]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / Target / PowerPC / PPCISelLowering.cpp
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Function.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
39 using namespace llvm;
40
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                      CCValAssign::LocInfo &LocInfo,
43                                      ISD::ArgFlagsTy &ArgFlags,
44                                      CCState &State);
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                             MVT &LocVT,
47                                             CCValAssign::LocInfo &LocInfo,
48                                             ISD::ArgFlagsTy &ArgFlags,
49                                             CCState &State);
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                               MVT &LocVT,
52                                               CCValAssign::LocInfo &LocInfo,
53                                               ISD::ArgFlagsTy &ArgFlags,
54                                               CCState &State);
55
56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                      cl::Hidden);
59
60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61   if (TM.getSubtargetImpl()->isDarwin())
62     return new TargetLoweringObjectFileMachO();
63
64   return new TargetLoweringObjectFileELF();
65 }
66
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70   setPow2DivIsCheap();
71
72   // Use _setjmp/_longjmp instead of setjmp/longjmp.
73   setUseUnderscoreSetJmp(true);
74   setUseUnderscoreLongJmp(true);
75
76   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77   // arguments are at least 4/8 bytes aligned.
78   setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80   // Set up the register classes.
81   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91   // PowerPC has pre-inc load and store's.
92   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103   // This is used in the ppcf128->int sequence.  Note it has different semantics
104   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107   // PowerPC has no SREM/UREM instructions
108   setOperationAction(ISD::SREM, MVT::i32, Expand);
109   setOperationAction(ISD::UREM, MVT::i32, Expand);
110   setOperationAction(ISD::SREM, MVT::i64, Expand);
111   setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123   // We don't support sin/cos/sqrt/fmod/pow
124   setOperationAction(ISD::FSIN , MVT::f64, Expand);
125   setOperationAction(ISD::FCOS , MVT::f64, Expand);
126   setOperationAction(ISD::FREM , MVT::f64, Expand);
127   setOperationAction(ISD::FPOW , MVT::f64, Expand);
128   setOperationAction(ISD::FMA  , MVT::f64, Expand);
129   setOperationAction(ISD::FSIN , MVT::f32, Expand);
130   setOperationAction(ISD::FCOS , MVT::f32, Expand);
131   setOperationAction(ISD::FREM , MVT::f32, Expand);
132   setOperationAction(ISD::FPOW , MVT::f32, Expand);
133   setOperationAction(ISD::FMA  , MVT::f32, Expand);
134
135   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
136
137   // If we're enabling GP optimizations, use hardware square root
138   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
139     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
140     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
141   }
142
143   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
144   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
145
146   // PowerPC does not have BSWAP, CTPOP or CTTZ
147   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
148   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
149   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
150   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
151   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
152   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
153
154   // PowerPC does not have ROTR
155   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
156   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
157
158   // PowerPC does not have Select
159   setOperationAction(ISD::SELECT, MVT::i32, Expand);
160   setOperationAction(ISD::SELECT, MVT::i64, Expand);
161   setOperationAction(ISD::SELECT, MVT::f32, Expand);
162   setOperationAction(ISD::SELECT, MVT::f64, Expand);
163
164   // PowerPC wants to turn select_cc of FP into fsel when possible.
165   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
166   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
167
168   // PowerPC wants to optimize integer setcc a bit
169   setOperationAction(ISD::SETCC, MVT::i32, Custom);
170
171   // PowerPC does not have BRCOND which requires SetCC
172   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
173
174   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
175
176   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
177   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
178
179   // PowerPC does not have [U|S]INT_TO_FP
180   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
181   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
182
183   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
184   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
185   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
186   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
187
188   // We cannot sextinreg(i1).  Expand to shifts.
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190
191   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
192   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
193   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
194   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
195
196
197   // We want to legalize GlobalAddress and ConstantPool nodes into the
198   // appropriate instructions to materialize the address.
199   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
200   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
201   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
202   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
203   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
204   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
206   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
207   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
208   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
209
210   // TRAP is legal.
211   setOperationAction(ISD::TRAP, MVT::Other, Legal);
212
213   // TRAMPOLINE is custom lowered.
214   setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
215
216   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
217   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
218
219   // VAARG is custom lowered with the 32-bit SVR4 ABI.
220   if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
221       && !TM.getSubtarget<PPCSubtarget>().isPPC64()) {
222     setOperationAction(ISD::VAARG, MVT::Other, Custom);
223     setOperationAction(ISD::VAARG, MVT::i64, Custom);
224   } else
225     setOperationAction(ISD::VAARG, MVT::Other, Expand);
226
227   // Use the default implementation.
228   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
229   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
230   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
231   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
232   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
233   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
234
235   // We want to custom lower some of our intrinsics.
236   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
237
238   // Comparisons that require checking two conditions.
239   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
240   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
241   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
242   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
243   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
244   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
245   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
246   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
247   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
248   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
249   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
250   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
251
252   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
253     // They also have instructions for converting between i64 and fp.
254     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
255     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
256     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
257     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
258     // This is just the low 32 bits of a (signed) fp->i64 conversion.
259     // We cannot do this with Promote because i64 is not a legal type.
260     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
261
262     // FIXME: disable this lowered code.  This generates 64-bit register values,
263     // and we don't model the fact that the top part is clobbered by calls.  We
264     // need to flag these together so that the value isn't live across a call.
265     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
266   } else {
267     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
268     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
269   }
270
271   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
272     // 64-bit PowerPC implementations can support i64 types directly
273     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
274     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
275     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
276     // 64-bit PowerPC wants to expand i128 shifts itself.
277     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
278     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
279     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
280   } else {
281     // 32-bit PowerPC wants to expand i64 shifts itself.
282     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
283     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
284     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
285   }
286
287   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
288     // First set operation action for all vector types to expand. Then we
289     // will selectively turn on ones that can be effectively codegen'd.
290     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
291          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
292       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
293
294       // add/sub are legal for all supported vector VT's.
295       setOperationAction(ISD::ADD , VT, Legal);
296       setOperationAction(ISD::SUB , VT, Legal);
297
298       // We promote all shuffles to v16i8.
299       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
300       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
301
302       // We promote all non-typed operations to v4i32.
303       setOperationAction(ISD::AND   , VT, Promote);
304       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
305       setOperationAction(ISD::OR    , VT, Promote);
306       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
307       setOperationAction(ISD::XOR   , VT, Promote);
308       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
309       setOperationAction(ISD::LOAD  , VT, Promote);
310       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
311       setOperationAction(ISD::SELECT, VT, Promote);
312       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
313       setOperationAction(ISD::STORE, VT, Promote);
314       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
315
316       // No other operations are legal.
317       setOperationAction(ISD::MUL , VT, Expand);
318       setOperationAction(ISD::SDIV, VT, Expand);
319       setOperationAction(ISD::SREM, VT, Expand);
320       setOperationAction(ISD::UDIV, VT, Expand);
321       setOperationAction(ISD::UREM, VT, Expand);
322       setOperationAction(ISD::FDIV, VT, Expand);
323       setOperationAction(ISD::FNEG, VT, Expand);
324       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
325       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
326       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
327       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
328       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
329       setOperationAction(ISD::UDIVREM, VT, Expand);
330       setOperationAction(ISD::SDIVREM, VT, Expand);
331       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
332       setOperationAction(ISD::FPOW, VT, Expand);
333       setOperationAction(ISD::CTPOP, VT, Expand);
334       setOperationAction(ISD::CTLZ, VT, Expand);
335       setOperationAction(ISD::CTTZ, VT, Expand);
336     }
337
338     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
339     // with merges, splats, etc.
340     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
341
342     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
343     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
344     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
345     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
346     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
347     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
348
349     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
350     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
351     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
352     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
353
354     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
355     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
356     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
357     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
358
359     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
360     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
361
362     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
363     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
364     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
365     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
366   }
367
368   setBooleanContents(ZeroOrOneBooleanContent);
369
370   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
371     setStackPointerRegisterToSaveRestore(PPC::X1);
372     setExceptionPointerRegister(PPC::X3);
373     setExceptionSelectorRegister(PPC::X4);
374   } else {
375     setStackPointerRegisterToSaveRestore(PPC::R1);
376     setExceptionPointerRegister(PPC::R3);
377     setExceptionSelectorRegister(PPC::R4);
378   }
379
380   // We have target-specific dag combine patterns for the following nodes:
381   setTargetDAGCombine(ISD::SINT_TO_FP);
382   setTargetDAGCombine(ISD::STORE);
383   setTargetDAGCombine(ISD::BR_CC);
384   setTargetDAGCombine(ISD::BSWAP);
385
386   // Darwin long double math library functions have $LDBL128 appended.
387   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
388     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
389     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
390     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
391     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
392     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
393     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
394     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
395     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
396     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
397     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
398   }
399
400   setMinFunctionAlignment(2);
401   if (PPCSubTarget.isDarwin())
402     setPrefFunctionAlignment(4);
403
404   computeRegisterProperties();
405 }
406
407 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
408 /// function arguments in the caller parameter area.
409 unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
410   const TargetMachine &TM = getTargetMachine();
411   // Darwin passes everything on 4 byte boundary.
412   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
413     return 4;
414   // FIXME SVR4 TBD
415   return 4;
416 }
417
418 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
419   switch (Opcode) {
420   default: return 0;
421   case PPCISD::FSEL:            return "PPCISD::FSEL";
422   case PPCISD::FCFID:           return "PPCISD::FCFID";
423   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
424   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
425   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
426   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
427   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
428   case PPCISD::VPERM:           return "PPCISD::VPERM";
429   case PPCISD::Hi:              return "PPCISD::Hi";
430   case PPCISD::Lo:              return "PPCISD::Lo";
431   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
432   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
433   case PPCISD::LOAD:            return "PPCISD::LOAD";
434   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
435   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
436   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
437   case PPCISD::SRL:             return "PPCISD::SRL";
438   case PPCISD::SRA:             return "PPCISD::SRA";
439   case PPCISD::SHL:             return "PPCISD::SHL";
440   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
441   case PPCISD::STD_32:          return "PPCISD::STD_32";
442   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
443   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
444   case PPCISD::NOP:             return "PPCISD::NOP";
445   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
446   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
447   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
448   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
449   case PPCISD::MFCR:            return "PPCISD::MFCR";
450   case PPCISD::VCMP:            return "PPCISD::VCMP";
451   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
452   case PPCISD::LBRX:            return "PPCISD::LBRX";
453   case PPCISD::STBRX:           return "PPCISD::STBRX";
454   case PPCISD::LARX:            return "PPCISD::LARX";
455   case PPCISD::STCX:            return "PPCISD::STCX";
456   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
457   case PPCISD::MFFS:            return "PPCISD::MFFS";
458   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
459   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
460   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
461   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
462   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
463   }
464 }
465
466 MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
467   return MVT::i32;
468 }
469
470 //===----------------------------------------------------------------------===//
471 // Node matching predicates, for use by the tblgen matching code.
472 //===----------------------------------------------------------------------===//
473
474 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
475 static bool isFloatingPointZero(SDValue Op) {
476   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
477     return CFP->getValueAPF().isZero();
478   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
479     // Maybe this has already been legalized into the constant pool?
480     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
481       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
482         return CFP->getValueAPF().isZero();
483   }
484   return false;
485 }
486
487 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
488 /// true if Op is undef or if it matches the specified value.
489 static bool isConstantOrUndef(int Op, int Val) {
490   return Op < 0 || Op == Val;
491 }
492
493 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
494 /// VPKUHUM instruction.
495 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
496   if (!isUnary) {
497     for (unsigned i = 0; i != 16; ++i)
498       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
499         return false;
500   } else {
501     for (unsigned i = 0; i != 8; ++i)
502       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
503           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
504         return false;
505   }
506   return true;
507 }
508
509 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
510 /// VPKUWUM instruction.
511 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
512   if (!isUnary) {
513     for (unsigned i = 0; i != 16; i += 2)
514       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
515           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
516         return false;
517   } else {
518     for (unsigned i = 0; i != 8; i += 2)
519       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
520           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
521           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
522           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
523         return false;
524   }
525   return true;
526 }
527
528 /// isVMerge - Common function, used to match vmrg* shuffles.
529 ///
530 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
531                      unsigned LHSStart, unsigned RHSStart) {
532   assert(N->getValueType(0) == MVT::v16i8 &&
533          "PPC only supports shuffles by bytes!");
534   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
535          "Unsupported merge size!");
536
537   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
538     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
539       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
540                              LHSStart+j+i*UnitSize) ||
541           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
542                              RHSStart+j+i*UnitSize))
543         return false;
544     }
545   return true;
546 }
547
548 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
549 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
550 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
551                              bool isUnary) {
552   if (!isUnary)
553     return isVMerge(N, UnitSize, 8, 24);
554   return isVMerge(N, UnitSize, 8, 8);
555 }
556
557 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
558 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
559 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
560                              bool isUnary) {
561   if (!isUnary)
562     return isVMerge(N, UnitSize, 0, 16);
563   return isVMerge(N, UnitSize, 0, 0);
564 }
565
566
567 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
568 /// amount, otherwise return -1.
569 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
570   assert(N->getValueType(0) == MVT::v16i8 &&
571          "PPC only supports shuffles by bytes!");
572
573   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
574
575   // Find the first non-undef value in the shuffle mask.
576   unsigned i;
577   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
578     /*search*/;
579
580   if (i == 16) return -1;  // all undef.
581
582   // Otherwise, check to see if the rest of the elements are consecutively
583   // numbered from this value.
584   unsigned ShiftAmt = SVOp->getMaskElt(i);
585   if (ShiftAmt < i) return -1;
586   ShiftAmt -= i;
587
588   if (!isUnary) {
589     // Check the rest of the elements to see if they are consecutive.
590     for (++i; i != 16; ++i)
591       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
592         return -1;
593   } else {
594     // Check the rest of the elements to see if they are consecutive.
595     for (++i; i != 16; ++i)
596       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
597         return -1;
598   }
599   return ShiftAmt;
600 }
601
602 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
603 /// specifies a splat of a single element that is suitable for input to
604 /// VSPLTB/VSPLTH/VSPLTW.
605 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
606   assert(N->getValueType(0) == MVT::v16i8 &&
607          (EltSize == 1 || EltSize == 2 || EltSize == 4));
608
609   // This is a splat operation if each element of the permute is the same, and
610   // if the value doesn't reference the second vector.
611   unsigned ElementBase = N->getMaskElt(0);
612
613   // FIXME: Handle UNDEF elements too!
614   if (ElementBase >= 16)
615     return false;
616
617   // Check that the indices are consecutive, in the case of a multi-byte element
618   // splatted with a v16i8 mask.
619   for (unsigned i = 1; i != EltSize; ++i)
620     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
621       return false;
622
623   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
624     if (N->getMaskElt(i) < 0) continue;
625     for (unsigned j = 0; j != EltSize; ++j)
626       if (N->getMaskElt(i+j) != N->getMaskElt(j))
627         return false;
628   }
629   return true;
630 }
631
632 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
633 /// are -0.0.
634 bool PPC::isAllNegativeZeroVector(SDNode *N) {
635   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
636
637   APInt APVal, APUndef;
638   unsigned BitSize;
639   bool HasAnyUndefs;
640
641   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
642     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
643       return CFP->getValueAPF().isNegZero();
644
645   return false;
646 }
647
648 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
649 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
650 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
651   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
652   assert(isSplatShuffleMask(SVOp, EltSize));
653   return SVOp->getMaskElt(0) / EltSize;
654 }
655
656 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
657 /// by using a vspltis[bhw] instruction of the specified element size, return
658 /// the constant being splatted.  The ByteSize field indicates the number of
659 /// bytes of each element [124] -> [bhw].
660 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
661   SDValue OpVal(0, 0);
662
663   // If ByteSize of the splat is bigger than the element size of the
664   // build_vector, then we have a case where we are checking for a splat where
665   // multiple elements of the buildvector are folded together into a single
666   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
667   unsigned EltSize = 16/N->getNumOperands();
668   if (EltSize < ByteSize) {
669     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
670     SDValue UniquedVals[4];
671     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
672
673     // See if all of the elements in the buildvector agree across.
674     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
675       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
676       // If the element isn't a constant, bail fully out.
677       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
678
679
680       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
681         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
682       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
683         return SDValue();  // no match.
684     }
685
686     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
687     // either constant or undef values that are identical for each chunk.  See
688     // if these chunks can form into a larger vspltis*.
689
690     // Check to see if all of the leading entries are either 0 or -1.  If
691     // neither, then this won't fit into the immediate field.
692     bool LeadingZero = true;
693     bool LeadingOnes = true;
694     for (unsigned i = 0; i != Multiple-1; ++i) {
695       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
696
697       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
698       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
699     }
700     // Finally, check the least significant entry.
701     if (LeadingZero) {
702       if (UniquedVals[Multiple-1].getNode() == 0)
703         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
704       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
705       if (Val < 16)
706         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
707     }
708     if (LeadingOnes) {
709       if (UniquedVals[Multiple-1].getNode() == 0)
710         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
711       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
712       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
713         return DAG.getTargetConstant(Val, MVT::i32);
714     }
715
716     return SDValue();
717   }
718
719   // Check to see if this buildvec has a single non-undef value in its elements.
720   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
721     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
722     if (OpVal.getNode() == 0)
723       OpVal = N->getOperand(i);
724     else if (OpVal != N->getOperand(i))
725       return SDValue();
726   }
727
728   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
729
730   unsigned ValSizeInBytes = EltSize;
731   uint64_t Value = 0;
732   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
733     Value = CN->getZExtValue();
734   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
735     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
736     Value = FloatToBits(CN->getValueAPF().convertToFloat());
737   }
738
739   // If the splat value is larger than the element value, then we can never do
740   // this splat.  The only case that we could fit the replicated bits into our
741   // immediate field for would be zero, and we prefer to use vxor for it.
742   if (ValSizeInBytes < ByteSize) return SDValue();
743
744   // If the element value is larger than the splat value, cut it in half and
745   // check to see if the two halves are equal.  Continue doing this until we
746   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
747   while (ValSizeInBytes > ByteSize) {
748     ValSizeInBytes >>= 1;
749
750     // If the top half equals the bottom half, we're still ok.
751     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
752          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
753       return SDValue();
754   }
755
756   // Properly sign extend the value.
757   int ShAmt = (4-ByteSize)*8;
758   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
759
760   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
761   if (MaskVal == 0) return SDValue();
762
763   // Finally, if this value fits in a 5 bit sext field, return it
764   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
765     return DAG.getTargetConstant(MaskVal, MVT::i32);
766   return SDValue();
767 }
768
769 //===----------------------------------------------------------------------===//
770 //  Addressing Mode Selection
771 //===----------------------------------------------------------------------===//
772
773 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
774 /// or 64-bit immediate, and if the value can be accurately represented as a
775 /// sign extension from a 16-bit value.  If so, this returns true and the
776 /// immediate.
777 static bool isIntS16Immediate(SDNode *N, short &Imm) {
778   if (N->getOpcode() != ISD::Constant)
779     return false;
780
781   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
782   if (N->getValueType(0) == MVT::i32)
783     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
784   else
785     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
786 }
787 static bool isIntS16Immediate(SDValue Op, short &Imm) {
788   return isIntS16Immediate(Op.getNode(), Imm);
789 }
790
791
792 /// SelectAddressRegReg - Given the specified addressed, check to see if it
793 /// can be represented as an indexed [r+r] operation.  Returns false if it
794 /// can be more efficiently represented with [r+imm].
795 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
796                                             SDValue &Index,
797                                             SelectionDAG &DAG) const {
798   short imm = 0;
799   if (N.getOpcode() == ISD::ADD) {
800     if (isIntS16Immediate(N.getOperand(1), imm))
801       return false;    // r+i
802     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
803       return false;    // r+i
804
805     Base = N.getOperand(0);
806     Index = N.getOperand(1);
807     return true;
808   } else if (N.getOpcode() == ISD::OR) {
809     if (isIntS16Immediate(N.getOperand(1), imm))
810       return false;    // r+i can fold it if we can.
811
812     // If this is an or of disjoint bitfields, we can codegen this as an add
813     // (for better address arithmetic) if the LHS and RHS of the OR are provably
814     // disjoint.
815     APInt LHSKnownZero, LHSKnownOne;
816     APInt RHSKnownZero, RHSKnownOne;
817     DAG.ComputeMaskedBits(N.getOperand(0),
818                           APInt::getAllOnesValue(N.getOperand(0)
819                             .getValueSizeInBits()),
820                           LHSKnownZero, LHSKnownOne);
821
822     if (LHSKnownZero.getBoolValue()) {
823       DAG.ComputeMaskedBits(N.getOperand(1),
824                             APInt::getAllOnesValue(N.getOperand(1)
825                               .getValueSizeInBits()),
826                             RHSKnownZero, RHSKnownOne);
827       // If all of the bits are known zero on the LHS or RHS, the add won't
828       // carry.
829       if (~(LHSKnownZero | RHSKnownZero) == 0) {
830         Base = N.getOperand(0);
831         Index = N.getOperand(1);
832         return true;
833       }
834     }
835   }
836
837   return false;
838 }
839
840 /// Returns true if the address N can be represented by a base register plus
841 /// a signed 16-bit displacement [r+imm], and if it is not better
842 /// represented as reg+reg.
843 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
844                                             SDValue &Base,
845                                             SelectionDAG &DAG) const {
846   // FIXME dl should come from parent load or store, not from address
847   DebugLoc dl = N.getDebugLoc();
848   // If this can be more profitably realized as r+r, fail.
849   if (SelectAddressRegReg(N, Disp, Base, DAG))
850     return false;
851
852   if (N.getOpcode() == ISD::ADD) {
853     short imm = 0;
854     if (isIntS16Immediate(N.getOperand(1), imm)) {
855       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
856       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
857         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
858       } else {
859         Base = N.getOperand(0);
860       }
861       return true; // [r+i]
862     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
863       // Match LOAD (ADD (X, Lo(G))).
864      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
865              && "Cannot handle constant offsets yet!");
866       Disp = N.getOperand(1).getOperand(0);  // The global address.
867       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
868              Disp.getOpcode() == ISD::TargetConstantPool ||
869              Disp.getOpcode() == ISD::TargetJumpTable);
870       Base = N.getOperand(0);
871       return true;  // [&g+r]
872     }
873   } else if (N.getOpcode() == ISD::OR) {
874     short imm = 0;
875     if (isIntS16Immediate(N.getOperand(1), imm)) {
876       // If this is an or of disjoint bitfields, we can codegen this as an add
877       // (for better address arithmetic) if the LHS and RHS of the OR are
878       // provably disjoint.
879       APInt LHSKnownZero, LHSKnownOne;
880       DAG.ComputeMaskedBits(N.getOperand(0),
881                             APInt::getAllOnesValue(N.getOperand(0)
882                                                    .getValueSizeInBits()),
883                             LHSKnownZero, LHSKnownOne);
884
885       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
886         // If all of the bits are known zero on the LHS or RHS, the add won't
887         // carry.
888         Base = N.getOperand(0);
889         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
890         return true;
891       }
892     }
893   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
894     // Loading from a constant address.
895
896     // If this address fits entirely in a 16-bit sext immediate field, codegen
897     // this as "d, 0"
898     short Imm;
899     if (isIntS16Immediate(CN, Imm)) {
900       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
901       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
902                              CN->getValueType(0));
903       return true;
904     }
905
906     // Handle 32-bit sext immediates with LIS + addr mode.
907     if (CN->getValueType(0) == MVT::i32 ||
908         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
909       int Addr = (int)CN->getZExtValue();
910
911       // Otherwise, break this down into an LIS + disp.
912       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
913
914       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
915       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
916       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
917       return true;
918     }
919   }
920
921   Disp = DAG.getTargetConstant(0, getPointerTy());
922   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
923     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
924   else
925     Base = N;
926   return true;      // [r+0]
927 }
928
929 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
930 /// represented as an indexed [r+r] operation.
931 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
932                                                 SDValue &Index,
933                                                 SelectionDAG &DAG) const {
934   // Check to see if we can easily represent this as an [r+r] address.  This
935   // will fail if it thinks that the address is more profitably represented as
936   // reg+imm, e.g. where imm = 0.
937   if (SelectAddressRegReg(N, Base, Index, DAG))
938     return true;
939
940   // If the operand is an addition, always emit this as [r+r], since this is
941   // better (for code size, and execution, as the memop does the add for free)
942   // than emitting an explicit add.
943   if (N.getOpcode() == ISD::ADD) {
944     Base = N.getOperand(0);
945     Index = N.getOperand(1);
946     return true;
947   }
948
949   // Otherwise, do it the hard way, using R0 as the base register.
950   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
951                          N.getValueType());
952   Index = N;
953   return true;
954 }
955
956 /// SelectAddressRegImmShift - Returns true if the address N can be
957 /// represented by a base register plus a signed 14-bit displacement
958 /// [r+imm*4].  Suitable for use by STD and friends.
959 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960                                                  SDValue &Base,
961                                                  SelectionDAG &DAG) const {
962   // FIXME dl should come from the parent load or store, not the address
963   DebugLoc dl = N.getDebugLoc();
964   // If this can be more profitably realized as r+r, fail.
965   if (SelectAddressRegReg(N, Disp, Base, DAG))
966     return false;
967
968   if (N.getOpcode() == ISD::ADD) {
969     short imm = 0;
970     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971       Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974       } else {
975         Base = N.getOperand(0);
976       }
977       return true; // [r+i]
978     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979       // Match LOAD (ADD (X, Lo(G))).
980      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981              && "Cannot handle constant offsets yet!");
982       Disp = N.getOperand(1).getOperand(0);  // The global address.
983       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984              Disp.getOpcode() == ISD::TargetConstantPool ||
985              Disp.getOpcode() == ISD::TargetJumpTable);
986       Base = N.getOperand(0);
987       return true;  // [&g+r]
988     }
989   } else if (N.getOpcode() == ISD::OR) {
990     short imm = 0;
991     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992       // If this is an or of disjoint bitfields, we can codegen this as an add
993       // (for better address arithmetic) if the LHS and RHS of the OR are
994       // provably disjoint.
995       APInt LHSKnownZero, LHSKnownOne;
996       DAG.ComputeMaskedBits(N.getOperand(0),
997                             APInt::getAllOnesValue(N.getOperand(0)
998                                                    .getValueSizeInBits()),
999                             LHSKnownZero, LHSKnownOne);
1000       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001         // If all of the bits are known zero on the LHS or RHS, the add won't
1002         // carry.
1003         Base = N.getOperand(0);
1004         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005         return true;
1006       }
1007     }
1008   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009     // Loading from a constant address.  Verify low two bits are clear.
1010     if ((CN->getZExtValue() & 3) == 0) {
1011       // If this address fits entirely in a 14-bit sext immediate field, codegen
1012       // this as "d, 0"
1013       short Imm;
1014       if (isIntS16Immediate(CN, Imm)) {
1015         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1017                                CN->getValueType(0));
1018         return true;
1019       }
1020
1021       // Fold the low-part of 32-bit absolute addresses into addr mode.
1022       if (CN->getValueType(0) == MVT::i32 ||
1023           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1024         int Addr = (int)CN->getZExtValue();
1025
1026         // Otherwise, break this down into an LIS + disp.
1027         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1028         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1029         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1030         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1031         return true;
1032       }
1033     }
1034   }
1035
1036   Disp = DAG.getTargetConstant(0, getPointerTy());
1037   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1038     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1039   else
1040     Base = N;
1041   return true;      // [r+0]
1042 }
1043
1044
1045 /// getPreIndexedAddressParts - returns true by value, base pointer and
1046 /// offset pointer and addressing mode by reference if the node's address
1047 /// can be legally represented as pre-indexed load / store address.
1048 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1049                                                   SDValue &Offset,
1050                                                   ISD::MemIndexedMode &AM,
1051                                                   SelectionDAG &DAG) const {
1052   // Disabled by default for now.
1053   if (!EnablePPCPreinc) return false;
1054
1055   SDValue Ptr;
1056   EVT VT;
1057   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1058     Ptr = LD->getBasePtr();
1059     VT = LD->getMemoryVT();
1060
1061   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1062     Ptr = ST->getBasePtr();
1063     VT  = ST->getMemoryVT();
1064   } else
1065     return false;
1066
1067   // PowerPC doesn't have preinc load/store instructions for vectors.
1068   if (VT.isVector())
1069     return false;
1070
1071   // TODO: Check reg+reg first.
1072
1073   // LDU/STU use reg+imm*4, others use reg+imm.
1074   if (VT != MVT::i64) {
1075     // reg + imm
1076     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077       return false;
1078   } else {
1079     // reg + imm * 4.
1080     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081       return false;
1082   }
1083
1084   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1086     // sext i32 to i64 when addr mode is r+i.
1087     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088         LD->getExtensionType() == ISD::SEXTLOAD &&
1089         isa<ConstantSDNode>(Offset))
1090       return false;
1091   }
1092
1093   AM = ISD::PRE_INC;
1094   return true;
1095 }
1096
1097 //===----------------------------------------------------------------------===//
1098 //  LowerOperation implementation
1099 //===----------------------------------------------------------------------===//
1100
1101 /// GetLabelAccessInfo - Return true if we should reference labels using a
1102 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1103 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1104                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1105   HiOpFlags = PPCII::MO_HA16;
1106   LoOpFlags = PPCII::MO_LO16;
1107
1108   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1109   // non-darwin platform.  We don't support PIC on other platforms yet.
1110   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1111                TM.getSubtarget<PPCSubtarget>().isDarwin();
1112   if (isPIC) {
1113     HiOpFlags |= PPCII::MO_PIC_FLAG;
1114     LoOpFlags |= PPCII::MO_PIC_FLAG;
1115   }
1116
1117   // If this is a reference to a global value that requires a non-lazy-ptr, make
1118   // sure that instruction lowering adds it.
1119   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1120     HiOpFlags |= PPCII::MO_NLP_FLAG;
1121     LoOpFlags |= PPCII::MO_NLP_FLAG;
1122
1123     if (GV->hasHiddenVisibility()) {
1124       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1125       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1126     }
1127   }
1128
1129   return isPIC;
1130 }
1131
1132 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1133                              SelectionDAG &DAG) {
1134   EVT PtrVT = HiPart.getValueType();
1135   SDValue Zero = DAG.getConstant(0, PtrVT);
1136   DebugLoc DL = HiPart.getDebugLoc();
1137
1138   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1139   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1140
1141   // With PIC, the first instruction is actually "GR+hi(&G)".
1142   if (isPIC)
1143     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1144                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1145
1146   // Generate non-pic code that has direct accesses to the constant pool.
1147   // The address of the global is just (hi(&g)+lo(&g)).
1148   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1149 }
1150
1151 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1152                                              SelectionDAG &DAG) const {
1153   EVT PtrVT = Op.getValueType();
1154   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1155   const Constant *C = CP->getConstVal();
1156
1157   unsigned MOHiFlag, MOLoFlag;
1158   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1159   SDValue CPIHi =
1160     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1161   SDValue CPILo =
1162     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1163   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1164 }
1165
1166 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1167   EVT PtrVT = Op.getValueType();
1168   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1169
1170   unsigned MOHiFlag, MOLoFlag;
1171   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1172   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1173   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1174   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1175 }
1176
1177 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1178                                              SelectionDAG &DAG) const {
1179   EVT PtrVT = Op.getValueType();
1180
1181   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1182
1183   unsigned MOHiFlag, MOLoFlag;
1184   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1185   SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1186   SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1187   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1188 }
1189
1190 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1191                                               SelectionDAG &DAG) const {
1192   EVT PtrVT = Op.getValueType();
1193   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1194   DebugLoc DL = GSDN->getDebugLoc();
1195   const GlobalValue *GV = GSDN->getGlobal();
1196
1197   // 64-bit SVR4 ABI code is always position-independent.
1198   // The actual address of the GlobalValue is stored in the TOC.
1199   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1200     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1201     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1202                        DAG.getRegister(PPC::X2, MVT::i64));
1203   }
1204
1205   unsigned MOHiFlag, MOLoFlag;
1206   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1207
1208   SDValue GAHi =
1209     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1210   SDValue GALo =
1211     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1212
1213   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1214
1215   // If the global reference is actually to a non-lazy-pointer, we have to do an
1216   // extra load to get the address of the global.
1217   if (MOHiFlag & PPCII::MO_NLP_FLAG)
1218     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1219                       false, false, 0);
1220   return Ptr;
1221 }
1222
1223 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1224   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1225   DebugLoc dl = Op.getDebugLoc();
1226
1227   // If we're comparing for equality to zero, expose the fact that this is
1228   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1229   // fold the new nodes.
1230   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1231     if (C->isNullValue() && CC == ISD::SETEQ) {
1232       EVT VT = Op.getOperand(0).getValueType();
1233       SDValue Zext = Op.getOperand(0);
1234       if (VT.bitsLT(MVT::i32)) {
1235         VT = MVT::i32;
1236         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1237       }
1238       unsigned Log2b = Log2_32(VT.getSizeInBits());
1239       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1240       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1241                                 DAG.getConstant(Log2b, MVT::i32));
1242       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1243     }
1244     // Leave comparisons against 0 and -1 alone for now, since they're usually
1245     // optimized.  FIXME: revisit this when we can custom lower all setcc
1246     // optimizations.
1247     if (C->isAllOnesValue() || C->isNullValue())
1248       return SDValue();
1249   }
1250
1251   // If we have an integer seteq/setne, turn it into a compare against zero
1252   // by xor'ing the rhs with the lhs, which is faster than setting a
1253   // condition register, reading it back out, and masking the correct bit.  The
1254   // normal approach here uses sub to do this instead of xor.  Using xor exposes
1255   // the result to other bit-twiddling opportunities.
1256   EVT LHSVT = Op.getOperand(0).getValueType();
1257   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1258     EVT VT = Op.getValueType();
1259     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1260                                 Op.getOperand(1));
1261     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1262   }
1263   return SDValue();
1264 }
1265
1266 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1267                                       const PPCSubtarget &Subtarget) const {
1268   SDNode *Node = Op.getNode();
1269   EVT VT = Node->getValueType(0);
1270   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1271   SDValue InChain = Node->getOperand(0);
1272   SDValue VAListPtr = Node->getOperand(1);
1273   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1274   DebugLoc dl = Node->getDebugLoc();
1275
1276   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1277
1278   // gpr_index
1279   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1280                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
1281                                     false, false, 0);
1282   InChain = GprIndex.getValue(1);
1283
1284   if (VT == MVT::i64) {
1285     // Check if GprIndex is even
1286     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1287                                  DAG.getConstant(1, MVT::i32));
1288     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1289                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
1290     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1291                                           DAG.getConstant(1, MVT::i32));
1292     // Align GprIndex to be even if it isn't
1293     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1294                            GprIndex);
1295   }
1296
1297   // fpr index is 1 byte after gpr
1298   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1299                                DAG.getConstant(1, MVT::i32));
1300
1301   // fpr
1302   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1303                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
1304                                     false, false, 0);
1305   InChain = FprIndex.getValue(1);
1306
1307   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1308                                        DAG.getConstant(8, MVT::i32));
1309
1310   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1311                                         DAG.getConstant(4, MVT::i32));
1312
1313   // areas
1314   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1315                                      MachinePointerInfo(), false, false, 0);
1316   InChain = OverflowArea.getValue(1);
1317
1318   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1319                                     MachinePointerInfo(), false, false, 0);
1320   InChain = RegSaveArea.getValue(1);
1321
1322   // select overflow_area if index > 8
1323   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1324                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
1325
1326   // adjustment constant gpr_index * 4/8
1327   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1328                                     VT.isInteger() ? GprIndex : FprIndex,
1329                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
1330                                                     MVT::i32));
1331
1332   // OurReg = RegSaveArea + RegConstant
1333   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1334                                RegConstant);
1335
1336   // Floating types are 32 bytes into RegSaveArea
1337   if (VT.isFloatingPoint())
1338     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1339                          DAG.getConstant(32, MVT::i32));
1340
1341   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1342   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1343                                    VT.isInteger() ? GprIndex : FprIndex,
1344                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1345                                                    MVT::i32));
1346
1347   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1348                               VT.isInteger() ? VAListPtr : FprPtr,
1349                               MachinePointerInfo(SV),
1350                               MVT::i8, false, false, 0);
1351
1352   // determine if we should load from reg_save_area or overflow_area
1353   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1354
1355   // increase overflow_area by 4/8 if gpr/fpr > 8
1356   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1357                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
1358                                           MVT::i32));
1359
1360   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1361                              OverflowAreaPlusN);
1362
1363   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1364                               OverflowAreaPtr,
1365                               MachinePointerInfo(),
1366                               MVT::i32, false, false, 0);
1367
1368   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0);
1369 }
1370
1371 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1372                                            SelectionDAG &DAG) const {
1373   SDValue Chain = Op.getOperand(0);
1374   SDValue Trmp = Op.getOperand(1); // trampoline
1375   SDValue FPtr = Op.getOperand(2); // nested function
1376   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1377   DebugLoc dl = Op.getDebugLoc();
1378
1379   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1380   bool isPPC64 = (PtrVT == MVT::i64);
1381   const Type *IntPtrTy =
1382     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1383                                                              *DAG.getContext());
1384
1385   TargetLowering::ArgListTy Args;
1386   TargetLowering::ArgListEntry Entry;
1387
1388   Entry.Ty = IntPtrTy;
1389   Entry.Node = Trmp; Args.push_back(Entry);
1390
1391   // TrampSize == (isPPC64 ? 48 : 40);
1392   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1393                                isPPC64 ? MVT::i64 : MVT::i32);
1394   Args.push_back(Entry);
1395
1396   Entry.Node = FPtr; Args.push_back(Entry);
1397   Entry.Node = Nest; Args.push_back(Entry);
1398
1399   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1400   std::pair<SDValue, SDValue> CallResult =
1401     LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1402                 false, false, false, false, 0, CallingConv::C, false,
1403                 /*isReturnValueUsed=*/true,
1404                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1405                 Args, DAG, dl);
1406
1407   SDValue Ops[] =
1408     { CallResult.first, CallResult.second };
1409
1410   return DAG.getMergeValues(Ops, 2, dl);
1411 }
1412
1413 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1414                                         const PPCSubtarget &Subtarget) const {
1415   MachineFunction &MF = DAG.getMachineFunction();
1416   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1417
1418   DebugLoc dl = Op.getDebugLoc();
1419
1420   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1421     // vastart just stores the address of the VarArgsFrameIndex slot into the
1422     // memory location argument.
1423     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1424     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1425     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1426     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1427                         MachinePointerInfo(SV),
1428                         false, false, 0);
1429   }
1430
1431   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1432   // We suppose the given va_list is already allocated.
1433   //
1434   // typedef struct {
1435   //  char gpr;     /* index into the array of 8 GPRs
1436   //                 * stored in the register save area
1437   //                 * gpr=0 corresponds to r3,
1438   //                 * gpr=1 to r4, etc.
1439   //                 */
1440   //  char fpr;     /* index into the array of 8 FPRs
1441   //                 * stored in the register save area
1442   //                 * fpr=0 corresponds to f1,
1443   //                 * fpr=1 to f2, etc.
1444   //                 */
1445   //  char *overflow_arg_area;
1446   //                /* location on stack that holds
1447   //                 * the next overflow argument
1448   //                 */
1449   //  char *reg_save_area;
1450   //               /* where r3:r10 and f1:f8 (if saved)
1451   //                * are stored
1452   //                */
1453   // } va_list[1];
1454
1455
1456   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1457   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1458
1459
1460   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1461
1462   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1463                                             PtrVT);
1464   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1465                                  PtrVT);
1466
1467   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1468   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1469
1470   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1471   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1472
1473   uint64_t FPROffset = 1;
1474   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1475
1476   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1477
1478   // Store first byte : number of int regs
1479   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1480                                          Op.getOperand(1),
1481                                          MachinePointerInfo(SV),
1482                                          MVT::i8, false, false, 0);
1483   uint64_t nextOffset = FPROffset;
1484   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1485                                   ConstFPROffset);
1486
1487   // Store second byte : number of float regs
1488   SDValue secondStore =
1489     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1490                       MachinePointerInfo(SV, nextOffset), MVT::i8,
1491                       false, false, 0);
1492   nextOffset += StackOffset;
1493   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1494
1495   // Store second word : arguments given on stack
1496   SDValue thirdStore =
1497     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1498                  MachinePointerInfo(SV, nextOffset),
1499                  false, false, 0);
1500   nextOffset += FrameOffset;
1501   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1502
1503   // Store third word : arguments given in registers
1504   return DAG.getStore(thirdStore, dl, FR, nextPtr,
1505                       MachinePointerInfo(SV, nextOffset),
1506                       false, false, 0);
1507
1508 }
1509
1510 #include "PPCGenCallingConv.inc"
1511
1512 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1513                                      CCValAssign::LocInfo &LocInfo,
1514                                      ISD::ArgFlagsTy &ArgFlags,
1515                                      CCState &State) {
1516   return true;
1517 }
1518
1519 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1520                                             MVT &LocVT,
1521                                             CCValAssign::LocInfo &LocInfo,
1522                                             ISD::ArgFlagsTy &ArgFlags,
1523                                             CCState &State) {
1524   static const unsigned ArgRegs[] = {
1525     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1526     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1527   };
1528   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1529
1530   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1531
1532   // Skip one register if the first unallocated register has an even register
1533   // number and there are still argument registers available which have not been
1534   // allocated yet. RegNum is actually an index into ArgRegs, which means we
1535   // need to skip a register if RegNum is odd.
1536   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1537     State.AllocateReg(ArgRegs[RegNum]);
1538   }
1539
1540   // Always return false here, as this function only makes sure that the first
1541   // unallocated register has an odd register number and does not actually
1542   // allocate a register for the current argument.
1543   return false;
1544 }
1545
1546 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1547                                               MVT &LocVT,
1548                                               CCValAssign::LocInfo &LocInfo,
1549                                               ISD::ArgFlagsTy &ArgFlags,
1550                                               CCState &State) {
1551   static const unsigned ArgRegs[] = {
1552     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1553     PPC::F8
1554   };
1555
1556   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1557
1558   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1559
1560   // If there is only one Floating-point register left we need to put both f64
1561   // values of a split ppc_fp128 value on the stack.
1562   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1563     State.AllocateReg(ArgRegs[RegNum]);
1564   }
1565
1566   // Always return false here, as this function only makes sure that the two f64
1567   // values a ppc_fp128 value is split into are both passed in registers or both
1568   // passed on the stack and does not actually allocate a register for the
1569   // current argument.
1570   return false;
1571 }
1572
1573 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1574 /// on Darwin.
1575 static const unsigned *GetFPR() {
1576   static const unsigned FPR[] = {
1577     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1578     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1579   };
1580
1581   return FPR;
1582 }
1583
1584 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1585 /// the stack.
1586 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1587                                        unsigned PtrByteSize) {
1588   unsigned ArgSize = ArgVT.getSizeInBits()/8;
1589   if (Flags.isByVal())
1590     ArgSize = Flags.getByValSize();
1591   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1592
1593   return ArgSize;
1594 }
1595
1596 SDValue
1597 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1598                                         CallingConv::ID CallConv, bool isVarArg,
1599                                         const SmallVectorImpl<ISD::InputArg>
1600                                           &Ins,
1601                                         DebugLoc dl, SelectionDAG &DAG,
1602                                         SmallVectorImpl<SDValue> &InVals)
1603                                           const {
1604   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1605     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1606                                      dl, DAG, InVals);
1607   } else {
1608     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1609                                        dl, DAG, InVals);
1610   }
1611 }
1612
1613 SDValue
1614 PPCTargetLowering::LowerFormalArguments_SVR4(
1615                                       SDValue Chain,
1616                                       CallingConv::ID CallConv, bool isVarArg,
1617                                       const SmallVectorImpl<ISD::InputArg>
1618                                         &Ins,
1619                                       DebugLoc dl, SelectionDAG &DAG,
1620                                       SmallVectorImpl<SDValue> &InVals) const {
1621
1622   // 32-bit SVR4 ABI Stack Frame Layout:
1623   //              +-----------------------------------+
1624   //        +-->  |            Back chain             |
1625   //        |     +-----------------------------------+
1626   //        |     | Floating-point register save area |
1627   //        |     +-----------------------------------+
1628   //        |     |    General register save area     |
1629   //        |     +-----------------------------------+
1630   //        |     |          CR save word             |
1631   //        |     +-----------------------------------+
1632   //        |     |         VRSAVE save word          |
1633   //        |     +-----------------------------------+
1634   //        |     |         Alignment padding         |
1635   //        |     +-----------------------------------+
1636   //        |     |     Vector register save area     |
1637   //        |     +-----------------------------------+
1638   //        |     |       Local variable space        |
1639   //        |     +-----------------------------------+
1640   //        |     |        Parameter list area        |
1641   //        |     +-----------------------------------+
1642   //        |     |           LR save word            |
1643   //        |     +-----------------------------------+
1644   // SP-->  +---  |            Back chain             |
1645   //              +-----------------------------------+
1646   //
1647   // Specifications:
1648   //   System V Application Binary Interface PowerPC Processor Supplement
1649   //   AltiVec Technology Programming Interface Manual
1650
1651   MachineFunction &MF = DAG.getMachineFunction();
1652   MachineFrameInfo *MFI = MF.getFrameInfo();
1653   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1654
1655   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1656   // Potential tail calls could cause overwriting of argument stack slots.
1657   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1658   unsigned PtrByteSize = 4;
1659
1660   // Assign locations to all of the incoming arguments.
1661   SmallVector<CCValAssign, 16> ArgLocs;
1662   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1663                  getTargetMachine(), ArgLocs, *DAG.getContext());
1664
1665   // Reserve space for the linkage area on the stack.
1666   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1667
1668   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1669
1670   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1671     CCValAssign &VA = ArgLocs[i];
1672
1673     // Arguments stored in registers.
1674     if (VA.isRegLoc()) {
1675       TargetRegisterClass *RC;
1676       EVT ValVT = VA.getValVT();
1677
1678       switch (ValVT.getSimpleVT().SimpleTy) {
1679         default:
1680           llvm_unreachable("ValVT not supported by formal arguments Lowering");
1681         case MVT::i32:
1682           RC = PPC::GPRCRegisterClass;
1683           break;
1684         case MVT::f32:
1685           RC = PPC::F4RCRegisterClass;
1686           break;
1687         case MVT::f64:
1688           RC = PPC::F8RCRegisterClass;
1689           break;
1690         case MVT::v16i8:
1691         case MVT::v8i16:
1692         case MVT::v4i32:
1693         case MVT::v4f32:
1694           RC = PPC::VRRCRegisterClass;
1695           break;
1696       }
1697
1698       // Transform the arguments stored in physical registers into virtual ones.
1699       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1700       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1701
1702       InVals.push_back(ArgValue);
1703     } else {
1704       // Argument stored in memory.
1705       assert(VA.isMemLoc());
1706
1707       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1708       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1709                                       isImmutable);
1710
1711       // Create load nodes to retrieve arguments from the stack.
1712       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1713       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1714                                    MachinePointerInfo(),
1715                                    false, false, 0));
1716     }
1717   }
1718
1719   // Assign locations to all of the incoming aggregate by value arguments.
1720   // Aggregates passed by value are stored in the local variable space of the
1721   // caller's stack frame, right above the parameter list area.
1722   SmallVector<CCValAssign, 16> ByValArgLocs;
1723   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1724                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
1725
1726   // Reserve stack space for the allocations in CCInfo.
1727   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1728
1729   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1730
1731   // Area that is at least reserved in the caller of this function.
1732   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1733
1734   // Set the size that is at least reserved in caller of this function.  Tail
1735   // call optimized function's reserved stack space needs to be aligned so that
1736   // taking the difference between two stack areas will result in an aligned
1737   // stack.
1738   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1739
1740   MinReservedArea =
1741     std::max(MinReservedArea,
1742              PPCFrameLowering::getMinCallFrameSize(false, false));
1743
1744   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1745     getStackAlignment();
1746   unsigned AlignMask = TargetAlign-1;
1747   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1748
1749   FI->setMinReservedArea(MinReservedArea);
1750
1751   SmallVector<SDValue, 8> MemOps;
1752
1753   // If the function takes variable number of arguments, make a frame index for
1754   // the start of the first vararg value... for expansion of llvm.va_start.
1755   if (isVarArg) {
1756     static const unsigned GPArgRegs[] = {
1757       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1758       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1759     };
1760     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1761
1762     static const unsigned FPArgRegs[] = {
1763       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1764       PPC::F8
1765     };
1766     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1767
1768     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1769                                                           NumGPArgRegs));
1770     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1771                                                           NumFPArgRegs));
1772
1773     // Make room for NumGPArgRegs and NumFPArgRegs.
1774     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1775                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1776
1777     FuncInfo->setVarArgsStackOffset(
1778       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1779                              CCInfo.getNextStackOffset(), true));
1780
1781     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1782     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1783
1784     // The fixed integer arguments of a variadic function are stored to the
1785     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1786     // the result of va_next.
1787     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1788       // Get an existing live-in vreg, or add a new one.
1789       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1790       if (!VReg)
1791         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1792
1793       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1794       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1795                                    MachinePointerInfo(), false, false, 0);
1796       MemOps.push_back(Store);
1797       // Increment the address by four for the next argument to store
1798       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1799       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1800     }
1801
1802     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1803     // is set.
1804     // The double arguments are stored to the VarArgsFrameIndex
1805     // on the stack.
1806     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1807       // Get an existing live-in vreg, or add a new one.
1808       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1809       if (!VReg)
1810         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1811
1812       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1813       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1814                                    MachinePointerInfo(), false, false, 0);
1815       MemOps.push_back(Store);
1816       // Increment the address by eight for the next argument to store
1817       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1818                                          PtrVT);
1819       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1820     }
1821   }
1822
1823   if (!MemOps.empty())
1824     Chain = DAG.getNode(ISD::TokenFactor, dl,
1825                         MVT::Other, &MemOps[0], MemOps.size());
1826
1827   return Chain;
1828 }
1829
1830 SDValue
1831 PPCTargetLowering::LowerFormalArguments_Darwin(
1832                                       SDValue Chain,
1833                                       CallingConv::ID CallConv, bool isVarArg,
1834                                       const SmallVectorImpl<ISD::InputArg>
1835                                         &Ins,
1836                                       DebugLoc dl, SelectionDAG &DAG,
1837                                       SmallVectorImpl<SDValue> &InVals) const {
1838   // TODO: add description of PPC stack frame format, or at least some docs.
1839   //
1840   MachineFunction &MF = DAG.getMachineFunction();
1841   MachineFrameInfo *MFI = MF.getFrameInfo();
1842   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1843
1844   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1845   bool isPPC64 = PtrVT == MVT::i64;
1846   // Potential tail calls could cause overwriting of argument stack slots.
1847   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1848   unsigned PtrByteSize = isPPC64 ? 8 : 4;
1849
1850   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1851   // Area that is at least reserved in caller of this function.
1852   unsigned MinReservedArea = ArgOffset;
1853
1854   static const unsigned GPR_32[] = {           // 32-bit registers.
1855     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1856     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1857   };
1858   static const unsigned GPR_64[] = {           // 64-bit registers.
1859     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1860     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1861   };
1862
1863   static const unsigned *FPR = GetFPR();
1864
1865   static const unsigned VR[] = {
1866     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1867     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1868   };
1869
1870   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1871   const unsigned Num_FPR_Regs = 13;
1872   const unsigned Num_VR_Regs  = array_lengthof( VR);
1873
1874   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1875
1876   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1877
1878   // In 32-bit non-varargs functions, the stack space for vectors is after the
1879   // stack space for non-vectors.  We do not use this space unless we have
1880   // too many vectors to fit in registers, something that only occurs in
1881   // constructed examples:), but we have to walk the arglist to figure
1882   // that out...for the pathological case, compute VecArgOffset as the
1883   // start of the vector parameter area.  Computing VecArgOffset is the
1884   // entire point of the following loop.
1885   unsigned VecArgOffset = ArgOffset;
1886   if (!isVarArg && !isPPC64) {
1887     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1888          ++ArgNo) {
1889       EVT ObjectVT = Ins[ArgNo].VT;
1890       unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1891       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1892
1893       if (Flags.isByVal()) {
1894         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1895         ObjSize = Flags.getByValSize();
1896         unsigned ArgSize =
1897                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1898         VecArgOffset += ArgSize;
1899         continue;
1900       }
1901
1902       switch(ObjectVT.getSimpleVT().SimpleTy) {
1903       default: llvm_unreachable("Unhandled argument type!");
1904       case MVT::i32:
1905       case MVT::f32:
1906         VecArgOffset += isPPC64 ? 8 : 4;
1907         break;
1908       case MVT::i64:  // PPC64
1909       case MVT::f64:
1910         VecArgOffset += 8;
1911         break;
1912       case MVT::v4f32:
1913       case MVT::v4i32:
1914       case MVT::v8i16:
1915       case MVT::v16i8:
1916         // Nothing to do, we're only looking at Nonvector args here.
1917         break;
1918       }
1919     }
1920   }
1921   // We've found where the vector parameter area in memory is.  Skip the
1922   // first 12 parameters; these don't use that memory.
1923   VecArgOffset = ((VecArgOffset+15)/16)*16;
1924   VecArgOffset += 12*16;
1925
1926   // Add DAG nodes to load the arguments or copy them out of registers.  On
1927   // entry to a function on PPC, the arguments start after the linkage area,
1928   // although the first ones are often in registers.
1929
1930   SmallVector<SDValue, 8> MemOps;
1931   unsigned nAltivecParamsAtEnd = 0;
1932   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1933     SDValue ArgVal;
1934     bool needsLoad = false;
1935     EVT ObjectVT = Ins[ArgNo].VT;
1936     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1937     unsigned ArgSize = ObjSize;
1938     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1939
1940     unsigned CurArgOffset = ArgOffset;
1941
1942     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1943     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1944         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1945       if (isVarArg || isPPC64) {
1946         MinReservedArea = ((MinReservedArea+15)/16)*16;
1947         MinReservedArea += CalculateStackSlotSize(ObjectVT,
1948                                                   Flags,
1949                                                   PtrByteSize);
1950       } else  nAltivecParamsAtEnd++;
1951     } else
1952       // Calculate min reserved area.
1953       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1954                                                 Flags,
1955                                                 PtrByteSize);
1956
1957     // FIXME the codegen can be much improved in some cases.
1958     // We do not have to keep everything in memory.
1959     if (Flags.isByVal()) {
1960       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1961       ObjSize = Flags.getByValSize();
1962       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1963       // Objects of size 1 and 2 are right justified, everything else is
1964       // left justified.  This means the memory address is adjusted forwards.
1965       if (ObjSize==1 || ObjSize==2) {
1966         CurArgOffset = CurArgOffset + (4 - ObjSize);
1967       }
1968       // The value of the object is its address.
1969       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1970       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1971       InVals.push_back(FIN);
1972       if (ObjSize==1 || ObjSize==2) {
1973         if (GPR_idx != Num_GPR_Regs) {
1974           unsigned VReg;
1975           if (isPPC64)
1976             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1977           else
1978             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1979           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1980           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1981                                             MachinePointerInfo(),
1982                                             ObjSize==1 ? MVT::i8 : MVT::i16,
1983                                             false, false, 0);
1984           MemOps.push_back(Store);
1985           ++GPR_idx;
1986         }
1987
1988         ArgOffset += PtrByteSize;
1989
1990         continue;
1991       }
1992       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1993         // Store whatever pieces of the object are in registers
1994         // to memory.  ArgVal will be address of the beginning of
1995         // the object.
1996         if (GPR_idx != Num_GPR_Regs) {
1997           unsigned VReg;
1998           if (isPPC64)
1999             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2000           else
2001             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2002           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2003           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2004           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2005           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2006                                        MachinePointerInfo(),
2007                                        false, false, 0);
2008           MemOps.push_back(Store);
2009           ++GPR_idx;
2010           ArgOffset += PtrByteSize;
2011         } else {
2012           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2013           break;
2014         }
2015       }
2016       continue;
2017     }
2018
2019     switch (ObjectVT.getSimpleVT().SimpleTy) {
2020     default: llvm_unreachable("Unhandled argument type!");
2021     case MVT::i32:
2022       if (!isPPC64) {
2023         if (GPR_idx != Num_GPR_Regs) {
2024           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2025           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2026           ++GPR_idx;
2027         } else {
2028           needsLoad = true;
2029           ArgSize = PtrByteSize;
2030         }
2031         // All int arguments reserve stack space in the Darwin ABI.
2032         ArgOffset += PtrByteSize;
2033         break;
2034       }
2035       // FALLTHROUGH
2036     case MVT::i64:  // PPC64
2037       if (GPR_idx != Num_GPR_Regs) {
2038         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2039         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2040
2041         if (ObjectVT == MVT::i32) {
2042           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2043           // value to MVT::i64 and then truncate to the correct register size.
2044           if (Flags.isSExt())
2045             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2046                                  DAG.getValueType(ObjectVT));
2047           else if (Flags.isZExt())
2048             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2049                                  DAG.getValueType(ObjectVT));
2050
2051           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2052         }
2053
2054         ++GPR_idx;
2055       } else {
2056         needsLoad = true;
2057         ArgSize = PtrByteSize;
2058       }
2059       // All int arguments reserve stack space in the Darwin ABI.
2060       ArgOffset += 8;
2061       break;
2062
2063     case MVT::f32:
2064     case MVT::f64:
2065       // Every 4 bytes of argument space consumes one of the GPRs available for
2066       // argument passing.
2067       if (GPR_idx != Num_GPR_Regs) {
2068         ++GPR_idx;
2069         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2070           ++GPR_idx;
2071       }
2072       if (FPR_idx != Num_FPR_Regs) {
2073         unsigned VReg;
2074
2075         if (ObjectVT == MVT::f32)
2076           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2077         else
2078           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2079
2080         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2081         ++FPR_idx;
2082       } else {
2083         needsLoad = true;
2084       }
2085
2086       // All FP arguments reserve stack space in the Darwin ABI.
2087       ArgOffset += isPPC64 ? 8 : ObjSize;
2088       break;
2089     case MVT::v4f32:
2090     case MVT::v4i32:
2091     case MVT::v8i16:
2092     case MVT::v16i8:
2093       // Note that vector arguments in registers don't reserve stack space,
2094       // except in varargs functions.
2095       if (VR_idx != Num_VR_Regs) {
2096         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2097         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2098         if (isVarArg) {
2099           while ((ArgOffset % 16) != 0) {
2100             ArgOffset += PtrByteSize;
2101             if (GPR_idx != Num_GPR_Regs)
2102               GPR_idx++;
2103           }
2104           ArgOffset += 16;
2105           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2106         }
2107         ++VR_idx;
2108       } else {
2109         if (!isVarArg && !isPPC64) {
2110           // Vectors go after all the nonvectors.
2111           CurArgOffset = VecArgOffset;
2112           VecArgOffset += 16;
2113         } else {
2114           // Vectors are aligned.
2115           ArgOffset = ((ArgOffset+15)/16)*16;
2116           CurArgOffset = ArgOffset;
2117           ArgOffset += 16;
2118         }
2119         needsLoad = true;
2120       }
2121       break;
2122     }
2123
2124     // We need to load the argument to a virtual register if we determined above
2125     // that we ran out of physical registers of the appropriate type.
2126     if (needsLoad) {
2127       int FI = MFI->CreateFixedObject(ObjSize,
2128                                       CurArgOffset + (ArgSize - ObjSize),
2129                                       isImmutable);
2130       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2131       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2132                            false, false, 0);
2133     }
2134
2135     InVals.push_back(ArgVal);
2136   }
2137
2138   // Set the size that is at least reserved in caller of this function.  Tail
2139   // call optimized function's reserved stack space needs to be aligned so that
2140   // taking the difference between two stack areas will result in an aligned
2141   // stack.
2142   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2143   // Add the Altivec parameters at the end, if needed.
2144   if (nAltivecParamsAtEnd) {
2145     MinReservedArea = ((MinReservedArea+15)/16)*16;
2146     MinReservedArea += 16*nAltivecParamsAtEnd;
2147   }
2148   MinReservedArea =
2149     std::max(MinReservedArea,
2150              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2151   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2152     getStackAlignment();
2153   unsigned AlignMask = TargetAlign-1;
2154   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2155   FI->setMinReservedArea(MinReservedArea);
2156
2157   // If the function takes variable number of arguments, make a frame index for
2158   // the start of the first vararg value... for expansion of llvm.va_start.
2159   if (isVarArg) {
2160     int Depth = ArgOffset;
2161
2162     FuncInfo->setVarArgsFrameIndex(
2163       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2164                              Depth, true));
2165     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2166
2167     // If this function is vararg, store any remaining integer argument regs
2168     // to their spots on the stack so that they may be loaded by deferencing the
2169     // result of va_next.
2170     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2171       unsigned VReg;
2172
2173       if (isPPC64)
2174         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2175       else
2176         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2177
2178       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2179       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2180                                    MachinePointerInfo(), false, false, 0);
2181       MemOps.push_back(Store);
2182       // Increment the address by four for the next argument to store
2183       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2184       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2185     }
2186   }
2187
2188   if (!MemOps.empty())
2189     Chain = DAG.getNode(ISD::TokenFactor, dl,
2190                         MVT::Other, &MemOps[0], MemOps.size());
2191
2192   return Chain;
2193 }
2194
2195 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2196 /// linkage area for the Darwin ABI.
2197 static unsigned
2198 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2199                                      bool isPPC64,
2200                                      bool isVarArg,
2201                                      unsigned CC,
2202                                      const SmallVectorImpl<ISD::OutputArg>
2203                                        &Outs,
2204                                      const SmallVectorImpl<SDValue> &OutVals,
2205                                      unsigned &nAltivecParamsAtEnd) {
2206   // Count how many bytes are to be pushed on the stack, including the linkage
2207   // area, and parameter passing area.  We start with 24/48 bytes, which is
2208   // prereserved space for [SP][CR][LR][3 x unused].
2209   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2210   unsigned NumOps = Outs.size();
2211   unsigned PtrByteSize = isPPC64 ? 8 : 4;
2212
2213   // Add up all the space actually used.
2214   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2215   // they all go in registers, but we must reserve stack space for them for
2216   // possible use by the caller.  In varargs or 64-bit calls, parameters are
2217   // assigned stack space in order, with padding so Altivec parameters are
2218   // 16-byte aligned.
2219   nAltivecParamsAtEnd = 0;
2220   for (unsigned i = 0; i != NumOps; ++i) {
2221     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2222     EVT ArgVT = Outs[i].VT;
2223     // Varargs Altivec parameters are padded to a 16 byte boundary.
2224     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2225         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2226       if (!isVarArg && !isPPC64) {
2227         // Non-varargs Altivec parameters go after all the non-Altivec
2228         // parameters; handle those later so we know how much padding we need.
2229         nAltivecParamsAtEnd++;
2230         continue;
2231       }
2232       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2233       NumBytes = ((NumBytes+15)/16)*16;
2234     }
2235     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2236   }
2237
2238    // Allow for Altivec parameters at the end, if needed.
2239   if (nAltivecParamsAtEnd) {
2240     NumBytes = ((NumBytes+15)/16)*16;
2241     NumBytes += 16*nAltivecParamsAtEnd;
2242   }
2243
2244   // The prolog code of the callee may store up to 8 GPR argument registers to
2245   // the stack, allowing va_start to index over them in memory if its varargs.
2246   // Because we cannot tell if this is needed on the caller side, we have to
2247   // conservatively assume that it is needed.  As such, make sure we have at
2248   // least enough stack space for the caller to store the 8 GPRs.
2249   NumBytes = std::max(NumBytes,
2250                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2251
2252   // Tail call needs the stack to be aligned.
2253   if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2254     unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2255       getStackAlignment();
2256     unsigned AlignMask = TargetAlign-1;
2257     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2258   }
2259
2260   return NumBytes;
2261 }
2262
2263 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2264 /// adjusted to accommodate the arguments for the tailcall.
2265 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2266                                    unsigned ParamSize) {
2267
2268   if (!isTailCall) return 0;
2269
2270   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2271   unsigned CallerMinReservedArea = FI->getMinReservedArea();
2272   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2273   // Remember only if the new adjustement is bigger.
2274   if (SPDiff < FI->getTailCallSPDelta())
2275     FI->setTailCallSPDelta(SPDiff);
2276
2277   return SPDiff;
2278 }
2279
2280 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2281 /// for tail call optimization. Targets which want to do tail call
2282 /// optimization should implement this function.
2283 bool
2284 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2285                                                      CallingConv::ID CalleeCC,
2286                                                      bool isVarArg,
2287                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2288                                                      SelectionDAG& DAG) const {
2289   if (!GuaranteedTailCallOpt)
2290     return false;
2291
2292   // Variable argument functions are not supported.
2293   if (isVarArg)
2294     return false;
2295
2296   MachineFunction &MF = DAG.getMachineFunction();
2297   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2298   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2299     // Functions containing by val parameters are not supported.
2300     for (unsigned i = 0; i != Ins.size(); i++) {
2301        ISD::ArgFlagsTy Flags = Ins[i].Flags;
2302        if (Flags.isByVal()) return false;
2303     }
2304
2305     // Non PIC/GOT  tail calls are supported.
2306     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2307       return true;
2308
2309     // At the moment we can only do local tail calls (in same module, hidden
2310     // or protected) if we are generating PIC.
2311     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2312       return G->getGlobal()->hasHiddenVisibility()
2313           || G->getGlobal()->hasProtectedVisibility();
2314   }
2315
2316   return false;
2317 }
2318
2319 /// isCallCompatibleAddress - Return the immediate to use if the specified
2320 /// 32-bit value is representable in the immediate field of a BxA instruction.
2321 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2322   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2323   if (!C) return 0;
2324
2325   int Addr = C->getZExtValue();
2326   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2327       (Addr << 6 >> 6) != Addr)
2328     return 0;  // Top 6 bits have to be sext of immediate.
2329
2330   return DAG.getConstant((int)C->getZExtValue() >> 2,
2331                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2332 }
2333
2334 namespace {
2335
2336 struct TailCallArgumentInfo {
2337   SDValue Arg;
2338   SDValue FrameIdxOp;
2339   int       FrameIdx;
2340
2341   TailCallArgumentInfo() : FrameIdx(0) {}
2342 };
2343
2344 }
2345
2346 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2347 static void
2348 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2349                                            SDValue Chain,
2350                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2351                    SmallVector<SDValue, 8> &MemOpChains,
2352                    DebugLoc dl) {
2353   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2354     SDValue Arg = TailCallArgs[i].Arg;
2355     SDValue FIN = TailCallArgs[i].FrameIdxOp;
2356     int FI = TailCallArgs[i].FrameIdx;
2357     // Store relative to framepointer.
2358     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2359                                        MachinePointerInfo::getFixedStack(FI),
2360                                        false, false, 0));
2361   }
2362 }
2363
2364 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2365 /// the appropriate stack slot for the tail call optimized function call.
2366 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2367                                                MachineFunction &MF,
2368                                                SDValue Chain,
2369                                                SDValue OldRetAddr,
2370                                                SDValue OldFP,
2371                                                int SPDiff,
2372                                                bool isPPC64,
2373                                                bool isDarwinABI,
2374                                                DebugLoc dl) {
2375   if (SPDiff) {
2376     // Calculate the new stack slot for the return address.
2377     int SlotSize = isPPC64 ? 8 : 4;
2378     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2379                                                                    isDarwinABI);
2380     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2381                                                           NewRetAddrLoc, true);
2382     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2383     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2384     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2385                          MachinePointerInfo::getFixedStack(NewRetAddr),
2386                          false, false, 0);
2387
2388     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2389     // slot as the FP is never overwritten.
2390     if (isDarwinABI) {
2391       int NewFPLoc =
2392         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2393       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2394                                                           true);
2395       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2396       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2397                            MachinePointerInfo::getFixedStack(NewFPIdx),
2398                            false, false, 0);
2399     }
2400   }
2401   return Chain;
2402 }
2403
2404 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2405 /// the position of the argument.
2406 static void
2407 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2408                          SDValue Arg, int SPDiff, unsigned ArgOffset,
2409                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2410   int Offset = ArgOffset + SPDiff;
2411   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2412   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2413   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2414   SDValue FIN = DAG.getFrameIndex(FI, VT);
2415   TailCallArgumentInfo Info;
2416   Info.Arg = Arg;
2417   Info.FrameIdxOp = FIN;
2418   Info.FrameIdx = FI;
2419   TailCallArguments.push_back(Info);
2420 }
2421
2422 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2423 /// stack slot. Returns the chain as result and the loaded frame pointers in
2424 /// LROpOut/FPOpout. Used when tail calling.
2425 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2426                                                         int SPDiff,
2427                                                         SDValue Chain,
2428                                                         SDValue &LROpOut,
2429                                                         SDValue &FPOpOut,
2430                                                         bool isDarwinABI,
2431                                                         DebugLoc dl) const {
2432   if (SPDiff) {
2433     // Load the LR and FP stack slot for later adjusting.
2434     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2435     LROpOut = getReturnAddrFrameIndex(DAG);
2436     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2437                           false, false, 0);
2438     Chain = SDValue(LROpOut.getNode(), 1);
2439
2440     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2441     // slot as the FP is never overwritten.
2442     if (isDarwinABI) {
2443       FPOpOut = getFramePointerFrameIndex(DAG);
2444       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2445                             false, false, 0);
2446       Chain = SDValue(FPOpOut.getNode(), 1);
2447     }
2448   }
2449   return Chain;
2450 }
2451
2452 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2453 /// by "Src" to address "Dst" of size "Size".  Alignment information is
2454 /// specified by the specific parameter attribute. The copy will be passed as
2455 /// a byval function parameter.
2456 /// Sometimes what we are copying is the end of a larger object, the part that
2457 /// does not fit in registers.
2458 static SDValue
2459 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2460                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2461                           DebugLoc dl) {
2462   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2463   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2464                        false, false, MachinePointerInfo(0),
2465                        MachinePointerInfo(0));
2466 }
2467
2468 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2469 /// tail calls.
2470 static void
2471 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2472                  SDValue Arg, SDValue PtrOff, int SPDiff,
2473                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
2474                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2475                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2476                  DebugLoc dl) {
2477   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2478   if (!isTailCall) {
2479     if (isVector) {
2480       SDValue StackPtr;
2481       if (isPPC64)
2482         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2483       else
2484         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2485       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2486                            DAG.getConstant(ArgOffset, PtrVT));
2487     }
2488     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2489                                        MachinePointerInfo(), false, false, 0));
2490   // Calculate and remember argument location.
2491   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2492                                   TailCallArguments);
2493 }
2494
2495 static
2496 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2497                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2498                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
2499                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2500   MachineFunction &MF = DAG.getMachineFunction();
2501
2502   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2503   // might overwrite each other in case of tail call optimization.
2504   SmallVector<SDValue, 8> MemOpChains2;
2505   // Do not flag preceding copytoreg stuff together with the following stuff.
2506   InFlag = SDValue();
2507   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2508                                     MemOpChains2, dl);
2509   if (!MemOpChains2.empty())
2510     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2511                         &MemOpChains2[0], MemOpChains2.size());
2512
2513   // Store the return address to the appropriate stack slot.
2514   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2515                                         isPPC64, isDarwinABI, dl);
2516
2517   // Emit callseq_end just before tailcall node.
2518   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2519                              DAG.getIntPtrConstant(0, true), InFlag);
2520   InFlag = Chain.getValue(1);
2521 }
2522
2523 static
2524 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2525                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2526                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2527                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2528                      const PPCSubtarget &PPCSubTarget) {
2529
2530   bool isPPC64 = PPCSubTarget.isPPC64();
2531   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2532
2533   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2534   NodeTys.push_back(MVT::Other);   // Returns a chain
2535   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2536
2537   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2538
2539   bool needIndirectCall = true;
2540   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2541     // If this is an absolute destination address, use the munged value.
2542     Callee = SDValue(Dest, 0);
2543     needIndirectCall = false;
2544   }
2545
2546   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2547     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2548     // Use indirect calls for ALL functions calls in JIT mode, since the
2549     // far-call stubs may be outside relocation limits for a BL instruction.
2550     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2551       unsigned OpFlags = 0;
2552       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2553           (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2554            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2555           (G->getGlobal()->isDeclaration() ||
2556            G->getGlobal()->isWeakForLinker())) {
2557         // PC-relative references to external symbols should go through $stub,
2558         // unless we're building with the leopard linker or later, which
2559         // automatically synthesizes these stubs.
2560         OpFlags = PPCII::MO_DARWIN_STUB;
2561       }
2562
2563       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2564       // every direct call is) turn it into a TargetGlobalAddress /
2565       // TargetExternalSymbol node so that legalize doesn't hack it.
2566       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2567                                           Callee.getValueType(),
2568                                           0, OpFlags);
2569       needIndirectCall = false;
2570     }
2571   }
2572
2573   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2574     unsigned char OpFlags = 0;
2575
2576     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2577         (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2578          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2579       // PC-relative references to external symbols should go through $stub,
2580       // unless we're building with the leopard linker or later, which
2581       // automatically synthesizes these stubs.
2582       OpFlags = PPCII::MO_DARWIN_STUB;
2583     }
2584
2585     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2586                                          OpFlags);
2587     needIndirectCall = false;
2588   }
2589
2590   if (needIndirectCall) {
2591     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2592     // to do the call, we can't use PPCISD::CALL.
2593     SDValue MTCTROps[] = {Chain, Callee, InFlag};
2594
2595     if (isSVR4ABI && isPPC64) {
2596       // Function pointers in the 64-bit SVR4 ABI do not point to the function
2597       // entry point, but to the function descriptor (the function entry point
2598       // address is part of the function descriptor though).
2599       // The function descriptor is a three doubleword structure with the
2600       // following fields: function entry point, TOC base address and
2601       // environment pointer.
2602       // Thus for a call through a function pointer, the following actions need
2603       // to be performed:
2604       //   1. Save the TOC of the caller in the TOC save area of its stack
2605       //      frame (this is done in LowerCall_Darwin()).
2606       //   2. Load the address of the function entry point from the function
2607       //      descriptor.
2608       //   3. Load the TOC of the callee from the function descriptor into r2.
2609       //   4. Load the environment pointer from the function descriptor into
2610       //      r11.
2611       //   5. Branch to the function entry point address.
2612       //   6. On return of the callee, the TOC of the caller needs to be
2613       //      restored (this is done in FinishCall()).
2614       //
2615       // All those operations are flagged together to ensure that no other
2616       // operations can be scheduled in between. E.g. without flagging the
2617       // operations together, a TOC access in the caller could be scheduled
2618       // between the load of the callee TOC and the branch to the callee, which
2619       // results in the TOC access going through the TOC of the callee instead
2620       // of going through the TOC of the caller, which leads to incorrect code.
2621
2622       // Load the address of the function entry point from the function
2623       // descriptor.
2624       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2625       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2626                                         InFlag.getNode() ? 3 : 2);
2627       Chain = LoadFuncPtr.getValue(1);
2628       InFlag = LoadFuncPtr.getValue(2);
2629
2630       // Load environment pointer into r11.
2631       // Offset of the environment pointer within the function descriptor.
2632       SDValue PtrOff = DAG.getIntPtrConstant(16);
2633
2634       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2635       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2636                                        InFlag);
2637       Chain = LoadEnvPtr.getValue(1);
2638       InFlag = LoadEnvPtr.getValue(2);
2639
2640       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2641                                         InFlag);
2642       Chain = EnvVal.getValue(0);
2643       InFlag = EnvVal.getValue(1);
2644
2645       // Load TOC of the callee into r2. We are using a target-specific load
2646       // with r2 hard coded, because the result of a target-independent load
2647       // would never go directly into r2, since r2 is a reserved register (which
2648       // prevents the register allocator from allocating it), resulting in an
2649       // additional register being allocated and an unnecessary move instruction
2650       // being generated.
2651       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2652       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2653                                        Callee, InFlag);
2654       Chain = LoadTOCPtr.getValue(0);
2655       InFlag = LoadTOCPtr.getValue(1);
2656
2657       MTCTROps[0] = Chain;
2658       MTCTROps[1] = LoadFuncPtr;
2659       MTCTROps[2] = InFlag;
2660     }
2661
2662     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2663                         2 + (InFlag.getNode() != 0));
2664     InFlag = Chain.getValue(1);
2665
2666     NodeTys.clear();
2667     NodeTys.push_back(MVT::Other);
2668     NodeTys.push_back(MVT::Glue);
2669     Ops.push_back(Chain);
2670     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2671     Callee.setNode(0);
2672     // Add CTR register as callee so a bctr can be emitted later.
2673     if (isTailCall)
2674       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2675   }
2676
2677   // If this is a direct call, pass the chain and the callee.
2678   if (Callee.getNode()) {
2679     Ops.push_back(Chain);
2680     Ops.push_back(Callee);
2681   }
2682   // If this is a tail call add stack pointer delta.
2683   if (isTailCall)
2684     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2685
2686   // Add argument registers to the end of the list so that they are known live
2687   // into the call.
2688   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2689     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2690                                   RegsToPass[i].second.getValueType()));
2691
2692   return CallOpc;
2693 }
2694
2695 SDValue
2696 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2697                                    CallingConv::ID CallConv, bool isVarArg,
2698                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2699                                    DebugLoc dl, SelectionDAG &DAG,
2700                                    SmallVectorImpl<SDValue> &InVals) const {
2701
2702   SmallVector<CCValAssign, 16> RVLocs;
2703   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2704                     getTargetMachine(), RVLocs, *DAG.getContext());
2705   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2706
2707   // Copy all of the result registers out of their specified physreg.
2708   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2709     CCValAssign &VA = RVLocs[i];
2710     EVT VT = VA.getValVT();
2711     assert(VA.isRegLoc() && "Can only return in registers!");
2712     Chain = DAG.getCopyFromReg(Chain, dl,
2713                                VA.getLocReg(), VT, InFlag).getValue(1);
2714     InVals.push_back(Chain.getValue(0));
2715     InFlag = Chain.getValue(2);
2716   }
2717
2718   return Chain;
2719 }
2720
2721 SDValue
2722 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2723                               bool isTailCall, bool isVarArg,
2724                               SelectionDAG &DAG,
2725                               SmallVector<std::pair<unsigned, SDValue>, 8>
2726                                 &RegsToPass,
2727                               SDValue InFlag, SDValue Chain,
2728                               SDValue &Callee,
2729                               int SPDiff, unsigned NumBytes,
2730                               const SmallVectorImpl<ISD::InputArg> &Ins,
2731                               SmallVectorImpl<SDValue> &InVals) const {
2732   std::vector<EVT> NodeTys;
2733   SmallVector<SDValue, 8> Ops;
2734   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2735                                  isTailCall, RegsToPass, Ops, NodeTys,
2736                                  PPCSubTarget);
2737
2738   // When performing tail call optimization the callee pops its arguments off
2739   // the stack. Account for this here so these bytes can be pushed back on in
2740   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2741   int BytesCalleePops =
2742     (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2743
2744   if (InFlag.getNode())
2745     Ops.push_back(InFlag);
2746
2747   // Emit tail call.
2748   if (isTailCall) {
2749     // If this is the first return lowered for this function, add the regs
2750     // to the liveout set for the function.
2751     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2752       SmallVector<CCValAssign, 16> RVLocs;
2753       CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2754                      getTargetMachine(), RVLocs, *DAG.getContext());
2755       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2756       for (unsigned i = 0; i != RVLocs.size(); ++i)
2757         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2758     }
2759
2760     assert(((Callee.getOpcode() == ISD::Register &&
2761              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2762             Callee.getOpcode() == ISD::TargetExternalSymbol ||
2763             Callee.getOpcode() == ISD::TargetGlobalAddress ||
2764             isa<ConstantSDNode>(Callee)) &&
2765     "Expecting an global address, external symbol, absolute value or register");
2766
2767     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2768   }
2769
2770   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2771   InFlag = Chain.getValue(1);
2772
2773   // Add a NOP immediately after the branch instruction when using the 64-bit
2774   // SVR4 ABI. At link time, if caller and callee are in a different module and
2775   // thus have a different TOC, the call will be replaced with a call to a stub
2776   // function which saves the current TOC, loads the TOC of the callee and
2777   // branches to the callee. The NOP will be replaced with a load instruction
2778   // which restores the TOC of the caller from the TOC save slot of the current
2779   // stack frame. If caller and callee belong to the same module (and have the
2780   // same TOC), the NOP will remain unchanged.
2781   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2782     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2783     if (CallOpc == PPCISD::BCTRL_SVR4) {
2784       // This is a call through a function pointer.
2785       // Restore the caller TOC from the save area into R2.
2786       // See PrepareCall() for more information about calls through function
2787       // pointers in the 64-bit SVR4 ABI.
2788       // We are using a target-specific load with r2 hard coded, because the
2789       // result of a target-independent load would never go directly into r2,
2790       // since r2 is a reserved register (which prevents the register allocator
2791       // from allocating it), resulting in an additional register being
2792       // allocated and an unnecessary move instruction being generated.
2793       Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2794       InFlag = Chain.getValue(1);
2795     } else {
2796       // Otherwise insert NOP.
2797       InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2798     }
2799   }
2800
2801   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2802                              DAG.getIntPtrConstant(BytesCalleePops, true),
2803                              InFlag);
2804   if (!Ins.empty())
2805     InFlag = Chain.getValue(1);
2806
2807   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2808                          Ins, dl, DAG, InVals);
2809 }
2810
2811 SDValue
2812 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2813                              CallingConv::ID CallConv, bool isVarArg,
2814                              bool &isTailCall,
2815                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2816                              const SmallVectorImpl<SDValue> &OutVals,
2817                              const SmallVectorImpl<ISD::InputArg> &Ins,
2818                              DebugLoc dl, SelectionDAG &DAG,
2819                              SmallVectorImpl<SDValue> &InVals) const {
2820   if (isTailCall)
2821     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2822                                                    Ins, DAG);
2823
2824   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2825     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2826                           isTailCall, Outs, OutVals, Ins,
2827                           dl, DAG, InVals);
2828
2829   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2830                           isTailCall, Outs, OutVals, Ins,
2831                           dl, DAG, InVals);
2832 }
2833
2834 SDValue
2835 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2836                                   CallingConv::ID CallConv, bool isVarArg,
2837                                   bool isTailCall,
2838                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2839                                   const SmallVectorImpl<SDValue> &OutVals,
2840                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2841                                   DebugLoc dl, SelectionDAG &DAG,
2842                                   SmallVectorImpl<SDValue> &InVals) const {
2843   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2844   // of the 32-bit SVR4 ABI stack frame layout.
2845
2846   assert((CallConv == CallingConv::C ||
2847           CallConv == CallingConv::Fast) && "Unknown calling convention!");
2848
2849   unsigned PtrByteSize = 4;
2850
2851   MachineFunction &MF = DAG.getMachineFunction();
2852
2853   // Mark this function as potentially containing a function that contains a
2854   // tail call. As a consequence the frame pointer will be used for dynamicalloc
2855   // and restoring the callers stack pointer in this functions epilog. This is
2856   // done because by tail calling the called function might overwrite the value
2857   // in this function's (MF) stack pointer stack slot 0(SP).
2858   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2859     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2860
2861   // Count how many bytes are to be pushed on the stack, including the linkage
2862   // area, parameter list area and the part of the local variable space which
2863   // contains copies of aggregates which are passed by value.
2864
2865   // Assign locations to all of the outgoing arguments.
2866   SmallVector<CCValAssign, 16> ArgLocs;
2867   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2868                  getTargetMachine(), ArgLocs, *DAG.getContext());
2869
2870   // Reserve space for the linkage area on the stack.
2871   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2872
2873   if (isVarArg) {
2874     // Handle fixed and variable vector arguments differently.
2875     // Fixed vector arguments go into registers as long as registers are
2876     // available. Variable vector arguments always go into memory.
2877     unsigned NumArgs = Outs.size();
2878
2879     for (unsigned i = 0; i != NumArgs; ++i) {
2880       MVT ArgVT = Outs[i].VT;
2881       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2882       bool Result;
2883
2884       if (Outs[i].IsFixed) {
2885         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2886                              CCInfo);
2887       } else {
2888         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2889                                     ArgFlags, CCInfo);
2890       }
2891
2892       if (Result) {
2893 #ifndef NDEBUG
2894         errs() << "Call operand #" << i << " has unhandled type "
2895              << EVT(ArgVT).getEVTString() << "\n";
2896 #endif
2897         llvm_unreachable(0);
2898       }
2899     }
2900   } else {
2901     // All arguments are treated the same.
2902     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2903   }
2904
2905   // Assign locations to all of the outgoing aggregate by value arguments.
2906   SmallVector<CCValAssign, 16> ByValArgLocs;
2907   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2908                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
2909
2910   // Reserve stack space for the allocations in CCInfo.
2911   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2912
2913   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2914
2915   // Size of the linkage area, parameter list area and the part of the local
2916   // space variable where copies of aggregates which are passed by value are
2917   // stored.
2918   unsigned NumBytes = CCByValInfo.getNextStackOffset();
2919
2920   // Calculate by how many bytes the stack has to be adjusted in case of tail
2921   // call optimization.
2922   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2923
2924   // Adjust the stack pointer for the new arguments...
2925   // These operations are automatically eliminated by the prolog/epilog pass
2926   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2927   SDValue CallSeqStart = Chain;
2928
2929   // Load the return address and frame pointer so it can be moved somewhere else
2930   // later.
2931   SDValue LROp, FPOp;
2932   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2933                                        dl);
2934
2935   // Set up a copy of the stack pointer for use loading and storing any
2936   // arguments that may not fit in the registers available for argument
2937   // passing.
2938   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2939
2940   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2941   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2942   SmallVector<SDValue, 8> MemOpChains;
2943
2944   // Walk the register/memloc assignments, inserting copies/loads.
2945   for (unsigned i = 0, j = 0, e = ArgLocs.size();
2946        i != e;
2947        ++i) {
2948     CCValAssign &VA = ArgLocs[i];
2949     SDValue Arg = OutVals[i];
2950     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2951
2952     if (Flags.isByVal()) {
2953       // Argument is an aggregate which is passed by value, thus we need to
2954       // create a copy of it in the local variable space of the current stack
2955       // frame (which is the stack frame of the caller) and pass the address of
2956       // this copy to the callee.
2957       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2958       CCValAssign &ByValVA = ByValArgLocs[j++];
2959       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2960
2961       // Memory reserved in the local variable space of the callers stack frame.
2962       unsigned LocMemOffset = ByValVA.getLocMemOffset();
2963
2964       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2965       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2966
2967       // Create a copy of the argument in the local area of the current
2968       // stack frame.
2969       SDValue MemcpyCall =
2970         CreateCopyOfByValArgument(Arg, PtrOff,
2971                                   CallSeqStart.getNode()->getOperand(0),
2972                                   Flags, DAG, dl);
2973
2974       // This must go outside the CALLSEQ_START..END.
2975       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2976                            CallSeqStart.getNode()->getOperand(1));
2977       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2978                              NewCallSeqStart.getNode());
2979       Chain = CallSeqStart = NewCallSeqStart;
2980
2981       // Pass the address of the aggregate copy on the stack either in a
2982       // physical register or in the parameter list area of the current stack
2983       // frame to the callee.
2984       Arg = PtrOff;
2985     }
2986
2987     if (VA.isRegLoc()) {
2988       // Put argument in a physical register.
2989       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2990     } else {
2991       // Put argument in the parameter list area of the current stack frame.
2992       assert(VA.isMemLoc());
2993       unsigned LocMemOffset = VA.getLocMemOffset();
2994
2995       if (!isTailCall) {
2996         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2997         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2998
2999         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3000                                            MachinePointerInfo(),
3001                                            false, false, 0));
3002       } else {
3003         // Calculate and remember argument location.
3004         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3005                                  TailCallArguments);
3006       }
3007     }
3008   }
3009
3010   if (!MemOpChains.empty())
3011     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3012                         &MemOpChains[0], MemOpChains.size());
3013
3014   // Set CR6 to true if this is a vararg call.
3015   if (isVarArg) {
3016     SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
3017     RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3018   }
3019
3020   // Build a sequence of copy-to-reg nodes chained together with token chain
3021   // and flag operands which copy the outgoing args into the appropriate regs.
3022   SDValue InFlag;
3023   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3024     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3025                              RegsToPass[i].second, InFlag);
3026     InFlag = Chain.getValue(1);
3027   }
3028
3029   if (isTailCall)
3030     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3031                     false, TailCallArguments);
3032
3033   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3034                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3035                     Ins, InVals);
3036 }
3037
3038 SDValue
3039 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3040                                     CallingConv::ID CallConv, bool isVarArg,
3041                                     bool isTailCall,
3042                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3043                                     const SmallVectorImpl<SDValue> &OutVals,
3044                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3045                                     DebugLoc dl, SelectionDAG &DAG,
3046                                     SmallVectorImpl<SDValue> &InVals) const {
3047
3048   unsigned NumOps  = Outs.size();
3049
3050   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3051   bool isPPC64 = PtrVT == MVT::i64;
3052   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3053
3054   MachineFunction &MF = DAG.getMachineFunction();
3055
3056   // Mark this function as potentially containing a function that contains a
3057   // tail call. As a consequence the frame pointer will be used for dynamicalloc
3058   // and restoring the callers stack pointer in this functions epilog. This is
3059   // done because by tail calling the called function might overwrite the value
3060   // in this function's (MF) stack pointer stack slot 0(SP).
3061   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
3062     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3063
3064   unsigned nAltivecParamsAtEnd = 0;
3065
3066   // Count how many bytes are to be pushed on the stack, including the linkage
3067   // area, and parameter passing area.  We start with 24/48 bytes, which is
3068   // prereserved space for [SP][CR][LR][3 x unused].
3069   unsigned NumBytes =
3070     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3071                                          Outs, OutVals,
3072                                          nAltivecParamsAtEnd);
3073
3074   // Calculate by how many bytes the stack has to be adjusted in case of tail
3075   // call optimization.
3076   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3077
3078   // To protect arguments on the stack from being clobbered in a tail call,
3079   // force all the loads to happen before doing any other lowering.
3080   if (isTailCall)
3081     Chain = DAG.getStackArgumentTokenFactor(Chain);
3082
3083   // Adjust the stack pointer for the new arguments...
3084   // These operations are automatically eliminated by the prolog/epilog pass
3085   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3086   SDValue CallSeqStart = Chain;
3087
3088   // Load the return address and frame pointer so it can be move somewhere else
3089   // later.
3090   SDValue LROp, FPOp;
3091   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3092                                        dl);
3093
3094   // Set up a copy of the stack pointer for use loading and storing any
3095   // arguments that may not fit in the registers available for argument
3096   // passing.
3097   SDValue StackPtr;
3098   if (isPPC64)
3099     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3100   else
3101     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3102
3103   // Figure out which arguments are going to go in registers, and which in
3104   // memory.  Also, if this is a vararg function, floating point operations
3105   // must be stored to our stack, and loaded into integer regs as well, if
3106   // any integer regs are available for argument passing.
3107   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3108   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3109
3110   static const unsigned GPR_32[] = {           // 32-bit registers.
3111     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3112     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3113   };
3114   static const unsigned GPR_64[] = {           // 64-bit registers.
3115     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3116     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3117   };
3118   static const unsigned *FPR = GetFPR();
3119
3120   static const unsigned VR[] = {
3121     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3122     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3123   };
3124   const unsigned NumGPRs = array_lengthof(GPR_32);
3125   const unsigned NumFPRs = 13;
3126   const unsigned NumVRs  = array_lengthof(VR);
3127
3128   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3129
3130   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3131   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3132
3133   SmallVector<SDValue, 8> MemOpChains;
3134   for (unsigned i = 0; i != NumOps; ++i) {
3135     SDValue Arg = OutVals[i];
3136     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3137
3138     // PtrOff will be used to store the current argument to the stack if a
3139     // register cannot be found for it.
3140     SDValue PtrOff;
3141
3142     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3143
3144     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3145
3146     // On PPC64, promote integers to 64-bit values.
3147     if (isPPC64 && Arg.getValueType() == MVT::i32) {
3148       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3149       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3150       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3151     }
3152
3153     // FIXME memcpy is used way more than necessary.  Correctness first.
3154     if (Flags.isByVal()) {
3155       unsigned Size = Flags.getByValSize();
3156       if (Size==1 || Size==2) {
3157         // Very small objects are passed right-justified.
3158         // Everything else is passed left-justified.
3159         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3160         if (GPR_idx != NumGPRs) {
3161           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3162                                         MachinePointerInfo(), VT,
3163                                         false, false, 0);
3164           MemOpChains.push_back(Load.getValue(1));
3165           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3166
3167           ArgOffset += PtrByteSize;
3168         } else {
3169           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3170           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3171           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3172                                 CallSeqStart.getNode()->getOperand(0),
3173                                 Flags, DAG, dl);
3174           // This must go outside the CALLSEQ_START..END.
3175           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3176                                CallSeqStart.getNode()->getOperand(1));
3177           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3178                                  NewCallSeqStart.getNode());
3179           Chain = CallSeqStart = NewCallSeqStart;
3180           ArgOffset += PtrByteSize;
3181         }
3182         continue;
3183       }
3184       // Copy entire object into memory.  There are cases where gcc-generated
3185       // code assumes it is there, even if it could be put entirely into
3186       // registers.  (This is not what the doc says.)
3187       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3188                             CallSeqStart.getNode()->getOperand(0),
3189                             Flags, DAG, dl);
3190       // This must go outside the CALLSEQ_START..END.
3191       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3192                            CallSeqStart.getNode()->getOperand(1));
3193       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3194       Chain = CallSeqStart = NewCallSeqStart;
3195       // And copy the pieces of it that fit into registers.
3196       for (unsigned j=0; j<Size; j+=PtrByteSize) {
3197         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3198         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3199         if (GPR_idx != NumGPRs) {
3200           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3201                                      MachinePointerInfo(),
3202                                      false, false, 0);
3203           MemOpChains.push_back(Load.getValue(1));
3204           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3205           ArgOffset += PtrByteSize;
3206         } else {
3207           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3208           break;
3209         }
3210       }
3211       continue;
3212     }
3213
3214     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3215     default: llvm_unreachable("Unexpected ValueType for argument!");
3216     case MVT::i32:
3217     case MVT::i64:
3218       if (GPR_idx != NumGPRs) {
3219         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3220       } else {
3221         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3222                          isPPC64, isTailCall, false, MemOpChains,
3223                          TailCallArguments, dl);
3224       }
3225       ArgOffset += PtrByteSize;
3226       break;
3227     case MVT::f32:
3228     case MVT::f64:
3229       if (FPR_idx != NumFPRs) {
3230         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3231
3232         if (isVarArg) {
3233           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3234                                        MachinePointerInfo(), false, false, 0);
3235           MemOpChains.push_back(Store);
3236
3237           // Float varargs are always shadowed in available integer registers
3238           if (GPR_idx != NumGPRs) {
3239             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3240                                        MachinePointerInfo(), false, false, 0);
3241             MemOpChains.push_back(Load.getValue(1));
3242             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3243           }
3244           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3245             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3246             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3247             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3248                                        MachinePointerInfo(),
3249                                        false, false, 0);
3250             MemOpChains.push_back(Load.getValue(1));
3251             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3252           }
3253         } else {
3254           // If we have any FPRs remaining, we may also have GPRs remaining.
3255           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3256           // GPRs.
3257           if (GPR_idx != NumGPRs)
3258             ++GPR_idx;
3259           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3260               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3261             ++GPR_idx;
3262         }
3263       } else {
3264         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3265                          isPPC64, isTailCall, false, MemOpChains,
3266                          TailCallArguments, dl);
3267       }
3268       if (isPPC64)
3269         ArgOffset += 8;
3270       else
3271         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3272       break;
3273     case MVT::v4f32:
3274     case MVT::v4i32:
3275     case MVT::v8i16:
3276     case MVT::v16i8:
3277       if (isVarArg) {
3278         // These go aligned on the stack, or in the corresponding R registers
3279         // when within range.  The Darwin PPC ABI doc claims they also go in
3280         // V registers; in fact gcc does this only for arguments that are
3281         // prototyped, not for those that match the ...  We do it for all
3282         // arguments, seems to work.
3283         while (ArgOffset % 16 !=0) {
3284           ArgOffset += PtrByteSize;
3285           if (GPR_idx != NumGPRs)
3286             GPR_idx++;
3287         }
3288         // We could elide this store in the case where the object fits
3289         // entirely in R registers.  Maybe later.
3290         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3291                             DAG.getConstant(ArgOffset, PtrVT));
3292         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3293                                      MachinePointerInfo(), false, false, 0);
3294         MemOpChains.push_back(Store);
3295         if (VR_idx != NumVRs) {
3296           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3297                                      MachinePointerInfo(),
3298                                      false, false, 0);
3299           MemOpChains.push_back(Load.getValue(1));
3300           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3301         }
3302         ArgOffset += 16;
3303         for (unsigned i=0; i<16; i+=PtrByteSize) {
3304           if (GPR_idx == NumGPRs)
3305             break;
3306           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3307                                   DAG.getConstant(i, PtrVT));
3308           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3309                                      false, false, 0);
3310           MemOpChains.push_back(Load.getValue(1));
3311           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3312         }
3313         break;
3314       }
3315
3316       // Non-varargs Altivec params generally go in registers, but have
3317       // stack space allocated at the end.
3318       if (VR_idx != NumVRs) {
3319         // Doesn't have GPR space allocated.
3320         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3321       } else if (nAltivecParamsAtEnd==0) {
3322         // We are emitting Altivec params in order.
3323         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3324                          isPPC64, isTailCall, true, MemOpChains,
3325                          TailCallArguments, dl);
3326         ArgOffset += 16;
3327       }
3328       break;
3329     }
3330   }
3331   // If all Altivec parameters fit in registers, as they usually do,
3332   // they get stack space following the non-Altivec parameters.  We
3333   // don't track this here because nobody below needs it.
3334   // If there are more Altivec parameters than fit in registers emit
3335   // the stores here.
3336   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3337     unsigned j = 0;
3338     // Offset is aligned; skip 1st 12 params which go in V registers.
3339     ArgOffset = ((ArgOffset+15)/16)*16;
3340     ArgOffset += 12*16;
3341     for (unsigned i = 0; i != NumOps; ++i) {
3342       SDValue Arg = OutVals[i];
3343       EVT ArgType = Outs[i].VT;
3344       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3345           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3346         if (++j > NumVRs) {
3347           SDValue PtrOff;
3348           // We are emitting Altivec params in order.
3349           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3350                            isPPC64, isTailCall, true, MemOpChains,
3351                            TailCallArguments, dl);
3352           ArgOffset += 16;
3353         }
3354       }
3355     }
3356   }
3357
3358   if (!MemOpChains.empty())
3359     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3360                         &MemOpChains[0], MemOpChains.size());
3361
3362   // Check if this is an indirect call (MTCTR/BCTRL).
3363   // See PrepareCall() for more information about calls through function
3364   // pointers in the 64-bit SVR4 ABI.
3365   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3366       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3367       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3368       !isBLACompatibleAddress(Callee, DAG)) {
3369     // Load r2 into a virtual register and store it to the TOC save area.
3370     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3371     // TOC save area offset.
3372     SDValue PtrOff = DAG.getIntPtrConstant(40);
3373     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3374     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3375                          false, false, 0);
3376   }
3377
3378   // On Darwin, R12 must contain the address of an indirect callee.  This does
3379   // not mean the MTCTR instruction must use R12; it's easier to model this as
3380   // an extra parameter, so do that.
3381   if (!isTailCall &&
3382       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3383       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3384       !isBLACompatibleAddress(Callee, DAG))
3385     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3386                                                    PPC::R12), Callee));
3387
3388   // Build a sequence of copy-to-reg nodes chained together with token chain
3389   // and flag operands which copy the outgoing args into the appropriate regs.
3390   SDValue InFlag;
3391   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3392     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3393                              RegsToPass[i].second, InFlag);
3394     InFlag = Chain.getValue(1);
3395   }
3396
3397   if (isTailCall)
3398     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3399                     FPOp, true, TailCallArguments);
3400
3401   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3402                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3403                     Ins, InVals);
3404 }
3405
3406 SDValue
3407 PPCTargetLowering::LowerReturn(SDValue Chain,
3408                                CallingConv::ID CallConv, bool isVarArg,
3409                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3410                                const SmallVectorImpl<SDValue> &OutVals,
3411                                DebugLoc dl, SelectionDAG &DAG) const {
3412
3413   SmallVector<CCValAssign, 16> RVLocs;
3414   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3415                  getTargetMachine(), RVLocs, *DAG.getContext());
3416   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3417
3418   // If this is the first return lowered for this function, add the regs to the
3419   // liveout set for the function.
3420   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3421     for (unsigned i = 0; i != RVLocs.size(); ++i)
3422       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3423   }
3424
3425   SDValue Flag;
3426
3427   // Copy the result values into the output registers.
3428   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3429     CCValAssign &VA = RVLocs[i];
3430     assert(VA.isRegLoc() && "Can only return in registers!");
3431     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3432                              OutVals[i], Flag);
3433     Flag = Chain.getValue(1);
3434   }
3435
3436   if (Flag.getNode())
3437     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3438   else
3439     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3440 }
3441
3442 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3443                                    const PPCSubtarget &Subtarget) const {
3444   // When we pop the dynamic allocation we need to restore the SP link.
3445   DebugLoc dl = Op.getDebugLoc();
3446
3447   // Get the corect type for pointers.
3448   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3449
3450   // Construct the stack pointer operand.
3451   bool isPPC64 = Subtarget.isPPC64();
3452   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3453   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3454
3455   // Get the operands for the STACKRESTORE.
3456   SDValue Chain = Op.getOperand(0);
3457   SDValue SaveSP = Op.getOperand(1);
3458
3459   // Load the old link SP.
3460   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3461                                    MachinePointerInfo(),
3462                                    false, false, 0);
3463
3464   // Restore the stack pointer.
3465   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3466
3467   // Store the old link SP.
3468   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3469                       false, false, 0);
3470 }
3471
3472
3473
3474 SDValue
3475 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3476   MachineFunction &MF = DAG.getMachineFunction();
3477   bool isPPC64 = PPCSubTarget.isPPC64();
3478   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3479   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3480
3481   // Get current frame pointer save index.  The users of this index will be
3482   // primarily DYNALLOC instructions.
3483   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3484   int RASI = FI->getReturnAddrSaveIndex();
3485
3486   // If the frame pointer save index hasn't been defined yet.
3487   if (!RASI) {
3488     // Find out what the fix offset of the frame pointer save area.
3489     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3490     // Allocate the frame index for frame pointer save area.
3491     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3492     // Save the result.
3493     FI->setReturnAddrSaveIndex(RASI);
3494   }
3495   return DAG.getFrameIndex(RASI, PtrVT);
3496 }
3497
3498 SDValue
3499 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3500   MachineFunction &MF = DAG.getMachineFunction();
3501   bool isPPC64 = PPCSubTarget.isPPC64();
3502   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3503   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3504
3505   // Get current frame pointer save index.  The users of this index will be
3506   // primarily DYNALLOC instructions.
3507   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3508   int FPSI = FI->getFramePointerSaveIndex();
3509
3510   // If the frame pointer save index hasn't been defined yet.
3511   if (!FPSI) {
3512     // Find out what the fix offset of the frame pointer save area.
3513     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3514                                                            isDarwinABI);
3515
3516     // Allocate the frame index for frame pointer save area.
3517     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3518     // Save the result.
3519     FI->setFramePointerSaveIndex(FPSI);
3520   }
3521   return DAG.getFrameIndex(FPSI, PtrVT);
3522 }
3523
3524 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3525                                          SelectionDAG &DAG,
3526                                          const PPCSubtarget &Subtarget) const {
3527   // Get the inputs.
3528   SDValue Chain = Op.getOperand(0);
3529   SDValue Size  = Op.getOperand(1);
3530   DebugLoc dl = Op.getDebugLoc();
3531
3532   // Get the corect type for pointers.
3533   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3534   // Negate the size.
3535   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3536                                   DAG.getConstant(0, PtrVT), Size);
3537   // Construct a node for the frame pointer save index.
3538   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3539   // Build a DYNALLOC node.
3540   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3541   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3542   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3543 }
3544
3545 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3546 /// possible.
3547 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3548   // Not FP? Not a fsel.
3549   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3550       !Op.getOperand(2).getValueType().isFloatingPoint())
3551     return Op;
3552
3553   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3554
3555   // Cannot handle SETEQ/SETNE.
3556   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3557
3558   EVT ResVT = Op.getValueType();
3559   EVT CmpVT = Op.getOperand(0).getValueType();
3560   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3561   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3562   DebugLoc dl = Op.getDebugLoc();
3563
3564   // If the RHS of the comparison is a 0.0, we don't need to do the
3565   // subtraction at all.
3566   if (isFloatingPointZero(RHS))
3567     switch (CC) {
3568     default: break;       // SETUO etc aren't handled by fsel.
3569     case ISD::SETULT:
3570     case ISD::SETLT:
3571       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3572     case ISD::SETOGE:
3573     case ISD::SETGE:
3574       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3575         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3576       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3577     case ISD::SETUGT:
3578     case ISD::SETGT:
3579       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3580     case ISD::SETOLE:
3581     case ISD::SETLE:
3582       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3583         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3584       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3585                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3586     }
3587
3588   SDValue Cmp;
3589   switch (CC) {
3590   default: break;       // SETUO etc aren't handled by fsel.
3591   case ISD::SETULT:
3592   case ISD::SETLT:
3593     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3594     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3595       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3596       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3597   case ISD::SETOGE:
3598   case ISD::SETGE:
3599     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3600     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3601       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3602       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3603   case ISD::SETUGT:
3604   case ISD::SETGT:
3605     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3606     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3607       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3608       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3609   case ISD::SETOLE:
3610   case ISD::SETLE:
3611     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3612     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3613       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3614       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3615   }
3616   return Op;
3617 }
3618
3619 // FIXME: Split this code up when LegalizeDAGTypes lands.
3620 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3621                                            DebugLoc dl) const {
3622   assert(Op.getOperand(0).getValueType().isFloatingPoint());
3623   SDValue Src = Op.getOperand(0);
3624   if (Src.getValueType() == MVT::f32)
3625     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3626
3627   SDValue Tmp;
3628   switch (Op.getValueType().getSimpleVT().SimpleTy) {
3629   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3630   case MVT::i32:
3631     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3632                                                          PPCISD::FCTIDZ,
3633                       dl, MVT::f64, Src);
3634     break;
3635   case MVT::i64:
3636     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3637     break;
3638   }
3639
3640   // Convert the FP value to an int value through memory.
3641   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3642
3643   // Emit a store to the stack slot.
3644   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3645                                MachinePointerInfo(), false, false, 0);
3646
3647   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3648   // add in a bias.
3649   if (Op.getValueType() == MVT::i32)
3650     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3651                         DAG.getConstant(4, FIPtr.getValueType()));
3652   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3653                      false, false, 0);
3654 }
3655
3656 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3657                                            SelectionDAG &DAG) const {
3658   DebugLoc dl = Op.getDebugLoc();
3659   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3660   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3661     return SDValue();
3662
3663   if (Op.getOperand(0).getValueType() == MVT::i64) {
3664     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3665     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3666     if (Op.getValueType() == MVT::f32)
3667       FP = DAG.getNode(ISD::FP_ROUND, dl,
3668                        MVT::f32, FP, DAG.getIntPtrConstant(0));
3669     return FP;
3670   }
3671
3672   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3673          "Unhandled SINT_TO_FP type in custom expander!");
3674   // Since we only generate this in 64-bit mode, we can take advantage of
3675   // 64-bit registers.  In particular, sign extend the input value into the
3676   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3677   // then lfd it and fcfid it.
3678   MachineFunction &MF = DAG.getMachineFunction();
3679   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3680   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3681   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3682   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3683
3684   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3685                                 Op.getOperand(0));
3686
3687   // STD the extended value into the stack slot.
3688   MachineMemOperand *MMO =
3689     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3690                             MachineMemOperand::MOStore, 8, 8);
3691   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3692   SDValue Store =
3693     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3694                             Ops, 4, MVT::i64, MMO);
3695   // Load the value as a double.
3696   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3697                            false, false, 0);
3698
3699   // FCFID it and return it.
3700   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3701   if (Op.getValueType() == MVT::f32)
3702     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3703   return FP;
3704 }
3705
3706 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3707                                             SelectionDAG &DAG) const {
3708   DebugLoc dl = Op.getDebugLoc();
3709   /*
3710    The rounding mode is in bits 30:31 of FPSR, and has the following
3711    settings:
3712      00 Round to nearest
3713      01 Round to 0
3714      10 Round to +inf
3715      11 Round to -inf
3716
3717   FLT_ROUNDS, on the other hand, expects the following:
3718     -1 Undefined
3719      0 Round to 0
3720      1 Round to nearest
3721      2 Round to +inf
3722      3 Round to -inf
3723
3724   To perform the conversion, we do:
3725     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3726   */
3727
3728   MachineFunction &MF = DAG.getMachineFunction();
3729   EVT VT = Op.getValueType();
3730   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3731   std::vector<EVT> NodeTys;
3732   SDValue MFFSreg, InFlag;
3733
3734   // Save FP Control Word to register
3735   NodeTys.push_back(MVT::f64);    // return register
3736   NodeTys.push_back(MVT::Glue);   // unused in this context
3737   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3738
3739   // Save FP register to stack slot
3740   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3741   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3742   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3743                                StackSlot, MachinePointerInfo(), false, false,0);
3744
3745   // Load FP Control Word from low 32 bits of stack slot.
3746   SDValue Four = DAG.getConstant(4, PtrVT);
3747   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3748   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3749                             false, false, 0);
3750
3751   // Transform as necessary
3752   SDValue CWD1 =
3753     DAG.getNode(ISD::AND, dl, MVT::i32,
3754                 CWD, DAG.getConstant(3, MVT::i32));
3755   SDValue CWD2 =
3756     DAG.getNode(ISD::SRL, dl, MVT::i32,
3757                 DAG.getNode(ISD::AND, dl, MVT::i32,
3758                             DAG.getNode(ISD::XOR, dl, MVT::i32,
3759                                         CWD, DAG.getConstant(3, MVT::i32)),
3760                             DAG.getConstant(3, MVT::i32)),
3761                 DAG.getConstant(1, MVT::i32));
3762
3763   SDValue RetVal =
3764     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3765
3766   return DAG.getNode((VT.getSizeInBits() < 16 ?
3767                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3768 }
3769
3770 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3771   EVT VT = Op.getValueType();
3772   unsigned BitWidth = VT.getSizeInBits();
3773   DebugLoc dl = Op.getDebugLoc();
3774   assert(Op.getNumOperands() == 3 &&
3775          VT == Op.getOperand(1).getValueType() &&
3776          "Unexpected SHL!");
3777
3778   // Expand into a bunch of logical ops.  Note that these ops
3779   // depend on the PPC behavior for oversized shift amounts.
3780   SDValue Lo = Op.getOperand(0);
3781   SDValue Hi = Op.getOperand(1);
3782   SDValue Amt = Op.getOperand(2);
3783   EVT AmtVT = Amt.getValueType();
3784
3785   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3786                              DAG.getConstant(BitWidth, AmtVT), Amt);
3787   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3788   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3789   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3790   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3791                              DAG.getConstant(-BitWidth, AmtVT));
3792   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3793   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3794   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3795   SDValue OutOps[] = { OutLo, OutHi };
3796   return DAG.getMergeValues(OutOps, 2, dl);
3797 }
3798
3799 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3800   EVT VT = Op.getValueType();
3801   DebugLoc dl = Op.getDebugLoc();
3802   unsigned BitWidth = VT.getSizeInBits();
3803   assert(Op.getNumOperands() == 3 &&
3804          VT == Op.getOperand(1).getValueType() &&
3805          "Unexpected SRL!");
3806
3807   // Expand into a bunch of logical ops.  Note that these ops
3808   // depend on the PPC behavior for oversized shift amounts.
3809   SDValue Lo = Op.getOperand(0);
3810   SDValue Hi = Op.getOperand(1);
3811   SDValue Amt = Op.getOperand(2);
3812   EVT AmtVT = Amt.getValueType();
3813
3814   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3815                              DAG.getConstant(BitWidth, AmtVT), Amt);
3816   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3817   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3818   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3819   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3820                              DAG.getConstant(-BitWidth, AmtVT));
3821   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3822   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3823   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3824   SDValue OutOps[] = { OutLo, OutHi };
3825   return DAG.getMergeValues(OutOps, 2, dl);
3826 }
3827
3828 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3829   DebugLoc dl = Op.getDebugLoc();
3830   EVT VT = Op.getValueType();
3831   unsigned BitWidth = VT.getSizeInBits();
3832   assert(Op.getNumOperands() == 3 &&
3833          VT == Op.getOperand(1).getValueType() &&
3834          "Unexpected SRA!");
3835
3836   // Expand into a bunch of logical ops, followed by a select_cc.
3837   SDValue Lo = Op.getOperand(0);
3838   SDValue Hi = Op.getOperand(1);
3839   SDValue Amt = Op.getOperand(2);
3840   EVT AmtVT = Amt.getValueType();
3841
3842   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3843                              DAG.getConstant(BitWidth, AmtVT), Amt);
3844   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3845   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3846   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3847   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3848                              DAG.getConstant(-BitWidth, AmtVT));
3849   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3850   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3851   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3852                                   Tmp4, Tmp6, ISD::SETLE);
3853   SDValue OutOps[] = { OutLo, OutHi };
3854   return DAG.getMergeValues(OutOps, 2, dl);
3855 }
3856
3857 //===----------------------------------------------------------------------===//
3858 // Vector related lowering.
3859 //
3860
3861 /// BuildSplatI - Build a canonical splati of Val with an element size of
3862 /// SplatSize.  Cast the result to VT.
3863 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3864                              SelectionDAG &DAG, DebugLoc dl) {
3865   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3866
3867   static const EVT VTys[] = { // canonical VT to use for each size.
3868     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3869   };
3870
3871   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3872
3873   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3874   if (Val == -1)
3875     SplatSize = 1;
3876
3877   EVT CanonicalVT = VTys[SplatSize-1];
3878
3879   // Build a canonical splat for this value.
3880   SDValue Elt = DAG.getConstant(Val, MVT::i32);
3881   SmallVector<SDValue, 8> Ops;
3882   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3883   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3884                               &Ops[0], Ops.size());
3885   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3886 }
3887
3888 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3889 /// specified intrinsic ID.
3890 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3891                                 SelectionDAG &DAG, DebugLoc dl,
3892                                 EVT DestVT = MVT::Other) {
3893   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3894   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3895                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
3896 }
3897
3898 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3899 /// specified intrinsic ID.
3900 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3901                                 SDValue Op2, SelectionDAG &DAG,
3902                                 DebugLoc dl, EVT DestVT = MVT::Other) {
3903   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3904   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3905                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3906 }
3907
3908
3909 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3910 /// amount.  The result has the specified value type.
3911 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3912                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3913   // Force LHS/RHS to be the right type.
3914   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3915   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3916
3917   int Ops[16];
3918   for (unsigned i = 0; i != 16; ++i)
3919     Ops[i] = i + Amt;
3920   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3921   return DAG.getNode(ISD::BITCAST, dl, VT, T);
3922 }
3923
3924 // If this is a case we can't handle, return null and let the default
3925 // expansion code take care of it.  If we CAN select this case, and if it
3926 // selects to a single instruction, return Op.  Otherwise, if we can codegen
3927 // this case more efficiently than a constant pool load, lower it to the
3928 // sequence of ops that should be used.
3929 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3930                                              SelectionDAG &DAG) const {
3931   DebugLoc dl = Op.getDebugLoc();
3932   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3933   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3934
3935   // Check if this is a splat of a constant value.
3936   APInt APSplatBits, APSplatUndef;
3937   unsigned SplatBitSize;
3938   bool HasAnyUndefs;
3939   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3940                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
3941     return SDValue();
3942
3943   unsigned SplatBits = APSplatBits.getZExtValue();
3944   unsigned SplatUndef = APSplatUndef.getZExtValue();
3945   unsigned SplatSize = SplatBitSize / 8;
3946
3947   // First, handle single instruction cases.
3948
3949   // All zeros?
3950   if (SplatBits == 0) {
3951     // Canonicalize all zero vectors to be v4i32.
3952     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3953       SDValue Z = DAG.getConstant(0, MVT::i32);
3954       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3955       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3956     }
3957     return Op;
3958   }
3959
3960   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3961   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3962                     (32-SplatBitSize));
3963   if (SextVal >= -16 && SextVal <= 15)
3964     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3965
3966
3967   // Two instruction sequences.
3968
3969   // If this value is in the range [-32,30] and is even, use:
3970   //    tmp = VSPLTI[bhw], result = add tmp, tmp
3971   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3972     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3973     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3974     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3975   }
3976
3977   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3978   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3979   // for fneg/fabs.
3980   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3981     // Make -1 and vspltisw -1:
3982     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3983
3984     // Make the VSLW intrinsic, computing 0x8000_0000.
3985     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3986                                    OnesV, DAG, dl);
3987
3988     // xor by OnesV to invert it.
3989     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3990     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3991   }
3992
3993   // Check to see if this is a wide variety of vsplti*, binop self cases.
3994   static const signed char SplatCsts[] = {
3995     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3996     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3997   };
3998
3999   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4000     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4001     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4002     int i = SplatCsts[idx];
4003
4004     // Figure out what shift amount will be used by altivec if shifted by i in
4005     // this splat size.
4006     unsigned TypeShiftAmt = i & (SplatBitSize-1);
4007
4008     // vsplti + shl self.
4009     if (SextVal == (i << (int)TypeShiftAmt)) {
4010       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4011       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4012         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4013         Intrinsic::ppc_altivec_vslw
4014       };
4015       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4016       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4017     }
4018
4019     // vsplti + srl self.
4020     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4021       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4022       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4023         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4024         Intrinsic::ppc_altivec_vsrw
4025       };
4026       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4027       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4028     }
4029
4030     // vsplti + sra self.
4031     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4032       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4033       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4034         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4035         Intrinsic::ppc_altivec_vsraw
4036       };
4037       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4038       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4039     }
4040
4041     // vsplti + rol self.
4042     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4043                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4044       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4045       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4046         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4047         Intrinsic::ppc_altivec_vrlw
4048       };
4049       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4050       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4051     }
4052
4053     // t = vsplti c, result = vsldoi t, t, 1
4054     if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4055       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4056       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4057     }
4058     // t = vsplti c, result = vsldoi t, t, 2
4059     if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4060       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4061       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4062     }
4063     // t = vsplti c, result = vsldoi t, t, 3
4064     if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4065       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4066       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4067     }
4068   }
4069
4070   // Three instruction sequences.
4071
4072   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4073   if (SextVal >= 0 && SextVal <= 31) {
4074     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4075     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4076     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4077     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4078   }
4079   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4080   if (SextVal >= -31 && SextVal <= 0) {
4081     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4082     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4083     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4084     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4085   }
4086
4087   return SDValue();
4088 }
4089
4090 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4091 /// the specified operations to build the shuffle.
4092 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4093                                       SDValue RHS, SelectionDAG &DAG,
4094                                       DebugLoc dl) {
4095   unsigned OpNum = (PFEntry >> 26) & 0x0F;
4096   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4097   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4098
4099   enum {
4100     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4101     OP_VMRGHW,
4102     OP_VMRGLW,
4103     OP_VSPLTISW0,
4104     OP_VSPLTISW1,
4105     OP_VSPLTISW2,
4106     OP_VSPLTISW3,
4107     OP_VSLDOI4,
4108     OP_VSLDOI8,
4109     OP_VSLDOI12
4110   };
4111
4112   if (OpNum == OP_COPY) {
4113     if (LHSID == (1*9+2)*9+3) return LHS;
4114     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4115     return RHS;
4116   }
4117
4118   SDValue OpLHS, OpRHS;
4119   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4120   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4121
4122   int ShufIdxs[16];
4123   switch (OpNum) {
4124   default: llvm_unreachable("Unknown i32 permute!");
4125   case OP_VMRGHW:
4126     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4127     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4128     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4129     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4130     break;
4131   case OP_VMRGLW:
4132     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4133     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4134     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4135     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4136     break;
4137   case OP_VSPLTISW0:
4138     for (unsigned i = 0; i != 16; ++i)
4139       ShufIdxs[i] = (i&3)+0;
4140     break;
4141   case OP_VSPLTISW1:
4142     for (unsigned i = 0; i != 16; ++i)
4143       ShufIdxs[i] = (i&3)+4;
4144     break;
4145   case OP_VSPLTISW2:
4146     for (unsigned i = 0; i != 16; ++i)
4147       ShufIdxs[i] = (i&3)+8;
4148     break;
4149   case OP_VSPLTISW3:
4150     for (unsigned i = 0; i != 16; ++i)
4151       ShufIdxs[i] = (i&3)+12;
4152     break;
4153   case OP_VSLDOI4:
4154     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4155   case OP_VSLDOI8:
4156     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4157   case OP_VSLDOI12:
4158     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4159   }
4160   EVT VT = OpLHS.getValueType();
4161   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4162   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4163   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4164   return DAG.getNode(ISD::BITCAST, dl, VT, T);
4165 }
4166
4167 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4168 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4169 /// return the code it can be lowered into.  Worst case, it can always be
4170 /// lowered into a vperm.
4171 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4172                                                SelectionDAG &DAG) const {
4173   DebugLoc dl = Op.getDebugLoc();
4174   SDValue V1 = Op.getOperand(0);
4175   SDValue V2 = Op.getOperand(1);
4176   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4177   EVT VT = Op.getValueType();
4178
4179   // Cases that are handled by instructions that take permute immediates
4180   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4181   // selected by the instruction selector.
4182   if (V2.getOpcode() == ISD::UNDEF) {
4183     if (PPC::isSplatShuffleMask(SVOp, 1) ||
4184         PPC::isSplatShuffleMask(SVOp, 2) ||
4185         PPC::isSplatShuffleMask(SVOp, 4) ||
4186         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4187         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4188         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4189         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4190         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4191         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4192         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4193         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4194         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4195       return Op;
4196     }
4197   }
4198
4199   // Altivec has a variety of "shuffle immediates" that take two vector inputs
4200   // and produce a fixed permutation.  If any of these match, do not lower to
4201   // VPERM.
4202   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4203       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4204       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4205       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4206       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4207       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4208       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4209       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4210       PPC::isVMRGHShuffleMask(SVOp, 4, false))
4211     return Op;
4212
4213   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4214   // perfect shuffle table to emit an optimal matching sequence.
4215   SmallVector<int, 16> PermMask;
4216   SVOp->getMask(PermMask);
4217
4218   unsigned PFIndexes[4];
4219   bool isFourElementShuffle = true;
4220   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4221     unsigned EltNo = 8;   // Start out undef.
4222     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4223       if (PermMask[i*4+j] < 0)
4224         continue;   // Undef, ignore it.
4225
4226       unsigned ByteSource = PermMask[i*4+j];
4227       if ((ByteSource & 3) != j) {
4228         isFourElementShuffle = false;
4229         break;
4230       }
4231
4232       if (EltNo == 8) {
4233         EltNo = ByteSource/4;
4234       } else if (EltNo != ByteSource/4) {
4235         isFourElementShuffle = false;
4236         break;
4237       }
4238     }
4239     PFIndexes[i] = EltNo;
4240   }
4241
4242   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4243   // perfect shuffle vector to determine if it is cost effective to do this as
4244   // discrete instructions, or whether we should use a vperm.
4245   if (isFourElementShuffle) {
4246     // Compute the index in the perfect shuffle table.
4247     unsigned PFTableIndex =
4248       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4249
4250     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4251     unsigned Cost  = (PFEntry >> 30);
4252
4253     // Determining when to avoid vperm is tricky.  Many things affect the cost
4254     // of vperm, particularly how many times the perm mask needs to be computed.
4255     // For example, if the perm mask can be hoisted out of a loop or is already
4256     // used (perhaps because there are multiple permutes with the same shuffle
4257     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4258     // the loop requires an extra register.
4259     //
4260     // As a compromise, we only emit discrete instructions if the shuffle can be
4261     // generated in 3 or fewer operations.  When we have loop information
4262     // available, if this block is within a loop, we should avoid using vperm
4263     // for 3-operation perms and use a constant pool load instead.
4264     if (Cost < 3)
4265       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4266   }
4267
4268   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4269   // vector that will get spilled to the constant pool.
4270   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4271
4272   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4273   // that it is in input element units, not in bytes.  Convert now.
4274   EVT EltVT = V1.getValueType().getVectorElementType();
4275   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4276
4277   SmallVector<SDValue, 16> ResultMask;
4278   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4279     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4280
4281     for (unsigned j = 0; j != BytesPerElement; ++j)
4282       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4283                                            MVT::i32));
4284   }
4285
4286   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4287                                     &ResultMask[0], ResultMask.size());
4288   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4289 }
4290
4291 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4292 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
4293 /// information about the intrinsic.
4294 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4295                                   bool &isDot) {
4296   unsigned IntrinsicID =
4297     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4298   CompareOpc = -1;
4299   isDot = false;
4300   switch (IntrinsicID) {
4301   default: return false;
4302     // Comparison predicates.
4303   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4304   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4305   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4306   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4307   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4308   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4309   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4310   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4311   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4312   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4313   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4314   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4315   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4316
4317     // Normal Comparisons.
4318   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4319   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4320   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4321   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4322   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4323   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4324   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4325   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4326   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4327   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4328   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4329   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4330   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4331   }
4332   return true;
4333 }
4334
4335 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4336 /// lower, do it, otherwise return null.
4337 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4338                                                    SelectionDAG &DAG) const {
4339   // If this is a lowered altivec predicate compare, CompareOpc is set to the
4340   // opcode number of the comparison.
4341   DebugLoc dl = Op.getDebugLoc();
4342   int CompareOpc;
4343   bool isDot;
4344   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4345     return SDValue();    // Don't custom lower most intrinsics.
4346
4347   // If this is a non-dot comparison, make the VCMP node and we are done.
4348   if (!isDot) {
4349     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4350                               Op.getOperand(1), Op.getOperand(2),
4351                               DAG.getConstant(CompareOpc, MVT::i32));
4352     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4353   }
4354
4355   // Create the PPCISD altivec 'dot' comparison node.
4356   SDValue Ops[] = {
4357     Op.getOperand(2),  // LHS
4358     Op.getOperand(3),  // RHS
4359     DAG.getConstant(CompareOpc, MVT::i32)
4360   };
4361   std::vector<EVT> VTs;
4362   VTs.push_back(Op.getOperand(2).getValueType());
4363   VTs.push_back(MVT::Glue);
4364   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4365
4366   // Now that we have the comparison, emit a copy from the CR to a GPR.
4367   // This is flagged to the above dot comparison.
4368   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4369                                 DAG.getRegister(PPC::CR6, MVT::i32),
4370                                 CompNode.getValue(1));
4371
4372   // Unpack the result based on how the target uses it.
4373   unsigned BitNo;   // Bit # of CR6.
4374   bool InvertBit;   // Invert result?
4375   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4376   default:  // Can't happen, don't crash on invalid number though.
4377   case 0:   // Return the value of the EQ bit of CR6.
4378     BitNo = 0; InvertBit = false;
4379     break;
4380   case 1:   // Return the inverted value of the EQ bit of CR6.
4381     BitNo = 0; InvertBit = true;
4382     break;
4383   case 2:   // Return the value of the LT bit of CR6.
4384     BitNo = 2; InvertBit = false;
4385     break;
4386   case 3:   // Return the inverted value of the LT bit of CR6.
4387     BitNo = 2; InvertBit = true;
4388     break;
4389   }
4390
4391   // Shift the bit into the low position.
4392   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4393                       DAG.getConstant(8-(3-BitNo), MVT::i32));
4394   // Isolate the bit.
4395   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4396                       DAG.getConstant(1, MVT::i32));
4397
4398   // If we are supposed to, toggle the bit.
4399   if (InvertBit)
4400     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4401                         DAG.getConstant(1, MVT::i32));
4402   return Flags;
4403 }
4404
4405 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4406                                                    SelectionDAG &DAG) const {
4407   DebugLoc dl = Op.getDebugLoc();
4408   // Create a stack slot that is 16-byte aligned.
4409   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4410   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4411   EVT PtrVT = getPointerTy();
4412   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4413
4414   // Store the input value into Value#0 of the stack slot.
4415   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4416                                Op.getOperand(0), FIdx, MachinePointerInfo(),
4417                                false, false, 0);
4418   // Load it out.
4419   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4420                      false, false, 0);
4421 }
4422
4423 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4424   DebugLoc dl = Op.getDebugLoc();
4425   if (Op.getValueType() == MVT::v4i32) {
4426     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4427
4428     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4429     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4430
4431     SDValue RHSSwap =   // = vrlw RHS, 16
4432       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4433
4434     // Shrinkify inputs to v8i16.
4435     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4436     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4437     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4438
4439     // Low parts multiplied together, generating 32-bit results (we ignore the
4440     // top parts).
4441     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4442                                         LHS, RHS, DAG, dl, MVT::v4i32);
4443
4444     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4445                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4446     // Shift the high parts up 16 bits.
4447     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4448                               Neg16, DAG, dl);
4449     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4450   } else if (Op.getValueType() == MVT::v8i16) {
4451     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4452
4453     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4454
4455     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4456                             LHS, RHS, Zero, DAG, dl);
4457   } else if (Op.getValueType() == MVT::v16i8) {
4458     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4459
4460     // Multiply the even 8-bit parts, producing 16-bit sums.
4461     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4462                                            LHS, RHS, DAG, dl, MVT::v8i16);
4463     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4464
4465     // Multiply the odd 8-bit parts, producing 16-bit sums.
4466     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4467                                           LHS, RHS, DAG, dl, MVT::v8i16);
4468     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4469
4470     // Merge the results together.
4471     int Ops[16];
4472     for (unsigned i = 0; i != 8; ++i) {
4473       Ops[i*2  ] = 2*i+1;
4474       Ops[i*2+1] = 2*i+1+16;
4475     }
4476     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4477   } else {
4478     llvm_unreachable("Unknown mul to lower!");
4479   }
4480 }
4481
4482 /// LowerOperation - Provide custom lowering hooks for some operations.
4483 ///
4484 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4485   switch (Op.getOpcode()) {
4486   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4487   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4488   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4489   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4490   case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4491   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4492   case ISD::SETCC:              return LowerSETCC(Op, DAG);
4493   case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4494   case ISD::VASTART:
4495     return LowerVASTART(Op, DAG, PPCSubTarget);
4496
4497   case ISD::VAARG:
4498     return LowerVAARG(Op, DAG, PPCSubTarget);
4499
4500   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4501   case ISD::DYNAMIC_STACKALLOC:
4502     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4503
4504   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4505   case ISD::FP_TO_UINT:
4506   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4507                                                        Op.getDebugLoc());
4508   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4509   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4510
4511   // Lower 64-bit shifts.
4512   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4513   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4514   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4515
4516   // Vector-related lowering.
4517   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4518   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4519   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4520   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4521   case ISD::MUL:                return LowerMUL(Op, DAG);
4522
4523   // Frame & Return address.
4524   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4525   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4526   }
4527   return SDValue();
4528 }
4529
4530 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4531                                            SmallVectorImpl<SDValue>&Results,
4532                                            SelectionDAG &DAG) const {
4533   const TargetMachine &TM = getTargetMachine();
4534   DebugLoc dl = N->getDebugLoc();
4535   switch (N->getOpcode()) {
4536   default:
4537     assert(false && "Do not know how to custom type legalize this operation!");
4538     return;
4539   case ISD::VAARG: {
4540     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4541         || TM.getSubtarget<PPCSubtarget>().isPPC64())
4542       return;
4543
4544     EVT VT = N->getValueType(0);
4545
4546     if (VT == MVT::i64) {
4547       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4548
4549       Results.push_back(NewNode);
4550       Results.push_back(NewNode.getValue(1));
4551     }
4552     return;
4553   }
4554   case ISD::FP_ROUND_INREG: {
4555     assert(N->getValueType(0) == MVT::ppcf128);
4556     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4557     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4558                              MVT::f64, N->getOperand(0),
4559                              DAG.getIntPtrConstant(0));
4560     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4561                              MVT::f64, N->getOperand(0),
4562                              DAG.getIntPtrConstant(1));
4563
4564     // This sequence changes FPSCR to do round-to-zero, adds the two halves
4565     // of the long double, and puts FPSCR back the way it was.  We do not
4566     // actually model FPSCR.
4567     std::vector<EVT> NodeTys;
4568     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4569
4570     NodeTys.push_back(MVT::f64);   // Return register
4571     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4572     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4573     MFFSreg = Result.getValue(0);
4574     InFlag = Result.getValue(1);
4575
4576     NodeTys.clear();
4577     NodeTys.push_back(MVT::Glue);   // Returns a flag
4578     Ops[0] = DAG.getConstant(31, MVT::i32);
4579     Ops[1] = InFlag;
4580     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4581     InFlag = Result.getValue(0);
4582
4583     NodeTys.clear();
4584     NodeTys.push_back(MVT::Glue);   // Returns a flag
4585     Ops[0] = DAG.getConstant(30, MVT::i32);
4586     Ops[1] = InFlag;
4587     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4588     InFlag = Result.getValue(0);
4589
4590     NodeTys.clear();
4591     NodeTys.push_back(MVT::f64);    // result of add
4592     NodeTys.push_back(MVT::Glue);   // Returns a flag
4593     Ops[0] = Lo;
4594     Ops[1] = Hi;
4595     Ops[2] = InFlag;
4596     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4597     FPreg = Result.getValue(0);
4598     InFlag = Result.getValue(1);
4599
4600     NodeTys.clear();
4601     NodeTys.push_back(MVT::f64);
4602     Ops[0] = DAG.getConstant(1, MVT::i32);
4603     Ops[1] = MFFSreg;
4604     Ops[2] = FPreg;
4605     Ops[3] = InFlag;
4606     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4607     FPreg = Result.getValue(0);
4608
4609     // We know the low half is about to be thrown away, so just use something
4610     // convenient.
4611     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4612                                 FPreg, FPreg));
4613     return;
4614   }
4615   case ISD::FP_TO_SINT:
4616     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4617     return;
4618   }
4619 }
4620
4621
4622 //===----------------------------------------------------------------------===//
4623 //  Other Lowering Code
4624 //===----------------------------------------------------------------------===//
4625
4626 MachineBasicBlock *
4627 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4628                                     bool is64bit, unsigned BinOpcode) const {
4629   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4630   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4631
4632   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4633   MachineFunction *F = BB->getParent();
4634   MachineFunction::iterator It = BB;
4635   ++It;
4636
4637   unsigned dest = MI->getOperand(0).getReg();
4638   unsigned ptrA = MI->getOperand(1).getReg();
4639   unsigned ptrB = MI->getOperand(2).getReg();
4640   unsigned incr = MI->getOperand(3).getReg();
4641   DebugLoc dl = MI->getDebugLoc();
4642
4643   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4644   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4645   F->insert(It, loopMBB);
4646   F->insert(It, exitMBB);
4647   exitMBB->splice(exitMBB->begin(), BB,
4648                   llvm::next(MachineBasicBlock::iterator(MI)),
4649                   BB->end());
4650   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4651
4652   MachineRegisterInfo &RegInfo = F->getRegInfo();
4653   unsigned TmpReg = (!BinOpcode) ? incr :
4654     RegInfo.createVirtualRegister(
4655        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4656                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
4657
4658   //  thisMBB:
4659   //   ...
4660   //   fallthrough --> loopMBB
4661   BB->addSuccessor(loopMBB);
4662
4663   //  loopMBB:
4664   //   l[wd]arx dest, ptr
4665   //   add r0, dest, incr
4666   //   st[wd]cx. r0, ptr
4667   //   bne- loopMBB
4668   //   fallthrough --> exitMBB
4669   BB = loopMBB;
4670   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4671     .addReg(ptrA).addReg(ptrB);
4672   if (BinOpcode)
4673     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4674   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4675     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4676   BuildMI(BB, dl, TII->get(PPC::BCC))
4677     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4678   BB->addSuccessor(loopMBB);
4679   BB->addSuccessor(exitMBB);
4680
4681   //  exitMBB:
4682   //   ...
4683   BB = exitMBB;
4684   return BB;
4685 }
4686
4687 MachineBasicBlock *
4688 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4689                                             MachineBasicBlock *BB,
4690                                             bool is8bit,    // operation
4691                                             unsigned BinOpcode) const {
4692   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4693   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4694   // In 64 bit mode we have to use 64 bits for addresses, even though the
4695   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4696   // registers without caring whether they're 32 or 64, but here we're
4697   // doing actual arithmetic on the addresses.
4698   bool is64bit = PPCSubTarget.isPPC64();
4699   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4700
4701   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4702   MachineFunction *F = BB->getParent();
4703   MachineFunction::iterator It = BB;
4704   ++It;
4705
4706   unsigned dest = MI->getOperand(0).getReg();
4707   unsigned ptrA = MI->getOperand(1).getReg();
4708   unsigned ptrB = MI->getOperand(2).getReg();
4709   unsigned incr = MI->getOperand(3).getReg();
4710   DebugLoc dl = MI->getDebugLoc();
4711
4712   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4713   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4714   F->insert(It, loopMBB);
4715   F->insert(It, exitMBB);
4716   exitMBB->splice(exitMBB->begin(), BB,
4717                   llvm::next(MachineBasicBlock::iterator(MI)),
4718                   BB->end());
4719   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4720
4721   MachineRegisterInfo &RegInfo = F->getRegInfo();
4722   const TargetRegisterClass *RC =
4723     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4724               (const TargetRegisterClass *) &PPC::GPRCRegClass;
4725   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4726   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4727   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4728   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4729   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4730   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4731   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4732   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4733   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4734   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4735   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4736   unsigned Ptr1Reg;
4737   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4738
4739   //  thisMBB:
4740   //   ...
4741   //   fallthrough --> loopMBB
4742   BB->addSuccessor(loopMBB);
4743
4744   // The 4-byte load must be aligned, while a char or short may be
4745   // anywhere in the word.  Hence all this nasty bookkeeping code.
4746   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4747   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4748   //   xori shift, shift1, 24 [16]
4749   //   rlwinm ptr, ptr1, 0, 0, 29
4750   //   slw incr2, incr, shift
4751   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4752   //   slw mask, mask2, shift
4753   //  loopMBB:
4754   //   lwarx tmpDest, ptr
4755   //   add tmp, tmpDest, incr2
4756   //   andc tmp2, tmpDest, mask
4757   //   and tmp3, tmp, mask
4758   //   or tmp4, tmp3, tmp2
4759   //   stwcx. tmp4, ptr
4760   //   bne- loopMBB
4761   //   fallthrough --> exitMBB
4762   //   srw dest, tmpDest, shift
4763   if (ptrA != ZeroReg) {
4764     Ptr1Reg = RegInfo.createVirtualRegister(RC);
4765     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4766       .addReg(ptrA).addReg(ptrB);
4767   } else {
4768     Ptr1Reg = ptrB;
4769   }
4770   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4771       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4772   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4773       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4774   if (is64bit)
4775     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4776       .addReg(Ptr1Reg).addImm(0).addImm(61);
4777   else
4778     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4779       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4780   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4781       .addReg(incr).addReg(ShiftReg);
4782   if (is8bit)
4783     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4784   else {
4785     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4786     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4787   }
4788   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4789       .addReg(Mask2Reg).addReg(ShiftReg);
4790
4791   BB = loopMBB;
4792   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4793     .addReg(ZeroReg).addReg(PtrReg);
4794   if (BinOpcode)
4795     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4796       .addReg(Incr2Reg).addReg(TmpDestReg);
4797   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4798     .addReg(TmpDestReg).addReg(MaskReg);
4799   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4800     .addReg(TmpReg).addReg(MaskReg);
4801   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4802     .addReg(Tmp3Reg).addReg(Tmp2Reg);
4803   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4804     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4805   BuildMI(BB, dl, TII->get(PPC::BCC))
4806     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4807   BB->addSuccessor(loopMBB);
4808   BB->addSuccessor(exitMBB);
4809
4810   //  exitMBB:
4811   //   ...
4812   BB = exitMBB;
4813   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4814     .addReg(ShiftReg);
4815   return BB;
4816 }
4817
4818 MachineBasicBlock *
4819 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4820                                                MachineBasicBlock *BB) const {
4821   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4822
4823   // To "insert" these instructions we actually have to insert their
4824   // control-flow patterns.
4825   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4826   MachineFunction::iterator It = BB;
4827   ++It;
4828
4829   MachineFunction *F = BB->getParent();
4830
4831   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4832       MI->getOpcode() == PPC::SELECT_CC_I8 ||
4833       MI->getOpcode() == PPC::SELECT_CC_F4 ||
4834       MI->getOpcode() == PPC::SELECT_CC_F8 ||
4835       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4836
4837     // The incoming instruction knows the destination vreg to set, the
4838     // condition code register to branch on, the true/false values to
4839     // select between, and a branch opcode to use.
4840
4841     //  thisMBB:
4842     //  ...
4843     //   TrueVal = ...
4844     //   cmpTY ccX, r1, r2
4845     //   bCC copy1MBB
4846     //   fallthrough --> copy0MBB
4847     MachineBasicBlock *thisMBB = BB;
4848     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4849     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4850     unsigned SelectPred = MI->getOperand(4).getImm();
4851     DebugLoc dl = MI->getDebugLoc();
4852     F->insert(It, copy0MBB);
4853     F->insert(It, sinkMBB);
4854
4855     // Transfer the remainder of BB and its successor edges to sinkMBB.
4856     sinkMBB->splice(sinkMBB->begin(), BB,
4857                     llvm::next(MachineBasicBlock::iterator(MI)),
4858                     BB->end());
4859     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4860
4861     // Next, add the true and fallthrough blocks as its successors.
4862     BB->addSuccessor(copy0MBB);
4863     BB->addSuccessor(sinkMBB);
4864
4865     BuildMI(BB, dl, TII->get(PPC::BCC))
4866       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4867
4868     //  copy0MBB:
4869     //   %FalseValue = ...
4870     //   # fallthrough to sinkMBB
4871     BB = copy0MBB;
4872
4873     // Update machine-CFG edges
4874     BB->addSuccessor(sinkMBB);
4875
4876     //  sinkMBB:
4877     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4878     //  ...
4879     BB = sinkMBB;
4880     BuildMI(*BB, BB->begin(), dl,
4881             TII->get(PPC::PHI), MI->getOperand(0).getReg())
4882       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4883       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4884   }
4885   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4886     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4887   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4888     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4889   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4890     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4891   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4892     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4893
4894   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4895     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4896   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4897     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4898   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4899     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4900   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4901     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4902
4903   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4904     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4905   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4906     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4907   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4908     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4909   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4910     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4911
4912   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4913     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4914   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4915     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4916   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4917     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4918   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4919     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4920
4921   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4922     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4923   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4924     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4925   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4926     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4927   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4928     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4929
4930   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4931     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4932   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4933     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4934   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4935     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4936   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4937     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4938
4939   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4940     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4941   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4942     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4943   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4944     BB = EmitAtomicBinary(MI, BB, false, 0);
4945   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4946     BB = EmitAtomicBinary(MI, BB, true, 0);
4947
4948   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4949            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4950     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4951
4952     unsigned dest   = MI->getOperand(0).getReg();
4953     unsigned ptrA   = MI->getOperand(1).getReg();
4954     unsigned ptrB   = MI->getOperand(2).getReg();
4955     unsigned oldval = MI->getOperand(3).getReg();
4956     unsigned newval = MI->getOperand(4).getReg();
4957     DebugLoc dl     = MI->getDebugLoc();
4958
4959     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4960     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4961     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4962     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4963     F->insert(It, loop1MBB);
4964     F->insert(It, loop2MBB);
4965     F->insert(It, midMBB);
4966     F->insert(It, exitMBB);
4967     exitMBB->splice(exitMBB->begin(), BB,
4968                     llvm::next(MachineBasicBlock::iterator(MI)),
4969                     BB->end());
4970     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4971
4972     //  thisMBB:
4973     //   ...
4974     //   fallthrough --> loopMBB
4975     BB->addSuccessor(loop1MBB);
4976
4977     // loop1MBB:
4978     //   l[wd]arx dest, ptr
4979     //   cmp[wd] dest, oldval
4980     //   bne- midMBB
4981     // loop2MBB:
4982     //   st[wd]cx. newval, ptr
4983     //   bne- loopMBB
4984     //   b exitBB
4985     // midMBB:
4986     //   st[wd]cx. dest, ptr
4987     // exitBB:
4988     BB = loop1MBB;
4989     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4990       .addReg(ptrA).addReg(ptrB);
4991     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4992       .addReg(oldval).addReg(dest);
4993     BuildMI(BB, dl, TII->get(PPC::BCC))
4994       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4995     BB->addSuccessor(loop2MBB);
4996     BB->addSuccessor(midMBB);
4997
4998     BB = loop2MBB;
4999     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5000       .addReg(newval).addReg(ptrA).addReg(ptrB);
5001     BuildMI(BB, dl, TII->get(PPC::BCC))
5002       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5003     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5004     BB->addSuccessor(loop1MBB);
5005     BB->addSuccessor(exitMBB);
5006
5007     BB = midMBB;
5008     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5009       .addReg(dest).addReg(ptrA).addReg(ptrB);
5010     BB->addSuccessor(exitMBB);
5011
5012     //  exitMBB:
5013     //   ...
5014     BB = exitMBB;
5015   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5016              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5017     // We must use 64-bit registers for addresses when targeting 64-bit,
5018     // since we're actually doing arithmetic on them.  Other registers
5019     // can be 32-bit.
5020     bool is64bit = PPCSubTarget.isPPC64();
5021     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5022
5023     unsigned dest   = MI->getOperand(0).getReg();
5024     unsigned ptrA   = MI->getOperand(1).getReg();
5025     unsigned ptrB   = MI->getOperand(2).getReg();
5026     unsigned oldval = MI->getOperand(3).getReg();
5027     unsigned newval = MI->getOperand(4).getReg();
5028     DebugLoc dl     = MI->getDebugLoc();
5029
5030     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5031     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5032     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5033     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5034     F->insert(It, loop1MBB);
5035     F->insert(It, loop2MBB);
5036     F->insert(It, midMBB);
5037     F->insert(It, exitMBB);
5038     exitMBB->splice(exitMBB->begin(), BB,
5039                     llvm::next(MachineBasicBlock::iterator(MI)),
5040                     BB->end());
5041     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5042
5043     MachineRegisterInfo &RegInfo = F->getRegInfo();
5044     const TargetRegisterClass *RC =
5045       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5046                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
5047     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5048     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5049     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5050     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5051     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5052     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5053     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5054     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5055     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5056     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5057     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5058     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5059     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5060     unsigned Ptr1Reg;
5061     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5062     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5063     //  thisMBB:
5064     //   ...
5065     //   fallthrough --> loopMBB
5066     BB->addSuccessor(loop1MBB);
5067
5068     // The 4-byte load must be aligned, while a char or short may be
5069     // anywhere in the word.  Hence all this nasty bookkeeping code.
5070     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5071     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5072     //   xori shift, shift1, 24 [16]
5073     //   rlwinm ptr, ptr1, 0, 0, 29
5074     //   slw newval2, newval, shift
5075     //   slw oldval2, oldval,shift
5076     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5077     //   slw mask, mask2, shift
5078     //   and newval3, newval2, mask
5079     //   and oldval3, oldval2, mask
5080     // loop1MBB:
5081     //   lwarx tmpDest, ptr
5082     //   and tmp, tmpDest, mask
5083     //   cmpw tmp, oldval3
5084     //   bne- midMBB
5085     // loop2MBB:
5086     //   andc tmp2, tmpDest, mask
5087     //   or tmp4, tmp2, newval3
5088     //   stwcx. tmp4, ptr
5089     //   bne- loop1MBB
5090     //   b exitBB
5091     // midMBB:
5092     //   stwcx. tmpDest, ptr
5093     // exitBB:
5094     //   srw dest, tmpDest, shift
5095     if (ptrA != ZeroReg) {
5096       Ptr1Reg = RegInfo.createVirtualRegister(RC);
5097       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5098         .addReg(ptrA).addReg(ptrB);
5099     } else {
5100       Ptr1Reg = ptrB;
5101     }
5102     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5103         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5104     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5105         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5106     if (is64bit)
5107       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5108         .addReg(Ptr1Reg).addImm(0).addImm(61);
5109     else
5110       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5111         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5112     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5113         .addReg(newval).addReg(ShiftReg);
5114     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5115         .addReg(oldval).addReg(ShiftReg);
5116     if (is8bit)
5117       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5118     else {
5119       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5120       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5121         .addReg(Mask3Reg).addImm(65535);
5122     }
5123     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5124         .addReg(Mask2Reg).addReg(ShiftReg);
5125     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5126         .addReg(NewVal2Reg).addReg(MaskReg);
5127     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5128         .addReg(OldVal2Reg).addReg(MaskReg);
5129
5130     BB = loop1MBB;
5131     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5132         .addReg(ZeroReg).addReg(PtrReg);
5133     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5134         .addReg(TmpDestReg).addReg(MaskReg);
5135     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5136         .addReg(TmpReg).addReg(OldVal3Reg);
5137     BuildMI(BB, dl, TII->get(PPC::BCC))
5138         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5139     BB->addSuccessor(loop2MBB);
5140     BB->addSuccessor(midMBB);
5141
5142     BB = loop2MBB;
5143     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5144         .addReg(TmpDestReg).addReg(MaskReg);
5145     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5146         .addReg(Tmp2Reg).addReg(NewVal3Reg);
5147     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5148         .addReg(ZeroReg).addReg(PtrReg);
5149     BuildMI(BB, dl, TII->get(PPC::BCC))
5150       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5151     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5152     BB->addSuccessor(loop1MBB);
5153     BB->addSuccessor(exitMBB);
5154
5155     BB = midMBB;
5156     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5157       .addReg(ZeroReg).addReg(PtrReg);
5158     BB->addSuccessor(exitMBB);
5159
5160     //  exitMBB:
5161     //   ...
5162     BB = exitMBB;
5163     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5164       .addReg(ShiftReg);
5165   } else {
5166     llvm_unreachable("Unexpected instr type to insert");
5167   }
5168
5169   MI->eraseFromParent();   // The pseudo instruction is gone now.
5170   return BB;
5171 }
5172
5173 //===----------------------------------------------------------------------===//
5174 // Target Optimization Hooks
5175 //===----------------------------------------------------------------------===//
5176
5177 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5178                                              DAGCombinerInfo &DCI) const {
5179   const TargetMachine &TM = getTargetMachine();
5180   SelectionDAG &DAG = DCI.DAG;
5181   DebugLoc dl = N->getDebugLoc();
5182   switch (N->getOpcode()) {
5183   default: break;
5184   case PPCISD::SHL:
5185     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5186       if (C->isNullValue())   // 0 << V -> 0.
5187         return N->getOperand(0);
5188     }
5189     break;
5190   case PPCISD::SRL:
5191     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5192       if (C->isNullValue())   // 0 >>u V -> 0.
5193         return N->getOperand(0);
5194     }
5195     break;
5196   case PPCISD::SRA:
5197     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5198       if (C->isNullValue() ||   //  0 >>s V -> 0.
5199           C->isAllOnesValue())    // -1 >>s V -> -1.
5200         return N->getOperand(0);
5201     }
5202     break;
5203
5204   case ISD::SINT_TO_FP:
5205     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5206       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5207         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5208         // We allow the src/dst to be either f32/f64, but the intermediate
5209         // type must be i64.
5210         if (N->getOperand(0).getValueType() == MVT::i64 &&
5211             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5212           SDValue Val = N->getOperand(0).getOperand(0);
5213           if (Val.getValueType() == MVT::f32) {
5214             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5215             DCI.AddToWorklist(Val.getNode());
5216           }
5217
5218           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5219           DCI.AddToWorklist(Val.getNode());
5220           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5221           DCI.AddToWorklist(Val.getNode());
5222           if (N->getValueType(0) == MVT::f32) {
5223             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5224                               DAG.getIntPtrConstant(0));
5225             DCI.AddToWorklist(Val.getNode());
5226           }
5227           return Val;
5228         } else if (N->getOperand(0).getValueType() == MVT::i32) {
5229           // If the intermediate type is i32, we can avoid the load/store here
5230           // too.
5231         }
5232       }
5233     }
5234     break;
5235   case ISD::STORE:
5236     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5237     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5238         !cast<StoreSDNode>(N)->isTruncatingStore() &&
5239         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5240         N->getOperand(1).getValueType() == MVT::i32 &&
5241         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5242       SDValue Val = N->getOperand(1).getOperand(0);
5243       if (Val.getValueType() == MVT::f32) {
5244         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5245         DCI.AddToWorklist(Val.getNode());
5246       }
5247       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5248       DCI.AddToWorklist(Val.getNode());
5249
5250       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5251                         N->getOperand(2), N->getOperand(3));
5252       DCI.AddToWorklist(Val.getNode());
5253       return Val;
5254     }
5255
5256     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5257     if (cast<StoreSDNode>(N)->isUnindexed() &&
5258         N->getOperand(1).getOpcode() == ISD::BSWAP &&
5259         N->getOperand(1).getNode()->hasOneUse() &&
5260         (N->getOperand(1).getValueType() == MVT::i32 ||
5261          N->getOperand(1).getValueType() == MVT::i16)) {
5262       SDValue BSwapOp = N->getOperand(1).getOperand(0);
5263       // Do an any-extend to 32-bits if this is a half-word input.
5264       if (BSwapOp.getValueType() == MVT::i16)
5265         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5266
5267       SDValue Ops[] = {
5268         N->getOperand(0), BSwapOp, N->getOperand(2),
5269         DAG.getValueType(N->getOperand(1).getValueType())
5270       };
5271       return
5272         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5273                                 Ops, array_lengthof(Ops),
5274                                 cast<StoreSDNode>(N)->getMemoryVT(),
5275                                 cast<StoreSDNode>(N)->getMemOperand());
5276     }
5277     break;
5278   case ISD::BSWAP:
5279     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5280     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5281         N->getOperand(0).hasOneUse() &&
5282         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5283       SDValue Load = N->getOperand(0);
5284       LoadSDNode *LD = cast<LoadSDNode>(Load);
5285       // Create the byte-swapping load.
5286       SDValue Ops[] = {
5287         LD->getChain(),    // Chain
5288         LD->getBasePtr(),  // Ptr
5289         DAG.getValueType(N->getValueType(0)) // VT
5290       };
5291       SDValue BSLoad =
5292         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5293                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5294                                 LD->getMemoryVT(), LD->getMemOperand());
5295
5296       // If this is an i16 load, insert the truncate.
5297       SDValue ResVal = BSLoad;
5298       if (N->getValueType(0) == MVT::i16)
5299         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5300
5301       // First, combine the bswap away.  This makes the value produced by the
5302       // load dead.
5303       DCI.CombineTo(N, ResVal);
5304
5305       // Next, combine the load away, we give it a bogus result value but a real
5306       // chain result.  The result value is dead because the bswap is dead.
5307       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5308
5309       // Return N so it doesn't get rechecked!
5310       return SDValue(N, 0);
5311     }
5312
5313     break;
5314   case PPCISD::VCMP: {
5315     // If a VCMPo node already exists with exactly the same operands as this
5316     // node, use its result instead of this node (VCMPo computes both a CR6 and
5317     // a normal output).
5318     //
5319     if (!N->getOperand(0).hasOneUse() &&
5320         !N->getOperand(1).hasOneUse() &&
5321         !N->getOperand(2).hasOneUse()) {
5322
5323       // Scan all of the users of the LHS, looking for VCMPo's that match.
5324       SDNode *VCMPoNode = 0;
5325
5326       SDNode *LHSN = N->getOperand(0).getNode();
5327       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5328            UI != E; ++UI)
5329         if (UI->getOpcode() == PPCISD::VCMPo &&
5330             UI->getOperand(1) == N->getOperand(1) &&
5331             UI->getOperand(2) == N->getOperand(2) &&
5332             UI->getOperand(0) == N->getOperand(0)) {
5333           VCMPoNode = *UI;
5334           break;
5335         }
5336
5337       // If there is no VCMPo node, or if the flag value has a single use, don't
5338       // transform this.
5339       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5340         break;
5341
5342       // Look at the (necessarily single) use of the flag value.  If it has a
5343       // chain, this transformation is more complex.  Note that multiple things
5344       // could use the value result, which we should ignore.
5345       SDNode *FlagUser = 0;
5346       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5347            FlagUser == 0; ++UI) {
5348         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5349         SDNode *User = *UI;
5350         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5351           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5352             FlagUser = User;
5353             break;
5354           }
5355         }
5356       }
5357
5358       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5359       // give up for right now.
5360       if (FlagUser->getOpcode() == PPCISD::MFCR)
5361         return SDValue(VCMPoNode, 0);
5362     }
5363     break;
5364   }
5365   case ISD::BR_CC: {
5366     // If this is a branch on an altivec predicate comparison, lower this so
5367     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5368     // lowering is done pre-legalize, because the legalizer lowers the predicate
5369     // compare down to code that is difficult to reassemble.
5370     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5371     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5372     int CompareOpc;
5373     bool isDot;
5374
5375     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5376         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5377         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5378       assert(isDot && "Can't compare against a vector result!");
5379
5380       // If this is a comparison against something other than 0/1, then we know
5381       // that the condition is never/always true.
5382       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5383       if (Val != 0 && Val != 1) {
5384         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5385           return N->getOperand(0);
5386         // Always !=, turn it into an unconditional branch.
5387         return DAG.getNode(ISD::BR, dl, MVT::Other,
5388                            N->getOperand(0), N->getOperand(4));
5389       }
5390
5391       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5392
5393       // Create the PPCISD altivec 'dot' comparison node.
5394       std::vector<EVT> VTs;
5395       SDValue Ops[] = {
5396         LHS.getOperand(2),  // LHS of compare
5397         LHS.getOperand(3),  // RHS of compare
5398         DAG.getConstant(CompareOpc, MVT::i32)
5399       };
5400       VTs.push_back(LHS.getOperand(2).getValueType());
5401       VTs.push_back(MVT::Glue);
5402       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5403
5404       // Unpack the result based on how the target uses it.
5405       PPC::Predicate CompOpc;
5406       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5407       default:  // Can't happen, don't crash on invalid number though.
5408       case 0:   // Branch on the value of the EQ bit of CR6.
5409         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5410         break;
5411       case 1:   // Branch on the inverted value of the EQ bit of CR6.
5412         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5413         break;
5414       case 2:   // Branch on the value of the LT bit of CR6.
5415         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5416         break;
5417       case 3:   // Branch on the inverted value of the LT bit of CR6.
5418         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5419         break;
5420       }
5421
5422       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5423                          DAG.getConstant(CompOpc, MVT::i32),
5424                          DAG.getRegister(PPC::CR6, MVT::i32),
5425                          N->getOperand(4), CompNode.getValue(1));
5426     }
5427     break;
5428   }
5429   }
5430
5431   return SDValue();
5432 }
5433
5434 //===----------------------------------------------------------------------===//
5435 // Inline Assembly Support
5436 //===----------------------------------------------------------------------===//
5437
5438 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5439                                                        const APInt &Mask,
5440                                                        APInt &KnownZero,
5441                                                        APInt &KnownOne,
5442                                                        const SelectionDAG &DAG,
5443                                                        unsigned Depth) const {
5444   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5445   switch (Op.getOpcode()) {
5446   default: break;
5447   case PPCISD::LBRX: {
5448     // lhbrx is known to have the top bits cleared out.
5449     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5450       KnownZero = 0xFFFF0000;
5451     break;
5452   }
5453   case ISD::INTRINSIC_WO_CHAIN: {
5454     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5455     default: break;
5456     case Intrinsic::ppc_altivec_vcmpbfp_p:
5457     case Intrinsic::ppc_altivec_vcmpeqfp_p:
5458     case Intrinsic::ppc_altivec_vcmpequb_p:
5459     case Intrinsic::ppc_altivec_vcmpequh_p:
5460     case Intrinsic::ppc_altivec_vcmpequw_p:
5461     case Intrinsic::ppc_altivec_vcmpgefp_p:
5462     case Intrinsic::ppc_altivec_vcmpgtfp_p:
5463     case Intrinsic::ppc_altivec_vcmpgtsb_p:
5464     case Intrinsic::ppc_altivec_vcmpgtsh_p:
5465     case Intrinsic::ppc_altivec_vcmpgtsw_p:
5466     case Intrinsic::ppc_altivec_vcmpgtub_p:
5467     case Intrinsic::ppc_altivec_vcmpgtuh_p:
5468     case Intrinsic::ppc_altivec_vcmpgtuw_p:
5469       KnownZero = ~1U;  // All bits but the low one are known to be zero.
5470       break;
5471     }
5472   }
5473   }
5474 }
5475
5476
5477 /// getConstraintType - Given a constraint, return the type of
5478 /// constraint it is for this target.
5479 PPCTargetLowering::ConstraintType
5480 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5481   if (Constraint.size() == 1) {
5482     switch (Constraint[0]) {
5483     default: break;
5484     case 'b':
5485     case 'r':
5486     case 'f':
5487     case 'v':
5488     case 'y':
5489       return C_RegisterClass;
5490     }
5491   }
5492   return TargetLowering::getConstraintType(Constraint);
5493 }
5494
5495 /// Examine constraint type and operand type and determine a weight value.
5496 /// This object must already have been set up with the operand type
5497 /// and the current alternative constraint selected.
5498 TargetLowering::ConstraintWeight
5499 PPCTargetLowering::getSingleConstraintMatchWeight(
5500     AsmOperandInfo &info, const char *constraint) const {
5501   ConstraintWeight weight = CW_Invalid;
5502   Value *CallOperandVal = info.CallOperandVal;
5503     // If we don't have a value, we can't do a match,
5504     // but allow it at the lowest weight.
5505   if (CallOperandVal == NULL)
5506     return CW_Default;
5507   const Type *type = CallOperandVal->getType();
5508   // Look at the constraint type.
5509   switch (*constraint) {
5510   default:
5511     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5512     break;
5513   case 'b':
5514     if (type->isIntegerTy())
5515       weight = CW_Register;
5516     break;
5517   case 'f':
5518     if (type->isFloatTy())
5519       weight = CW_Register;
5520     break;
5521   case 'd':
5522     if (type->isDoubleTy())
5523       weight = CW_Register;
5524     break;
5525   case 'v':
5526     if (type->isVectorTy())
5527       weight = CW_Register;
5528     break;
5529   case 'y':
5530     weight = CW_Register;
5531     break;
5532   }
5533   return weight;
5534 }
5535
5536 std::pair<unsigned, const TargetRegisterClass*>
5537 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5538                                                 EVT VT) const {
5539   if (Constraint.size() == 1) {
5540     // GCC RS6000 Constraint Letters
5541     switch (Constraint[0]) {
5542     case 'b':   // R1-R31
5543     case 'r':   // R0-R31
5544       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5545         return std::make_pair(0U, PPC::G8RCRegisterClass);
5546       return std::make_pair(0U, PPC::GPRCRegisterClass);
5547     case 'f':
5548       if (VT == MVT::f32)
5549         return std::make_pair(0U, PPC::F4RCRegisterClass);
5550       else if (VT == MVT::f64)
5551         return std::make_pair(0U, PPC::F8RCRegisterClass);
5552       break;
5553     case 'v':
5554       return std::make_pair(0U, PPC::VRRCRegisterClass);
5555     case 'y':   // crrc
5556       return std::make_pair(0U, PPC::CRRCRegisterClass);
5557     }
5558   }
5559
5560   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5561 }
5562
5563
5564 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5565 /// vector.  If it is invalid, don't add anything to Ops.
5566 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5567                                                      std::string &Constraint,
5568                                                      std::vector<SDValue>&Ops,
5569                                                      SelectionDAG &DAG) const {
5570   SDValue Result(0,0);
5571
5572   // Only support length 1 constraints.
5573   if (Constraint.length() > 1) return;
5574
5575   char Letter = Constraint[0];
5576   switch (Letter) {
5577   default: break;
5578   case 'I':
5579   case 'J':
5580   case 'K':
5581   case 'L':
5582   case 'M':
5583   case 'N':
5584   case 'O':
5585   case 'P': {
5586     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5587     if (!CST) return; // Must be an immediate to match.
5588     unsigned Value = CST->getZExtValue();
5589     switch (Letter) {
5590     default: llvm_unreachable("Unknown constraint letter!");
5591     case 'I':  // "I" is a signed 16-bit constant.
5592       if ((short)Value == (int)Value)
5593         Result = DAG.getTargetConstant(Value, Op.getValueType());
5594       break;
5595     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5596     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5597       if ((short)Value == 0)
5598         Result = DAG.getTargetConstant(Value, Op.getValueType());
5599       break;
5600     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5601       if ((Value >> 16) == 0)
5602         Result = DAG.getTargetConstant(Value, Op.getValueType());
5603       break;
5604     case 'M':  // "M" is a constant that is greater than 31.
5605       if (Value > 31)
5606         Result = DAG.getTargetConstant(Value, Op.getValueType());
5607       break;
5608     case 'N':  // "N" is a positive constant that is an exact power of two.
5609       if ((int)Value > 0 && isPowerOf2_32(Value))
5610         Result = DAG.getTargetConstant(Value, Op.getValueType());
5611       break;
5612     case 'O':  // "O" is the constant zero.
5613       if (Value == 0)
5614         Result = DAG.getTargetConstant(Value, Op.getValueType());
5615       break;
5616     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5617       if ((short)-Value == (int)-Value)
5618         Result = DAG.getTargetConstant(Value, Op.getValueType());
5619       break;
5620     }
5621     break;
5622   }
5623   }
5624
5625   if (Result.getNode()) {
5626     Ops.push_back(Result);
5627     return;
5628   }
5629
5630   // Handle standard constraint letters.
5631   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5632 }
5633
5634 // isLegalAddressingMode - Return true if the addressing mode represented
5635 // by AM is legal for this target, for a load/store of the specified type.
5636 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5637                                               const Type *Ty) const {
5638   // FIXME: PPC does not allow r+i addressing modes for vectors!
5639
5640   // PPC allows a sign-extended 16-bit immediate field.
5641   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5642     return false;
5643
5644   // No global is ever allowed as a base.
5645   if (AM.BaseGV)
5646     return false;
5647
5648   // PPC only support r+r,
5649   switch (AM.Scale) {
5650   case 0:  // "r+i" or just "i", depending on HasBaseReg.
5651     break;
5652   case 1:
5653     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5654       return false;
5655     // Otherwise we have r+r or r+i.
5656     break;
5657   case 2:
5658     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5659       return false;
5660     // Allow 2*r as r+r.
5661     break;
5662   default:
5663     // No other scales are supported.
5664     return false;
5665   }
5666
5667   return true;
5668 }
5669
5670 /// isLegalAddressImmediate - Return true if the integer value can be used
5671 /// as the offset of the target addressing mode for load / store of the
5672 /// given type.
5673 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5674   // PPC allows a sign-extended 16-bit immediate field.
5675   return (V > -(1 << 16) && V < (1 << 16)-1);
5676 }
5677
5678 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5679   return false;
5680 }
5681
5682 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5683                                            SelectionDAG &DAG) const {
5684   MachineFunction &MF = DAG.getMachineFunction();
5685   MachineFrameInfo *MFI = MF.getFrameInfo();
5686   MFI->setReturnAddressIsTaken(true);
5687
5688   DebugLoc dl = Op.getDebugLoc();
5689   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5690
5691   // Make sure the function does not optimize away the store of the RA to
5692   // the stack.
5693   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5694   FuncInfo->setLRStoreRequired();
5695   bool isPPC64 = PPCSubTarget.isPPC64();
5696   bool isDarwinABI = PPCSubTarget.isDarwinABI();
5697
5698   if (Depth > 0) {
5699     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5700     SDValue Offset =
5701
5702       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5703                       isPPC64? MVT::i64 : MVT::i32);
5704     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5705                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
5706                                    FrameAddr, Offset),
5707                        MachinePointerInfo(), false, false, 0);
5708   }
5709
5710   // Just load the return address off the stack.
5711   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5712   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5713                      RetAddrFI, MachinePointerInfo(), false, false, 0);
5714 }
5715
5716 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5717                                           SelectionDAG &DAG) const {
5718   DebugLoc dl = Op.getDebugLoc();
5719   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5720
5721   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5722   bool isPPC64 = PtrVT == MVT::i64;
5723
5724   MachineFunction &MF = DAG.getMachineFunction();
5725   MachineFrameInfo *MFI = MF.getFrameInfo();
5726   MFI->setFrameAddressIsTaken(true);
5727   bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5728                   MFI->getStackSize() &&
5729                   !MF.getFunction()->hasFnAttr(Attribute::Naked);
5730   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5731                                 (is31 ? PPC::R31 : PPC::R1);
5732   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5733                                          PtrVT);
5734   while (Depth--)
5735     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5736                             FrameAddr, MachinePointerInfo(), false, false, 0);
5737   return FrameAddr;
5738 }
5739
5740 bool
5741 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5742   // The PowerPC target isn't yet aware of offsets.
5743   return false;
5744 }
5745
5746 /// getOptimalMemOpType - Returns the target specific optimal type for load
5747 /// and store operations as a result of memset, memcpy, and memmove
5748 /// lowering. If DstAlign is zero that means it's safe to destination
5749 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5750 /// means there isn't a need to check it against alignment requirement,
5751 /// probably because the source does not need to be loaded. If
5752 /// 'NonScalarIntSafe' is true, that means it's safe to return a
5753 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5754 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5755 /// constant so it does not need to be loaded.
5756 /// It returns EVT::Other if the type should be determined using generic
5757 /// target-independent logic.
5758 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5759                                            unsigned DstAlign, unsigned SrcAlign,
5760                                            bool NonScalarIntSafe,
5761                                            bool MemcpyStrSrc,
5762                                            MachineFunction &MF) const {
5763   if (this->PPCSubTarget.isPPC64()) {
5764     return MVT::i64;
5765   } else {
5766     return MVT::i32;
5767   }
5768 }