]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
MFC 254790 (by emaste):
[FreeBSD/stable/9.git] / contrib / llvm / lib / Target / PowerPC / PPCRegisterInfo.td
1 //===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 //===----------------------------------------------------------------------===//
12
13 let Namespace = "PPC" in {
14 def sub_lt : SubRegIndex<1>;
15 def sub_gt : SubRegIndex<1, 1>;
16 def sub_eq : SubRegIndex<1, 2>;
17 def sub_un : SubRegIndex<1, 3>;
18 def sub_32 : SubRegIndex<32>;
19 }
20
21
22 class PPCReg<string n> : Register<n> {
23   let Namespace = "PPC";
24 }
25
26 // We identify all our registers with a 5-bit ID, for consistency's sake.
27
28 // GPR - One of the 32 32-bit general-purpose registers
29 class GPR<bits<5> num, string n> : PPCReg<n> {
30   let HWEncoding{4-0} = num;
31 }
32
33 // GP8 - One of the 32 64-bit general-purpose registers
34 class GP8<GPR SubReg, string n> : PPCReg<n> {
35   let HWEncoding = SubReg.HWEncoding;
36   let SubRegs = [SubReg];
37   let SubRegIndices = [sub_32];
38 }
39
40 // SPR - One of the 32-bit special-purpose registers
41 class SPR<bits<10> num, string n> : PPCReg<n> {
42   let HWEncoding{9-0} = num;
43 }
44
45 // FPR - One of the 32 64-bit floating-point registers
46 class FPR<bits<5> num, string n> : PPCReg<n> {
47   let HWEncoding{4-0} = num;
48 }
49
50 // VR - One of the 32 128-bit vector registers
51 class VR<bits<5> num, string n> : PPCReg<n> {
52   let HWEncoding{4-0} = num;
53 }
54
55 // CR - One of the 8 4-bit condition registers
56 class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> {
57   let HWEncoding{2-0} = num;
58   let SubRegs = subregs;
59 }
60
61 // CRBIT - One of the 32 1-bit condition register fields
62 class CRBIT<bits<5> num, string n> : PPCReg<n> {
63   let HWEncoding{4-0} = num;
64 }
65
66 // General-purpose registers
67 foreach Index = 0-31 in {
68   def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>;
69 }
70
71 // 64-bit General-purpose registers
72 foreach Index = 0-31 in {
73   def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>,
74                     DwarfRegNum<[Index, -2]>;
75 }
76
77 // Floating-point registers
78 foreach Index = 0-31 in {
79   def F#Index : FPR<Index, "f"#Index>,
80                 DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>;
81 }
82
83 // Vector registers
84 foreach Index = 0-31 in {
85   def V#Index : VR<Index, "v"#Index>,
86                 DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
87 }
88
89 // The reprsentation of r0 when treated as the constant 0.
90 def ZERO  : GPR<0, "0">;
91 def ZERO8 : GP8<ZERO, "0">;
92
93 // Representations of the frame pointer used by ISD::FRAMEADDR.
94 def FP   : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
95 def FP8  : GP8<FP, "**FRAME POINTER**">;
96
97 // Representations of the base pointer used by setjmp.
98 def BP   : GPR<0 /* arbitrary */, "**BASE POINTER**">;
99 def BP8  : GP8<BP, "**BASE POINTER**">;
100
101 // Condition register bits
102 def CR0LT : CRBIT< 0, "0">;
103 def CR0GT : CRBIT< 1, "1">;
104 def CR0EQ : CRBIT< 2, "2">;
105 def CR0UN : CRBIT< 3, "3">;
106 def CR1LT : CRBIT< 4, "4">;
107 def CR1GT : CRBIT< 5, "5">;
108 def CR1EQ : CRBIT< 6, "6">;
109 def CR1UN : CRBIT< 7, "7">;
110 def CR2LT : CRBIT< 8, "8">;
111 def CR2GT : CRBIT< 9, "9">;
112 def CR2EQ : CRBIT<10, "10">;
113 def CR2UN : CRBIT<11, "11">;
114 def CR3LT : CRBIT<12, "12">;
115 def CR3GT : CRBIT<13, "13">;
116 def CR3EQ : CRBIT<14, "14">;
117 def CR3UN : CRBIT<15, "15">;
118 def CR4LT : CRBIT<16, "16">;
119 def CR4GT : CRBIT<17, "17">;
120 def CR4EQ : CRBIT<18, "18">;
121 def CR4UN : CRBIT<19, "19">;
122 def CR5LT : CRBIT<20, "20">;
123 def CR5GT : CRBIT<21, "21">;
124 def CR5EQ : CRBIT<22, "22">;
125 def CR5UN : CRBIT<23, "23">;
126 def CR6LT : CRBIT<24, "24">;
127 def CR6GT : CRBIT<25, "25">;
128 def CR6EQ : CRBIT<26, "26">;
129 def CR6UN : CRBIT<27, "27">;
130 def CR7LT : CRBIT<28, "28">;
131 def CR7GT : CRBIT<29, "29">;
132 def CR7EQ : CRBIT<30, "30">;
133 def CR7UN : CRBIT<31, "31">;
134
135 // Condition registers
136 let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in {
137 def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>;
138 def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>;
139 def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>;
140 def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>;
141 def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>;
142 def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>;
143 def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>;
144 def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>;
145 }
146
147 // Link register
148 def LR  : SPR<8, "lr">, DwarfRegNum<[-2, 65]>;
149 //let Aliases = [LR] in
150 def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>;
151
152 // Count register
153 def CTR  : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>;
154 def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>;
155
156 // VRsave register
157 def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>;
158
159 // Carry bit.  In the architecture this is really bit 0 of the XER register
160 // (which really is SPR register 1);  this is the only bit interesting to a
161 // compiler.
162 def CARRY: SPR<1, "ca">;
163
164 // FP rounding mode:  bits 30 and 31 of the FP status and control register
165 // This is not allocated as a normal register; it appears only in
166 // Uses and Defs.  The ABI says it needs to be preserved by a function,
167 // but this is not achieved by saving and restoring it as with
168 // most registers, it has to be done in code; to make this work all the
169 // return and call instructions are described as Uses of RM, so instructions
170 // that do nothing but change RM will not get deleted.
171 // Also, in the architecture it is not really a SPR; 512 is arbitrary.
172 def RM: SPR<512, "**ROUNDING MODE**">;
173
174 /// Register classes
175 // Allocate volatiles first
176 // then nonvolatiles in reverse order since stmw/lmw save from rN to r31
177 def GPRC : RegisterClass<"PPC", [i32], 32, (add (sequence "R%u", 2, 12),
178                                                 (sequence "R%u", 30, 13),
179                                                 R31, R0, R1, FP, BP)>;
180
181 def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12),
182                                                 (sequence "X%u", 30, 14),
183                                                 X31, X13, X0, X1, FP8, BP8)>;
184
185 // For some instructions r0 is special (representing the value 0 instead of
186 // the value in the r0 register), and we use these register subclasses to
187 // prevent r0 from being allocated for use by those instructions.
188 def GPRC_NOR0 : RegisterClass<"PPC", [i32], 32, (add (sub GPRC, R0), ZERO)>;
189 def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)>;
190
191 // Allocate volatiles first, then non-volatiles in reverse order. With the SVR4
192 // ABI the size of the Floating-point register save area is determined by the
193 // allocated non-volatile register with the lowest register number, as FP
194 // register N is spilled to offset 8 * (32 - N) below the back chain word of the
195 // previous stack frame. By allocating non-volatiles in reverse order we make
196 // sure that the Floating-point register save area is always as small as
197 // possible because there aren't any unused spill slots.
198 def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13),
199                                                 (sequence "F%u", 31, 14))>;
200 def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>;
201
202 def VRRC : RegisterClass<"PPC", [v16i8,v8i16,v4i32,v4f32], 128,
203                          (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11,
204                              V12, V13, V14, V15, V16, V17, V18, V19, V31, V30,
205                              V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>;
206
207 def CRBITRC : RegisterClass<"PPC", [i32], 32,
208   (add CR0LT, CR0GT, CR0EQ, CR0UN,
209        CR1LT, CR1GT, CR1EQ, CR1UN,
210        CR2LT, CR2GT, CR2EQ, CR2UN,
211        CR3LT, CR3GT, CR3EQ, CR3UN,
212        CR4LT, CR4GT, CR4EQ, CR4UN,
213        CR5LT, CR5GT, CR5EQ, CR5UN,
214        CR6LT, CR6GT, CR6EQ, CR6UN,
215        CR7LT, CR7GT, CR7EQ, CR7UN)>
216 {
217   let CopyCost = -1;
218 }
219
220 def CRRC : RegisterClass<"PPC", [i32], 32, (add CR0, CR1, CR5, CR6,
221                                                 CR7, CR2, CR3, CR4)>;
222
223 // The CTR registers are not allocatable because they're used by the
224 // decrement-and-branch instructions, and thus need to stay live across
225 // multiple basic blocks.
226 def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> {
227   let isAllocatable = 0;
228 }
229 def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> {
230   let isAllocatable = 0;
231 }
232
233 def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>;
234 def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY)> {
235   let CopyCost = -1;
236 }