]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/Transforms/Utils/Local.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / Transforms / Utils / Local.cpp
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/Analysis/DIBuilder.h"
29 #include "llvm/Analysis/Dominators.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/ProfileInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/CFG.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/GetElementPtrTypeIterator.h"
38 #include "llvm/Support/IRBuilder.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/ValueHandle.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
43
44 //===----------------------------------------------------------------------===//
45 //  Local constant propagation.
46 //
47
48 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
49 /// constant value, convert it into an unconditional branch to the constant
50 /// destination.  This is a nontrivial operation because the successors of this
51 /// basic block must have their PHI nodes updated.
52 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53 /// conditions and indirectbr addresses this might make dead if
54 /// DeleteDeadConditions is true.
55 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
56   TerminatorInst *T = BB->getTerminator();
57   IRBuilder<> Builder(T);
58
59   // Branch - See if we are conditional jumping on constant
60   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
61     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
62     BasicBlock *Dest1 = BI->getSuccessor(0);
63     BasicBlock *Dest2 = BI->getSuccessor(1);
64
65     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
66       // Are we branching on constant?
67       // YES.  Change to unconditional branch...
68       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
69       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
70
71       //cerr << "Function: " << T->getParent()->getParent()
72       //     << "\nRemoving branch from " << T->getParent()
73       //     << "\n\nTo: " << OldDest << endl;
74
75       // Let the basic block know that we are letting go of it.  Based on this,
76       // it will adjust it's PHI nodes.
77       OldDest->removePredecessor(BB);
78
79       // Replace the conditional branch with an unconditional one.
80       Builder.CreateBr(Destination);
81       BI->eraseFromParent();
82       return true;
83     }
84     
85     if (Dest2 == Dest1) {       // Conditional branch to same location?
86       // This branch matches something like this:
87       //     br bool %cond, label %Dest, label %Dest
88       // and changes it into:  br label %Dest
89
90       // Let the basic block know that we are letting go of one copy of it.
91       assert(BI->getParent() && "Terminator not inserted in block!");
92       Dest1->removePredecessor(BI->getParent());
93
94       // Replace the conditional branch with an unconditional one.
95       Builder.CreateBr(Dest1);
96       Value *Cond = BI->getCondition();
97       BI->eraseFromParent();
98       if (DeleteDeadConditions)
99         RecursivelyDeleteTriviallyDeadInstructions(Cond);
100       return true;
101     }
102     return false;
103   }
104   
105   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
106     // If we are switching on a constant, we can convert the switch into a
107     // single branch instruction!
108     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
109     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
110     BasicBlock *DefaultDest = TheOnlyDest;
111     assert(TheOnlyDest == SI->getDefaultDest() &&
112            "Default destination is not successor #0?");
113
114     // Figure out which case it goes to.
115     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
116       // Found case matching a constant operand?
117       if (SI->getSuccessorValue(i) == CI) {
118         TheOnlyDest = SI->getSuccessor(i);
119         break;
120       }
121
122       // Check to see if this branch is going to the same place as the default
123       // dest.  If so, eliminate it as an explicit compare.
124       if (SI->getSuccessor(i) == DefaultDest) {
125         // Remove this entry.
126         DefaultDest->removePredecessor(SI->getParent());
127         SI->removeCase(i);
128         --i; --e;  // Don't skip an entry...
129         continue;
130       }
131
132       // Otherwise, check to see if the switch only branches to one destination.
133       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
134       // destinations.
135       if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
136     }
137
138     if (CI && !TheOnlyDest) {
139       // Branching on a constant, but not any of the cases, go to the default
140       // successor.
141       TheOnlyDest = SI->getDefaultDest();
142     }
143
144     // If we found a single destination that we can fold the switch into, do so
145     // now.
146     if (TheOnlyDest) {
147       // Insert the new branch.
148       Builder.CreateBr(TheOnlyDest);
149       BasicBlock *BB = SI->getParent();
150
151       // Remove entries from PHI nodes which we no longer branch to...
152       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
153         // Found case matching a constant operand?
154         BasicBlock *Succ = SI->getSuccessor(i);
155         if (Succ == TheOnlyDest)
156           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
157         else
158           Succ->removePredecessor(BB);
159       }
160
161       // Delete the old switch.
162       Value *Cond = SI->getCondition();
163       SI->eraseFromParent();
164       if (DeleteDeadConditions)
165         RecursivelyDeleteTriviallyDeadInstructions(Cond);
166       return true;
167     }
168     
169     if (SI->getNumSuccessors() == 2) {
170       // Otherwise, we can fold this switch into a conditional branch
171       // instruction if it has only one non-default destination.
172       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
173                                          SI->getSuccessorValue(1), "cond");
174
175       // Insert the new branch.
176       Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
177
178       // Delete the old switch.
179       SI->eraseFromParent();
180       return true;
181     }
182     return false;
183   }
184
185   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
186     // indirectbr blockaddress(@F, @BB) -> br label @BB
187     if (BlockAddress *BA =
188           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
189       BasicBlock *TheOnlyDest = BA->getBasicBlock();
190       // Insert the new branch.
191       Builder.CreateBr(TheOnlyDest);
192       
193       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
194         if (IBI->getDestination(i) == TheOnlyDest)
195           TheOnlyDest = 0;
196         else
197           IBI->getDestination(i)->removePredecessor(IBI->getParent());
198       }
199       Value *Address = IBI->getAddress();
200       IBI->eraseFromParent();
201       if (DeleteDeadConditions)
202         RecursivelyDeleteTriviallyDeadInstructions(Address);
203       
204       // If we didn't find our destination in the IBI successor list, then we
205       // have undefined behavior.  Replace the unconditional branch with an
206       // 'unreachable' instruction.
207       if (TheOnlyDest) {
208         BB->getTerminator()->eraseFromParent();
209         new UnreachableInst(BB->getContext(), BB);
210       }
211       
212       return true;
213     }
214   }
215   
216   return false;
217 }
218
219
220 //===----------------------------------------------------------------------===//
221 //  Local dead code elimination.
222 //
223
224 /// isInstructionTriviallyDead - Return true if the result produced by the
225 /// instruction is not used, and the instruction has no side effects.
226 ///
227 bool llvm::isInstructionTriviallyDead(Instruction *I) {
228   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
229
230   // We don't want debug info removed by anything this general, unless
231   // debug info is empty.
232   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
233     if (DDI->getAddress()) 
234       return false;
235     return true;
236   } 
237   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
238     if (DVI->getValue())
239       return false;
240     return true;
241   }
242
243   if (!I->mayHaveSideEffects()) return true;
244
245   // Special case intrinsics that "may have side effects" but can be deleted
246   // when dead.
247   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
248     // Safe to delete llvm.stacksave if dead.
249     if (II->getIntrinsicID() == Intrinsic::stacksave)
250       return true;
251   return false;
252 }
253
254 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
255 /// trivially dead instruction, delete it.  If that makes any of its operands
256 /// trivially dead, delete them too, recursively.  Return true if any
257 /// instructions were deleted.
258 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
259   Instruction *I = dyn_cast<Instruction>(V);
260   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
261     return false;
262   
263   SmallVector<Instruction*, 16> DeadInsts;
264   DeadInsts.push_back(I);
265   
266   do {
267     I = DeadInsts.pop_back_val();
268
269     // Null out all of the instruction's operands to see if any operand becomes
270     // dead as we go.
271     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
272       Value *OpV = I->getOperand(i);
273       I->setOperand(i, 0);
274       
275       if (!OpV->use_empty()) continue;
276     
277       // If the operand is an instruction that became dead as we nulled out the
278       // operand, and if it is 'trivially' dead, delete it in a future loop
279       // iteration.
280       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
281         if (isInstructionTriviallyDead(OpI))
282           DeadInsts.push_back(OpI);
283     }
284     
285     I->eraseFromParent();
286   } while (!DeadInsts.empty());
287
288   return true;
289 }
290
291 /// areAllUsesEqual - Check whether the uses of a value are all the same.
292 /// This is similar to Instruction::hasOneUse() except this will also return
293 /// true when there are no uses or multiple uses that all refer to the same
294 /// value.
295 static bool areAllUsesEqual(Instruction *I) {
296   Value::use_iterator UI = I->use_begin();
297   Value::use_iterator UE = I->use_end();
298   if (UI == UE)
299     return true;
300
301   User *TheUse = *UI;
302   for (++UI; UI != UE; ++UI) {
303     if (*UI != TheUse)
304       return false;
305   }
306   return true;
307 }
308
309 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
310 /// dead PHI node, due to being a def-use chain of single-use nodes that
311 /// either forms a cycle or is terminated by a trivially dead instruction,
312 /// delete it.  If that makes any of its operands trivially dead, delete them
313 /// too, recursively.  Return true if a change was made.
314 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
315   SmallPtrSet<Instruction*, 4> Visited;
316   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
317        I = cast<Instruction>(*I->use_begin())) {
318     if (I->use_empty())
319       return RecursivelyDeleteTriviallyDeadInstructions(I);
320
321     // If we find an instruction more than once, we're on a cycle that
322     // won't prove fruitful.
323     if (!Visited.insert(I)) {
324       // Break the cycle and delete the instruction and its operands.
325       I->replaceAllUsesWith(UndefValue::get(I->getType()));
326       (void)RecursivelyDeleteTriviallyDeadInstructions(I);
327       return true;
328     }
329   }
330   return false;
331 }
332
333 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
334 /// simplify any instructions in it and recursively delete dead instructions.
335 ///
336 /// This returns true if it changed the code, note that it can delete
337 /// instructions in other blocks as well in this block.
338 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
339   bool MadeChange = false;
340   for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
341     Instruction *Inst = BI++;
342     
343     if (Value *V = SimplifyInstruction(Inst, TD)) {
344       WeakVH BIHandle(BI);
345       ReplaceAndSimplifyAllUses(Inst, V, TD);
346       MadeChange = true;
347       if (BIHandle != BI)
348         BI = BB->begin();
349       continue;
350     }
351
352     if (Inst->isTerminator())
353       break;
354
355     WeakVH BIHandle(BI);
356     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
357     if (BIHandle != BI)
358       BI = BB->begin();
359   }
360   return MadeChange;
361 }
362
363 //===----------------------------------------------------------------------===//
364 //  Control Flow Graph Restructuring.
365 //
366
367
368 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
369 /// method is called when we're about to delete Pred as a predecessor of BB.  If
370 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
371 ///
372 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
373 /// nodes that collapse into identity values.  For example, if we have:
374 ///   x = phi(1, 0, 0, 0)
375 ///   y = and x, z
376 ///
377 /// .. and delete the predecessor corresponding to the '1', this will attempt to
378 /// recursively fold the and to 0.
379 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
380                                         TargetData *TD) {
381   // This only adjusts blocks with PHI nodes.
382   if (!isa<PHINode>(BB->begin()))
383     return;
384   
385   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
386   // them down.  This will leave us with single entry phi nodes and other phis
387   // that can be removed.
388   BB->removePredecessor(Pred, true);
389   
390   WeakVH PhiIt = &BB->front();
391   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
392     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
393
394     Value *PNV = SimplifyInstruction(PN, TD);
395     if (PNV == 0) continue;
396
397     // If we're able to simplify the phi to a single value, substitute the new
398     // value into all of its uses.
399     assert(PNV != PN && "SimplifyInstruction broken!");
400     
401     Value *OldPhiIt = PhiIt;
402     ReplaceAndSimplifyAllUses(PN, PNV, TD);
403     
404     // If recursive simplification ended up deleting the next PHI node we would
405     // iterate to, then our iterator is invalid, restart scanning from the top
406     // of the block.
407     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
408   }
409 }
410
411
412 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
413 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
414 /// between them, moving the instructions in the predecessor into DestBB and
415 /// deleting the predecessor block.
416 ///
417 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
418   // If BB has single-entry PHI nodes, fold them.
419   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
420     Value *NewVal = PN->getIncomingValue(0);
421     // Replace self referencing PHI with undef, it must be dead.
422     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
423     PN->replaceAllUsesWith(NewVal);
424     PN->eraseFromParent();
425   }
426   
427   BasicBlock *PredBB = DestBB->getSinglePredecessor();
428   assert(PredBB && "Block doesn't have a single predecessor!");
429   
430   // Zap anything that took the address of DestBB.  Not doing this will give the
431   // address an invalid value.
432   if (DestBB->hasAddressTaken()) {
433     BlockAddress *BA = BlockAddress::get(DestBB);
434     Constant *Replacement =
435       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
436     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
437                                                      BA->getType()));
438     BA->destroyConstant();
439   }
440   
441   // Anything that branched to PredBB now branches to DestBB.
442   PredBB->replaceAllUsesWith(DestBB);
443   
444   // Splice all the instructions from PredBB to DestBB.
445   PredBB->getTerminator()->eraseFromParent();
446   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
447
448   if (P) {
449     DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
450     if (DT) {
451       BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
452       DT->changeImmediateDominator(DestBB, PredBBIDom);
453       DT->eraseNode(PredBB);
454     }
455     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
456     if (PI) {
457       PI->replaceAllUses(PredBB, DestBB);
458       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
459     }
460   }
461   // Nuke BB.
462   PredBB->eraseFromParent();
463 }
464
465 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
466 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
467 ///
468 /// Assumption: Succ is the single successor for BB.
469 ///
470 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
471   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
472
473   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 
474         << Succ->getName() << "\n");
475   // Shortcut, if there is only a single predecessor it must be BB and merging
476   // is always safe
477   if (Succ->getSinglePredecessor()) return true;
478
479   // Make a list of the predecessors of BB
480   typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
481   BlockSet BBPreds(pred_begin(BB), pred_end(BB));
482
483   // Use that list to make another list of common predecessors of BB and Succ
484   BlockSet CommonPreds;
485   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
486        PI != PE; ++PI) {
487     BasicBlock *P = *PI;
488     if (BBPreds.count(P))
489       CommonPreds.insert(P);
490   }
491
492   // Shortcut, if there are no common predecessors, merging is always safe
493   if (CommonPreds.empty())
494     return true;
495   
496   // Look at all the phi nodes in Succ, to see if they present a conflict when
497   // merging these blocks
498   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
499     PHINode *PN = cast<PHINode>(I);
500
501     // If the incoming value from BB is again a PHINode in
502     // BB which has the same incoming value for *PI as PN does, we can
503     // merge the phi nodes and then the blocks can still be merged
504     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
505     if (BBPN && BBPN->getParent() == BB) {
506       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
507             PI != PE; PI++) {
508         if (BBPN->getIncomingValueForBlock(*PI) 
509               != PN->getIncomingValueForBlock(*PI)) {
510           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 
511                 << Succ->getName() << " is conflicting with " 
512                 << BBPN->getName() << " with regard to common predecessor "
513                 << (*PI)->getName() << "\n");
514           return false;
515         }
516       }
517     } else {
518       Value* Val = PN->getIncomingValueForBlock(BB);
519       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
520             PI != PE; PI++) {
521         // See if the incoming value for the common predecessor is equal to the
522         // one for BB, in which case this phi node will not prevent the merging
523         // of the block.
524         if (Val != PN->getIncomingValueForBlock(*PI)) {
525           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 
526                 << Succ->getName() << " is conflicting with regard to common "
527                 << "predecessor " << (*PI)->getName() << "\n");
528           return false;
529         }
530       }
531     }
532   }
533
534   return true;
535 }
536
537 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
538 /// unconditional branch, and contains no instructions other than PHI nodes,
539 /// potential side-effect free intrinsics and the branch.  If possible,
540 /// eliminate BB by rewriting all the predecessors to branch to the successor
541 /// block and return true.  If we can't transform, return false.
542 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
543   assert(BB != &BB->getParent()->getEntryBlock() &&
544          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
545
546   // We can't eliminate infinite loops.
547   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
548   if (BB == Succ) return false;
549   
550   // Check to see if merging these blocks would cause conflicts for any of the
551   // phi nodes in BB or Succ. If not, we can safely merge.
552   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
553
554   // Check for cases where Succ has multiple predecessors and a PHI node in BB
555   // has uses which will not disappear when the PHI nodes are merged.  It is
556   // possible to handle such cases, but difficult: it requires checking whether
557   // BB dominates Succ, which is non-trivial to calculate in the case where
558   // Succ has multiple predecessors.  Also, it requires checking whether
559   // constructing the necessary self-referential PHI node doesn't intoduce any
560   // conflicts; this isn't too difficult, but the previous code for doing this
561   // was incorrect.
562   //
563   // Note that if this check finds a live use, BB dominates Succ, so BB is
564   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
565   // folding the branch isn't profitable in that case anyway.
566   if (!Succ->getSinglePredecessor()) {
567     BasicBlock::iterator BBI = BB->begin();
568     while (isa<PHINode>(*BBI)) {
569       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
570            UI != E; ++UI) {
571         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
572           if (PN->getIncomingBlock(UI) != BB)
573             return false;
574         } else {
575           return false;
576         }
577       }
578       ++BBI;
579     }
580   }
581
582   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
583   
584   if (isa<PHINode>(Succ->begin())) {
585     // If there is more than one pred of succ, and there are PHI nodes in
586     // the successor, then we need to add incoming edges for the PHI nodes
587     //
588     const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
589     
590     // Loop over all of the PHI nodes in the successor of BB.
591     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
592       PHINode *PN = cast<PHINode>(I);
593       Value *OldVal = PN->removeIncomingValue(BB, false);
594       assert(OldVal && "No entry in PHI for Pred BB!");
595       
596       // If this incoming value is one of the PHI nodes in BB, the new entries
597       // in the PHI node are the entries from the old PHI.
598       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
599         PHINode *OldValPN = cast<PHINode>(OldVal);
600         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
601           // Note that, since we are merging phi nodes and BB and Succ might
602           // have common predecessors, we could end up with a phi node with
603           // identical incoming branches. This will be cleaned up later (and
604           // will trigger asserts if we try to clean it up now, without also
605           // simplifying the corresponding conditional branch).
606           PN->addIncoming(OldValPN->getIncomingValue(i),
607                           OldValPN->getIncomingBlock(i));
608       } else {
609         // Add an incoming value for each of the new incoming values.
610         for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
611           PN->addIncoming(OldVal, BBPreds[i]);
612       }
613     }
614   }
615   
616   if (Succ->getSinglePredecessor()) {
617     // BB is the only predecessor of Succ, so Succ will end up with exactly
618     // the same predecessors BB had.
619
620     // Copy over any phi, debug or lifetime instruction.
621     BB->getTerminator()->eraseFromParent();
622     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
623   } else {
624     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
625       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
626       assert(PN->use_empty() && "There shouldn't be any uses here!");
627       PN->eraseFromParent();
628     }
629   }
630     
631   // Everything that jumped to BB now goes to Succ.
632   BB->replaceAllUsesWith(Succ);
633   if (!Succ->hasName()) Succ->takeName(BB);
634   BB->eraseFromParent();              // Delete the old basic block.
635   return true;
636 }
637
638 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
639 /// nodes in this block. This doesn't try to be clever about PHI nodes
640 /// which differ only in the order of the incoming values, but instcombine
641 /// orders them so it usually won't matter.
642 ///
643 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
644   bool Changed = false;
645
646   // This implementation doesn't currently consider undef operands
647   // specially. Theoretically, two phis which are identical except for
648   // one having an undef where the other doesn't could be collapsed.
649
650   // Map from PHI hash values to PHI nodes. If multiple PHIs have
651   // the same hash value, the element is the first PHI in the
652   // linked list in CollisionMap.
653   DenseMap<uintptr_t, PHINode *> HashMap;
654
655   // Maintain linked lists of PHI nodes with common hash values.
656   DenseMap<PHINode *, PHINode *> CollisionMap;
657
658   // Examine each PHI.
659   for (BasicBlock::iterator I = BB->begin();
660        PHINode *PN = dyn_cast<PHINode>(I++); ) {
661     // Compute a hash value on the operands. Instcombine will likely have sorted
662     // them, which helps expose duplicates, but we have to check all the
663     // operands to be safe in case instcombine hasn't run.
664     uintptr_t Hash = 0;
665     // This hash algorithm is quite weak as hash functions go, but it seems
666     // to do a good enough job for this particular purpose, and is very quick.
667     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
668       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
669       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
670     }
671     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
672          I != E; ++I) {
673       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
674       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
675     }
676     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
677     Hash >>= 1;
678     // If we've never seen this hash value before, it's a unique PHI.
679     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
680       HashMap.insert(std::make_pair(Hash, PN));
681     if (Pair.second) continue;
682     // Otherwise it's either a duplicate or a hash collision.
683     for (PHINode *OtherPN = Pair.first->second; ; ) {
684       if (OtherPN->isIdenticalTo(PN)) {
685         // A duplicate. Replace this PHI with its duplicate.
686         PN->replaceAllUsesWith(OtherPN);
687         PN->eraseFromParent();
688         Changed = true;
689         break;
690       }
691       // A non-duplicate hash collision.
692       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
693       if (I == CollisionMap.end()) {
694         // Set this PHI to be the head of the linked list of colliding PHIs.
695         PHINode *Old = Pair.first->second;
696         Pair.first->second = PN;
697         CollisionMap[PN] = Old;
698         break;
699       }
700       // Procede to the next PHI in the list.
701       OtherPN = I->second;
702     }
703   }
704
705   return Changed;
706 }
707
708 /// enforceKnownAlignment - If the specified pointer points to an object that
709 /// we control, modify the object's alignment to PrefAlign. This isn't
710 /// often possible though. If alignment is important, a more reliable approach
711 /// is to simply align all global variables and allocation instructions to
712 /// their preferred alignment from the beginning.
713 ///
714 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
715                                       unsigned PrefAlign) {
716   V = V->stripPointerCasts();
717
718   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
719     // If there is a requested alignment and if this is an alloca, round up.
720     if (AI->getAlignment() >= PrefAlign)
721       return AI->getAlignment();
722     AI->setAlignment(PrefAlign);
723     return PrefAlign;
724   }
725
726   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
727     // If there is a large requested alignment and we can, bump up the alignment
728     // of the global.
729     if (GV->isDeclaration()) return Align;
730     
731     if (GV->getAlignment() >= PrefAlign)
732       return GV->getAlignment();
733     // We can only increase the alignment of the global if it has no alignment
734     // specified or if it is not assigned a section.  If it is assigned a
735     // section, the global could be densely packed with other objects in the
736     // section, increasing the alignment could cause padding issues.
737     if (!GV->hasSection() || GV->getAlignment() == 0)
738       GV->setAlignment(PrefAlign);
739     return GV->getAlignment();
740   }
741
742   return Align;
743 }
744
745 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
746 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
747 /// and it is more than the alignment of the ultimate object, see if we can
748 /// increase the alignment of the ultimate object, making this check succeed.
749 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
750                                           const TargetData *TD) {
751   assert(V->getType()->isPointerTy() &&
752          "getOrEnforceKnownAlignment expects a pointer!");
753   unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
754   APInt Mask = APInt::getAllOnesValue(BitWidth);
755   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
756   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
757   unsigned TrailZ = KnownZero.countTrailingOnes();
758   
759   // Avoid trouble with rediculously large TrailZ values, such as
760   // those computed from a null pointer.
761   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
762   
763   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
764   
765   // LLVM doesn't support alignments larger than this currently.
766   Align = std::min(Align, +Value::MaximumAlignment);
767   
768   if (PrefAlign > Align)
769     Align = enforceKnownAlignment(V, Align, PrefAlign);
770     
771   // We don't need to make any adjustment.
772   return Align;
773 }
774
775 ///===---------------------------------------------------------------------===//
776 ///  Dbg Intrinsic utilities
777 ///
778
779 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
780 /// that has an associated llvm.dbg.decl intrinsic.
781 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
782                                            StoreInst *SI, DIBuilder &Builder) {
783   DIVariable DIVar(DDI->getVariable());
784   if (!DIVar.Verify())
785     return false;
786
787   Instruction *DbgVal = NULL;
788   // If an argument is zero extended then use argument directly. The ZExt
789   // may be zapped by an optimization pass in future.
790   Argument *ExtendedArg = NULL;
791   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
792     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
793   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
794     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
795   if (ExtendedArg)
796     DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
797   else
798     DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
799
800   // Propagate any debug metadata from the store onto the dbg.value.
801   DebugLoc SIDL = SI->getDebugLoc();
802   if (!SIDL.isUnknown())
803     DbgVal->setDebugLoc(SIDL);
804   // Otherwise propagate debug metadata from dbg.declare.
805   else
806     DbgVal->setDebugLoc(DDI->getDebugLoc());
807   return true;
808 }
809
810 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
811 /// that has an associated llvm.dbg.decl intrinsic.
812 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
813                                            LoadInst *LI, DIBuilder &Builder) {
814   DIVariable DIVar(DDI->getVariable());
815   if (!DIVar.Verify())
816     return false;
817
818   Instruction *DbgVal = 
819     Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
820                                     DIVar, LI);
821   
822   // Propagate any debug metadata from the store onto the dbg.value.
823   DebugLoc LIDL = LI->getDebugLoc();
824   if (!LIDL.isUnknown())
825     DbgVal->setDebugLoc(LIDL);
826   // Otherwise propagate debug metadata from dbg.declare.
827   else
828     DbgVal->setDebugLoc(DDI->getDebugLoc());
829   return true;
830 }
831
832 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
833 /// of llvm.dbg.value intrinsics.
834 bool llvm::LowerDbgDeclare(Function &F) {
835   DIBuilder DIB(*F.getParent());
836   SmallVector<DbgDeclareInst *, 4> Dbgs;
837   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
838     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
839       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
840         Dbgs.push_back(DDI);
841     }
842   if (Dbgs.empty())
843     return false;
844
845   for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
846          E = Dbgs.end(); I != E; ++I) {
847     DbgDeclareInst *DDI = *I;
848     if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
849       bool RemoveDDI = true;
850       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
851            UI != E; ++UI)
852         if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
853           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
854         else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
855           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
856         else
857           RemoveDDI = false;
858       if (RemoveDDI)
859         DDI->eraseFromParent();
860     }
861   }
862   return true;
863 }
864
865 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
866 /// alloca 'V', if any.
867 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
868   if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
869     for (Value::use_iterator UI = DebugNode->use_begin(),
870          E = DebugNode->use_end(); UI != E; ++UI)
871       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
872         return DDI;
873
874   return 0;
875 }