]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/CodeGen/SplitKit.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / CodeGen / SplitKit.cpp
1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 STATISTIC(NumFinished, "Number of splits finished");
32 STATISTIC(NumSimple,   "Number of splits that were simple");
33 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36
37 //===----------------------------------------------------------------------===//
38 //                                 Split Analysis
39 //===----------------------------------------------------------------------===//
40
41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                              const LiveIntervals &lis,
43                              const MachineLoopInfo &mli)
44   : MF(vrm.getMachineFunction()),
45     VRM(vrm),
46     LIS(lis),
47     Loops(mli),
48     TII(*MF.getTarget().getInstrInfo()),
49     CurLI(0),
50     LastSplitPoint(MF.getNumBlockIDs()) {}
51
52 void SplitAnalysis::clear() {
53   UseSlots.clear();
54   UseBlocks.clear();
55   ThroughBlocks.clear();
56   CurLI = 0;
57   DidRepairRange = false;
58 }
59
60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65   // Compute split points on the first call. The pair is independent of the
66   // current live interval.
67   if (!LSP.first.isValid()) {
68     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69     if (FirstTerm == MBB->end())
70       LSP.first = LIS.getMBBEndIdx(MBB);
71     else
72       LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74     // If there is a landing pad successor, also find the call instruction.
75     if (!LPad)
76       return LSP.first;
77     // There may not be a call instruction (?) in which case we ignore LPad.
78     LSP.second = LSP.first;
79     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80          I != E;) {
81       --I;
82       if (I->getDesc().isCall()) {
83         LSP.second = LIS.getInstructionIndex(I);
84         break;
85       }
86     }
87   }
88
89   // If CurLI is live into a landing pad successor, move the last split point
90   // back to the call that may throw.
91   if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92     return LSP.second;
93   else
94     return LSP.first;
95 }
96
97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
98 void SplitAnalysis::analyzeUses() {
99   assert(UseSlots.empty() && "Call clear first");
100
101   // First get all the defs from the interval values. This provides the correct
102   // slots for early clobbers.
103   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104        E = CurLI->vni_end(); I != E; ++I)
105     if (!(*I)->isPHIDef() && !(*I)->isUnused())
106       UseSlots.push_back((*I)->def);
107
108   // Get use slots form the use-def chain.
109   const MachineRegisterInfo &MRI = MF.getRegInfo();
110   for (MachineRegisterInfo::use_nodbg_iterator
111        I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112        ++I)
113     if (!I.getOperand().isUndef())
114       UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115
116   array_pod_sort(UseSlots.begin(), UseSlots.end());
117
118   // Remove duplicates, keeping the smaller slot for each instruction.
119   // That is what we want for early clobbers.
120   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121                              SlotIndex::isSameInstr),
122                  UseSlots.end());
123
124   // Compute per-live block info.
125   if (!calcLiveBlockInfo()) {
126     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127     // I am looking at you, RegisterCoalescer!
128     DidRepairRange = true;
129     ++NumRepairs;
130     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131     const_cast<LiveIntervals&>(LIS)
132       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133     UseBlocks.clear();
134     ThroughBlocks.clear();
135     bool fixed = calcLiveBlockInfo();
136     (void)fixed;
137     assert(fixed && "Couldn't fix broken live interval");
138   }
139
140   DEBUG(dbgs() << "Analyze counted "
141                << UseSlots.size() << " instrs in "
142                << UseBlocks.size() << " blocks, through "
143                << NumThroughBlocks << " blocks.\n");
144 }
145
146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147 /// where CurLI is live.
148 bool SplitAnalysis::calcLiveBlockInfo() {
149   ThroughBlocks.resize(MF.getNumBlockIDs());
150   NumThroughBlocks = NumGapBlocks = 0;
151   if (CurLI->empty())
152     return true;
153
154   LiveInterval::const_iterator LVI = CurLI->begin();
155   LiveInterval::const_iterator LVE = CurLI->end();
156
157   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158   UseI = UseSlots.begin();
159   UseE = UseSlots.end();
160
161   // Loop over basic blocks where CurLI is live.
162   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163   for (;;) {
164     BlockInfo BI;
165     BI.MBB = MFI;
166     SlotIndex Start, Stop;
167     tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168
169     // If the block contains no uses, the range must be live through. At one
170     // point, RegisterCoalescer could create dangling ranges that ended
171     // mid-block.
172     if (UseI == UseE || *UseI >= Stop) {
173       ++NumThroughBlocks;
174       ThroughBlocks.set(BI.MBB->getNumber());
175       // The range shouldn't end mid-block if there are no uses. This shouldn't
176       // happen.
177       if (LVI->end < Stop)
178         return false;
179     } else {
180       // This block has uses. Find the first and last uses in the block.
181       BI.FirstUse = *UseI;
182       assert(BI.FirstUse >= Start);
183       do ++UseI;
184       while (UseI != UseE && *UseI < Stop);
185       BI.LastUse = UseI[-1];
186       assert(BI.LastUse < Stop);
187
188       // LVI is the first live segment overlapping MBB.
189       BI.LiveIn = LVI->start <= Start;
190
191       // Look for gaps in the live range.
192       BI.LiveOut = true;
193       while (LVI->end < Stop) {
194         SlotIndex LastStop = LVI->end;
195         if (++LVI == LVE || LVI->start >= Stop) {
196           BI.LiveOut = false;
197           BI.LastUse = LastStop;
198           break;
199         }
200         if (LastStop < LVI->start) {
201           // There is a gap in the live range. Create duplicate entries for the
202           // live-in snippet and the live-out snippet.
203           ++NumGapBlocks;
204
205           // Push the Live-in part.
206           BI.LiveThrough = false;
207           BI.LiveOut = false;
208           UseBlocks.push_back(BI);
209           UseBlocks.back().LastUse = LastStop;
210
211           // Set up BI for the live-out part.
212           BI.LiveIn = false;
213           BI.LiveOut = true;
214           BI.FirstUse = LVI->start;
215         }
216       }
217
218       // Don't set LiveThrough when the block has a gap.
219       BI.LiveThrough = BI.LiveIn && BI.LiveOut;
220       UseBlocks.push_back(BI);
221
222       // LVI is now at LVE or LVI->end >= Stop.
223       if (LVI == LVE)
224         break;
225     }
226
227     // Live segment ends exactly at Stop. Move to the next segment.
228     if (LVI->end == Stop && ++LVI == LVE)
229       break;
230
231     // Pick the next basic block.
232     if (LVI->start < Stop)
233       ++MFI;
234     else
235       MFI = LIS.getMBBFromIndex(LVI->start);
236   }
237
238   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
239   return true;
240 }
241
242 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
243   if (cli->empty())
244     return 0;
245   LiveInterval *li = const_cast<LiveInterval*>(cli);
246   LiveInterval::iterator LVI = li->begin();
247   LiveInterval::iterator LVE = li->end();
248   unsigned Count = 0;
249
250   // Loop over basic blocks where li is live.
251   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
252   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
253   for (;;) {
254     ++Count;
255     LVI = li->advanceTo(LVI, Stop);
256     if (LVI == LVE)
257       return Count;
258     do {
259       ++MFI;
260       Stop = LIS.getMBBEndIdx(MFI);
261     } while (Stop <= LVI->start);
262   }
263 }
264
265 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
266   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
267   const LiveInterval &Orig = LIS.getInterval(OrigReg);
268   assert(!Orig.empty() && "Splitting empty interval?");
269   LiveInterval::const_iterator I = Orig.find(Idx);
270
271   // Range containing Idx should begin at Idx.
272   if (I != Orig.end() && I->start <= Idx)
273     return I->start == Idx;
274
275   // Range does not contain Idx, previous must end at Idx.
276   return I != Orig.begin() && (--I)->end == Idx;
277 }
278
279 void SplitAnalysis::analyze(const LiveInterval *li) {
280   clear();
281   CurLI = li;
282   analyzeUses();
283 }
284
285
286 //===----------------------------------------------------------------------===//
287 //                               Split Editor
288 //===----------------------------------------------------------------------===//
289
290 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
291 SplitEditor::SplitEditor(SplitAnalysis &sa,
292                          LiveIntervals &lis,
293                          VirtRegMap &vrm,
294                          MachineDominatorTree &mdt)
295   : SA(sa), LIS(lis), VRM(vrm),
296     MRI(vrm.getMachineFunction().getRegInfo()),
297     MDT(mdt),
298     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
299     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
300     Edit(0),
301     OpenIdx(0),
302     RegAssign(Allocator)
303 {}
304
305 void SplitEditor::reset(LiveRangeEdit &lre) {
306   Edit = &lre;
307   OpenIdx = 0;
308   RegAssign.clear();
309   Values.clear();
310
311   // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
312   LiveOutSeen.clear();
313
314   // We don't need an AliasAnalysis since we will only be performing
315   // cheap-as-a-copy remats anyway.
316   Edit->anyRematerializable(LIS, TII, 0);
317 }
318
319 void SplitEditor::dump() const {
320   if (RegAssign.empty()) {
321     dbgs() << " empty\n";
322     return;
323   }
324
325   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
326     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
327   dbgs() << '\n';
328 }
329
330 VNInfo *SplitEditor::defValue(unsigned RegIdx,
331                               const VNInfo *ParentVNI,
332                               SlotIndex Idx) {
333   assert(ParentVNI && "Mapping  NULL value");
334   assert(Idx.isValid() && "Invalid SlotIndex");
335   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
336   LiveInterval *LI = Edit->get(RegIdx);
337
338   // Create a new value.
339   VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
340
341   // Use insert for lookup, so we can add missing values with a second lookup.
342   std::pair<ValueMap::iterator, bool> InsP =
343     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
344
345   // This was the first time (RegIdx, ParentVNI) was mapped.
346   // Keep it as a simple def without any liveness.
347   if (InsP.second)
348     return VNI;
349
350   // If the previous value was a simple mapping, add liveness for it now.
351   if (VNInfo *OldVNI = InsP.first->second) {
352     SlotIndex Def = OldVNI->def;
353     LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
354     // No longer a simple mapping.
355     InsP.first->second = 0;
356   }
357
358   // This is a complex mapping, add liveness for VNI
359   SlotIndex Def = VNI->def;
360   LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
361
362   return VNI;
363 }
364
365 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
366   assert(ParentVNI && "Mapping  NULL value");
367   VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
368
369   // ParentVNI was either unmapped or already complex mapped. Either way.
370   if (!VNI)
371     return;
372
373   // This was previously a single mapping. Make sure the old def is represented
374   // by a trivial live range.
375   SlotIndex Def = VNI->def;
376   Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
377   VNI = 0;
378 }
379
380 // extendRange - Extend the live range to reach Idx.
381 // Potentially create phi-def values.
382 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
383   assert(Idx.isValid() && "Invalid SlotIndex");
384   MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
385   assert(IdxMBB && "No MBB at Idx");
386   LiveInterval *LI = Edit->get(RegIdx);
387
388   // Is there a def in the same MBB we can extend?
389   if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
390     return;
391
392   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
393   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
394   // Perform a search for all predecessor blocks where we know the dominating
395   // VNInfo.
396   VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
397
398   // When there were multiple different values, we may need new PHIs.
399   if (!VNI)
400     return updateSSA();
401
402   // Poor man's SSA update for the single-value case.
403   LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
404   for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
405          E = LiveInBlocks.end(); I != E; ++I) {
406     MachineBasicBlock *MBB = I->DomNode->getBlock();
407     SlotIndex Start = LIS.getMBBStartIdx(MBB);
408     if (I->Kill.isValid())
409       LI->addRange(LiveRange(Start, I->Kill, VNI));
410     else {
411       LiveOutCache[MBB] = LOP;
412       LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
413     }
414   }
415 }
416
417 /// findReachingDefs - Search the CFG for known live-out values.
418 /// Add required live-in blocks to LiveInBlocks.
419 VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
420                                       MachineBasicBlock *KillMBB,
421                                       SlotIndex Kill) {
422   // Initialize the live-out cache the first time it is needed.
423   if (LiveOutSeen.empty()) {
424     unsigned N = VRM.getMachineFunction().getNumBlockIDs();
425     LiveOutSeen.resize(N);
426     LiveOutCache.resize(N);
427   }
428
429   // Blocks where LI should be live-in.
430   SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
431
432   // Remember if we have seen more than one value.
433   bool UniqueVNI = true;
434   VNInfo *TheVNI = 0;
435
436   // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
437   for (unsigned i = 0; i != WorkList.size(); ++i) {
438     MachineBasicBlock *MBB = WorkList[i];
439     assert(!MBB->pred_empty() && "Value live-in to entry block?");
440     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
441            PE = MBB->pred_end(); PI != PE; ++PI) {
442        MachineBasicBlock *Pred = *PI;
443        LiveOutPair &LOP = LiveOutCache[Pred];
444
445        // Is this a known live-out block?
446        if (LiveOutSeen.test(Pred->getNumber())) {
447          if (VNInfo *VNI = LOP.first) {
448            if (TheVNI && TheVNI != VNI)
449              UniqueVNI = false;
450            TheVNI = VNI;
451          }
452          continue;
453        }
454
455        // First time. LOP is garbage and must be cleared below.
456        LiveOutSeen.set(Pred->getNumber());
457
458        // Does Pred provide a live-out value?
459        SlotIndex Start, Last;
460        tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
461        Last = Last.getPrevSlot();
462        VNInfo *VNI = LI->extendInBlock(Start, Last);
463        LOP.first = VNI;
464        if (VNI) {
465          LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
466          if (TheVNI && TheVNI != VNI)
467            UniqueVNI = false;
468          TheVNI = VNI;
469          continue;
470        }
471        LOP.second = 0;
472
473        // No, we need a live-in value for Pred as well
474        if (Pred != KillMBB)
475           WorkList.push_back(Pred);
476        else
477           // Loopback to KillMBB, so value is really live through.
478          Kill = SlotIndex();
479     }
480   }
481
482   // Transfer WorkList to LiveInBlocks in reverse order.
483   // This ordering works best with updateSSA().
484   LiveInBlocks.clear();
485   LiveInBlocks.reserve(WorkList.size());
486   while(!WorkList.empty())
487     LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
488
489   // The kill block may not be live-through.
490   assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
491   LiveInBlocks.back().Kill = Kill;
492
493   return UniqueVNI ? TheVNI : 0;
494 }
495
496 void SplitEditor::updateSSA() {
497   // This is essentially the same iterative algorithm that SSAUpdater uses,
498   // except we already have a dominator tree, so we don't have to recompute it.
499   unsigned Changes;
500   do {
501     Changes = 0;
502     // Propagate live-out values down the dominator tree, inserting phi-defs
503     // when necessary.
504     for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
505            E = LiveInBlocks.end(); I != E; ++I) {
506       MachineDomTreeNode *Node = I->DomNode;
507       // Skip block if the live-in value has already been determined.
508       if (!Node)
509         continue;
510       MachineBasicBlock *MBB = Node->getBlock();
511       MachineDomTreeNode *IDom = Node->getIDom();
512       LiveOutPair IDomValue;
513
514       // We need a live-in value to a block with no immediate dominator?
515       // This is probably an unreachable block that has survived somehow.
516       bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
517
518       // IDom dominates all of our predecessors, but it may not be their
519       // immediate dominator. Check if any of them have live-out values that are
520       // properly dominated by IDom. If so, we need a phi-def here.
521       if (!needPHI) {
522         IDomValue = LiveOutCache[IDom->getBlock()];
523         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
524                PE = MBB->pred_end(); PI != PE; ++PI) {
525           LiveOutPair Value = LiveOutCache[*PI];
526           if (!Value.first || Value.first == IDomValue.first)
527             continue;
528           // This predecessor is carrying something other than IDomValue.
529           // It could be because IDomValue hasn't propagated yet, or it could be
530           // because MBB is in the dominance frontier of that value.
531           if (MDT.dominates(IDom, Value.second)) {
532             needPHI = true;
533             break;
534           }
535         }
536       }
537
538       // The value may be live-through even if Kill is set, as can happen when
539       // we are called from extendRange. In that case LiveOutSeen is true, and
540       // LiveOutCache indicates a foreign or missing value.
541       LiveOutPair &LOP = LiveOutCache[MBB];
542
543       // Create a phi-def if required.
544       if (needPHI) {
545         ++Changes;
546         SlotIndex Start = LIS.getMBBStartIdx(MBB);
547         unsigned RegIdx = RegAssign.lookup(Start);
548         LiveInterval *LI = Edit->get(RegIdx);
549         VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
550         VNI->setIsPHIDef(true);
551         I->Value = VNI;
552         // This block is done, we know the final value.
553         I->DomNode = 0;
554         if (I->Kill.isValid())
555           LI->addRange(LiveRange(Start, I->Kill, VNI));
556         else {
557           LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
558           LOP = LiveOutPair(VNI, Node);
559         }
560       } else if (IDomValue.first) {
561         // No phi-def here. Remember incoming value.
562         I->Value = IDomValue.first;
563         if (I->Kill.isValid())
564           continue;
565         // Propagate IDomValue if needed:
566         // MBB is live-out and doesn't define its own value.
567         if (LOP.second != Node && LOP.first != IDomValue.first) {
568           ++Changes;
569           LOP = IDomValue;
570         }
571       }
572     }
573   } while (Changes);
574
575   // The values in LiveInBlocks are now accurate. No more phi-defs are needed
576   // for these blocks, so we can color the live ranges.
577   for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
578          E = LiveInBlocks.end(); I != E; ++I) {
579     if (!I->DomNode)
580       continue;
581     assert(I->Value && "No live-in value found");
582     MachineBasicBlock *MBB = I->DomNode->getBlock();
583     SlotIndex Start = LIS.getMBBStartIdx(MBB);
584     unsigned RegIdx = RegAssign.lookup(Start);
585     LiveInterval *LI = Edit->get(RegIdx);
586     LI->addRange(LiveRange(Start, I->Kill.isValid() ?
587                                   I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
588   }
589 }
590
591 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
592                                    VNInfo *ParentVNI,
593                                    SlotIndex UseIdx,
594                                    MachineBasicBlock &MBB,
595                                    MachineBasicBlock::iterator I) {
596   MachineInstr *CopyMI = 0;
597   SlotIndex Def;
598   LiveInterval *LI = Edit->get(RegIdx);
599
600   // We may be trying to avoid interference that ends at a deleted instruction,
601   // so always begin RegIdx 0 early and all others late.
602   bool Late = RegIdx != 0;
603
604   // Attempt cheap-as-a-copy rematerialization.
605   LiveRangeEdit::Remat RM(ParentVNI);
606   if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
607     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
608     ++NumRemats;
609   } else {
610     // Can't remat, just insert a copy from parent.
611     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
612                .addReg(Edit->getReg());
613     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
614             .getDefIndex();
615     ++NumCopies;
616   }
617
618   // Define the value in Reg.
619   VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
620   VNI->setCopy(CopyMI);
621   return VNI;
622 }
623
624 /// Create a new virtual register and live interval.
625 unsigned SplitEditor::openIntv() {
626   // Create the complement as index 0.
627   if (Edit->empty())
628     Edit->create(LIS, VRM);
629
630   // Create the open interval.
631   OpenIdx = Edit->size();
632   Edit->create(LIS, VRM);
633   return OpenIdx;
634 }
635
636 void SplitEditor::selectIntv(unsigned Idx) {
637   assert(Idx != 0 && "Cannot select the complement interval");
638   assert(Idx < Edit->size() && "Can only select previously opened interval");
639   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
640   OpenIdx = Idx;
641 }
642
643 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
644   assert(OpenIdx && "openIntv not called before enterIntvBefore");
645   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
646   Idx = Idx.getBaseIndex();
647   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
648   if (!ParentVNI) {
649     DEBUG(dbgs() << ": not live\n");
650     return Idx;
651   }
652   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
653   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
654   assert(MI && "enterIntvBefore called with invalid index");
655
656   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
657   return VNI->def;
658 }
659
660 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
661   assert(OpenIdx && "openIntv not called before enterIntvAfter");
662   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
663   Idx = Idx.getBoundaryIndex();
664   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
665   if (!ParentVNI) {
666     DEBUG(dbgs() << ": not live\n");
667     return Idx;
668   }
669   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
670   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
671   assert(MI && "enterIntvAfter called with invalid index");
672
673   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
674                               llvm::next(MachineBasicBlock::iterator(MI)));
675   return VNI->def;
676 }
677
678 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
679   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
680   SlotIndex End = LIS.getMBBEndIdx(&MBB);
681   SlotIndex Last = End.getPrevSlot();
682   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
683   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
684   if (!ParentVNI) {
685     DEBUG(dbgs() << ": not live\n");
686     return End;
687   }
688   DEBUG(dbgs() << ": valno " << ParentVNI->id);
689   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
690                               LIS.getLastSplitPoint(Edit->getParent(), &MBB));
691   RegAssign.insert(VNI->def, End, OpenIdx);
692   DEBUG(dump());
693   return VNI->def;
694 }
695
696 /// useIntv - indicate that all instructions in MBB should use OpenLI.
697 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
698   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
699 }
700
701 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
702   assert(OpenIdx && "openIntv not called before useIntv");
703   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
704   RegAssign.insert(Start, End, OpenIdx);
705   DEBUG(dump());
706 }
707
708 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
709   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
710   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
711
712   // The interval must be live beyond the instruction at Idx.
713   Idx = Idx.getBoundaryIndex();
714   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
715   if (!ParentVNI) {
716     DEBUG(dbgs() << ": not live\n");
717     return Idx.getNextSlot();
718   }
719   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
720
721   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
722   assert(MI && "No instruction at index");
723   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
724                               llvm::next(MachineBasicBlock::iterator(MI)));
725   return VNI->def;
726 }
727
728 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
729   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
730   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
731
732   // The interval must be live into the instruction at Idx.
733   Idx = Idx.getBoundaryIndex();
734   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
735   if (!ParentVNI) {
736     DEBUG(dbgs() << ": not live\n");
737     return Idx.getNextSlot();
738   }
739   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
740
741   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
742   assert(MI && "No instruction at index");
743   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
744   return VNI->def;
745 }
746
747 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
748   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
749   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
750   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
751
752   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
753   if (!ParentVNI) {
754     DEBUG(dbgs() << ": not live\n");
755     return Start;
756   }
757
758   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
759                               MBB.SkipPHIsAndLabels(MBB.begin()));
760   RegAssign.insert(Start, VNI->def, OpenIdx);
761   DEBUG(dump());
762   return VNI->def;
763 }
764
765 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
766   assert(OpenIdx && "openIntv not called before overlapIntv");
767   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
768   assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
769          "Parent changes value in extended range");
770   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
771          "Range cannot span basic blocks");
772
773   // The complement interval will be extended as needed by extendRange().
774   if (ParentVNI)
775     markComplexMapped(0, ParentVNI);
776   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
777   RegAssign.insert(Start, End, OpenIdx);
778   DEBUG(dump());
779 }
780
781 /// transferValues - Transfer all possible values to the new live ranges.
782 /// Values that were rematerialized are left alone, they need extendRange().
783 bool SplitEditor::transferValues() {
784   bool Skipped = false;
785   LiveInBlocks.clear();
786   RegAssignMap::const_iterator AssignI = RegAssign.begin();
787   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
788          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
789     DEBUG(dbgs() << "  blit " << *ParentI << ':');
790     VNInfo *ParentVNI = ParentI->valno;
791     // RegAssign has holes where RegIdx 0 should be used.
792     SlotIndex Start = ParentI->start;
793     AssignI.advanceTo(Start);
794     do {
795       unsigned RegIdx;
796       SlotIndex End = ParentI->end;
797       if (!AssignI.valid()) {
798         RegIdx = 0;
799       } else if (AssignI.start() <= Start) {
800         RegIdx = AssignI.value();
801         if (AssignI.stop() < End) {
802           End = AssignI.stop();
803           ++AssignI;
804         }
805       } else {
806         RegIdx = 0;
807         End = std::min(End, AssignI.start());
808       }
809
810       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
811       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
812       LiveInterval *LI = Edit->get(RegIdx);
813
814       // Check for a simply defined value that can be blitted directly.
815       if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
816         DEBUG(dbgs() << ':' << VNI->id);
817         LI->addRange(LiveRange(Start, End, VNI));
818         Start = End;
819         continue;
820       }
821
822       // Skip rematerialized values, we need to use extendRange() and
823       // extendPHIKillRanges() to completely recompute the live ranges.
824       if (Edit->didRematerialize(ParentVNI)) {
825         DEBUG(dbgs() << "(remat)");
826         Skipped = true;
827         Start = End;
828         continue;
829       }
830
831       // Initialize the live-out cache the first time it is needed.
832       if (LiveOutSeen.empty()) {
833         unsigned N = VRM.getMachineFunction().getNumBlockIDs();
834         LiveOutSeen.resize(N);
835         LiveOutCache.resize(N);
836       }
837
838       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
839       // so the live range is accurate. Add live-in blocks in [Start;End) to the
840       // LiveInBlocks.
841       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
842       SlotIndex BlockStart, BlockEnd;
843       tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
844
845       // The first block may be live-in, or it may have its own def.
846       if (Start != BlockStart) {
847         VNInfo *VNI = LI->extendInBlock(BlockStart,
848                                         std::min(BlockEnd, End).getPrevSlot());
849         assert(VNI && "Missing def for complex mapped value");
850         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
851         // MBB has its own def. Is it also live-out?
852         if (BlockEnd <= End) {
853           LiveOutSeen.set(MBB->getNumber());
854           LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
855         }
856         // Skip to the next block for live-in.
857         ++MBB;
858         BlockStart = BlockEnd;
859       }
860
861       // Handle the live-in blocks covered by [Start;End).
862       assert(Start <= BlockStart && "Expected live-in block");
863       while (BlockStart < End) {
864         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
865         BlockEnd = LIS.getMBBEndIdx(MBB);
866         if (BlockStart == ParentVNI->def) {
867           // This block has the def of a parent PHI, so it isn't live-in.
868           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
869           VNInfo *VNI = LI->extendInBlock(BlockStart,
870                                          std::min(BlockEnd, End).getPrevSlot());
871           assert(VNI && "Missing def for complex mapped parent PHI");
872           if (End >= BlockEnd) {
873             // Live-out as well.
874             LiveOutSeen.set(MBB->getNumber());
875             LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
876           }
877         } else {
878           // This block needs a live-in value.
879           LiveInBlocks.push_back(MDT[MBB]);
880           // The last block covered may not be live-out.
881           if (End < BlockEnd)
882             LiveInBlocks.back().Kill = End;
883           else {
884             // Live-out, but we need updateSSA to tell us the value.
885             LiveOutSeen.set(MBB->getNumber());
886             LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
887                                             (MachineDomTreeNode*)0);
888           }
889         }
890         BlockStart = BlockEnd;
891         ++MBB;
892       }
893       Start = End;
894     } while (Start != ParentI->end);
895     DEBUG(dbgs() << '\n');
896   }
897
898   if (!LiveInBlocks.empty())
899     updateSSA();
900
901   return Skipped;
902 }
903
904 void SplitEditor::extendPHIKillRanges() {
905     // Extend live ranges to be live-out for successor PHI values.
906   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
907        E = Edit->getParent().vni_end(); I != E; ++I) {
908     const VNInfo *PHIVNI = *I;
909     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
910       continue;
911     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
912     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
913     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
914          PE = MBB->pred_end(); PI != PE; ++PI) {
915       SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
916       // The predecessor may not have a live-out value. That is OK, like an
917       // undef PHI operand.
918       if (Edit->getParent().liveAt(End)) {
919         assert(RegAssign.lookup(End) == RegIdx &&
920                "Different register assignment in phi predecessor");
921         extendRange(RegIdx, End);
922       }
923     }
924   }
925 }
926
927 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
928 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
929   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
930        RE = MRI.reg_end(); RI != RE;) {
931     MachineOperand &MO = RI.getOperand();
932     MachineInstr *MI = MO.getParent();
933     ++RI;
934     // LiveDebugVariables should have handled all DBG_VALUE instructions.
935     if (MI->isDebugValue()) {
936       DEBUG(dbgs() << "Zapping " << *MI);
937       MO.setReg(0);
938       continue;
939     }
940
941     // <undef> operands don't really read the register, so just assign them to
942     // the complement.
943     if (MO.isUse() && MO.isUndef()) {
944       MO.setReg(Edit->get(0)->reg);
945       continue;
946     }
947
948     SlotIndex Idx = LIS.getInstructionIndex(MI);
949     if (MO.isDef())
950       Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
951
952     // Rewrite to the mapped register at Idx.
953     unsigned RegIdx = RegAssign.lookup(Idx);
954     MO.setReg(Edit->get(RegIdx)->reg);
955     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
956                  << Idx << ':' << RegIdx << '\t' << *MI);
957
958     // Extend liveness to Idx if the instruction reads reg.
959     if (!ExtendRanges)
960       continue;
961
962     // Skip instructions that don't read Reg.
963     if (MO.isDef()) {
964       if (!MO.getSubReg() && !MO.isEarlyClobber())
965         continue;
966       // We may wan't to extend a live range for a partial redef, or for a use
967       // tied to an early clobber.
968       Idx = Idx.getPrevSlot();
969       if (!Edit->getParent().liveAt(Idx))
970         continue;
971     } else
972       Idx = Idx.getUseIndex();
973
974     extendRange(RegIdx, Idx);
975   }
976 }
977
978 void SplitEditor::deleteRematVictims() {
979   SmallVector<MachineInstr*, 8> Dead;
980   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
981     LiveInterval *LI = *I;
982     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
983            LII != LIE; ++LII) {
984       // Dead defs end at the store slot.
985       if (LII->end != LII->valno->def.getNextSlot())
986         continue;
987       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
988       assert(MI && "Missing instruction for dead def");
989       MI->addRegisterDead(LI->reg, &TRI);
990
991       if (!MI->allDefsAreDead())
992         continue;
993
994       DEBUG(dbgs() << "All defs dead: " << *MI);
995       Dead.push_back(MI);
996     }
997   }
998
999   if (Dead.empty())
1000     return;
1001
1002   Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
1003 }
1004
1005 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1006   ++NumFinished;
1007
1008   // At this point, the live intervals in Edit contain VNInfos corresponding to
1009   // the inserted copies.
1010
1011   // Add the original defs from the parent interval.
1012   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1013          E = Edit->getParent().vni_end(); I != E; ++I) {
1014     const VNInfo *ParentVNI = *I;
1015     if (ParentVNI->isUnused())
1016       continue;
1017     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1018     VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
1019     VNI->setIsPHIDef(ParentVNI->isPHIDef());
1020     VNI->setCopy(ParentVNI->getCopy());
1021
1022     // Mark rematted values as complex everywhere to force liveness computation.
1023     // The new live ranges may be truncated.
1024     if (Edit->didRematerialize(ParentVNI))
1025       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1026         markComplexMapped(i, ParentVNI);
1027   }
1028
1029   // Transfer the simply mapped values, check if any are skipped.
1030   bool Skipped = transferValues();
1031   if (Skipped)
1032     extendPHIKillRanges();
1033   else
1034     ++NumSimple;
1035
1036   // Rewrite virtual registers, possibly extending ranges.
1037   rewriteAssigned(Skipped);
1038
1039   // Delete defs that were rematted everywhere.
1040   if (Skipped)
1041     deleteRematVictims();
1042
1043   // Get rid of unused values and set phi-kill flags.
1044   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1045     (*I)->RenumberValues(LIS);
1046
1047   // Provide a reverse mapping from original indices to Edit ranges.
1048   if (LRMap) {
1049     LRMap->clear();
1050     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1051       LRMap->push_back(i);
1052   }
1053
1054   // Now check if any registers were separated into multiple components.
1055   ConnectedVNInfoEqClasses ConEQ(LIS);
1056   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1057     // Don't use iterators, they are invalidated by create() below.
1058     LiveInterval *li = Edit->get(i);
1059     unsigned NumComp = ConEQ.Classify(li);
1060     if (NumComp <= 1)
1061       continue;
1062     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1063     SmallVector<LiveInterval*, 8> dups;
1064     dups.push_back(li);
1065     for (unsigned j = 1; j != NumComp; ++j)
1066       dups.push_back(&Edit->create(LIS, VRM));
1067     ConEQ.Distribute(&dups[0], MRI);
1068     // The new intervals all map back to i.
1069     if (LRMap)
1070       LRMap->resize(Edit->size(), i);
1071   }
1072
1073   // Calculate spill weight and allocation hints for new intervals.
1074   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1075
1076   assert(!LRMap || LRMap->size() == Edit->size());
1077 }
1078
1079
1080 //===----------------------------------------------------------------------===//
1081 //                            Single Block Splitting
1082 //===----------------------------------------------------------------------===//
1083
1084 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1085 /// may be an advantage to split CurLI for the duration of the block.
1086 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1087   // If CurLI is local to one block, there is no point to splitting it.
1088   if (UseBlocks.size() <= 1)
1089     return false;
1090   // Add blocks with multiple uses.
1091   for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
1092     const BlockInfo &BI = UseBlocks[i];
1093     if (BI.FirstUse == BI.LastUse)
1094       continue;
1095     Blocks.insert(BI.MBB);
1096   }
1097   return !Blocks.empty();
1098 }
1099
1100 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1101   openIntv();
1102   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1103   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
1104     LastSplitPoint));
1105   if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
1106     useIntv(SegStart, leaveIntvAfter(BI.LastUse));
1107   } else {
1108       // The last use is after the last valid split point.
1109     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1110     useIntv(SegStart, SegStop);
1111     overlapIntv(SegStop, BI.LastUse);
1112   }
1113 }
1114
1115 /// splitSingleBlocks - Split CurLI into a separate live interval inside each
1116 /// basic block in Blocks.
1117 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1118   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1119   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
1120   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1121     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1122     if (Blocks.count(BI.MBB))
1123       splitSingleBlock(BI);
1124   }
1125   finish();
1126 }
1127
1128
1129 //===----------------------------------------------------------------------===//
1130 //                    Global Live Range Splitting Support
1131 //===----------------------------------------------------------------------===//
1132
1133 // These methods support a method of global live range splitting that uses a
1134 // global algorithm to decide intervals for CFG edges. They will insert split
1135 // points and color intervals in basic blocks while avoiding interference.
1136 //
1137 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1138 // are on the stack.
1139
1140 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1141                                         unsigned IntvIn, SlotIndex LeaveBefore,
1142                                         unsigned IntvOut, SlotIndex EnterAfter){
1143   SlotIndex Start, Stop;
1144   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1145
1146   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1147                << ") intf " << LeaveBefore << '-' << EnterAfter
1148                << ", live-through " << IntvIn << " -> " << IntvOut);
1149
1150   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1151
1152   if (!IntvOut) {
1153     DEBUG(dbgs() << ", spill on entry.\n");
1154     //
1155     //        <<<<<<<<<    Possible LeaveBefore interference.
1156     //    |-----------|    Live through.
1157     //    -____________    Spill on entry.
1158     //
1159     selectIntv(IntvIn);
1160     MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1161     SlotIndex Idx = leaveIntvAtTop(*MBB);
1162     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1163     (void)Idx;
1164     return;
1165   }
1166
1167   if (!IntvIn) {
1168     DEBUG(dbgs() << ", reload on exit.\n");
1169     //
1170     //    >>>>>>>          Possible EnterAfter interference.
1171     //    |-----------|    Live through.
1172     //    ___________--    Reload on exit.
1173     //
1174     selectIntv(IntvOut);
1175     MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1176     SlotIndex Idx = enterIntvAtEnd(*MBB);
1177     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1178     (void)Idx;
1179     return;
1180   }
1181
1182   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1183     DEBUG(dbgs() << ", straight through.\n");
1184     //
1185     //    |-----------|    Live through.
1186     //    -------------    Straight through, same intv, no interference.
1187     //
1188     selectIntv(IntvOut);
1189     useIntv(Start, Stop);
1190     return;
1191   }
1192
1193   // We cannot legally insert splits after LSP.
1194   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1195
1196   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1197                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1198     DEBUG(dbgs() << ", switch avoiding interference.\n");
1199     //
1200     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1201     //    |-----------|    Live through.
1202     //    ------=======    Switch intervals between interference.
1203     //
1204     SlotIndex Cut = (LeaveBefore && LeaveBefore < LSP) ? LeaveBefore : LSP;
1205     selectIntv(IntvOut);
1206     SlotIndex Idx = enterIntvBefore(Cut);
1207     useIntv(Idx, Stop);
1208     selectIntv(IntvIn);
1209     useIntv(Start, Idx);
1210     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1211     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1212     return;
1213   }
1214
1215   DEBUG(dbgs() << ", create local intv for interference.\n");
1216   //
1217   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1218   //    |-----------|    Live through.
1219   //    ==---------==    Switch intervals before/after interference.
1220   //
1221   assert(LeaveBefore <= EnterAfter && "Missed case");
1222
1223   selectIntv(IntvOut);
1224   SlotIndex Idx = enterIntvAfter(EnterAfter);
1225   useIntv(Idx, Stop);
1226   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1227
1228   selectIntv(IntvIn);
1229   Idx = leaveIntvBefore(LeaveBefore);
1230   useIntv(Start, Idx);
1231   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1232 }
1233
1234
1235 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1236                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1237   SlotIndex Start, Stop;
1238   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1239
1240   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1241                << "), uses " << BI.FirstUse << '-' << BI.LastUse
1242                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1243                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1244
1245   assert(IntvIn && "Must have register in");
1246   assert(BI.LiveIn && "Must be live-in");
1247   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1248
1249   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastUse)) {
1250     DEBUG(dbgs() << " before interference.\n");
1251     //
1252     //               <<<    Interference after kill.
1253     //     |---o---x   |    Killed in block.
1254     //     =========        Use IntvIn everywhere.
1255     //
1256     selectIntv(IntvIn);
1257     useIntv(Start, BI.LastUse);
1258     return;
1259   }
1260
1261   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1262
1263   if (!LeaveBefore || LeaveBefore > BI.LastUse.getBoundaryIndex()) {
1264     //
1265     //               <<<    Possible interference after last use.
1266     //     |---o---o---|    Live-out on stack.
1267     //     =========____    Leave IntvIn after last use.
1268     //
1269     //                 <    Interference after last use.
1270     //     |---o---o--o|    Live-out on stack, late last use.
1271     //     ============     Copy to stack after LSP, overlap IntvIn.
1272     //            \_____    Stack interval is live-out.
1273     //
1274     if (BI.LastUse < LSP) {
1275       DEBUG(dbgs() << ", spill after last use before interference.\n");
1276       selectIntv(IntvIn);
1277       SlotIndex Idx = leaveIntvAfter(BI.LastUse);
1278       useIntv(Start, Idx);
1279       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1280     } else {
1281       DEBUG(dbgs() << ", spill before last split point.\n");
1282       selectIntv(IntvIn);
1283       SlotIndex Idx = leaveIntvBefore(LSP);
1284       overlapIntv(Idx, BI.LastUse);
1285       useIntv(Start, Idx);
1286       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1287     }
1288     return;
1289   }
1290
1291   // The interference is overlapping somewhere we wanted to use IntvIn. That
1292   // means we need to create a local interval that can be allocated a
1293   // different register.
1294   unsigned LocalIntv = openIntv();
1295   (void)LocalIntv;
1296   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1297
1298   if (!BI.LiveOut || BI.LastUse < LSP) {
1299     //
1300     //           <<<<<<<    Interference overlapping uses.
1301     //     |---o---o---|    Live-out on stack.
1302     //     =====----____    Leave IntvIn before interference, then spill.
1303     //
1304     SlotIndex To = leaveIntvAfter(BI.LastUse);
1305     SlotIndex From = enterIntvBefore(LeaveBefore);
1306     useIntv(From, To);
1307     selectIntv(IntvIn);
1308     useIntv(Start, From);
1309     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1310     return;
1311   }
1312
1313   //           <<<<<<<    Interference overlapping uses.
1314   //     |---o---o--o|    Live-out on stack, late last use.
1315   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1316   //            \_____    Stack interval is live-out.
1317   //
1318   SlotIndex To = leaveIntvBefore(LSP);
1319   overlapIntv(To, BI.LastUse);
1320   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1321   useIntv(From, To);
1322   selectIntv(IntvIn);
1323   useIntv(Start, From);
1324   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1325 }
1326
1327 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1328                                    unsigned IntvOut, SlotIndex EnterAfter) {
1329   SlotIndex Start, Stop;
1330   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1331
1332   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1333                << "), uses " << BI.FirstUse << '-' << BI.LastUse
1334                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1335                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1336
1337   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1338
1339   assert(IntvOut && "Must have register out");
1340   assert(BI.LiveOut && "Must be live-out");
1341   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1342
1343   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstUse)) {
1344     DEBUG(dbgs() << " after interference.\n");
1345     //
1346     //    >>>>             Interference before def.
1347     //    |   o---o---|    Defined in block.
1348     //        =========    Use IntvOut everywhere.
1349     //
1350     selectIntv(IntvOut);
1351     useIntv(BI.FirstUse, Stop);
1352     return;
1353   }
1354
1355   if (!EnterAfter || EnterAfter < BI.FirstUse.getBaseIndex()) {
1356     DEBUG(dbgs() << ", reload after interference.\n");
1357     //
1358     //    >>>>             Interference before def.
1359     //    |---o---o---|    Live-through, stack-in.
1360     //    ____=========    Enter IntvOut before first use.
1361     //
1362     selectIntv(IntvOut);
1363     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstUse));
1364     useIntv(Idx, Stop);
1365     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1366     return;
1367   }
1368
1369   // The interference is overlapping somewhere we wanted to use IntvOut. That
1370   // means we need to create a local interval that can be allocated a
1371   // different register.
1372   DEBUG(dbgs() << ", interference overlaps uses.\n");
1373   //
1374   //    >>>>>>>          Interference overlapping uses.
1375   //    |---o---o---|    Live-through, stack-in.
1376   //    ____---======    Create local interval for interference range.
1377   //
1378   selectIntv(IntvOut);
1379   SlotIndex Idx = enterIntvAfter(EnterAfter);
1380   useIntv(Idx, Stop);
1381   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1382
1383   openIntv();
1384   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstUse));
1385   useIntv(From, Idx);
1386 }