sink this instruction to, once we
410   // decide.
411   MachineBasicBlock *SuccToSinkTo = 0;
412
413   bool BreakPHIEdge = false;
414   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
415     const MachineOperand &MO = MI->getOperand(i);
416     if (!MO.isReg()) continue;  // Ignore non-register operands.
417
418     unsigned Reg = MO.getReg();
419     if (Reg == 0) continue;
420
421     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
422       if (MO.isUse()) {
423         // If the physreg has no defs anywhere, it's just an ambient register
424         // and we can freely move its uses. Alternatively, if it's allocatable,
425         // it could get allocated to something with a def during allocation.
426         if (!MRI->def_empty(Reg))
427           return false;
428
429         if (AllocatableSet.test(Reg))
430           return false;
431
432         // Check for a def among the register's aliases too.
433         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
434           unsigned AliasReg = *Alias;
435           if (!MRI->def_empty(AliasReg))
436             return false;
437
438           if (AllocatableSet.test(AliasReg))
439             return false;
440         }
441       } else if (!MO.isDead()) {
442         // A def that isn't dead. We can't move it.
443         return false;
444       }
445     } else {
446       // Virtual register uses are always safe to sink.
447       if (MO.isUse()) continue;
448
449       // If it's not safe to move defs of the register class, then abort.
450       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
451         return false;
452
453       // FIXME: This picks a successor to sink into based on having one
454       // successor that dominates all the uses.  However, there are cases where
455       // sinking can happen but where the sink point isn't a successor.  For
456       // example:
457       //
458       //   x = computation
459       //   if () {} else {}
460       //   use x
461       //
462       // the instruction could be sunk over the whole diamond for the
463       // if/then/else (or loop, etc), allowing it to be sunk into other blocks
464       // after that.
465
466       // Virtual register defs can only be sunk if all their uses are in blocks
467       // dominated by one of the successors.
468       if (SuccToSinkTo) {
469         // If a previous operand picked a block to sink to, then this operand
470         // must be sinkable to the same block.
471         bool LocalUse = false;
472         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
473                                      BreakPHIEdge, LocalUse))
474           return false;
475
476         continue;
477       }
478
479       // Otherwise, we should look at all the successors and decide which one
480       // we should sink to.
481       for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
482            E = ParentBlock->succ_end(); SI != E; ++SI) {
483         bool LocalUse = false;
484         if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock,
485                                     BreakPHIEdge, LocalUse)) {
486           SuccToSinkTo = *SI;
487           break;
488         }
489         if (LocalUse)
490           // Def is used locally, it's never safe to move this def.
491           return false;
492       }
493
494       // If we couldn't find a block to sink to, ignore this instruction.
495       if (SuccToSinkTo == 0)
496         return false;
497     }
498   }
499
500   // If there are no outputs, it must have side-effects.
501   if (SuccToSinkTo == 0)
502     return false;
503
504   // It's not safe to sink instructions to EH landing pad. Control flow into
505   // landing pad is implicitly defined.
506   if (SuccToSinkTo->isLandingPad())
507     return false;
508
509   // It is not possible to sink an instruction into its own block.  This can
510   // happen with loops.
511   if (MI->getParent() == SuccToSinkTo)
512     return false;
513
514   // If the instruction to move defines a dead physical register which is live
515   // when leaving the basic block, don't move it because it could turn into a
516   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
517   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
518     const MachineOperand &MO = MI->getOperand(I);
519     if (!MO.isReg()) continue;
520     unsigned Reg = MO.getReg();
521     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
522     if (SuccToSinkTo->isLiveIn(Reg))
523       return false;
524   }
525
526   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
527
528   // If the block has multiple predecessors, this would introduce computation on
529   // a path that it doesn't already exist.  We could split the critical edge,
530   // but for now we just punt.
531   if (SuccToSinkTo->pred_size() > 1) {
532     // We cannot sink a load across a critical edge - there may be stores in
533     // other code paths.
534     bool TryBreak = false;
535     bool store = true;
536     if (!MI->isSafeToMove(TII, AA, store)) {
537       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
538       TryBreak = true;
539     }
540
541     // We don't want to sink across a critical edge if we don't dominate the
542     // successor. We could be introducing calculations to new code paths.
543     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
544       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
545       TryBreak = true;
546     }
547
548     // Don't sink instructions into a loop.
549     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
550       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
551       TryBreak = true;
552     }
553
554     // Otherwise we are OK with sinking along a critical edge.
555     if (!TryBreak)
556       DEBUG(dbgs() << "Sinking along critical edge.\n");
557     else {
558       MachineBasicBlock *NewSucc =
559         SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
560       if (!NewSucc) {
561         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
562                         "break critical edge\n");
563         return false;
564       } else {
565         DEBUG(dbgs() << " *** Splitting critical edge:"
566               " BB#" << ParentBlock->getNumber()
567               << " -- BB#" << NewSucc->getNumber()
568               << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
569         SuccToSinkTo = NewSucc;
570         ++NumSplit;
571         BreakPHIEdge = false;
572       }
573     }
574   }
575
576   if (BreakPHIEdge) {
577     // BreakPHIEdge is true if all the uses are in the successor MBB being
578     // sunken into and they are all PHI nodes. In this case, machine-sink must
579     // break the critical edge first.
580     MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
581                                                    SuccToSinkTo, BreakPHIEdge);
582     if (!NewSucc) {
583       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
584             "break critical edge\n");
585       return false;
586     }
587
588     DEBUG(dbgs() << " *** Splitting critical edge:"
589           " BB#" << ParentBlock->getNumber()
590           << " -- BB#" << NewSucc->getNumber()
591           << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
592     SuccToSinkTo = NewSucc;
593     ++NumSplit;
594   }
595
596   // Determine where to insert into. Skip phi nodes.
597   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
598   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
599     ++InsertPos;
600
601   // Move the instruction.
602   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
603                        ++MachineBasicBlock::iterator(MI));
604
605   // Conservatively, clear any kill flags, since it's possible that they are no
606   // longer correct.
607   MI->clearKillInfo();
608
609   return true;
610 }