]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / Transforms / IPO / GlobalOpt.cpp
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "globalopt"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/CallingConv.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Support/CallSite.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include <algorithm>
41 using namespace llvm;
42
43 STATISTIC(NumMarked    , "Number of globals marked constant");
44 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
45 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
46 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
47 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
48 STATISTIC(NumDeleted   , "Number of globals deleted");
49 STATISTIC(NumFnDeleted , "Number of functions deleted");
50 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
51 STATISTIC(NumLocalized , "Number of globals localized");
52 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
53 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
54 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
55 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
56 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
57 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
58 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
59
60 namespace {
61   struct GlobalStatus;
62   struct GlobalOpt : public ModulePass {
63     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64     }
65     static char ID; // Pass identification, replacement for typeid
66     GlobalOpt() : ModulePass(ID) {
67       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
68     }
69
70     bool runOnModule(Module &M);
71
72   private:
73     GlobalVariable *FindGlobalCtors(Module &M);
74     bool OptimizeFunctions(Module &M);
75     bool OptimizeGlobalVars(Module &M);
76     bool OptimizeGlobalAliases(Module &M);
77     bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
78     bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
79     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
80                                const SmallPtrSet<const PHINode*, 16> &PHIUsers,
81                                const GlobalStatus &GS);
82     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
83   };
84 }
85
86 char GlobalOpt::ID = 0;
87 INITIALIZE_PASS(GlobalOpt, "globalopt",
88                 "Global Variable Optimizer", false, false)
89
90 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
91
92 namespace {
93
94 /// GlobalStatus - As we analyze each global, keep track of some information
95 /// about it.  If we find out that the address of the global is taken, none of
96 /// this info will be accurate.
97 struct GlobalStatus {
98   /// isCompared - True if the global's address is used in a comparison.
99   bool isCompared;
100
101   /// isLoaded - True if the global is ever loaded.  If the global isn't ever
102   /// loaded it can be deleted.
103   bool isLoaded;
104
105   /// StoredType - Keep track of what stores to the global look like.
106   ///
107   enum StoredType {
108     /// NotStored - There is no store to this global.  It can thus be marked
109     /// constant.
110     NotStored,
111
112     /// isInitializerStored - This global is stored to, but the only thing
113     /// stored is the constant it was initialized with.  This is only tracked
114     /// for scalar globals.
115     isInitializerStored,
116
117     /// isStoredOnce - This global is stored to, but only its initializer and
118     /// one other value is ever stored to it.  If this global isStoredOnce, we
119     /// track the value stored to it in StoredOnceValue below.  This is only
120     /// tracked for scalar globals.
121     isStoredOnce,
122
123     /// isStored - This global is stored to by multiple values or something else
124     /// that we cannot track.
125     isStored
126   } StoredType;
127
128   /// StoredOnceValue - If only one value (besides the initializer constant) is
129   /// ever stored to this global, keep track of what value it is.
130   Value *StoredOnceValue;
131
132   /// AccessingFunction/HasMultipleAccessingFunctions - These start out
133   /// null/false.  When the first accessing function is noticed, it is recorded.
134   /// When a second different accessing function is noticed,
135   /// HasMultipleAccessingFunctions is set to true.
136   const Function *AccessingFunction;
137   bool HasMultipleAccessingFunctions;
138
139   /// HasNonInstructionUser - Set to true if this global has a user that is not
140   /// an instruction (e.g. a constant expr or GV initializer).
141   bool HasNonInstructionUser;
142
143   /// HasPHIUser - Set to true if this global has a user that is a PHI node.
144   bool HasPHIUser;
145
146   GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
147                    StoredOnceValue(0), AccessingFunction(0),
148                    HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
149                    HasPHIUser(false) {}
150 };
151
152 }
153
154 // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
155 // by constants itself.  Note that constants cannot be cyclic, so this test is
156 // pretty easy to implement recursively.
157 //
158 static bool SafeToDestroyConstant(const Constant *C) {
159   if (isa<GlobalValue>(C)) return false;
160
161   for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
162        ++UI)
163     if (const Constant *CU = dyn_cast<Constant>(*UI)) {
164       if (!SafeToDestroyConstant(CU)) return false;
165     } else
166       return false;
167   return true;
168 }
169
170
171 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
172 /// structure.  If the global has its address taken, return true to indicate we
173 /// can't do anything with it.
174 ///
175 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
176                           SmallPtrSet<const PHINode*, 16> &PHIUsers) {
177   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
178        ++UI) {
179     const User *U = *UI;
180     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
181       GS.HasNonInstructionUser = true;
182       
183       // If the result of the constantexpr isn't pointer type, then we won't
184       // know to expect it in various places.  Just reject early.
185       if (!isa<PointerType>(CE->getType())) return true;
186       
187       if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
188     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
189       if (!GS.HasMultipleAccessingFunctions) {
190         const Function *F = I->getParent()->getParent();
191         if (GS.AccessingFunction == 0)
192           GS.AccessingFunction = F;
193         else if (GS.AccessingFunction != F)
194           GS.HasMultipleAccessingFunctions = true;
195       }
196       if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
197         GS.isLoaded = true;
198         if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
199       } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
200         // Don't allow a store OF the address, only stores TO the address.
201         if (SI->getOperand(0) == V) return true;
202
203         if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
204
205         // If this is a direct store to the global (i.e., the global is a scalar
206         // value, not an aggregate), keep more specific information about
207         // stores.
208         if (GS.StoredType != GlobalStatus::isStored) {
209           if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
210                                                            SI->getOperand(1))) {
211             Value *StoredVal = SI->getOperand(0);
212             if (StoredVal == GV->getInitializer()) {
213               if (GS.StoredType < GlobalStatus::isInitializerStored)
214                 GS.StoredType = GlobalStatus::isInitializerStored;
215             } else if (isa<LoadInst>(StoredVal) &&
216                        cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
217               if (GS.StoredType < GlobalStatus::isInitializerStored)
218                 GS.StoredType = GlobalStatus::isInitializerStored;
219             } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
220               GS.StoredType = GlobalStatus::isStoredOnce;
221               GS.StoredOnceValue = StoredVal;
222             } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
223                        GS.StoredOnceValue == StoredVal) {
224               // noop.
225             } else {
226               GS.StoredType = GlobalStatus::isStored;
227             }
228           } else {
229             GS.StoredType = GlobalStatus::isStored;
230           }
231         }
232       } else if (isa<GetElementPtrInst>(I)) {
233         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
234       } else if (isa<SelectInst>(I)) {
235         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
236       } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
237         // PHI nodes we can check just like select or GEP instructions, but we
238         // have to be careful about infinite recursion.
239         if (PHIUsers.insert(PN))  // Not already visited.
240           if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
241         GS.HasPHIUser = true;
242       } else if (isa<CmpInst>(I)) {
243         GS.isCompared = true;
244       } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
245         if (MTI->isVolatile()) return true;
246         if (MTI->getArgOperand(0) == V)
247           GS.StoredType = GlobalStatus::isStored;
248         if (MTI->getArgOperand(1) == V)
249           GS.isLoaded = true;
250       } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
251         assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
252         if (MSI->isVolatile()) return true;
253         GS.StoredType = GlobalStatus::isStored;
254       } else {
255         return true;  // Any other non-load instruction might take address!
256       }
257     } else if (const Constant *C = dyn_cast<Constant>(U)) {
258       GS.HasNonInstructionUser = true;
259       // We might have a dead and dangling constant hanging off of here.
260       if (!SafeToDestroyConstant(C))
261         return true;
262     } else {
263       GS.HasNonInstructionUser = true;
264       // Otherwise must be some other user.
265       return true;
266     }
267   }
268
269   return false;
270 }
271
272 static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
273   ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
274   if (!CI) return 0;
275   unsigned IdxV = CI->getZExtValue();
276
277   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
278     if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
279   } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
280     if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
281   } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
282     if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
283   } else if (isa<ConstantAggregateZero>(Agg)) {
284     if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
285       if (IdxV < STy->getNumElements())
286         return Constant::getNullValue(STy->getElementType(IdxV));
287     } else if (const SequentialType *STy =
288                dyn_cast<SequentialType>(Agg->getType())) {
289       return Constant::getNullValue(STy->getElementType());
290     }
291   } else if (isa<UndefValue>(Agg)) {
292     if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
293       if (IdxV < STy->getNumElements())
294         return UndefValue::get(STy->getElementType(IdxV));
295     } else if (const SequentialType *STy =
296                dyn_cast<SequentialType>(Agg->getType())) {
297       return UndefValue::get(STy->getElementType());
298     }
299   }
300   return 0;
301 }
302
303
304 /// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
305 /// users of the global, cleaning up the obvious ones.  This is largely just a
306 /// quick scan over the use list to clean up the easy and obvious cruft.  This
307 /// returns true if it made a change.
308 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
309   bool Changed = false;
310   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
311     User *U = *UI++;
312
313     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314       if (Init) {
315         // Replace the load with the initializer.
316         LI->replaceAllUsesWith(Init);
317         LI->eraseFromParent();
318         Changed = true;
319       }
320     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
321       // Store must be unreachable or storing Init into the global.
322       SI->eraseFromParent();
323       Changed = true;
324     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
325       if (CE->getOpcode() == Instruction::GetElementPtr) {
326         Constant *SubInit = 0;
327         if (Init)
328           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
329         Changed |= CleanupConstantGlobalUsers(CE, SubInit);
330       } else if (CE->getOpcode() == Instruction::BitCast &&
331                  CE->getType()->isPointerTy()) {
332         // Pointer cast, delete any stores and memsets to the global.
333         Changed |= CleanupConstantGlobalUsers(CE, 0);
334       }
335
336       if (CE->use_empty()) {
337         CE->destroyConstant();
338         Changed = true;
339       }
340     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
341       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
342       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
343       // and will invalidate our notion of what Init is.
344       Constant *SubInit = 0;
345       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
346         ConstantExpr *CE =
347           dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
348         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
349           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
350       }
351       Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
352
353       if (GEP->use_empty()) {
354         GEP->eraseFromParent();
355         Changed = true;
356       }
357     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
358       if (MI->getRawDest() == V) {
359         MI->eraseFromParent();
360         Changed = true;
361       }
362
363     } else if (Constant *C = dyn_cast<Constant>(U)) {
364       // If we have a chain of dead constantexprs or other things dangling from
365       // us, and if they are all dead, nuke them without remorse.
366       if (SafeToDestroyConstant(C)) {
367         C->destroyConstant();
368         // This could have invalidated UI, start over from scratch.
369         CleanupConstantGlobalUsers(V, Init);
370         return true;
371       }
372     }
373   }
374   return Changed;
375 }
376
377 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
378 /// user of a derived expression from a global that we want to SROA.
379 static bool isSafeSROAElementUse(Value *V) {
380   // We might have a dead and dangling constant hanging off of here.
381   if (Constant *C = dyn_cast<Constant>(V))
382     return SafeToDestroyConstant(C);
383
384   Instruction *I = dyn_cast<Instruction>(V);
385   if (!I) return false;
386
387   // Loads are ok.
388   if (isa<LoadInst>(I)) return true;
389
390   // Stores *to* the pointer are ok.
391   if (StoreInst *SI = dyn_cast<StoreInst>(I))
392     return SI->getOperand(0) != V;
393
394   // Otherwise, it must be a GEP.
395   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
396   if (GEPI == 0) return false;
397
398   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
399       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
400     return false;
401
402   for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
403        I != E; ++I)
404     if (!isSafeSROAElementUse(*I))
405       return false;
406   return true;
407 }
408
409
410 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
411 /// Look at it and its uses and decide whether it is safe to SROA this global.
412 ///
413 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
414   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
415   if (!isa<GetElementPtrInst>(U) &&
416       (!isa<ConstantExpr>(U) ||
417        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
418     return false;
419
420   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
421   // don't like < 3 operand CE's, and we don't like non-constant integer
422   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
423   // value of C.
424   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
425       !cast<Constant>(U->getOperand(1))->isNullValue() ||
426       !isa<ConstantInt>(U->getOperand(2)))
427     return false;
428
429   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
430   ++GEPI;  // Skip over the pointer index.
431
432   // If this is a use of an array allocation, do a bit more checking for sanity.
433   if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
434     uint64_t NumElements = AT->getNumElements();
435     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
436
437     // Check to make sure that index falls within the array.  If not,
438     // something funny is going on, so we won't do the optimization.
439     //
440     if (Idx->getZExtValue() >= NumElements)
441       return false;
442
443     // We cannot scalar repl this level of the array unless any array
444     // sub-indices are in-range constants.  In particular, consider:
445     // A[0][i].  We cannot know that the user isn't doing invalid things like
446     // allowing i to index an out-of-range subscript that accesses A[1].
447     //
448     // Scalar replacing *just* the outer index of the array is probably not
449     // going to be a win anyway, so just give up.
450     for (++GEPI; // Skip array index.
451          GEPI != E;
452          ++GEPI) {
453       uint64_t NumElements;
454       if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
455         NumElements = SubArrayTy->getNumElements();
456       else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
457         NumElements = SubVectorTy->getNumElements();
458       else {
459         assert((*GEPI)->isStructTy() &&
460                "Indexed GEP type is not array, vector, or struct!");
461         continue;
462       }
463
464       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
465       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
466         return false;
467     }
468   }
469
470   for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
471     if (!isSafeSROAElementUse(*I))
472       return false;
473   return true;
474 }
475
476 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
477 /// is safe for us to perform this transformation.
478 ///
479 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
480   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
481        UI != E; ++UI) {
482     if (!IsUserOfGlobalSafeForSRA(*UI, GV))
483       return false;
484   }
485   return true;
486 }
487
488
489 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
490 /// variable.  This opens the door for other optimizations by exposing the
491 /// behavior of the program in a more fine-grained way.  We have determined that
492 /// this transformation is safe already.  We return the first global variable we
493 /// insert so that the caller can reprocess it.
494 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
495   // Make sure this global only has simple uses that we can SRA.
496   if (!GlobalUsersSafeToSRA(GV))
497     return 0;
498
499   assert(GV->hasLocalLinkage() && !GV->isConstant());
500   Constant *Init = GV->getInitializer();
501   const Type *Ty = Init->getType();
502
503   std::vector<GlobalVariable*> NewGlobals;
504   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
505
506   // Get the alignment of the global, either explicit or target-specific.
507   unsigned StartAlignment = GV->getAlignment();
508   if (StartAlignment == 0)
509     StartAlignment = TD.getABITypeAlignment(GV->getType());
510
511   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
512     NewGlobals.reserve(STy->getNumElements());
513     const StructLayout &Layout = *TD.getStructLayout(STy);
514     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
515       Constant *In = getAggregateConstantElement(Init,
516                     ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
517       assert(In && "Couldn't get element of initializer?");
518       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
519                                                GlobalVariable::InternalLinkage,
520                                                In, GV->getName()+"."+Twine(i),
521                                                GV->isThreadLocal(),
522                                               GV->getType()->getAddressSpace());
523       Globals.insert(GV, NGV);
524       NewGlobals.push_back(NGV);
525
526       // Calculate the known alignment of the field.  If the original aggregate
527       // had 256 byte alignment for example, something might depend on that:
528       // propagate info to each field.
529       uint64_t FieldOffset = Layout.getElementOffset(i);
530       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
531       if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
532         NGV->setAlignment(NewAlign);
533     }
534   } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
535     unsigned NumElements = 0;
536     if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
537       NumElements = ATy->getNumElements();
538     else
539       NumElements = cast<VectorType>(STy)->getNumElements();
540
541     if (NumElements > 16 && GV->hasNUsesOrMore(16))
542       return 0; // It's not worth it.
543     NewGlobals.reserve(NumElements);
544
545     uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
546     unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
547     for (unsigned i = 0, e = NumElements; i != e; ++i) {
548       Constant *In = getAggregateConstantElement(Init,
549                     ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
550       assert(In && "Couldn't get element of initializer?");
551
552       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
553                                                GlobalVariable::InternalLinkage,
554                                                In, GV->getName()+"."+Twine(i),
555                                                GV->isThreadLocal(),
556                                               GV->getType()->getAddressSpace());
557       Globals.insert(GV, NGV);
558       NewGlobals.push_back(NGV);
559
560       // Calculate the known alignment of the field.  If the original aggregate
561       // had 256 byte alignment for example, something might depend on that:
562       // propagate info to each field.
563       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
564       if (NewAlign > EltAlign)
565         NGV->setAlignment(NewAlign);
566     }
567   }
568
569   if (NewGlobals.empty())
570     return 0;
571
572   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
573
574   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
575
576   // Loop over all of the uses of the global, replacing the constantexpr geps,
577   // with smaller constantexpr geps or direct references.
578   while (!GV->use_empty()) {
579     User *GEP = GV->use_back();
580     assert(((isa<ConstantExpr>(GEP) &&
581              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
582             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
583
584     // Ignore the 1th operand, which has to be zero or else the program is quite
585     // broken (undefined).  Get the 2nd operand, which is the structure or array
586     // index.
587     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
588     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
589
590     Value *NewPtr = NewGlobals[Val];
591
592     // Form a shorter GEP if needed.
593     if (GEP->getNumOperands() > 3) {
594       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
595         SmallVector<Constant*, 8> Idxs;
596         Idxs.push_back(NullInt);
597         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
598           Idxs.push_back(CE->getOperand(i));
599         NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
600                                                 &Idxs[0], Idxs.size());
601       } else {
602         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
603         SmallVector<Value*, 8> Idxs;
604         Idxs.push_back(NullInt);
605         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
606           Idxs.push_back(GEPI->getOperand(i));
607         NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
608                                            GEPI->getName()+"."+Twine(Val),GEPI);
609       }
610     }
611     GEP->replaceAllUsesWith(NewPtr);
612
613     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
614       GEPI->eraseFromParent();
615     else
616       cast<ConstantExpr>(GEP)->destroyConstant();
617   }
618
619   // Delete the old global, now that it is dead.
620   Globals.erase(GV);
621   ++NumSRA;
622
623   // Loop over the new globals array deleting any globals that are obviously
624   // dead.  This can arise due to scalarization of a structure or an array that
625   // has elements that are dead.
626   unsigned FirstGlobal = 0;
627   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
628     if (NewGlobals[i]->use_empty()) {
629       Globals.erase(NewGlobals[i]);
630       if (FirstGlobal == i) ++FirstGlobal;
631     }
632
633   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
634 }
635
636 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
637 /// value will trap if the value is dynamically null.  PHIs keeps track of any
638 /// phi nodes we've seen to avoid reprocessing them.
639 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
640                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
641   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
642        ++UI) {
643     const User *U = *UI;
644
645     if (isa<LoadInst>(U)) {
646       // Will trap.
647     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
648       if (SI->getOperand(0) == V) {
649         //cerr << "NONTRAPPING USE: " << *U;
650         return false;  // Storing the value.
651       }
652     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
653       if (CI->getCalledValue() != V) {
654         //cerr << "NONTRAPPING USE: " << *U;
655         return false;  // Not calling the ptr
656       }
657     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
658       if (II->getCalledValue() != V) {
659         //cerr << "NONTRAPPING USE: " << *U;
660         return false;  // Not calling the ptr
661       }
662     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
663       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
664     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
665       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
666     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
667       // If we've already seen this phi node, ignore it, it has already been
668       // checked.
669       if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
670         return false;
671     } else if (isa<ICmpInst>(U) &&
672                isa<ConstantPointerNull>(UI->getOperand(1))) {
673       // Ignore icmp X, null
674     } else {
675       //cerr << "NONTRAPPING USE: " << *U;
676       return false;
677     }
678   }
679   return true;
680 }
681
682 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
683 /// from GV will trap if the loaded value is null.  Note that this also permits
684 /// comparisons of the loaded value against null, as a special case.
685 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
686   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
687        UI != E; ++UI) {
688     const User *U = *UI;
689
690     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
691       SmallPtrSet<const PHINode*, 8> PHIs;
692       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
693         return false;
694     } else if (isa<StoreInst>(U)) {
695       // Ignore stores to the global.
696     } else {
697       // We don't know or understand this user, bail out.
698       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
699       return false;
700     }
701   }
702   return true;
703 }
704
705 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
706   bool Changed = false;
707   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
708     Instruction *I = cast<Instruction>(*UI++);
709     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
710       LI->setOperand(0, NewV);
711       Changed = true;
712     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
713       if (SI->getOperand(1) == V) {
714         SI->setOperand(1, NewV);
715         Changed = true;
716       }
717     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
718       CallSite CS(I);
719       if (CS.getCalledValue() == V) {
720         // Calling through the pointer!  Turn into a direct call, but be careful
721         // that the pointer is not also being passed as an argument.
722         CS.setCalledFunction(NewV);
723         Changed = true;
724         bool PassedAsArg = false;
725         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
726           if (CS.getArgument(i) == V) {
727             PassedAsArg = true;
728             CS.setArgument(i, NewV);
729           }
730
731         if (PassedAsArg) {
732           // Being passed as an argument also.  Be careful to not invalidate UI!
733           UI = V->use_begin();
734         }
735       }
736     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
737       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
738                                 ConstantExpr::getCast(CI->getOpcode(),
739                                                       NewV, CI->getType()));
740       if (CI->use_empty()) {
741         Changed = true;
742         CI->eraseFromParent();
743       }
744     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
745       // Should handle GEP here.
746       SmallVector<Constant*, 8> Idxs;
747       Idxs.reserve(GEPI->getNumOperands()-1);
748       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
749            i != e; ++i)
750         if (Constant *C = dyn_cast<Constant>(*i))
751           Idxs.push_back(C);
752         else
753           break;
754       if (Idxs.size() == GEPI->getNumOperands()-1)
755         Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
756                           ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
757                                                         Idxs.size()));
758       if (GEPI->use_empty()) {
759         Changed = true;
760         GEPI->eraseFromParent();
761       }
762     }
763   }
764
765   return Changed;
766 }
767
768
769 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
770 /// value stored into it.  If there are uses of the loaded value that would trap
771 /// if the loaded value is dynamically null, then we know that they cannot be
772 /// reachable with a null optimize away the load.
773 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
774   bool Changed = false;
775
776   // Keep track of whether we are able to remove all the uses of the global
777   // other than the store that defines it.
778   bool AllNonStoreUsesGone = true;
779
780   // Replace all uses of loads with uses of uses of the stored value.
781   for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
782     User *GlobalUser = *GUI++;
783     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
784       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
785       // If we were able to delete all uses of the loads
786       if (LI->use_empty()) {
787         LI->eraseFromParent();
788         Changed = true;
789       } else {
790         AllNonStoreUsesGone = false;
791       }
792     } else if (isa<StoreInst>(GlobalUser)) {
793       // Ignore the store that stores "LV" to the global.
794       assert(GlobalUser->getOperand(1) == GV &&
795              "Must be storing *to* the global");
796     } else {
797       AllNonStoreUsesGone = false;
798
799       // If we get here we could have other crazy uses that are transitively
800       // loaded.
801       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
802               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
803              "Only expect load and stores!");
804     }
805   }
806
807   if (Changed) {
808     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
809     ++NumGlobUses;
810   }
811
812   // If we nuked all of the loads, then none of the stores are needed either,
813   // nor is the global.
814   if (AllNonStoreUsesGone) {
815     DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
816     CleanupConstantGlobalUsers(GV, 0);
817     if (GV->use_empty()) {
818       GV->eraseFromParent();
819       ++NumDeleted;
820     }
821     Changed = true;
822   }
823   return Changed;
824 }
825
826 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
827 /// instructions that are foldable.
828 static void ConstantPropUsersOf(Value *V) {
829   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
830     if (Instruction *I = dyn_cast<Instruction>(*UI++))
831       if (Constant *NewC = ConstantFoldInstruction(I)) {
832         I->replaceAllUsesWith(NewC);
833
834         // Advance UI to the next non-I use to avoid invalidating it!
835         // Instructions could multiply use V.
836         while (UI != E && *UI == I)
837           ++UI;
838         I->eraseFromParent();
839       }
840 }
841
842 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
843 /// variable, and transforms the program as if it always contained the result of
844 /// the specified malloc.  Because it is always the result of the specified
845 /// malloc, there is no reason to actually DO the malloc.  Instead, turn the
846 /// malloc into a global, and any loads of GV as uses of the new global.
847 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
848                                                      CallInst *CI,
849                                                      const Type *AllocTy,
850                                                      ConstantInt *NElements,
851                                                      TargetData* TD) {
852   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
853
854   const Type *GlobalType;
855   if (NElements->getZExtValue() == 1)
856     GlobalType = AllocTy;
857   else
858     // If we have an array allocation, the global variable is of an array.
859     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
860
861   // Create the new global variable.  The contents of the malloc'd memory is
862   // undefined, so initialize with an undef value.
863   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
864                                              GlobalType, false,
865                                              GlobalValue::InternalLinkage,
866                                              UndefValue::get(GlobalType),
867                                              GV->getName()+".body",
868                                              GV,
869                                              GV->isThreadLocal());
870
871   // If there are bitcast users of the malloc (which is typical, usually we have
872   // a malloc + bitcast) then replace them with uses of the new global.  Update
873   // other users to use the global as well.
874   BitCastInst *TheBC = 0;
875   while (!CI->use_empty()) {
876     Instruction *User = cast<Instruction>(CI->use_back());
877     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
878       if (BCI->getType() == NewGV->getType()) {
879         BCI->replaceAllUsesWith(NewGV);
880         BCI->eraseFromParent();
881       } else {
882         BCI->setOperand(0, NewGV);
883       }
884     } else {
885       if (TheBC == 0)
886         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
887       User->replaceUsesOfWith(CI, TheBC);
888     }
889   }
890
891   Constant *RepValue = NewGV;
892   if (NewGV->getType() != GV->getType()->getElementType())
893     RepValue = ConstantExpr::getBitCast(RepValue,
894                                         GV->getType()->getElementType());
895
896   // If there is a comparison against null, we will insert a global bool to
897   // keep track of whether the global was initialized yet or not.
898   GlobalVariable *InitBool =
899     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
900                        GlobalValue::InternalLinkage,
901                        ConstantInt::getFalse(GV->getContext()),
902                        GV->getName()+".init", GV->isThreadLocal());
903   bool InitBoolUsed = false;
904
905   // Loop over all uses of GV, processing them in turn.
906   while (!GV->use_empty()) {
907     if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
908       // The global is initialized when the store to it occurs.
909       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
910       SI->eraseFromParent();
911       continue;
912     }
913
914     LoadInst *LI = cast<LoadInst>(GV->use_back());
915     while (!LI->use_empty()) {
916       Use &LoadUse = LI->use_begin().getUse();
917       if (!isa<ICmpInst>(LoadUse.getUser())) {
918         LoadUse = RepValue;
919         continue;
920       }
921
922       ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
923       // Replace the cmp X, 0 with a use of the bool value.
924       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
925       InitBoolUsed = true;
926       switch (ICI->getPredicate()) {
927       default: llvm_unreachable("Unknown ICmp Predicate!");
928       case ICmpInst::ICMP_ULT:
929       case ICmpInst::ICMP_SLT:   // X < null -> always false
930         LV = ConstantInt::getFalse(GV->getContext());
931         break;
932       case ICmpInst::ICMP_ULE:
933       case ICmpInst::ICMP_SLE:
934       case ICmpInst::ICMP_EQ:
935         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
936         break;
937       case ICmpInst::ICMP_NE:
938       case ICmpInst::ICMP_UGE:
939       case ICmpInst::ICMP_SGE:
940       case ICmpInst::ICMP_UGT:
941       case ICmpInst::ICMP_SGT:
942         break;  // no change.
943       }
944       ICI->replaceAllUsesWith(LV);
945       ICI->eraseFromParent();
946     }
947     LI->eraseFromParent();
948   }
949
950   // If the initialization boolean was used, insert it, otherwise delete it.
951   if (!InitBoolUsed) {
952     while (!InitBool->use_empty())  // Delete initializations
953       cast<StoreInst>(InitBool->use_back())->eraseFromParent();
954     delete InitBool;
955   } else
956     GV->getParent()->getGlobalList().insert(GV, InitBool);
957
958   // Now the GV is dead, nuke it and the malloc..
959   GV->eraseFromParent();
960   CI->eraseFromParent();
961
962   // To further other optimizations, loop over all users of NewGV and try to
963   // constant prop them.  This will promote GEP instructions with constant
964   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
965   ConstantPropUsersOf(NewGV);
966   if (RepValue != NewGV)
967     ConstantPropUsersOf(RepValue);
968
969   return NewGV;
970 }
971
972 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
973 /// to make sure that there are no complex uses of V.  We permit simple things
974 /// like dereferencing the pointer, but not storing through the address, unless
975 /// it is to the specified global.
976 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
977                                                       const GlobalVariable *GV,
978                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
979   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
980        UI != E; ++UI) {
981     const Instruction *Inst = cast<Instruction>(*UI);
982
983     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
984       continue; // Fine, ignore.
985     }
986
987     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
988       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
989         return false;  // Storing the pointer itself... bad.
990       continue; // Otherwise, storing through it, or storing into GV... fine.
991     }
992
993     // Must index into the array and into the struct.
994     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
995       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
996         return false;
997       continue;
998     }
999
1000     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1001       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1002       // cycles.
1003       if (PHIs.insert(PN))
1004         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1005           return false;
1006       continue;
1007     }
1008
1009     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1010       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1011         return false;
1012       continue;
1013     }
1014
1015     return false;
1016   }
1017   return true;
1018 }
1019
1020 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1021 /// somewhere.  Transform all uses of the allocation into loads from the
1022 /// global and uses of the resultant pointer.  Further, delete the store into
1023 /// GV.  This assumes that these value pass the
1024 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1025 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1026                                           GlobalVariable *GV) {
1027   while (!Alloc->use_empty()) {
1028     Instruction *U = cast<Instruction>(*Alloc->use_begin());
1029     Instruction *InsertPt = U;
1030     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1031       // If this is the store of the allocation into the global, remove it.
1032       if (SI->getOperand(1) == GV) {
1033         SI->eraseFromParent();
1034         continue;
1035       }
1036     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1037       // Insert the load in the corresponding predecessor, not right before the
1038       // PHI.
1039       InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1040     } else if (isa<BitCastInst>(U)) {
1041       // Must be bitcast between the malloc and store to initialize the global.
1042       ReplaceUsesOfMallocWithGlobal(U, GV);
1043       U->eraseFromParent();
1044       continue;
1045     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1046       // If this is a "GEP bitcast" and the user is a store to the global, then
1047       // just process it as a bitcast.
1048       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1049         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1050           if (SI->getOperand(1) == GV) {
1051             // Must be bitcast GEP between the malloc and store to initialize
1052             // the global.
1053             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1054             GEPI->eraseFromParent();
1055             continue;
1056           }
1057     }
1058
1059     // Insert a load from the global, and use it instead of the malloc.
1060     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1061     U->replaceUsesOfWith(Alloc, NL);
1062   }
1063 }
1064
1065 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1066 /// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1067 /// that index through the array and struct field, icmps of null, and PHIs.
1068 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1069                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1070                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1071   // We permit two users of the load: setcc comparing against the null
1072   // pointer, and a getelementptr of a specific form.
1073   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1074        ++UI) {
1075     const Instruction *User = cast<Instruction>(*UI);
1076
1077     // Comparison against null is ok.
1078     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1079       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1080         return false;
1081       continue;
1082     }
1083
1084     // getelementptr is also ok, but only a simple form.
1085     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1086       // Must index into the array and into the struct.
1087       if (GEPI->getNumOperands() < 3)
1088         return false;
1089
1090       // Otherwise the GEP is ok.
1091       continue;
1092     }
1093
1094     if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1095       if (!LoadUsingPHIsPerLoad.insert(PN))
1096         // This means some phi nodes are dependent on each other.
1097         // Avoid infinite looping!
1098         return false;
1099       if (!LoadUsingPHIs.insert(PN))
1100         // If we have already analyzed this PHI, then it is safe.
1101         continue;
1102
1103       // Make sure all uses of the PHI are simple enough to transform.
1104       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1105                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1106         return false;
1107
1108       continue;
1109     }
1110
1111     // Otherwise we don't know what this is, not ok.
1112     return false;
1113   }
1114
1115   return true;
1116 }
1117
1118
1119 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1120 /// GV are simple enough to perform HeapSRA, return true.
1121 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1122                                                     Instruction *StoredVal) {
1123   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1124   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1125   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1126        UI != E; ++UI)
1127     if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1128       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1129                                           LoadUsingPHIsPerLoad))
1130         return false;
1131       LoadUsingPHIsPerLoad.clear();
1132     }
1133
1134   // If we reach here, we know that all uses of the loads and transitive uses
1135   // (through PHI nodes) are simple enough to transform.  However, we don't know
1136   // that all inputs the to the PHI nodes are in the same equivalence sets.
1137   // Check to verify that all operands of the PHIs are either PHIS that can be
1138   // transformed, loads from GV, or MI itself.
1139   for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1140        , E = LoadUsingPHIs.end(); I != E; ++I) {
1141     const PHINode *PN = *I;
1142     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1143       Value *InVal = PN->getIncomingValue(op);
1144
1145       // PHI of the stored value itself is ok.
1146       if (InVal == StoredVal) continue;
1147
1148       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1149         // One of the PHIs in our set is (optimistically) ok.
1150         if (LoadUsingPHIs.count(InPN))
1151           continue;
1152         return false;
1153       }
1154
1155       // Load from GV is ok.
1156       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1157         if (LI->getOperand(0) == GV)
1158           continue;
1159
1160       // UNDEF? NULL?
1161
1162       // Anything else is rejected.
1163       return false;
1164     }
1165   }
1166
1167   return true;
1168 }
1169
1170 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1171                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1172                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1173   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1174
1175   if (FieldNo >= FieldVals.size())
1176     FieldVals.resize(FieldNo+1);
1177
1178   // If we already have this value, just reuse the previously scalarized
1179   // version.
1180   if (Value *FieldVal = FieldVals[FieldNo])
1181     return FieldVal;
1182
1183   // Depending on what instruction this is, we have several cases.
1184   Value *Result;
1185   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1186     // This is a scalarized version of the load from the global.  Just create
1187     // a new Load of the scalarized global.
1188     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1189                                            InsertedScalarizedValues,
1190                                            PHIsToRewrite),
1191                           LI->getName()+".f"+Twine(FieldNo), LI);
1192   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1193     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1194     // field.
1195     const StructType *ST =
1196       cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1197
1198     PHINode *NewPN =
1199      PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1200                      PN->getNumIncomingValues(),
1201                      PN->getName()+".f"+Twine(FieldNo), PN);
1202     Result = NewPN;
1203     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1204   } else {
1205     llvm_unreachable("Unknown usable value");
1206     Result = 0;
1207   }
1208
1209   return FieldVals[FieldNo] = Result;
1210 }
1211
1212 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1213 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1214 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1215              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1216                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1217   // If this is a comparison against null, handle it.
1218   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1219     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1220     // If we have a setcc of the loaded pointer, we can use a setcc of any
1221     // field.
1222     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1223                                    InsertedScalarizedValues, PHIsToRewrite);
1224
1225     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1226                               Constant::getNullValue(NPtr->getType()),
1227                               SCI->getName());
1228     SCI->replaceAllUsesWith(New);
1229     SCI->eraseFromParent();
1230     return;
1231   }
1232
1233   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1234   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1235     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1236            && "Unexpected GEPI!");
1237
1238     // Load the pointer for this field.
1239     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1240     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1241                                      InsertedScalarizedValues, PHIsToRewrite);
1242
1243     // Create the new GEP idx vector.
1244     SmallVector<Value*, 8> GEPIdx;
1245     GEPIdx.push_back(GEPI->getOperand(1));
1246     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1247
1248     Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1249                                              GEPIdx.begin(), GEPIdx.end(),
1250                                              GEPI->getName(), GEPI);
1251     GEPI->replaceAllUsesWith(NGEPI);
1252     GEPI->eraseFromParent();
1253     return;
1254   }
1255
1256   // Recursively transform the users of PHI nodes.  This will lazily create the
1257   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1258   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1259   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1260   // already been seen first by another load, so its uses have already been
1261   // processed.
1262   PHINode *PN = cast<PHINode>(LoadUser);
1263   bool Inserted;
1264   DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1265   tie(InsertPos, Inserted) =
1266     InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1267   if (!Inserted) return;
1268
1269   // If this is the first time we've seen this PHI, recursively process all
1270   // users.
1271   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1272     Instruction *User = cast<Instruction>(*UI++);
1273     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1274   }
1275 }
1276
1277 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1278 /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1279 /// use FieldGlobals instead.  All uses of loaded values satisfy
1280 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1281 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1282                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1283                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1284   for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1285        UI != E; ) {
1286     Instruction *User = cast<Instruction>(*UI++);
1287     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1288   }
1289
1290   if (Load->use_empty()) {
1291     Load->eraseFromParent();
1292     InsertedScalarizedValues.erase(Load);
1293   }
1294 }
1295
1296 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1297 /// it up into multiple allocations of arrays of the fields.
1298 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1299                                             Value* NElems, TargetData *TD) {
1300   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1301   const Type* MAT = getMallocAllocatedType(CI);
1302   const StructType *STy = cast<StructType>(MAT);
1303
1304   // There is guaranteed to be at least one use of the malloc (storing
1305   // it into GV).  If there are other uses, change them to be uses of
1306   // the global to simplify later code.  This also deletes the store
1307   // into GV.
1308   ReplaceUsesOfMallocWithGlobal(CI, GV);
1309
1310   // Okay, at this point, there are no users of the malloc.  Insert N
1311   // new mallocs at the same place as CI, and N globals.
1312   std::vector<Value*> FieldGlobals;
1313   std::vector<Value*> FieldMallocs;
1314
1315   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1316     const Type *FieldTy = STy->getElementType(FieldNo);
1317     const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1318
1319     GlobalVariable *NGV =
1320       new GlobalVariable(*GV->getParent(),
1321                          PFieldTy, false, GlobalValue::InternalLinkage,
1322                          Constant::getNullValue(PFieldTy),
1323                          GV->getName() + ".f" + Twine(FieldNo), GV,
1324                          GV->isThreadLocal());
1325     FieldGlobals.push_back(NGV);
1326
1327     unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1328     if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1329       TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1330     const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1331     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1332                                         ConstantInt::get(IntPtrTy, TypeSize),
1333                                         NElems, 0,
1334                                         CI->getName() + ".f" + Twine(FieldNo));
1335     FieldMallocs.push_back(NMI);
1336     new StoreInst(NMI, NGV, CI);
1337   }
1338
1339   // The tricky aspect of this transformation is handling the case when malloc
1340   // fails.  In the original code, malloc failing would set the result pointer
1341   // of malloc to null.  In this case, some mallocs could succeed and others
1342   // could fail.  As such, we emit code that looks like this:
1343   //    F0 = malloc(field0)
1344   //    F1 = malloc(field1)
1345   //    F2 = malloc(field2)
1346   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1347   //      if (F0) { free(F0); F0 = 0; }
1348   //      if (F1) { free(F1); F1 = 0; }
1349   //      if (F2) { free(F2); F2 = 0; }
1350   //    }
1351   // The malloc can also fail if its argument is too large.
1352   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1353   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1354                                   ConstantZero, "isneg");
1355   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1356     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1357                              Constant::getNullValue(FieldMallocs[i]->getType()),
1358                                "isnull");
1359     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1360   }
1361
1362   // Split the basic block at the old malloc.
1363   BasicBlock *OrigBB = CI->getParent();
1364   BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1365
1366   // Create the block to check the first condition.  Put all these blocks at the
1367   // end of the function as they are unlikely to be executed.
1368   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1369                                                 "malloc_ret_null",
1370                                                 OrigBB->getParent());
1371
1372   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1373   // branch on RunningOr.
1374   OrigBB->getTerminator()->eraseFromParent();
1375   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1376
1377   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1378   // pointer, because some may be null while others are not.
1379   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1380     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1381     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1382                               Constant::getNullValue(GVVal->getType()),
1383                               "tmp");
1384     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1385                                                OrigBB->getParent());
1386     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1387                                                OrigBB->getParent());
1388     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1389                                          Cmp, NullPtrBlock);
1390
1391     // Fill in FreeBlock.
1392     CallInst::CreateFree(GVVal, BI);
1393     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1394                   FreeBlock);
1395     BranchInst::Create(NextBlock, FreeBlock);
1396
1397     NullPtrBlock = NextBlock;
1398   }
1399
1400   BranchInst::Create(ContBB, NullPtrBlock);
1401
1402   // CI is no longer needed, remove it.
1403   CI->eraseFromParent();
1404
1405   /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1406   /// update all uses of the load, keep track of what scalarized loads are
1407   /// inserted for a given load.
1408   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1409   InsertedScalarizedValues[GV] = FieldGlobals;
1410
1411   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1412
1413   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1414   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1415   // of the per-field globals instead.
1416   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1417     Instruction *User = cast<Instruction>(*UI++);
1418
1419     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1420       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1421       continue;
1422     }
1423
1424     // Must be a store of null.
1425     StoreInst *SI = cast<StoreInst>(User);
1426     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1427            "Unexpected heap-sra user!");
1428
1429     // Insert a store of null into each global.
1430     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1431       const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1432       Constant *Null = Constant::getNullValue(PT->getElementType());
1433       new StoreInst(Null, FieldGlobals[i], SI);
1434     }
1435     // Erase the original store.
1436     SI->eraseFromParent();
1437   }
1438
1439   // While we have PHIs that are interesting to rewrite, do it.
1440   while (!PHIsToRewrite.empty()) {
1441     PHINode *PN = PHIsToRewrite.back().first;
1442     unsigned FieldNo = PHIsToRewrite.back().second;
1443     PHIsToRewrite.pop_back();
1444     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1445     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1446
1447     // Add all the incoming values.  This can materialize more phis.
1448     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1449       Value *InVal = PN->getIncomingValue(i);
1450       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1451                                PHIsToRewrite);
1452       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1453     }
1454   }
1455
1456   // Drop all inter-phi links and any loads that made it this far.
1457   for (DenseMap<Value*, std::vector<Value*> >::iterator
1458        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1459        I != E; ++I) {
1460     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1461       PN->dropAllReferences();
1462     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1463       LI->dropAllReferences();
1464   }
1465
1466   // Delete all the phis and loads now that inter-references are dead.
1467   for (DenseMap<Value*, std::vector<Value*> >::iterator
1468        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1469        I != E; ++I) {
1470     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1471       PN->eraseFromParent();
1472     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1473       LI->eraseFromParent();
1474   }
1475
1476   // The old global is now dead, remove it.
1477   GV->eraseFromParent();
1478
1479   ++NumHeapSRA;
1480   return cast<GlobalVariable>(FieldGlobals[0]);
1481 }
1482
1483 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1484 /// pointer global variable with a single value stored it that is a malloc or
1485 /// cast of malloc.
1486 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1487                                                CallInst *CI,
1488                                                const Type *AllocTy,
1489                                                Module::global_iterator &GVI,
1490                                                TargetData *TD) {
1491   if (!TD)
1492     return false;
1493
1494   // If this is a malloc of an abstract type, don't touch it.
1495   if (!AllocTy->isSized())
1496     return false;
1497
1498   // We can't optimize this global unless all uses of it are *known* to be
1499   // of the malloc value, not of the null initializer value (consider a use
1500   // that compares the global's value against zero to see if the malloc has
1501   // been reached).  To do this, we check to see if all uses of the global
1502   // would trap if the global were null: this proves that they must all
1503   // happen after the malloc.
1504   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1505     return false;
1506
1507   // We can't optimize this if the malloc itself is used in a complex way,
1508   // for example, being stored into multiple globals.  This allows the
1509   // malloc to be stored into the specified global, loaded setcc'd, and
1510   // GEP'd.  These are all things we could transform to using the global
1511   // for.
1512   SmallPtrSet<const PHINode*, 8> PHIs;
1513   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1514     return false;
1515
1516   // If we have a global that is only initialized with a fixed size malloc,
1517   // transform the program to use global memory instead of malloc'd memory.
1518   // This eliminates dynamic allocation, avoids an indirection accessing the
1519   // data, and exposes the resultant global to further GlobalOpt.
1520   // We cannot optimize the malloc if we cannot determine malloc array size.
1521   Value *NElems = getMallocArraySize(CI, TD, true);
1522   if (!NElems)
1523     return false;
1524
1525   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1526     // Restrict this transformation to only working on small allocations
1527     // (2048 bytes currently), as we don't want to introduce a 16M global or
1528     // something.
1529     if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1530       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1531       return true;
1532     }
1533
1534   // If the allocation is an array of structures, consider transforming this
1535   // into multiple malloc'd arrays, one for each field.  This is basically
1536   // SRoA for malloc'd memory.
1537
1538   // If this is an allocation of a fixed size array of structs, analyze as a
1539   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1540   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1541     if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1542       AllocTy = AT->getElementType();
1543
1544   const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1545   if (!AllocSTy)
1546     return false;
1547
1548   // This the structure has an unreasonable number of fields, leave it
1549   // alone.
1550   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1551       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1552
1553     // If this is a fixed size array, transform the Malloc to be an alloc of
1554     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1555     if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1556       const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1557       unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1558       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1559       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1560       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1561                                                    AllocSize, NumElements,
1562                                                    0, CI->getName());
1563       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1564       CI->replaceAllUsesWith(Cast);
1565       CI->eraseFromParent();
1566       CI = dyn_cast<BitCastInst>(Malloc) ?
1567         extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1568     }
1569
1570     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1571     return true;
1572   }
1573
1574   return false;
1575 }
1576
1577 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1578 // that only one value (besides its initializer) is ever stored to the global.
1579 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1580                                      Module::global_iterator &GVI,
1581                                      TargetData *TD) {
1582   // Ignore no-op GEPs and bitcasts.
1583   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1584
1585   // If we are dealing with a pointer global that is initialized to null and
1586   // only has one (non-null) value stored into it, then we can optimize any
1587   // users of the loaded value (often calls and loads) that would trap if the
1588   // value was null.
1589   if (GV->getInitializer()->getType()->isPointerTy() &&
1590       GV->getInitializer()->isNullValue()) {
1591     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1592       if (GV->getInitializer()->getType() != SOVC->getType())
1593         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1594
1595       // Optimize away any trapping uses of the loaded value.
1596       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1597         return true;
1598     } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1599       const Type* MallocType = getMallocAllocatedType(CI);
1600       if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1601                                                            GVI, TD))
1602         return true;
1603     }
1604   }
1605
1606   return false;
1607 }
1608
1609 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1610 /// two values ever stored into GV are its initializer and OtherVal.  See if we
1611 /// can shrink the global into a boolean and select between the two values
1612 /// whenever it is used.  This exposes the values to other scalar optimizations.
1613 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1614   const Type *GVElType = GV->getType()->getElementType();
1615
1616   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1617   // an FP value, pointer or vector, don't do this optimization because a select
1618   // between them is very expensive and unlikely to lead to later
1619   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1620   // where v1 and v2 both require constant pool loads, a big loss.
1621   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1622       GVElType->isFloatingPointTy() ||
1623       GVElType->isPointerTy() || GVElType->isVectorTy())
1624     return false;
1625
1626   // Walk the use list of the global seeing if all the uses are load or store.
1627   // If there is anything else, bail out.
1628   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1629     User *U = *I;
1630     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1631       return false;
1632   }
1633
1634   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1635
1636   // Create the new global, initializing it to false.
1637   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1638                                              false,
1639                                              GlobalValue::InternalLinkage,
1640                                         ConstantInt::getFalse(GV->getContext()),
1641                                              GV->getName()+".b",
1642                                              GV->isThreadLocal());
1643   GV->getParent()->getGlobalList().insert(GV, NewGV);
1644
1645   Constant *InitVal = GV->getInitializer();
1646   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1647          "No reason to shrink to bool!");
1648
1649   // If initialized to zero and storing one into the global, we can use a cast
1650   // instead of a select to synthesize the desired value.
1651   bool IsOneZero = false;
1652   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1653     IsOneZero = InitVal->isNullValue() && CI->isOne();
1654
1655   while (!GV->use_empty()) {
1656     Instruction *UI = cast<Instruction>(GV->use_back());
1657     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1658       // Change the store into a boolean store.
1659       bool StoringOther = SI->getOperand(0) == OtherVal;
1660       // Only do this if we weren't storing a loaded value.
1661       Value *StoreVal;
1662       if (StoringOther || SI->getOperand(0) == InitVal)
1663         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1664                                     StoringOther);
1665       else {
1666         // Otherwise, we are storing a previously loaded copy.  To do this,
1667         // change the copy from copying the original value to just copying the
1668         // bool.
1669         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1670
1671         // If we've already replaced the input, StoredVal will be a cast or
1672         // select instruction.  If not, it will be a load of the original
1673         // global.
1674         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1675           assert(LI->getOperand(0) == GV && "Not a copy!");
1676           // Insert a new load, to preserve the saved value.
1677           StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1678         } else {
1679           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1680                  "This is not a form that we understand!");
1681           StoreVal = StoredVal->getOperand(0);
1682           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1683         }
1684       }
1685       new StoreInst(StoreVal, NewGV, SI);
1686     } else {
1687       // Change the load into a load of bool then a select.
1688       LoadInst *LI = cast<LoadInst>(UI);
1689       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1690       Value *NSI;
1691       if (IsOneZero)
1692         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1693       else
1694         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1695       NSI->takeName(LI);
1696       LI->replaceAllUsesWith(NSI);
1697     }
1698     UI->eraseFromParent();
1699   }
1700
1701   GV->eraseFromParent();
1702   return true;
1703 }
1704
1705
1706 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1707 /// it if possible.  If we make a change, return true.
1708 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1709                               Module::global_iterator &GVI) {
1710   if (!GV->hasLocalLinkage())
1711     return false;
1712
1713   // Do more involved optimizations if the global is internal.
1714   GV->removeDeadConstantUsers();
1715
1716   if (GV->use_empty()) {
1717     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1718     GV->eraseFromParent();
1719     ++NumDeleted;
1720     return true;
1721   }
1722
1723   SmallPtrSet<const PHINode*, 16> PHIUsers;
1724   GlobalStatus GS;
1725
1726   if (AnalyzeGlobal(GV, GS, PHIUsers))
1727     return false;
1728
1729   if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1730     GV->setUnnamedAddr(true);
1731     NumUnnamed++;
1732   }
1733
1734   if (GV->isConstant() || !GV->hasInitializer())
1735     return false;
1736
1737   return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1738 }
1739
1740 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1741 /// it if possible.  If we make a change, return true.
1742 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1743                                       Module::global_iterator &GVI,
1744                                       const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1745                                       const GlobalStatus &GS) {
1746   // If this is a first class global and has only one accessing function
1747   // and this function is main (which we know is not recursive we can make
1748   // this global a local variable) we replace the global with a local alloca
1749   // in this function.
1750   //
1751   // NOTE: It doesn't make sense to promote non single-value types since we
1752   // are just replacing static memory to stack memory.
1753   //
1754   // If the global is in different address space, don't bring it to stack.
1755   if (!GS.HasMultipleAccessingFunctions &&
1756       GS.AccessingFunction && !GS.HasNonInstructionUser &&
1757       GV->getType()->getElementType()->isSingleValueType() &&
1758       GS.AccessingFunction->getName() == "main" &&
1759       GS.AccessingFunction->hasExternalLinkage() &&
1760       GV->getType()->getAddressSpace() == 0) {
1761     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1762     Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1763                                                    ->getEntryBlock().begin());
1764     const Type* ElemTy = GV->getType()->getElementType();
1765     // FIXME: Pass Global's alignment when globals have alignment
1766     AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1767     if (!isa<UndefValue>(GV->getInitializer()))
1768       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1769
1770     GV->replaceAllUsesWith(Alloca);
1771     GV->eraseFromParent();
1772     ++NumLocalized;
1773     return true;
1774   }
1775
1776   // If the global is never loaded (but may be stored to), it is dead.
1777   // Delete it now.
1778   if (!GS.isLoaded) {
1779     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1780
1781     // Delete any stores we can find to the global.  We may not be able to
1782     // make it completely dead though.
1783     bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1784
1785     // If the global is dead now, delete it.
1786     if (GV->use_empty()) {
1787       GV->eraseFromParent();
1788       ++NumDeleted;
1789       Changed = true;
1790     }
1791     return Changed;
1792
1793   } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1794     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1795     GV->setConstant(true);
1796
1797     // Clean up any obviously simplifiable users now.
1798     CleanupConstantGlobalUsers(GV, GV->getInitializer());
1799
1800     // If the global is dead now, just nuke it.
1801     if (GV->use_empty()) {
1802       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1803             << "all users and delete global!\n");
1804       GV->eraseFromParent();
1805       ++NumDeleted;
1806     }
1807
1808     ++NumMarked;
1809     return true;
1810   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1811     if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1812       if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1813         GVI = FirstNewGV;  // Don't skip the newly produced globals!
1814         return true;
1815       }
1816   } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1817     // If the initial value for the global was an undef value, and if only
1818     // one other value was stored into it, we can just change the
1819     // initializer to be the stored value, then delete all stores to the
1820     // global.  This allows us to mark it constant.
1821     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1822       if (isa<UndefValue>(GV->getInitializer())) {
1823         // Change the initial value here.
1824         GV->setInitializer(SOVConstant);
1825
1826         // Clean up any obviously simplifiable users now.
1827         CleanupConstantGlobalUsers(GV, GV->getInitializer());
1828
1829         if (GV->use_empty()) {
1830           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1831                 << "simplify all users and delete global!\n");
1832           GV->eraseFromParent();
1833           ++NumDeleted;
1834         } else {
1835           GVI = GV;
1836         }
1837         ++NumSubstitute;
1838         return true;
1839       }
1840
1841     // Try to optimize globals based on the knowledge that only one value
1842     // (besides its initializer) is ever stored to the global.
1843     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1844                                  getAnalysisIfAvailable<TargetData>()))
1845       return true;
1846
1847     // Otherwise, if the global was not a boolean, we can shrink it to be a
1848     // boolean.
1849     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1850       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1851         ++NumShrunkToBool;
1852         return true;
1853       }
1854   }
1855
1856   return false;
1857 }
1858
1859 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1860 /// function, changing them to FastCC.
1861 static void ChangeCalleesToFastCall(Function *F) {
1862   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1863     CallSite User(cast<Instruction>(*UI));
1864     User.setCallingConv(CallingConv::Fast);
1865   }
1866 }
1867
1868 static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1869   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1870     if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1871       continue;
1872
1873     // There can be only one.
1874     return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1875   }
1876
1877   return Attrs;
1878 }
1879
1880 static void RemoveNestAttribute(Function *F) {
1881   F->setAttributes(StripNest(F->getAttributes()));
1882   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1883     CallSite User(cast<Instruction>(*UI));
1884     User.setAttributes(StripNest(User.getAttributes()));
1885   }
1886 }
1887
1888 bool GlobalOpt::OptimizeFunctions(Module &M) {
1889   bool Changed = false;
1890   // Optimize functions.
1891   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1892     Function *F = FI++;
1893     // Functions without names cannot be referenced outside this module.
1894     if (!F->hasName() && !F->isDeclaration())
1895       F->setLinkage(GlobalValue::InternalLinkage);
1896     F->removeDeadConstantUsers();
1897     if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1898       F->eraseFromParent();
1899       Changed = true;
1900       ++NumFnDeleted;
1901     } else if (F->hasLocalLinkage()) {
1902       if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1903           !F->hasAddressTaken()) {
1904         // If this function has C calling conventions, is not a varargs
1905         // function, and is only called directly, promote it to use the Fast
1906         // calling convention.
1907         F->setCallingConv(CallingConv::Fast);
1908         ChangeCalleesToFastCall(F);
1909         ++NumFastCallFns;
1910         Changed = true;
1911       }
1912
1913       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1914           !F->hasAddressTaken()) {
1915         // The function is not used by a trampoline intrinsic, so it is safe
1916         // to remove the 'nest' attribute.
1917         RemoveNestAttribute(F);
1918         ++NumNestRemoved;
1919         Changed = true;
1920       }
1921     }
1922   }
1923   return Changed;
1924 }
1925
1926 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1927   bool Changed = false;
1928   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1929        GVI != E; ) {
1930     GlobalVariable *GV = GVI++;
1931     // Global variables without names cannot be referenced outside this module.
1932     if (!GV->hasName() && !GV->isDeclaration())
1933       GV->setLinkage(GlobalValue::InternalLinkage);
1934     // Simplify the initializer.
1935     if (GV->hasInitializer())
1936       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1937         TargetData *TD = getAnalysisIfAvailable<TargetData>();
1938         Constant *New = ConstantFoldConstantExpression(CE, TD);
1939         if (New && New != CE)
1940           GV->setInitializer(New);
1941       }
1942
1943     Changed |= ProcessGlobal(GV, GVI);
1944   }
1945   return Changed;
1946 }
1947
1948 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
1949 /// initializers have an init priority of 65535.
1950 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1951   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1952   if (GV == 0) return 0;
1953   
1954   // Verify that the initializer is simple enough for us to handle. We are
1955   // only allowed to optimize the initializer if it is unique.
1956   if (!GV->hasUniqueInitializer()) return 0;
1957
1958   if (isa<ConstantAggregateZero>(GV->getInitializer()))
1959     return GV;
1960   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1961
1962   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1963     if (isa<ConstantAggregateZero>(*i))
1964       continue;
1965     ConstantStruct *CS = cast<ConstantStruct>(*i);
1966     if (isa<ConstantPointerNull>(CS->getOperand(1)))
1967       continue;
1968
1969     // Must have a function or null ptr.
1970     if (!isa<Function>(CS->getOperand(1)))
1971       return 0;
1972
1973     // Init priority must be standard.
1974     ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
1975     if (CI->getZExtValue() != 65535)
1976       return 0;
1977   }
1978
1979   return GV;
1980 }
1981
1982 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1983 /// return a list of the functions and null terminator as a vector.
1984 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1985   if (GV->getInitializer()->isNullValue())
1986     return std::vector<Function*>();
1987   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1988   std::vector<Function*> Result;
1989   Result.reserve(CA->getNumOperands());
1990   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1991     ConstantStruct *CS = cast<ConstantStruct>(*i);
1992     Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1993   }
1994   return Result;
1995 }
1996
1997 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1998 /// specified array, returning the new global to use.
1999 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2000                                           const std::vector<Function*> &Ctors) {
2001   // If we made a change, reassemble the initializer list.
2002   Constant *CSVals[2];
2003   CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2004   CSVals[1] = 0;
2005
2006   const StructType *StructTy =
2007     cast <StructType>(
2008     cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2009
2010   // Create the new init list.
2011   std::vector<Constant*> CAList;
2012   for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2013     if (Ctors[i]) {
2014       CSVals[1] = Ctors[i];
2015     } else {
2016       const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2017                                           false);
2018       const PointerType *PFTy = PointerType::getUnqual(FTy);
2019       CSVals[1] = Constant::getNullValue(PFTy);
2020       CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2021                                    0x7fffffff);
2022     }
2023     CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2024   }
2025
2026   // Create the array initializer.
2027   Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2028                                                    CAList.size()), CAList);
2029
2030   // If we didn't change the number of elements, don't create a new GV.
2031   if (CA->getType() == GCL->getInitializer()->getType()) {
2032     GCL->setInitializer(CA);
2033     return GCL;
2034   }
2035
2036   // Create the new global and insert it next to the existing list.
2037   GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2038                                            GCL->getLinkage(), CA, "",
2039                                            GCL->isThreadLocal());
2040   GCL->getParent()->getGlobalList().insert(GCL, NGV);
2041   NGV->takeName(GCL);
2042
2043   // Nuke the old list, replacing any uses with the new one.
2044   if (!GCL->use_empty()) {
2045     Constant *V = NGV;
2046     if (V->getType() != GCL->getType())
2047       V = ConstantExpr::getBitCast(V, GCL->getType());
2048     GCL->replaceAllUsesWith(V);
2049   }
2050   GCL->eraseFromParent();
2051
2052   if (Ctors.size())
2053     return NGV;
2054   else
2055     return 0;
2056 }
2057
2058
2059 static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
2060   if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2061   Constant *R = ComputedValues[V];
2062   assert(R && "Reference to an uncomputed value!");
2063   return R;
2064 }
2065
2066 static inline bool 
2067 isSimpleEnoughValueToCommit(Constant *C,
2068                             SmallPtrSet<Constant*, 8> &SimpleConstants);
2069
2070
2071 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2072 /// handled by the code generator.  We don't want to generate something like:
2073 ///   void *X = &X/42;
2074 /// because the code generator doesn't have a relocation that can handle that.
2075 ///
2076 /// This function should be called if C was not found (but just got inserted)
2077 /// in SimpleConstants to avoid having to rescan the same constants all the
2078 /// time.
2079 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2080                                    SmallPtrSet<Constant*, 8> &SimpleConstants) {
2081   // Simple integer, undef, constant aggregate zero, global addresses, etc are
2082   // all supported.
2083   if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2084       isa<GlobalValue>(C))
2085     return true;
2086   
2087   // Aggregate values are safe if all their elements are.
2088   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2089       isa<ConstantVector>(C)) {
2090     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2091       Constant *Op = cast<Constant>(C->getOperand(i));
2092       if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
2093         return false;
2094     }
2095     return true;
2096   }
2097   
2098   // We don't know exactly what relocations are allowed in constant expressions,
2099   // so we allow &global+constantoffset, which is safe and uniformly supported
2100   // across targets.
2101   ConstantExpr *CE = cast<ConstantExpr>(C);
2102   switch (CE->getOpcode()) {
2103   case Instruction::BitCast:
2104   case Instruction::IntToPtr:
2105   case Instruction::PtrToInt:
2106     // These casts are always fine if the casted value is.
2107     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2108       
2109   // GEP is fine if it is simple + constant offset.
2110   case Instruction::GetElementPtr:
2111     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2112       if (!isa<ConstantInt>(CE->getOperand(i)))
2113         return false;
2114     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2115       
2116   case Instruction::Add:
2117     // We allow simple+cst.
2118     if (!isa<ConstantInt>(CE->getOperand(1)))
2119       return false;
2120     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2121   }
2122   return false;
2123 }
2124
2125 static inline bool 
2126 isSimpleEnoughValueToCommit(Constant *C,
2127                             SmallPtrSet<Constant*, 8> &SimpleConstants) {
2128   // If we already checked this constant, we win.
2129   if (!SimpleConstants.insert(C)) return true;
2130   // Check the constant.
2131   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
2132 }
2133
2134
2135 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2136 /// enough for us to understand.  In particular, if it is a cast to anything
2137 /// other than from one pointer type to another pointer type, we punt.
2138 /// We basically just support direct accesses to globals and GEP's of
2139 /// globals.  This should be kept up to date with CommitValueTo.
2140 static bool isSimpleEnoughPointerToCommit(Constant *C) {
2141   // Conservatively, avoid aggregate types. This is because we don't
2142   // want to worry about them partially overlapping other stores.
2143   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2144     return false;
2145
2146   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2147     // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2148     // external globals.
2149     return GV->hasUniqueInitializer();
2150
2151   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2152     // Handle a constantexpr gep.
2153     if (CE->getOpcode() == Instruction::GetElementPtr &&
2154         isa<GlobalVariable>(CE->getOperand(0)) &&
2155         cast<GEPOperator>(CE)->isInBounds()) {
2156       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2157       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2158       // external globals.
2159       if (!GV->hasUniqueInitializer())
2160         return false;
2161
2162       // The first index must be zero.
2163       ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2164       if (!CI || !CI->isZero()) return false;
2165
2166       // The remaining indices must be compile-time known integers within the
2167       // notional bounds of the corresponding static array types.
2168       if (!CE->isGEPWithNoNotionalOverIndexing())
2169         return false;
2170
2171       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2172     
2173     // A constantexpr bitcast from a pointer to another pointer is a no-op,
2174     // and we know how to evaluate it by moving the bitcast from the pointer
2175     // operand to the value operand.
2176     } else if (CE->getOpcode() == Instruction::BitCast &&
2177                isa<GlobalVariable>(CE->getOperand(0))) {
2178       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2179       // external globals.
2180       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2181     }
2182   }
2183   
2184   return false;
2185 }
2186
2187 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2188 /// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2189 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2190 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2191                                    ConstantExpr *Addr, unsigned OpNo) {
2192   // Base case of the recursion.
2193   if (OpNo == Addr->getNumOperands()) {
2194     assert(Val->getType() == Init->getType() && "Type mismatch!");
2195     return Val;
2196   }
2197
2198   std::vector<Constant*> Elts;
2199   if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2200
2201     // Break up the constant into its elements.
2202     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2203       for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2204         Elts.push_back(cast<Constant>(*i));
2205     } else if (isa<ConstantAggregateZero>(Init)) {
2206       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2207         Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2208     } else if (isa<UndefValue>(Init)) {
2209       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2210         Elts.push_back(UndefValue::get(STy->getElementType(i)));
2211     } else {
2212       llvm_unreachable("This code is out of sync with "
2213              " ConstantFoldLoadThroughGEPConstantExpr");
2214     }
2215
2216     // Replace the element that we are supposed to.
2217     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2218     unsigned Idx = CU->getZExtValue();
2219     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2220     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2221
2222     // Return the modified struct.
2223     return ConstantStruct::get(STy, Elts);
2224   }
2225   
2226   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2227   const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2228
2229   uint64_t NumElts;
2230   if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2231     NumElts = ATy->getNumElements();
2232   else
2233     NumElts = cast<VectorType>(InitTy)->getNumElements();
2234
2235   // Break up the array into elements.
2236   if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2237     for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2238       Elts.push_back(cast<Constant>(*i));
2239   } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2240     for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2241       Elts.push_back(cast<Constant>(*i));
2242   } else if (isa<ConstantAggregateZero>(Init)) {
2243     Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2244   } else {
2245     assert(isa<UndefValue>(Init) && "This code is out of sync with "
2246            " ConstantFoldLoadThroughGEPConstantExpr");
2247     Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2248   }
2249
2250   assert(CI->getZExtValue() < NumElts);
2251   Elts[CI->getZExtValue()] =
2252     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2253
2254   if (Init->getType()->isArrayTy())
2255     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2256   return ConstantVector::get(Elts);
2257 }
2258
2259 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2260 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2261 static void CommitValueTo(Constant *Val, Constant *Addr) {
2262   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2263     assert(GV->hasInitializer());
2264     GV->setInitializer(Val);
2265     return;
2266   }
2267
2268   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2269   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2270   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2271 }
2272
2273 /// ComputeLoadResult - Return the value that would be computed by a load from
2274 /// P after the stores reflected by 'memory' have been performed.  If we can't
2275 /// decide, return null.
2276 static Constant *ComputeLoadResult(Constant *P,
2277                                 const DenseMap<Constant*, Constant*> &Memory) {
2278   // If this memory location has been recently stored, use the stored value: it
2279   // is the most up-to-date.
2280   DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2281   if (I != Memory.end()) return I->second;
2282
2283   // Access it.
2284   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2285     if (GV->hasDefinitiveInitializer())
2286       return GV->getInitializer();
2287     return 0;
2288   }
2289
2290   // Handle a constantexpr getelementptr.
2291   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2292     if (CE->getOpcode() == Instruction::GetElementPtr &&
2293         isa<GlobalVariable>(CE->getOperand(0))) {
2294       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2295       if (GV->hasDefinitiveInitializer())
2296         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2297     }
2298
2299   return 0;  // don't know how to evaluate.
2300 }
2301
2302 /// EvaluateFunction - Evaluate a call to function F, returning true if
2303 /// successful, false if we can't evaluate it.  ActualArgs contains the formal
2304 /// arguments for the function.
2305 static bool EvaluateFunction(Function *F, Constant *&RetVal,
2306                              const SmallVectorImpl<Constant*> &ActualArgs,
2307                              std::vector<Function*> &CallStack,
2308                              DenseMap<Constant*, Constant*> &MutatedMemory,
2309                              std::vector<GlobalVariable*> &AllocaTmps,
2310                              SmallPtrSet<Constant*, 8> &SimpleConstants,
2311                              const TargetData *TD) {
2312   // Check to see if this function is already executing (recursion).  If so,
2313   // bail out.  TODO: we might want to accept limited recursion.
2314   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2315     return false;
2316
2317   CallStack.push_back(F);
2318
2319   /// Values - As we compute SSA register values, we store their contents here.
2320   DenseMap<Value*, Constant*> Values;
2321
2322   // Initialize arguments to the incoming values specified.
2323   unsigned ArgNo = 0;
2324   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2325        ++AI, ++ArgNo)
2326     Values[AI] = ActualArgs[ArgNo];
2327
2328   /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2329   /// we can only evaluate any one basic block at most once.  This set keeps
2330   /// track of what we have executed so we can detect recursive cases etc.
2331   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2332
2333   // CurInst - The current instruction we're evaluating.
2334   BasicBlock::iterator CurInst = F->begin()->begin();
2335
2336   // This is the main evaluation loop.
2337   while (1) {
2338     Constant *InstResult = 0;
2339
2340     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2341       if (SI->isVolatile()) return false;  // no volatile accesses.
2342       Constant *Ptr = getVal(Values, SI->getOperand(1));
2343       if (!isSimpleEnoughPointerToCommit(Ptr))
2344         // If this is too complex for us to commit, reject it.
2345         return false;
2346       
2347       Constant *Val = getVal(Values, SI->getOperand(0));
2348
2349       // If this might be too difficult for the backend to handle (e.g. the addr
2350       // of one global variable divided by another) then we can't commit it.
2351       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
2352         return false;
2353         
2354       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2355         if (CE->getOpcode() == Instruction::BitCast) {
2356           // If we're evaluating a store through a bitcast, then we need
2357           // to pull the bitcast off the pointer type and push it onto the
2358           // stored value.
2359           Ptr = CE->getOperand(0);
2360           
2361           const Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
2362           
2363           // In order to push the bitcast onto the stored value, a bitcast
2364           // from NewTy to Val's type must be legal.  If it's not, we can try
2365           // introspecting NewTy to find a legal conversion.
2366           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2367             // If NewTy is a struct, we can convert the pointer to the struct
2368             // into a pointer to its first member.
2369             // FIXME: This could be extended to support arrays as well.
2370             if (const StructType *STy = dyn_cast<StructType>(NewTy)) {
2371               NewTy = STy->getTypeAtIndex(0U);
2372
2373               const IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
2374               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2375               Constant * const IdxList[] = {IdxZero, IdxZero};
2376
2377               Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList, 2);
2378             
2379             // If we can't improve the situation by introspecting NewTy,
2380             // we have to give up.
2381             } else {
2382               return 0;
2383             }
2384           }
2385           
2386           // If we found compatible types, go ahead and push the bitcast
2387           // onto the stored value.
2388           Val = ConstantExpr::getBitCast(Val, NewTy);
2389         }
2390           
2391       MutatedMemory[Ptr] = Val;
2392     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2393       InstResult = ConstantExpr::get(BO->getOpcode(),
2394                                      getVal(Values, BO->getOperand(0)),
2395                                      getVal(Values, BO->getOperand(1)));
2396     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2397       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2398                                             getVal(Values, CI->getOperand(0)),
2399                                             getVal(Values, CI->getOperand(1)));
2400     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2401       InstResult = ConstantExpr::getCast(CI->getOpcode(),
2402                                          getVal(Values, CI->getOperand(0)),
2403                                          CI->getType());
2404     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2405       InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2406                                            getVal(Values, SI->getOperand(1)),
2407                                            getVal(Values, SI->getOperand(2)));
2408     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2409       Constant *P = getVal(Values, GEP->getOperand(0));
2410       SmallVector<Constant*, 8> GEPOps;
2411       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2412            i != e; ++i)
2413         GEPOps.push_back(getVal(Values, *i));
2414       InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2415           ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2416           ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2417     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2418       if (LI->isVolatile()) return false;  // no volatile accesses.
2419       InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2420                                      MutatedMemory);
2421       if (InstResult == 0) return false; // Could not evaluate load.
2422     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2423       if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2424       const Type *Ty = AI->getType()->getElementType();
2425       AllocaTmps.push_back(new GlobalVariable(Ty, false,
2426                                               GlobalValue::InternalLinkage,
2427                                               UndefValue::get(Ty),
2428                                               AI->getName()));
2429       InstResult = AllocaTmps.back();
2430     } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2431
2432       // Debug info can safely be ignored here.
2433       if (isa<DbgInfoIntrinsic>(CI)) {
2434         ++CurInst;
2435         continue;
2436       }
2437
2438       // Cannot handle inline asm.
2439       if (isa<InlineAsm>(CI->getCalledValue())) return false;
2440
2441       if (MemSetInst *MSI = dyn_cast<MemSetInst>(CI)) {
2442         if (MSI->isVolatile()) return false;
2443         Constant *Ptr = getVal(Values, MSI->getDest());
2444         Constant *Val = getVal(Values, MSI->getValue());
2445         Constant *DestVal = ComputeLoadResult(getVal(Values, Ptr),
2446                                               MutatedMemory);
2447         if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2448           // This memset is a no-op.
2449           ++CurInst;
2450           continue;
2451         }
2452         return false;
2453       }
2454
2455       // Resolve function pointers.
2456       Function *Callee = dyn_cast<Function>(getVal(Values,
2457                                                    CI->getCalledValue()));
2458       if (!Callee) return false;  // Cannot resolve.
2459
2460       SmallVector<Constant*, 8> Formals;
2461       CallSite CS(CI);
2462       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2463            i != e; ++i)
2464         Formals.push_back(getVal(Values, *i));
2465
2466       if (Callee->isDeclaration()) {
2467         // If this is a function we can constant fold, do it.
2468         if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2469                                            Formals.size())) {
2470           InstResult = C;
2471         } else {
2472           return false;
2473         }
2474       } else {
2475         if (Callee->getFunctionType()->isVarArg())
2476           return false;
2477
2478         Constant *RetVal;
2479         // Execute the call, if successful, use the return value.
2480         if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2481                               MutatedMemory, AllocaTmps, SimpleConstants, TD))
2482           return false;
2483         InstResult = RetVal;
2484       }
2485     } else if (isa<TerminatorInst>(CurInst)) {
2486       BasicBlock *NewBB = 0;
2487       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2488         if (BI->isUnconditional()) {
2489           NewBB = BI->getSuccessor(0);
2490         } else {
2491           ConstantInt *Cond =
2492             dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2493           if (!Cond) return false;  // Cannot determine.
2494
2495           NewBB = BI->getSuccessor(!Cond->getZExtValue());
2496         }
2497       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2498         ConstantInt *Val =
2499           dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2500         if (!Val) return false;  // Cannot determine.
2501         NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2502       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2503         Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2504         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2505           NewBB = BA->getBasicBlock();
2506         else
2507           return false;  // Cannot determine.
2508       } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2509         if (RI->getNumOperands())
2510           RetVal = getVal(Values, RI->getOperand(0));
2511
2512         CallStack.pop_back();  // return from fn.
2513         return true;  // We succeeded at evaluating this ctor!
2514       } else {
2515         // invoke, unwind, unreachable.
2516         return false;  // Cannot handle this terminator.
2517       }
2518
2519       // Okay, we succeeded in evaluating this control flow.  See if we have
2520       // executed the new block before.  If so, we have a looping function,
2521       // which we cannot evaluate in reasonable time.
2522       if (!ExecutedBlocks.insert(NewBB))
2523         return false;  // looped!
2524
2525       // Okay, we have never been in this block before.  Check to see if there
2526       // are any PHI nodes.  If so, evaluate them with information about where
2527       // we came from.
2528       BasicBlock *OldBB = CurInst->getParent();
2529       CurInst = NewBB->begin();
2530       PHINode *PN;
2531       for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2532         Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2533
2534       // Do NOT increment CurInst.  We know that the terminator had no value.
2535       continue;
2536     } else {
2537       // Did not know how to evaluate this!
2538       return false;
2539     }
2540
2541     if (!CurInst->use_empty()) {
2542       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2543         InstResult = ConstantFoldConstantExpression(CE, TD);
2544       
2545       Values[CurInst] = InstResult;
2546     }
2547
2548     // Advance program counter.
2549     ++CurInst;
2550   }
2551 }
2552
2553 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2554 /// we can.  Return true if we can, false otherwise.
2555 static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
2556   /// MutatedMemory - For each store we execute, we update this map.  Loads
2557   /// check this to get the most up-to-date value.  If evaluation is successful,
2558   /// this state is committed to the process.
2559   DenseMap<Constant*, Constant*> MutatedMemory;
2560
2561   /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2562   /// to represent its body.  This vector is needed so we can delete the
2563   /// temporary globals when we are done.
2564   std::vector<GlobalVariable*> AllocaTmps;
2565
2566   /// CallStack - This is used to detect recursion.  In pathological situations
2567   /// we could hit exponential behavior, but at least there is nothing
2568   /// unbounded.
2569   std::vector<Function*> CallStack;
2570
2571   /// SimpleConstants - These are constants we have checked and know to be
2572   /// simple enough to live in a static initializer of a global.
2573   SmallPtrSet<Constant*, 8> SimpleConstants;
2574   
2575   // Call the function.
2576   Constant *RetValDummy;
2577   bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2578                                       SmallVector<Constant*, 0>(), CallStack,
2579                                       MutatedMemory, AllocaTmps,
2580                                       SimpleConstants, TD);
2581   
2582   if (EvalSuccess) {
2583     // We succeeded at evaluation: commit the result.
2584     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2585           << F->getName() << "' to " << MutatedMemory.size()
2586           << " stores.\n");
2587     for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2588          E = MutatedMemory.end(); I != E; ++I)
2589       CommitValueTo(I->second, I->first);
2590   }
2591
2592   // At this point, we are done interpreting.  If we created any 'alloca'
2593   // temporaries, release them now.
2594   while (!AllocaTmps.empty()) {
2595     GlobalVariable *Tmp = AllocaTmps.back();
2596     AllocaTmps.pop_back();
2597
2598     // If there are still users of the alloca, the program is doing something
2599     // silly, e.g. storing the address of the alloca somewhere and using it
2600     // later.  Since this is undefined, we'll just make it be null.
2601     if (!Tmp->use_empty())
2602       Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2603     delete Tmp;
2604   }
2605
2606   return EvalSuccess;
2607 }
2608
2609
2610
2611 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2612 /// Return true if anything changed.
2613 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2614   std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2615   bool MadeChange = false;
2616   if (Ctors.empty()) return false;
2617
2618   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
2619   // Loop over global ctors, optimizing them when we can.
2620   for (unsigned i = 0; i != Ctors.size(); ++i) {
2621     Function *F = Ctors[i];
2622     // Found a null terminator in the middle of the list, prune off the rest of
2623     // the list.
2624     if (F == 0) {
2625       if (i != Ctors.size()-1) {
2626         Ctors.resize(i+1);
2627         MadeChange = true;
2628       }
2629       break;
2630     }
2631
2632     // We cannot simplify external ctor functions.
2633     if (F->empty()) continue;
2634
2635     // If we can evaluate the ctor at compile time, do.
2636     if (EvaluateStaticConstructor(F, TD)) {
2637       Ctors.erase(Ctors.begin()+i);
2638       MadeChange = true;
2639       --i;
2640       ++NumCtorsEvaluated;
2641       continue;
2642     }
2643   }
2644
2645   if (!MadeChange) return false;
2646
2647   GCL = InstallGlobalCtors(GCL, Ctors);
2648   return true;
2649 }
2650
2651 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2652   bool Changed = false;
2653
2654   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2655        I != E;) {
2656     Module::alias_iterator J = I++;
2657     // Aliases without names cannot be referenced outside this module.
2658     if (!J->hasName() && !J->isDeclaration())
2659       J->setLinkage(GlobalValue::InternalLinkage);
2660     // If the aliasee may change at link time, nothing can be done - bail out.
2661     if (J->mayBeOverridden())
2662       continue;
2663
2664     Constant *Aliasee = J->getAliasee();
2665     GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2666     Target->removeDeadConstantUsers();
2667     bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2668
2669     // Make all users of the alias use the aliasee instead.
2670     if (!J->use_empty()) {
2671       J->replaceAllUsesWith(Aliasee);
2672       ++NumAliasesResolved;
2673       Changed = true;
2674     }
2675
2676     // If the alias is externally visible, we may still be able to simplify it.
2677     if (!J->hasLocalLinkage()) {
2678       // If the aliasee has internal linkage, give it the name and linkage
2679       // of the alias, and delete the alias.  This turns:
2680       //   define internal ... @f(...)
2681       //   @a = alias ... @f
2682       // into:
2683       //   define ... @a(...)
2684       if (!Target->hasLocalLinkage())
2685         continue;
2686
2687       // Do not perform the transform if multiple aliases potentially target the
2688       // aliasee. This check also ensures that it is safe to replace the section
2689       // and other attributes of the aliasee with those of the alias.
2690       if (!hasOneUse)
2691         continue;
2692
2693       // Give the aliasee the name, linkage and other attributes of the alias.
2694       Target->takeName(J);
2695       Target->setLinkage(J->getLinkage());
2696       Target->GlobalValue::copyAttributesFrom(J);
2697     }
2698
2699     // Delete the alias.
2700     M.getAliasList().erase(J);
2701     ++NumAliasesRemoved;
2702     Changed = true;
2703   }
2704
2705   return Changed;
2706 }
2707
2708 static Function *FindCXAAtExit(Module &M) {
2709   Function *Fn = M.getFunction("__cxa_atexit");
2710   
2711   if (!Fn)
2712     return 0;
2713   
2714   const FunctionType *FTy = Fn->getFunctionType();
2715   
2716   // Checking that the function has the right return type, the right number of 
2717   // parameters and that they all have pointer types should be enough.
2718   if (!FTy->getReturnType()->isIntegerTy() ||
2719       FTy->getNumParams() != 3 ||
2720       !FTy->getParamType(0)->isPointerTy() ||
2721       !FTy->getParamType(1)->isPointerTy() ||
2722       !FTy->getParamType(2)->isPointerTy())
2723     return 0;
2724
2725   return Fn;
2726 }
2727
2728 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2729 /// destructor and can therefore be eliminated.
2730 /// Note that we assume that other optimization passes have already simplified
2731 /// the code so we only look for a function with a single basic block, where
2732 /// the only allowed instructions are 'ret' or 'call' to empty C++ dtor.
2733 static bool cxxDtorIsEmpty(const Function &Fn,
2734                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2735   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2736   // nounwind, but that doesn't seem worth doing.
2737   if (Fn.isDeclaration())
2738     return false;
2739
2740   if (++Fn.begin() != Fn.end())
2741     return false;
2742
2743   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2744   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2745        I != E; ++I) {
2746     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2747       // Ignore debug intrinsics.
2748       if (isa<DbgInfoIntrinsic>(CI))
2749         continue;
2750
2751       const Function *CalledFn = CI->getCalledFunction();
2752
2753       if (!CalledFn)
2754         return false;
2755
2756       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2757
2758       // Don't treat recursive functions as empty.
2759       if (!NewCalledFunctions.insert(CalledFn))
2760         return false;
2761
2762       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2763         return false;
2764     } else if (isa<ReturnInst>(*I))
2765       return true;
2766     else
2767       return false;
2768   }
2769
2770   return false;
2771 }
2772
2773 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2774   /// Itanium C++ ABI p3.3.5:
2775   ///
2776   ///   After constructing a global (or local static) object, that will require
2777   ///   destruction on exit, a termination function is registered as follows:
2778   ///
2779   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2780   ///
2781   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2782   ///   call f(p) when DSO d is unloaded, before all such termination calls
2783   ///   registered before this one. It returns zero if registration is
2784   ///   successful, nonzero on failure.
2785
2786   // This pass will look for calls to __cxa_atexit where the function is trivial
2787   // and remove them.
2788   bool Changed = false;
2789
2790   for (Function::use_iterator I = CXAAtExitFn->use_begin(), 
2791        E = CXAAtExitFn->use_end(); I != E;) {
2792     // We're only interested in calls. Theoretically, we could handle invoke
2793     // instructions as well, but neither llvm-gcc nor clang generate invokes
2794     // to __cxa_atexit.
2795     CallInst *CI = dyn_cast<CallInst>(*I++);
2796     if (!CI)
2797       continue;
2798
2799     Function *DtorFn = 
2800       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2801     if (!DtorFn)
2802       continue;
2803
2804     SmallPtrSet<const Function *, 8> CalledFunctions;
2805     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2806       continue;
2807
2808     // Just remove the call.
2809     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2810     CI->eraseFromParent();
2811
2812     ++NumCXXDtorsRemoved;
2813
2814     Changed |= true;
2815   }
2816
2817   return Changed;
2818 }
2819
2820 bool GlobalOpt::runOnModule(Module &M) {
2821   bool Changed = false;
2822
2823   // Try to find the llvm.globalctors list.
2824   GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2825
2826   Function *CXAAtExitFn = FindCXAAtExit(M);
2827
2828   bool LocalChange = true;
2829   while (LocalChange) {
2830     LocalChange = false;
2831
2832     // Delete functions that are trivially dead, ccc -> fastcc
2833     LocalChange |= OptimizeFunctions(M);
2834
2835     // Optimize global_ctors list.
2836     if (GlobalCtors)
2837       LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2838
2839     // Optimize non-address-taken globals.
2840     LocalChange |= OptimizeGlobalVars(M);
2841
2842     // Resolve aliases, when possible.
2843     LocalChange |= OptimizeGlobalAliases(M);
2844
2845     // Try to remove trivial global destructors.
2846     if (CXAAtExitFn)
2847       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2848
2849     Changed |= LocalChange;
2850   }
2851
2852   // TODO: Move all global ctors functions to the end of the module for code
2853   // layout.
2854
2855   return Changed;
2856 }