]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/VMCore/Instructions.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / lib / VMCore / Instructions.cpp
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 //                            CallSite Class
30 //===----------------------------------------------------------------------===//
31
32 User::op_iterator CallSite::getCallee() const {
33   Instruction *II(getInstruction());
34   return isCall()
35     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
37 }
38
39 //===----------------------------------------------------------------------===//
40 //                            TerminatorInst Class
41 //===----------------------------------------------------------------------===//
42
43 // Out of line virtual method, so the vtable, etc has a home.
44 TerminatorInst::~TerminatorInst() {
45 }
46
47 //===----------------------------------------------------------------------===//
48 //                           UnaryInstruction Class
49 //===----------------------------------------------------------------------===//
50
51 // Out of line virtual method, so the vtable, etc has a home.
52 UnaryInstruction::~UnaryInstruction() {
53 }
54
55 //===----------------------------------------------------------------------===//
56 //                              SelectInst Class
57 //===----------------------------------------------------------------------===//
58
59 /// areInvalidOperands - Return a string if the specified operands are invalid
60 /// for a select operation, otherwise return null.
61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62   if (Op1->getType() != Op2->getType())
63     return "both values to select must have same type";
64   
65   if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66     // Vector select.
67     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68       return "vector select condition element type must be i1";
69     const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70     if (ET == 0)
71       return "selected values for vector select must be vectors";
72     if (ET->getNumElements() != VT->getNumElements())
73       return "vector select requires selected vectors to have "
74                    "the same vector length as select condition";
75   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76     return "select condition must be i1 or <n x i1>";
77   }
78   return 0;
79 }
80
81
82 //===----------------------------------------------------------------------===//
83 //                               PHINode Class
84 //===----------------------------------------------------------------------===//
85
86 PHINode::PHINode(const PHINode &PN)
87   : Instruction(PN.getType(), Instruction::PHI,
88                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89     ReservedSpace(PN.getNumOperands()) {
90   std::copy(PN.op_begin(), PN.op_end(), op_begin());
91   std::copy(PN.block_begin(), PN.block_end(), block_begin());
92   SubclassOptionalData = PN.SubclassOptionalData;
93 }
94
95 PHINode::~PHINode() {
96   dropHungoffUses();
97 }
98
99 Use *PHINode::allocHungoffUses(unsigned N) const {
100   // Allocate the array of Uses of the incoming values, followed by a pointer
101   // (with bottom bit set) to the User, followed by the array of pointers to
102   // the incoming basic blocks.
103   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
104     + N * sizeof(BasicBlock*);
105   Use *Begin = static_cast<Use*>(::operator new(size));
106   Use *End = Begin + N;
107   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
108   return Use::initTags(Begin, End);
109 }
110
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124   // Nuke the last value.
125   Op<-1>().set(0);
126   --NumOperands;
127
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(UndefValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145
146   Use *OldOps = op_begin();
147   BasicBlock **OldBlocks = block_begin();
148
149   ReservedSpace = NumOps;
150   OperandList = allocHungoffUses(ReservedSpace);
151
152   std::copy(OldOps, OldOps + e, op_begin());
153   std::copy(OldBlocks, OldBlocks + e, block_begin());
154
155   Use::zap(OldOps, OldOps + e, true);
156 }
157
158 /// hasConstantValue - If the specified PHI node always merges together the same
159 /// value, return the value, otherwise return null.
160 Value *PHINode::hasConstantValue() const {
161   // Exploit the fact that phi nodes always have at least one entry.
162   Value *ConstantValue = getIncomingValue(0);
163   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
164     if (getIncomingValue(i) != ConstantValue)
165       return 0; // Incoming values not all the same.
166   return ConstantValue;
167 }
168
169
170 //===----------------------------------------------------------------------===//
171 //                        CallInst Implementation
172 //===----------------------------------------------------------------------===//
173
174 CallInst::~CallInst() {
175 }
176
177 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
178   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
179   Op<-1>() = Func;
180
181 #ifndef NDEBUG
182   const FunctionType *FTy =
183     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
184
185   assert((Args.size() == FTy->getNumParams() ||
186           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
187          "Calling a function with bad signature!");
188
189   for (unsigned i = 0; i != Args.size(); ++i)
190     assert((i >= FTy->getNumParams() || 
191             FTy->getParamType(i) == Args[i]->getType()) &&
192            "Calling a function with a bad signature!");
193 #endif
194
195   std::copy(Args.begin(), Args.end(), op_begin());
196   setName(NameStr);
197 }
198
199 void CallInst::init(Value *Func, const Twine &NameStr) {
200   assert(NumOperands == 1 && "NumOperands not set up?");
201   Op<-1>() = Func;
202
203 #ifndef NDEBUG
204   const FunctionType *FTy =
205     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
206
207   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
208 #endif
209
210   setName(NameStr);
211 }
212
213 CallInst::CallInst(Value *Func, const Twine &Name,
214                    Instruction *InsertBefore)
215   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
216                                    ->getElementType())->getReturnType(),
217                 Instruction::Call,
218                 OperandTraits<CallInst>::op_end(this) - 1,
219                 1, InsertBefore) {
220   init(Func, Name);
221 }
222
223 CallInst::CallInst(Value *Func, const Twine &Name,
224                    BasicBlock *InsertAtEnd)
225   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
226                                    ->getElementType())->getReturnType(),
227                 Instruction::Call,
228                 OperandTraits<CallInst>::op_end(this) - 1,
229                 1, InsertAtEnd) {
230   init(Func, Name);
231 }
232
233 CallInst::CallInst(const CallInst &CI)
234   : Instruction(CI.getType(), Instruction::Call,
235                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
236                 CI.getNumOperands()) {
237   setAttributes(CI.getAttributes());
238   setTailCall(CI.isTailCall());
239   setCallingConv(CI.getCallingConv());
240     
241   std::copy(CI.op_begin(), CI.op_end(), op_begin());
242   SubclassOptionalData = CI.SubclassOptionalData;
243 }
244
245 void CallInst::addAttribute(unsigned i, Attributes attr) {
246   AttrListPtr PAL = getAttributes();
247   PAL = PAL.addAttr(i, attr);
248   setAttributes(PAL);
249 }
250
251 void CallInst::removeAttribute(unsigned i, Attributes attr) {
252   AttrListPtr PAL = getAttributes();
253   PAL = PAL.removeAttr(i, attr);
254   setAttributes(PAL);
255 }
256
257 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
258   if (AttributeList.paramHasAttr(i, attr))
259     return true;
260   if (const Function *F = getCalledFunction())
261     return F->paramHasAttr(i, attr);
262   return false;
263 }
264
265 /// IsConstantOne - Return true only if val is constant int 1
266 static bool IsConstantOne(Value *val) {
267   assert(val && "IsConstantOne does not work with NULL val");
268   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
269 }
270
271 static Instruction *createMalloc(Instruction *InsertBefore,
272                                  BasicBlock *InsertAtEnd, const Type *IntPtrTy,
273                                  const Type *AllocTy, Value *AllocSize, 
274                                  Value *ArraySize, Function *MallocF,
275                                  const Twine &Name) {
276   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
277          "createMalloc needs either InsertBefore or InsertAtEnd");
278
279   // malloc(type) becomes: 
280   //       bitcast (i8* malloc(typeSize)) to type*
281   // malloc(type, arraySize) becomes:
282   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
283   if (!ArraySize)
284     ArraySize = ConstantInt::get(IntPtrTy, 1);
285   else if (ArraySize->getType() != IntPtrTy) {
286     if (InsertBefore)
287       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
288                                               "", InsertBefore);
289     else
290       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
291                                               "", InsertAtEnd);
292   }
293
294   if (!IsConstantOne(ArraySize)) {
295     if (IsConstantOne(AllocSize)) {
296       AllocSize = ArraySize;         // Operand * 1 = Operand
297     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
298       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
299                                                      false /*ZExt*/);
300       // Malloc arg is constant product of type size and array size
301       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
302     } else {
303       // Multiply type size by the array size...
304       if (InsertBefore)
305         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
306                                               "mallocsize", InsertBefore);
307       else
308         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
309                                               "mallocsize", InsertAtEnd);
310     }
311   }
312
313   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
314   // Create the call to Malloc.
315   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
316   Module* M = BB->getParent()->getParent();
317   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
318   Value *MallocFunc = MallocF;
319   if (!MallocFunc)
320     // prototype malloc as "void *malloc(size_t)"
321     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
322   const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
323   CallInst *MCall = NULL;
324   Instruction *Result = NULL;
325   if (InsertBefore) {
326     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
327     Result = MCall;
328     if (Result->getType() != AllocPtrType)
329       // Create a cast instruction to convert to the right type...
330       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
331   } else {
332     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
333     Result = MCall;
334     if (Result->getType() != AllocPtrType) {
335       InsertAtEnd->getInstList().push_back(MCall);
336       // Create a cast instruction to convert to the right type...
337       Result = new BitCastInst(MCall, AllocPtrType, Name);
338     }
339   }
340   MCall->setTailCall();
341   if (Function *F = dyn_cast<Function>(MallocFunc)) {
342     MCall->setCallingConv(F->getCallingConv());
343     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
344   }
345   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
346
347   return Result;
348 }
349
350 /// CreateMalloc - Generate the IR for a call to malloc:
351 /// 1. Compute the malloc call's argument as the specified type's size,
352 ///    possibly multiplied by the array size if the array size is not
353 ///    constant 1.
354 /// 2. Call malloc with that argument.
355 /// 3. Bitcast the result of the malloc call to the specified type.
356 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
357                                     const Type *IntPtrTy, const Type *AllocTy,
358                                     Value *AllocSize, Value *ArraySize,
359                                     Function * MallocF,
360                                     const Twine &Name) {
361   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
362                       ArraySize, MallocF, Name);
363 }
364
365 /// CreateMalloc - Generate the IR for a call to malloc:
366 /// 1. Compute the malloc call's argument as the specified type's size,
367 ///    possibly multiplied by the array size if the array size is not
368 ///    constant 1.
369 /// 2. Call malloc with that argument.
370 /// 3. Bitcast the result of the malloc call to the specified type.
371 /// Note: This function does not add the bitcast to the basic block, that is the
372 /// responsibility of the caller.
373 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
374                                     const Type *IntPtrTy, const Type *AllocTy,
375                                     Value *AllocSize, Value *ArraySize, 
376                                     Function *MallocF, const Twine &Name) {
377   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
378                       ArraySize, MallocF, Name);
379 }
380
381 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
382                                BasicBlock *InsertAtEnd) {
383   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
384          "createFree needs either InsertBefore or InsertAtEnd");
385   assert(Source->getType()->isPointerTy() &&
386          "Can not free something of nonpointer type!");
387
388   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
389   Module* M = BB->getParent()->getParent();
390
391   const Type *VoidTy = Type::getVoidTy(M->getContext());
392   const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
393   // prototype free as "void free(void*)"
394   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
395   CallInst* Result = NULL;
396   Value *PtrCast = Source;
397   if (InsertBefore) {
398     if (Source->getType() != IntPtrTy)
399       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
400     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
401   } else {
402     if (Source->getType() != IntPtrTy)
403       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
404     Result = CallInst::Create(FreeFunc, PtrCast, "");
405   }
406   Result->setTailCall();
407   if (Function *F = dyn_cast<Function>(FreeFunc))
408     Result->setCallingConv(F->getCallingConv());
409
410   return Result;
411 }
412
413 /// CreateFree - Generate the IR for a call to the builtin free function.
414 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
415   return createFree(Source, InsertBefore, NULL);
416 }
417
418 /// CreateFree - Generate the IR for a call to the builtin free function.
419 /// Note: This function does not add the call to the basic block, that is the
420 /// responsibility of the caller.
421 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
422   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
423   assert(FreeCall && "CreateFree did not create a CallInst");
424   return FreeCall;
425 }
426
427 //===----------------------------------------------------------------------===//
428 //                        InvokeInst Implementation
429 //===----------------------------------------------------------------------===//
430
431 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
432                       ArrayRef<Value *> Args, const Twine &NameStr) {
433   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
434   Op<-3>() = Fn;
435   Op<-2>() = IfNormal;
436   Op<-1>() = IfException;
437
438 #ifndef NDEBUG
439   const FunctionType *FTy =
440     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
441
442   assert(((Args.size() == FTy->getNumParams()) ||
443           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
444          "Invoking a function with bad signature");
445
446   for (unsigned i = 0, e = Args.size(); i != e; i++)
447     assert((i >= FTy->getNumParams() || 
448             FTy->getParamType(i) == Args[i]->getType()) &&
449            "Invoking a function with a bad signature!");
450 #endif
451
452   std::copy(Args.begin(), Args.end(), op_begin());
453   setName(NameStr);
454 }
455
456 InvokeInst::InvokeInst(const InvokeInst &II)
457   : TerminatorInst(II.getType(), Instruction::Invoke,
458                    OperandTraits<InvokeInst>::op_end(this)
459                    - II.getNumOperands(),
460                    II.getNumOperands()) {
461   setAttributes(II.getAttributes());
462   setCallingConv(II.getCallingConv());
463   std::copy(II.op_begin(), II.op_end(), op_begin());
464   SubclassOptionalData = II.SubclassOptionalData;
465 }
466
467 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
468   return getSuccessor(idx);
469 }
470 unsigned InvokeInst::getNumSuccessorsV() const {
471   return getNumSuccessors();
472 }
473 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
474   return setSuccessor(idx, B);
475 }
476
477 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
478   if (AttributeList.paramHasAttr(i, attr))
479     return true;
480   if (const Function *F = getCalledFunction())
481     return F->paramHasAttr(i, attr);
482   return false;
483 }
484
485 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
486   AttrListPtr PAL = getAttributes();
487   PAL = PAL.addAttr(i, attr);
488   setAttributes(PAL);
489 }
490
491 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
492   AttrListPtr PAL = getAttributes();
493   PAL = PAL.removeAttr(i, attr);
494   setAttributes(PAL);
495 }
496
497
498 //===----------------------------------------------------------------------===//
499 //                        ReturnInst Implementation
500 //===----------------------------------------------------------------------===//
501
502 ReturnInst::ReturnInst(const ReturnInst &RI)
503   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
504                    OperandTraits<ReturnInst>::op_end(this) -
505                      RI.getNumOperands(),
506                    RI.getNumOperands()) {
507   if (RI.getNumOperands())
508     Op<0>() = RI.Op<0>();
509   SubclassOptionalData = RI.SubclassOptionalData;
510 }
511
512 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
513   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
514                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
515                    InsertBefore) {
516   if (retVal)
517     Op<0>() = retVal;
518 }
519 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
520   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
521                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
522                    InsertAtEnd) {
523   if (retVal)
524     Op<0>() = retVal;
525 }
526 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
527   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
528                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
529 }
530
531 unsigned ReturnInst::getNumSuccessorsV() const {
532   return getNumSuccessors();
533 }
534
535 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
536 /// emit the vtable for the class in this translation unit.
537 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
538   llvm_unreachable("ReturnInst has no successors!");
539 }
540
541 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
542   llvm_unreachable("ReturnInst has no successors!");
543   return 0;
544 }
545
546 ReturnInst::~ReturnInst() {
547 }
548
549 //===----------------------------------------------------------------------===//
550 //                        UnwindInst Implementation
551 //===----------------------------------------------------------------------===//
552
553 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
554   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
555                    0, 0, InsertBefore) {
556 }
557 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
558   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
559                    0, 0, InsertAtEnd) {
560 }
561
562
563 unsigned UnwindInst::getNumSuccessorsV() const {
564   return getNumSuccessors();
565 }
566
567 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
568   llvm_unreachable("UnwindInst has no successors!");
569 }
570
571 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
572   llvm_unreachable("UnwindInst has no successors!");
573   return 0;
574 }
575
576 //===----------------------------------------------------------------------===//
577 //                      UnreachableInst Implementation
578 //===----------------------------------------------------------------------===//
579
580 UnreachableInst::UnreachableInst(LLVMContext &Context, 
581                                  Instruction *InsertBefore)
582   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
583                    0, 0, InsertBefore) {
584 }
585 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
586   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
587                    0, 0, InsertAtEnd) {
588 }
589
590 unsigned UnreachableInst::getNumSuccessorsV() const {
591   return getNumSuccessors();
592 }
593
594 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
595   llvm_unreachable("UnwindInst has no successors!");
596 }
597
598 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
599   llvm_unreachable("UnwindInst has no successors!");
600   return 0;
601 }
602
603 //===----------------------------------------------------------------------===//
604 //                        BranchInst Implementation
605 //===----------------------------------------------------------------------===//
606
607 void BranchInst::AssertOK() {
608   if (isConditional())
609     assert(getCondition()->getType()->isIntegerTy(1) &&
610            "May only branch on boolean predicates!");
611 }
612
613 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
614   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
615                    OperandTraits<BranchInst>::op_end(this) - 1,
616                    1, InsertBefore) {
617   assert(IfTrue != 0 && "Branch destination may not be null!");
618   Op<-1>() = IfTrue;
619 }
620 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
621                        Instruction *InsertBefore)
622   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
623                    OperandTraits<BranchInst>::op_end(this) - 3,
624                    3, InsertBefore) {
625   Op<-1>() = IfTrue;
626   Op<-2>() = IfFalse;
627   Op<-3>() = Cond;
628 #ifndef NDEBUG
629   AssertOK();
630 #endif
631 }
632
633 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
634   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
635                    OperandTraits<BranchInst>::op_end(this) - 1,
636                    1, InsertAtEnd) {
637   assert(IfTrue != 0 && "Branch destination may not be null!");
638   Op<-1>() = IfTrue;
639 }
640
641 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
642            BasicBlock *InsertAtEnd)
643   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
644                    OperandTraits<BranchInst>::op_end(this) - 3,
645                    3, InsertAtEnd) {
646   Op<-1>() = IfTrue;
647   Op<-2>() = IfFalse;
648   Op<-3>() = Cond;
649 #ifndef NDEBUG
650   AssertOK();
651 #endif
652 }
653
654
655 BranchInst::BranchInst(const BranchInst &BI) :
656   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
657                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
658                  BI.getNumOperands()) {
659   Op<-1>() = BI.Op<-1>();
660   if (BI.getNumOperands() != 1) {
661     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
662     Op<-3>() = BI.Op<-3>();
663     Op<-2>() = BI.Op<-2>();
664   }
665   SubclassOptionalData = BI.SubclassOptionalData;
666 }
667
668 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
669   return getSuccessor(idx);
670 }
671 unsigned BranchInst::getNumSuccessorsV() const {
672   return getNumSuccessors();
673 }
674 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
675   setSuccessor(idx, B);
676 }
677
678
679 //===----------------------------------------------------------------------===//
680 //                        AllocaInst Implementation
681 //===----------------------------------------------------------------------===//
682
683 static Value *getAISize(LLVMContext &Context, Value *Amt) {
684   if (!Amt)
685     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
686   else {
687     assert(!isa<BasicBlock>(Amt) &&
688            "Passed basic block into allocation size parameter! Use other ctor");
689     assert(Amt->getType()->isIntegerTy() &&
690            "Allocation array size is not an integer!");
691   }
692   return Amt;
693 }
694
695 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
696                        const Twine &Name, Instruction *InsertBefore)
697   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
698                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
699   setAlignment(0);
700   assert(!Ty->isVoidTy() && "Cannot allocate void!");
701   setName(Name);
702 }
703
704 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
705                        const Twine &Name, BasicBlock *InsertAtEnd)
706   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
707                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
708   setAlignment(0);
709   assert(!Ty->isVoidTy() && "Cannot allocate void!");
710   setName(Name);
711 }
712
713 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
714                        Instruction *InsertBefore)
715   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
716                      getAISize(Ty->getContext(), 0), InsertBefore) {
717   setAlignment(0);
718   assert(!Ty->isVoidTy() && "Cannot allocate void!");
719   setName(Name);
720 }
721
722 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
723                        BasicBlock *InsertAtEnd)
724   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
725                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
726   setAlignment(0);
727   assert(!Ty->isVoidTy() && "Cannot allocate void!");
728   setName(Name);
729 }
730
731 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
732                        const Twine &Name, Instruction *InsertBefore)
733   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
734                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
735   setAlignment(Align);
736   assert(!Ty->isVoidTy() && "Cannot allocate void!");
737   setName(Name);
738 }
739
740 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
741                        const Twine &Name, BasicBlock *InsertAtEnd)
742   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
743                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
744   setAlignment(Align);
745   assert(!Ty->isVoidTy() && "Cannot allocate void!");
746   setName(Name);
747 }
748
749 // Out of line virtual method, so the vtable, etc has a home.
750 AllocaInst::~AllocaInst() {
751 }
752
753 void AllocaInst::setAlignment(unsigned Align) {
754   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
755   assert(Align <= MaximumAlignment &&
756          "Alignment is greater than MaximumAlignment!");
757   setInstructionSubclassData(Log2_32(Align) + 1);
758   assert(getAlignment() == Align && "Alignment representation error!");
759 }
760
761 bool AllocaInst::isArrayAllocation() const {
762   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
763     return !CI->isOne();
764   return true;
765 }
766
767 Type *AllocaInst::getAllocatedType() const {
768   return getType()->getElementType();
769 }
770
771 /// isStaticAlloca - Return true if this alloca is in the entry block of the
772 /// function and is a constant size.  If so, the code generator will fold it
773 /// into the prolog/epilog code, so it is basically free.
774 bool AllocaInst::isStaticAlloca() const {
775   // Must be constant size.
776   if (!isa<ConstantInt>(getArraySize())) return false;
777   
778   // Must be in the entry block.
779   const BasicBlock *Parent = getParent();
780   return Parent == &Parent->getParent()->front();
781 }
782
783 //===----------------------------------------------------------------------===//
784 //                           LoadInst Implementation
785 //===----------------------------------------------------------------------===//
786
787 void LoadInst::AssertOK() {
788   assert(getOperand(0)->getType()->isPointerTy() &&
789          "Ptr must have pointer type.");
790 }
791
792 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
793   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
794                      Load, Ptr, InsertBef) {
795   setVolatile(false);
796   setAlignment(0);
797   AssertOK();
798   setName(Name);
799 }
800
801 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
802   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
803                      Load, Ptr, InsertAE) {
804   setVolatile(false);
805   setAlignment(0);
806   AssertOK();
807   setName(Name);
808 }
809
810 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
811                    Instruction *InsertBef)
812   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
813                      Load, Ptr, InsertBef) {
814   setVolatile(isVolatile);
815   setAlignment(0);
816   AssertOK();
817   setName(Name);
818 }
819
820 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
821                    unsigned Align, Instruction *InsertBef)
822   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
823                      Load, Ptr, InsertBef) {
824   setVolatile(isVolatile);
825   setAlignment(Align);
826   AssertOK();
827   setName(Name);
828 }
829
830 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
831                    unsigned Align, BasicBlock *InsertAE)
832   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
833                      Load, Ptr, InsertAE) {
834   setVolatile(isVolatile);
835   setAlignment(Align);
836   AssertOK();
837   setName(Name);
838 }
839
840 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
841                    BasicBlock *InsertAE)
842   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
843                      Load, Ptr, InsertAE) {
844   setVolatile(isVolatile);
845   setAlignment(0);
846   AssertOK();
847   setName(Name);
848 }
849
850
851
852 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
853   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
854                      Load, Ptr, InsertBef) {
855   setVolatile(false);
856   setAlignment(0);
857   AssertOK();
858   if (Name && Name[0]) setName(Name);
859 }
860
861 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
862   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
863                      Load, Ptr, InsertAE) {
864   setVolatile(false);
865   setAlignment(0);
866   AssertOK();
867   if (Name && Name[0]) setName(Name);
868 }
869
870 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
871                    Instruction *InsertBef)
872 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
873                    Load, Ptr, InsertBef) {
874   setVolatile(isVolatile);
875   setAlignment(0);
876   AssertOK();
877   if (Name && Name[0]) setName(Name);
878 }
879
880 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
881                    BasicBlock *InsertAE)
882   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
883                      Load, Ptr, InsertAE) {
884   setVolatile(isVolatile);
885   setAlignment(0);
886   AssertOK();
887   if (Name && Name[0]) setName(Name);
888 }
889
890 void LoadInst::setAlignment(unsigned Align) {
891   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
892   assert(Align <= MaximumAlignment &&
893          "Alignment is greater than MaximumAlignment!");
894   setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
895                              ((Log2_32(Align)+1)<<1));
896   assert(getAlignment() == Align && "Alignment representation error!");
897 }
898
899 //===----------------------------------------------------------------------===//
900 //                           StoreInst Implementation
901 //===----------------------------------------------------------------------===//
902
903 void StoreInst::AssertOK() {
904   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
905   assert(getOperand(1)->getType()->isPointerTy() &&
906          "Ptr must have pointer type!");
907   assert(getOperand(0)->getType() ==
908                  cast<PointerType>(getOperand(1)->getType())->getElementType()
909          && "Ptr must be a pointer to Val type!");
910 }
911
912
913 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
914   : Instruction(Type::getVoidTy(val->getContext()), Store,
915                 OperandTraits<StoreInst>::op_begin(this),
916                 OperandTraits<StoreInst>::operands(this),
917                 InsertBefore) {
918   Op<0>() = val;
919   Op<1>() = addr;
920   setVolatile(false);
921   setAlignment(0);
922   AssertOK();
923 }
924
925 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
926   : Instruction(Type::getVoidTy(val->getContext()), Store,
927                 OperandTraits<StoreInst>::op_begin(this),
928                 OperandTraits<StoreInst>::operands(this),
929                 InsertAtEnd) {
930   Op<0>() = val;
931   Op<1>() = addr;
932   setVolatile(false);
933   setAlignment(0);
934   AssertOK();
935 }
936
937 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
938                      Instruction *InsertBefore)
939   : Instruction(Type::getVoidTy(val->getContext()), Store,
940                 OperandTraits<StoreInst>::op_begin(this),
941                 OperandTraits<StoreInst>::operands(this),
942                 InsertBefore) {
943   Op<0>() = val;
944   Op<1>() = addr;
945   setVolatile(isVolatile);
946   setAlignment(0);
947   AssertOK();
948 }
949
950 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
951                      unsigned Align, Instruction *InsertBefore)
952   : Instruction(Type::getVoidTy(val->getContext()), Store,
953                 OperandTraits<StoreInst>::op_begin(this),
954                 OperandTraits<StoreInst>::operands(this),
955                 InsertBefore) {
956   Op<0>() = val;
957   Op<1>() = addr;
958   setVolatile(isVolatile);
959   setAlignment(Align);
960   AssertOK();
961 }
962
963 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
964                      unsigned Align, BasicBlock *InsertAtEnd)
965   : Instruction(Type::getVoidTy(val->getContext()), Store,
966                 OperandTraits<StoreInst>::op_begin(this),
967                 OperandTraits<StoreInst>::operands(this),
968                 InsertAtEnd) {
969   Op<0>() = val;
970   Op<1>() = addr;
971   setVolatile(isVolatile);
972   setAlignment(Align);
973   AssertOK();
974 }
975
976 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
977                      BasicBlock *InsertAtEnd)
978   : Instruction(Type::getVoidTy(val->getContext()), Store,
979                 OperandTraits<StoreInst>::op_begin(this),
980                 OperandTraits<StoreInst>::operands(this),
981                 InsertAtEnd) {
982   Op<0>() = val;
983   Op<1>() = addr;
984   setVolatile(isVolatile);
985   setAlignment(0);
986   AssertOK();
987 }
988
989 void StoreInst::setAlignment(unsigned Align) {
990   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
991   assert(Align <= MaximumAlignment &&
992          "Alignment is greater than MaximumAlignment!");
993   setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
994                              ((Log2_32(Align)+1) << 1));
995   assert(getAlignment() == Align && "Alignment representation error!");
996 }
997
998 //===----------------------------------------------------------------------===//
999 //                       GetElementPtrInst Implementation
1000 //===----------------------------------------------------------------------===//
1001
1002 static unsigned retrieveAddrSpace(const Value *Val) {
1003   return cast<PointerType>(Val->getType())->getAddressSpace();
1004 }
1005
1006 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1007                              const Twine &Name) {
1008   assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1009   Use *OL = OperandList;
1010   OL[0] = Ptr;
1011
1012   for (unsigned i = 0; i != NumIdx; ++i)
1013     OL[i+1] = Idx[i];
1014
1015   setName(Name);
1016 }
1017
1018 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1019   assert(NumOperands == 2 && "NumOperands not initialized?");
1020   Use *OL = OperandList;
1021   OL[0] = Ptr;
1022   OL[1] = Idx;
1023
1024   setName(Name);
1025 }
1026
1027 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1028   : Instruction(GEPI.getType(), GetElementPtr,
1029                 OperandTraits<GetElementPtrInst>::op_end(this)
1030                 - GEPI.getNumOperands(),
1031                 GEPI.getNumOperands()) {
1032   Use *OL = OperandList;
1033   Use *GEPIOL = GEPI.OperandList;
1034   for (unsigned i = 0, E = NumOperands; i != E; ++i)
1035     OL[i] = GEPIOL[i];
1036   SubclassOptionalData = GEPI.SubclassOptionalData;
1037 }
1038
1039 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1040                                      const Twine &Name, Instruction *InBe)
1041   : Instruction(PointerType::get(
1042       checkGEPType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1043                 GetElementPtr,
1044                 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1045                 2, InBe) {
1046   init(Ptr, Idx, Name);
1047 }
1048
1049 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1050                                      const Twine &Name, BasicBlock *IAE)
1051   : Instruction(PointerType::get(
1052             checkGEPType(getIndexedType(Ptr->getType(),Idx)),  
1053                 retrieveAddrSpace(Ptr)),
1054                 GetElementPtr,
1055                 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1056                 2, IAE) {
1057   init(Ptr, Idx, Name);
1058 }
1059
1060 /// getIndexedType - Returns the type of the element that would be accessed with
1061 /// a gep instruction with the specified parameters.
1062 ///
1063 /// The Idxs pointer should point to a continuous piece of memory containing the
1064 /// indices, either as Value* or uint64_t.
1065 ///
1066 /// A null type is returned if the indices are invalid for the specified
1067 /// pointer type.
1068 ///
1069 template <typename IndexTy>
1070 static Type *getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1071                                     unsigned NumIdx) {
1072   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1073   if (!PTy) return 0;   // Type isn't a pointer type!
1074   Type *Agg = PTy->getElementType();
1075
1076   // Handle the special case of the empty set index set, which is always valid.
1077   if (NumIdx == 0)
1078     return Agg;
1079   
1080   // If there is at least one index, the top level type must be sized, otherwise
1081   // it cannot be 'stepped over'.
1082   if (!Agg->isSized())
1083     return 0;
1084
1085   unsigned CurIdx = 1;
1086   for (; CurIdx != NumIdx; ++CurIdx) {
1087     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1088     if (!CT || CT->isPointerTy()) return 0;
1089     IndexTy Index = Idxs[CurIdx];
1090     if (!CT->indexValid(Index)) return 0;
1091     Agg = CT->getTypeAtIndex(Index);
1092   }
1093   return CurIdx == NumIdx ? Agg : 0;
1094 }
1095
1096 Type *GetElementPtrInst::getIndexedType(const Type *Ptr, Value* const *Idxs,
1097                                         unsigned NumIdx) {
1098   return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1099 }
1100
1101 Type *GetElementPtrInst::getIndexedType(const Type *Ptr,
1102                                         Constant* const *Idxs,
1103                                         unsigned NumIdx) {
1104   return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1105 }
1106
1107 Type *GetElementPtrInst::getIndexedType(const Type *Ptr,
1108                                         uint64_t const *Idxs,
1109                                         unsigned NumIdx) {
1110   return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1111 }
1112
1113 Type *GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1114   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1115   if (!PTy) return 0;   // Type isn't a pointer type!
1116
1117   // Check the pointer index.
1118   if (!PTy->indexValid(Idx)) return 0;
1119
1120   return PTy->getElementType();
1121 }
1122
1123
1124 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1125 /// zeros.  If so, the result pointer and the first operand have the same
1126 /// value, just potentially different types.
1127 bool GetElementPtrInst::hasAllZeroIndices() const {
1128   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1129     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1130       if (!CI->isZero()) return false;
1131     } else {
1132       return false;
1133     }
1134   }
1135   return true;
1136 }
1137
1138 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1139 /// constant integers.  If so, the result pointer and the first operand have
1140 /// a constant offset between them.
1141 bool GetElementPtrInst::hasAllConstantIndices() const {
1142   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1143     if (!isa<ConstantInt>(getOperand(i)))
1144       return false;
1145   }
1146   return true;
1147 }
1148
1149 void GetElementPtrInst::setIsInBounds(bool B) {
1150   cast<GEPOperator>(this)->setIsInBounds(B);
1151 }
1152
1153 bool GetElementPtrInst::isInBounds() const {
1154   return cast<GEPOperator>(this)->isInBounds();
1155 }
1156
1157 //===----------------------------------------------------------------------===//
1158 //                           ExtractElementInst Implementation
1159 //===----------------------------------------------------------------------===//
1160
1161 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1162                                        const Twine &Name,
1163                                        Instruction *InsertBef)
1164   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1165                 ExtractElement,
1166                 OperandTraits<ExtractElementInst>::op_begin(this),
1167                 2, InsertBef) {
1168   assert(isValidOperands(Val, Index) &&
1169          "Invalid extractelement instruction operands!");
1170   Op<0>() = Val;
1171   Op<1>() = Index;
1172   setName(Name);
1173 }
1174
1175 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1176                                        const Twine &Name,
1177                                        BasicBlock *InsertAE)
1178   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1179                 ExtractElement,
1180                 OperandTraits<ExtractElementInst>::op_begin(this),
1181                 2, InsertAE) {
1182   assert(isValidOperands(Val, Index) &&
1183          "Invalid extractelement instruction operands!");
1184
1185   Op<0>() = Val;
1186   Op<1>() = Index;
1187   setName(Name);
1188 }
1189
1190
1191 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1192   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1193     return false;
1194   return true;
1195 }
1196
1197
1198 //===----------------------------------------------------------------------===//
1199 //                           InsertElementInst Implementation
1200 //===----------------------------------------------------------------------===//
1201
1202 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1203                                      const Twine &Name,
1204                                      Instruction *InsertBef)
1205   : Instruction(Vec->getType(), InsertElement,
1206                 OperandTraits<InsertElementInst>::op_begin(this),
1207                 3, InsertBef) {
1208   assert(isValidOperands(Vec, Elt, Index) &&
1209          "Invalid insertelement instruction operands!");
1210   Op<0>() = Vec;
1211   Op<1>() = Elt;
1212   Op<2>() = Index;
1213   setName(Name);
1214 }
1215
1216 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1217                                      const Twine &Name,
1218                                      BasicBlock *InsertAE)
1219   : Instruction(Vec->getType(), InsertElement,
1220                 OperandTraits<InsertElementInst>::op_begin(this),
1221                 3, InsertAE) {
1222   assert(isValidOperands(Vec, Elt, Index) &&
1223          "Invalid insertelement instruction operands!");
1224
1225   Op<0>() = Vec;
1226   Op<1>() = Elt;
1227   Op<2>() = Index;
1228   setName(Name);
1229 }
1230
1231 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
1232                                         const Value *Index) {
1233   if (!Vec->getType()->isVectorTy())
1234     return false;   // First operand of insertelement must be vector type.
1235   
1236   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1237     return false;// Second operand of insertelement must be vector element type.
1238     
1239   if (!Index->getType()->isIntegerTy(32))
1240     return false;  // Third operand of insertelement must be i32.
1241   return true;
1242 }
1243
1244
1245 //===----------------------------------------------------------------------===//
1246 //                      ShuffleVectorInst Implementation
1247 //===----------------------------------------------------------------------===//
1248
1249 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1250                                      const Twine &Name,
1251                                      Instruction *InsertBefore)
1252 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1253                 cast<VectorType>(Mask->getType())->getNumElements()),
1254               ShuffleVector,
1255               OperandTraits<ShuffleVectorInst>::op_begin(this),
1256               OperandTraits<ShuffleVectorInst>::operands(this),
1257               InsertBefore) {
1258   assert(isValidOperands(V1, V2, Mask) &&
1259          "Invalid shuffle vector instruction operands!");
1260   Op<0>() = V1;
1261   Op<1>() = V2;
1262   Op<2>() = Mask;
1263   setName(Name);
1264 }
1265
1266 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1267                                      const Twine &Name,
1268                                      BasicBlock *InsertAtEnd)
1269 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1270                 cast<VectorType>(Mask->getType())->getNumElements()),
1271               ShuffleVector,
1272               OperandTraits<ShuffleVectorInst>::op_begin(this),
1273               OperandTraits<ShuffleVectorInst>::operands(this),
1274               InsertAtEnd) {
1275   assert(isValidOperands(V1, V2, Mask) &&
1276          "Invalid shuffle vector instruction operands!");
1277
1278   Op<0>() = V1;
1279   Op<1>() = V2;
1280   Op<2>() = Mask;
1281   setName(Name);
1282 }
1283
1284 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1285                                         const Value *Mask) {
1286   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1287     return false;
1288   
1289   const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1290   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1291     return false;
1292
1293   // Check to see if Mask is valid.
1294   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1295     const VectorType *VTy = cast<VectorType>(V1->getType());
1296     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1297       if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1298         if (CI->uge(VTy->getNumElements()*2))
1299           return false;
1300       } else if (!isa<UndefValue>(MV->getOperand(i))) {
1301         return false;
1302       }
1303     }
1304   }
1305   else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1306     return false;
1307   
1308   return true;
1309 }
1310
1311 /// getMaskValue - Return the index from the shuffle mask for the specified
1312 /// output result.  This is either -1 if the element is undef or a number less
1313 /// than 2*numelements.
1314 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1315   const Constant *Mask = cast<Constant>(getOperand(2));
1316   if (isa<UndefValue>(Mask)) return -1;
1317   if (isa<ConstantAggregateZero>(Mask)) return 0;
1318   const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1319   assert(i < MaskCV->getNumOperands() && "Index out of range");
1320
1321   if (isa<UndefValue>(MaskCV->getOperand(i)))
1322     return -1;
1323   return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1324 }
1325
1326 //===----------------------------------------------------------------------===//
1327 //                             InsertValueInst Class
1328 //===----------------------------------------------------------------------===//
1329
1330 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
1331                            const Twine &Name) {
1332   assert(NumOperands == 2 && "NumOperands not initialized?");
1333
1334   // There's no fundamental reason why we require at least one index
1335   // (other than weirdness with &*IdxBegin being invalid; see
1336   // getelementptr's init routine for example). But there's no
1337   // present need to support it.
1338   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1339
1340   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1341          Val->getType() && "Inserted value must match indexed type!");
1342   Op<0>() = Agg;
1343   Op<1>() = Val;
1344
1345   Indices.append(Idxs.begin(), Idxs.end());
1346   setName(Name);
1347 }
1348
1349 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1350   : Instruction(IVI.getType(), InsertValue,
1351                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1352     Indices(IVI.Indices) {
1353   Op<0>() = IVI.getOperand(0);
1354   Op<1>() = IVI.getOperand(1);
1355   SubclassOptionalData = IVI.SubclassOptionalData;
1356 }
1357
1358 //===----------------------------------------------------------------------===//
1359 //                             ExtractValueInst Class
1360 //===----------------------------------------------------------------------===//
1361
1362 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1363   assert(NumOperands == 1 && "NumOperands not initialized?");
1364
1365   // There's no fundamental reason why we require at least one index.
1366   // But there's no present need to support it.
1367   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1368
1369   Indices.append(Idxs.begin(), Idxs.end());
1370   setName(Name);
1371 }
1372
1373 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1374   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1375     Indices(EVI.Indices) {
1376   SubclassOptionalData = EVI.SubclassOptionalData;
1377 }
1378
1379 // getIndexedType - Returns the type of the element that would be extracted
1380 // with an extractvalue instruction with the specified parameters.
1381 //
1382 // A null type is returned if the indices are invalid for the specified
1383 // pointer type.
1384 //
1385 Type *ExtractValueInst::getIndexedType(const Type *Agg,
1386                                        ArrayRef<unsigned> Idxs) {
1387   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1388     unsigned Index = Idxs[CurIdx];
1389     // We can't use CompositeType::indexValid(Index) here.
1390     // indexValid() always returns true for arrays because getelementptr allows
1391     // out-of-bounds indices. Since we don't allow those for extractvalue and
1392     // insertvalue we need to check array indexing manually.
1393     // Since the only other types we can index into are struct types it's just
1394     // as easy to check those manually as well.
1395     if (const ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1396       if (Index >= AT->getNumElements())
1397         return 0;
1398     } else if (const StructType *ST = dyn_cast<StructType>(Agg)) {
1399       if (Index >= ST->getNumElements())
1400         return 0;
1401     } else {
1402       // Not a valid type to index into.
1403       return 0;
1404     }
1405
1406     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1407   }
1408   return const_cast<Type*>(Agg);
1409 }
1410
1411 //===----------------------------------------------------------------------===//
1412 //                             BinaryOperator Class
1413 //===----------------------------------------------------------------------===//
1414
1415 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1416                                const Type *Ty, const Twine &Name,
1417                                Instruction *InsertBefore)
1418   : Instruction(Ty, iType,
1419                 OperandTraits<BinaryOperator>::op_begin(this),
1420                 OperandTraits<BinaryOperator>::operands(this),
1421                 InsertBefore) {
1422   Op<0>() = S1;
1423   Op<1>() = S2;
1424   init(iType);
1425   setName(Name);
1426 }
1427
1428 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
1429                                const Type *Ty, const Twine &Name,
1430                                BasicBlock *InsertAtEnd)
1431   : Instruction(Ty, iType,
1432                 OperandTraits<BinaryOperator>::op_begin(this),
1433                 OperandTraits<BinaryOperator>::operands(this),
1434                 InsertAtEnd) {
1435   Op<0>() = S1;
1436   Op<1>() = S2;
1437   init(iType);
1438   setName(Name);
1439 }
1440
1441
1442 void BinaryOperator::init(BinaryOps iType) {
1443   Value *LHS = getOperand(0), *RHS = getOperand(1);
1444   (void)LHS; (void)RHS; // Silence warnings.
1445   assert(LHS->getType() == RHS->getType() &&
1446          "Binary operator operand types must match!");
1447 #ifndef NDEBUG
1448   switch (iType) {
1449   case Add: case Sub:
1450   case Mul:
1451     assert(getType() == LHS->getType() &&
1452            "Arithmetic operation should return same type as operands!");
1453     assert(getType()->isIntOrIntVectorTy() &&
1454            "Tried to create an integer operation on a non-integer type!");
1455     break;
1456   case FAdd: case FSub:
1457   case FMul:
1458     assert(getType() == LHS->getType() &&
1459            "Arithmetic operation should return same type as operands!");
1460     assert(getType()->isFPOrFPVectorTy() &&
1461            "Tried to create a floating-point operation on a "
1462            "non-floating-point type!");
1463     break;
1464   case UDiv: 
1465   case SDiv: 
1466     assert(getType() == LHS->getType() &&
1467            "Arithmetic operation should return same type as operands!");
1468     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
1469             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1470            "Incorrect operand type (not integer) for S/UDIV");
1471     break;
1472   case FDiv:
1473     assert(getType() == LHS->getType() &&
1474            "Arithmetic operation should return same type as operands!");
1475     assert(getType()->isFPOrFPVectorTy() &&
1476            "Incorrect operand type (not floating point) for FDIV");
1477     break;
1478   case URem: 
1479   case SRem: 
1480     assert(getType() == LHS->getType() &&
1481            "Arithmetic operation should return same type as operands!");
1482     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
1483             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1484            "Incorrect operand type (not integer) for S/UREM");
1485     break;
1486   case FRem:
1487     assert(getType() == LHS->getType() &&
1488            "Arithmetic operation should return same type as operands!");
1489     assert(getType()->isFPOrFPVectorTy() &&
1490            "Incorrect operand type (not floating point) for FREM");
1491     break;
1492   case Shl:
1493   case LShr:
1494   case AShr:
1495     assert(getType() == LHS->getType() &&
1496            "Shift operation should return same type as operands!");
1497     assert((getType()->isIntegerTy() ||
1498             (getType()->isVectorTy() && 
1499              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1500            "Tried to create a shift operation on a non-integral type!");
1501     break;
1502   case And: case Or:
1503   case Xor:
1504     assert(getType() == LHS->getType() &&
1505            "Logical operation should return same type as operands!");
1506     assert((getType()->isIntegerTy() ||
1507             (getType()->isVectorTy() && 
1508              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1509            "Tried to create a logical operation on a non-integral type!");
1510     break;
1511   default:
1512     break;
1513   }
1514 #endif
1515 }
1516
1517 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1518                                        const Twine &Name,
1519                                        Instruction *InsertBefore) {
1520   assert(S1->getType() == S2->getType() &&
1521          "Cannot create binary operator with two operands of differing type!");
1522   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1523 }
1524
1525 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1526                                        const Twine &Name,
1527                                        BasicBlock *InsertAtEnd) {
1528   BinaryOperator *Res = Create(Op, S1, S2, Name);
1529   InsertAtEnd->getInstList().push_back(Res);
1530   return Res;
1531 }
1532
1533 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1534                                           Instruction *InsertBefore) {
1535   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1536   return new BinaryOperator(Instruction::Sub,
1537                             zero, Op,
1538                             Op->getType(), Name, InsertBefore);
1539 }
1540
1541 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1542                                           BasicBlock *InsertAtEnd) {
1543   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1544   return new BinaryOperator(Instruction::Sub,
1545                             zero, Op,
1546                             Op->getType(), Name, InsertAtEnd);
1547 }
1548
1549 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1550                                              Instruction *InsertBefore) {
1551   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1552   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1553 }
1554
1555 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1556                                              BasicBlock *InsertAtEnd) {
1557   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1558   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1559 }
1560
1561 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1562                                              Instruction *InsertBefore) {
1563   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1564   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1565 }
1566
1567 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1568                                              BasicBlock *InsertAtEnd) {
1569   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1570   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1571 }
1572
1573 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1574                                            Instruction *InsertBefore) {
1575   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1576   return new BinaryOperator(Instruction::FSub,
1577                             zero, Op,
1578                             Op->getType(), Name, InsertBefore);
1579 }
1580
1581 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1582                                            BasicBlock *InsertAtEnd) {
1583   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1584   return new BinaryOperator(Instruction::FSub,
1585                             zero, Op,
1586                             Op->getType(), Name, InsertAtEnd);
1587 }
1588
1589 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1590                                           Instruction *InsertBefore) {
1591   Constant *C;
1592   if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1593     C = Constant::getAllOnesValue(PTy->getElementType());
1594     C = ConstantVector::get(
1595                               std::vector<Constant*>(PTy->getNumElements(), C));
1596   } else {
1597     C = Constant::getAllOnesValue(Op->getType());
1598   }
1599   
1600   return new BinaryOperator(Instruction::Xor, Op, C,
1601                             Op->getType(), Name, InsertBefore);
1602 }
1603
1604 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1605                                           BasicBlock *InsertAtEnd) {
1606   Constant *AllOnes;
1607   if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1608     // Create a vector of all ones values.
1609     Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1610     AllOnes = ConstantVector::get(
1611                             std::vector<Constant*>(PTy->getNumElements(), Elt));
1612   } else {
1613     AllOnes = Constant::getAllOnesValue(Op->getType());
1614   }
1615   
1616   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1617                             Op->getType(), Name, InsertAtEnd);
1618 }
1619
1620
1621 // isConstantAllOnes - Helper function for several functions below
1622 static inline bool isConstantAllOnes(const Value *V) {
1623   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1624     return CI->isAllOnesValue();
1625   if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1626     return CV->isAllOnesValue();
1627   return false;
1628 }
1629
1630 bool BinaryOperator::isNeg(const Value *V) {
1631   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1632     if (Bop->getOpcode() == Instruction::Sub)
1633       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1634         return C->isNegativeZeroValue();
1635   return false;
1636 }
1637
1638 bool BinaryOperator::isFNeg(const Value *V) {
1639   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1640     if (Bop->getOpcode() == Instruction::FSub)
1641       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1642         return C->isNegativeZeroValue();
1643   return false;
1644 }
1645
1646 bool BinaryOperator::isNot(const Value *V) {
1647   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1648     return (Bop->getOpcode() == Instruction::Xor &&
1649             (isConstantAllOnes(Bop->getOperand(1)) ||
1650              isConstantAllOnes(Bop->getOperand(0))));
1651   return false;
1652 }
1653
1654 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1655   return cast<BinaryOperator>(BinOp)->getOperand(1);
1656 }
1657
1658 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1659   return getNegArgument(const_cast<Value*>(BinOp));
1660 }
1661
1662 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1663   return cast<BinaryOperator>(BinOp)->getOperand(1);
1664 }
1665
1666 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1667   return getFNegArgument(const_cast<Value*>(BinOp));
1668 }
1669
1670 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1671   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1672   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1673   Value *Op0 = BO->getOperand(0);
1674   Value *Op1 = BO->getOperand(1);
1675   if (isConstantAllOnes(Op0)) return Op1;
1676
1677   assert(isConstantAllOnes(Op1));
1678   return Op0;
1679 }
1680
1681 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1682   return getNotArgument(const_cast<Value*>(BinOp));
1683 }
1684
1685
1686 // swapOperands - Exchange the two operands to this instruction.  This
1687 // instruction is safe to use on any binary instruction and does not
1688 // modify the semantics of the instruction.  If the instruction is
1689 // order dependent (SetLT f.e.) the opcode is changed.
1690 //
1691 bool BinaryOperator::swapOperands() {
1692   if (!isCommutative())
1693     return true; // Can't commute operands
1694   Op<0>().swap(Op<1>());
1695   return false;
1696 }
1697
1698 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1699   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1700 }
1701
1702 void BinaryOperator::setHasNoSignedWrap(bool b) {
1703   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1704 }
1705
1706 void BinaryOperator::setIsExact(bool b) {
1707   cast<PossiblyExactOperator>(this)->setIsExact(b);
1708 }
1709
1710 bool BinaryOperator::hasNoUnsignedWrap() const {
1711   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1712 }
1713
1714 bool BinaryOperator::hasNoSignedWrap() const {
1715   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1716 }
1717
1718 bool BinaryOperator::isExact() const {
1719   return cast<PossiblyExactOperator>(this)->isExact();
1720 }
1721
1722 //===----------------------------------------------------------------------===//
1723 //                                CastInst Class
1724 //===----------------------------------------------------------------------===//
1725
1726 // Just determine if this cast only deals with integral->integral conversion.
1727 bool CastInst::isIntegerCast() const {
1728   switch (getOpcode()) {
1729     default: return false;
1730     case Instruction::ZExt:
1731     case Instruction::SExt:
1732     case Instruction::Trunc:
1733       return true;
1734     case Instruction::BitCast:
1735       return getOperand(0)->getType()->isIntegerTy() &&
1736         getType()->isIntegerTy();
1737   }
1738 }
1739
1740 bool CastInst::isLosslessCast() const {
1741   // Only BitCast can be lossless, exit fast if we're not BitCast
1742   if (getOpcode() != Instruction::BitCast)
1743     return false;
1744
1745   // Identity cast is always lossless
1746   const Type* SrcTy = getOperand(0)->getType();
1747   const Type* DstTy = getType();
1748   if (SrcTy == DstTy)
1749     return true;
1750   
1751   // Pointer to pointer is always lossless.
1752   if (SrcTy->isPointerTy())
1753     return DstTy->isPointerTy();
1754   return false;  // Other types have no identity values
1755 }
1756
1757 /// This function determines if the CastInst does not require any bits to be
1758 /// changed in order to effect the cast. Essentially, it identifies cases where
1759 /// no code gen is necessary for the cast, hence the name no-op cast.  For 
1760 /// example, the following are all no-op casts:
1761 /// # bitcast i32* %x to i8*
1762 /// # bitcast <2 x i32> %x to <4 x i16> 
1763 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
1764 /// @brief Determine if the described cast is a no-op.
1765 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
1766                           const Type *SrcTy,
1767                           const Type *DestTy,
1768                           const Type *IntPtrTy) {
1769   switch (Opcode) {
1770     default:
1771       assert(!"Invalid CastOp");
1772     case Instruction::Trunc:
1773     case Instruction::ZExt:
1774     case Instruction::SExt: 
1775     case Instruction::FPTrunc:
1776     case Instruction::FPExt:
1777     case Instruction::UIToFP:
1778     case Instruction::SIToFP:
1779     case Instruction::FPToUI:
1780     case Instruction::FPToSI:
1781       return false; // These always modify bits
1782     case Instruction::BitCast:
1783       return true;  // BitCast never modifies bits.
1784     case Instruction::PtrToInt:
1785       return IntPtrTy->getScalarSizeInBits() ==
1786              DestTy->getScalarSizeInBits();
1787     case Instruction::IntToPtr:
1788       return IntPtrTy->getScalarSizeInBits() ==
1789              SrcTy->getScalarSizeInBits();
1790   }
1791 }
1792
1793 /// @brief Determine if a cast is a no-op.
1794 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1795   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
1796 }
1797
1798 /// This function determines if a pair of casts can be eliminated and what 
1799 /// opcode should be used in the elimination. This assumes that there are two 
1800 /// instructions like this:
1801 /// *  %F = firstOpcode SrcTy %x to MidTy
1802 /// *  %S = secondOpcode MidTy %F to DstTy
1803 /// The function returns a resultOpcode so these two casts can be replaced with:
1804 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
1805 /// If no such cast is permited, the function returns 0.
1806 unsigned CastInst::isEliminableCastPair(
1807   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1808   const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1809 {
1810   // Define the 144 possibilities for these two cast instructions. The values
1811   // in this matrix determine what to do in a given situation and select the
1812   // case in the switch below.  The rows correspond to firstOp, the columns 
1813   // correspond to secondOp.  In looking at the table below, keep in  mind
1814   // the following cast properties:
1815   //
1816   //          Size Compare       Source               Destination
1817   // Operator  Src ? Size   Type       Sign         Type       Sign
1818   // -------- ------------ -------------------   ---------------------
1819   // TRUNC         >       Integer      Any        Integral     Any
1820   // ZEXT          <       Integral   Unsigned     Integer      Any
1821   // SEXT          <       Integral    Signed      Integer      Any
1822   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
1823   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed 
1824   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a   
1825   // SITOFP       n/a      Integral    Signed      FloatPt      n/a   
1826   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a   
1827   // FPEXT         <       FloatPt      n/a        FloatPt      n/a   
1828   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
1829   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
1830   // BITCAST       =       FirstClass   n/a       FirstClass    n/a   
1831   //
1832   // NOTE: some transforms are safe, but we consider them to be non-profitable.
1833   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1834   // into "fptoui double to i64", but this loses information about the range
1835   // of the produced value (we no longer know the top-part is all zeros). 
1836   // Further this conversion is often much more expensive for typical hardware,
1837   // and causes issues when building libgcc.  We disallow fptosi+sext for the 
1838   // same reason.
1839   const unsigned numCastOps = 
1840     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1841   static const uint8_t CastResults[numCastOps][numCastOps] = {
1842     // T        F  F  U  S  F  F  P  I  B   -+
1843     // R  Z  S  P  P  I  I  T  P  2  N  T    |
1844     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
1845     // N  X  X  U  S  F  F  N  X  N  2  V    |
1846     // C  T  T  I  I  P  P  C  T  T  P  T   -+
1847     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
1848     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
1849     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
1850     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
1851     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
1852     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
1853     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
1854     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
1855     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
1856     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
1857     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
1858     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
1859   };
1860   
1861   // If either of the casts are a bitcast from scalar to vector, disallow the
1862   // merging.
1863   if ((firstOp == Instruction::BitCast &&
1864        isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
1865       (secondOp == Instruction::BitCast &&
1866        isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
1867     return 0; // Disallowed
1868
1869   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1870                             [secondOp-Instruction::CastOpsBegin];
1871   switch (ElimCase) {
1872     case 0: 
1873       // categorically disallowed
1874       return 0;
1875     case 1: 
1876       // allowed, use first cast's opcode
1877       return firstOp;
1878     case 2: 
1879       // allowed, use second cast's opcode
1880       return secondOp;
1881     case 3: 
1882       // no-op cast in second op implies firstOp as long as the DestTy 
1883       // is integer and we are not converting between a vector and a
1884       // non vector type.
1885       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
1886         return firstOp;
1887       return 0;
1888     case 4:
1889       // no-op cast in second op implies firstOp as long as the DestTy
1890       // is floating point.
1891       if (DstTy->isFloatingPointTy())
1892         return firstOp;
1893       return 0;
1894     case 5: 
1895       // no-op cast in first op implies secondOp as long as the SrcTy
1896       // is an integer.
1897       if (SrcTy->isIntegerTy())
1898         return secondOp;
1899       return 0;
1900     case 6:
1901       // no-op cast in first op implies secondOp as long as the SrcTy
1902       // is a floating point.
1903       if (SrcTy->isFloatingPointTy())
1904         return secondOp;
1905       return 0;
1906     case 7: { 
1907       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1908       if (!IntPtrTy)
1909         return 0;
1910       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
1911       unsigned MidSize = MidTy->getScalarSizeInBits();
1912       if (MidSize >= PtrSize)
1913         return Instruction::BitCast;
1914       return 0;
1915     }
1916     case 8: {
1917       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
1918       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
1919       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
1920       unsigned SrcSize = SrcTy->getScalarSizeInBits();
1921       unsigned DstSize = DstTy->getScalarSizeInBits();
1922       if (SrcSize == DstSize)
1923         return Instruction::BitCast;
1924       else if (SrcSize < DstSize)
1925         return firstOp;
1926       return secondOp;
1927     }
1928     case 9: // zext, sext -> zext, because sext can't sign extend after zext
1929       return Instruction::ZExt;
1930     case 10:
1931       // fpext followed by ftrunc is allowed if the bit size returned to is
1932       // the same as the original, in which case its just a bitcast
1933       if (SrcTy == DstTy)
1934         return Instruction::BitCast;
1935       return 0; // If the types are not the same we can't eliminate it.
1936     case 11:
1937       // bitcast followed by ptrtoint is allowed as long as the bitcast
1938       // is a pointer to pointer cast.
1939       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
1940         return secondOp;
1941       return 0;
1942     case 12:
1943       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
1944       if (MidTy->isPointerTy() && DstTy->isPointerTy())
1945         return firstOp;
1946       return 0;
1947     case 13: {
1948       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1949       if (!IntPtrTy)
1950         return 0;
1951       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
1952       unsigned SrcSize = SrcTy->getScalarSizeInBits();
1953       unsigned DstSize = DstTy->getScalarSizeInBits();
1954       if (SrcSize <= PtrSize && SrcSize == DstSize)
1955         return Instruction::BitCast;
1956       return 0;
1957     }
1958     case 99: 
1959       // cast combination can't happen (error in input). This is for all cases
1960       // where the MidTy is not the same for the two cast instructions.
1961       assert(!"Invalid Cast Combination");
1962       return 0;
1963     default:
1964       assert(!"Error in CastResults table!!!");
1965       return 0;
1966   }
1967   return 0;
1968 }
1969
1970 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty, 
1971   const Twine &Name, Instruction *InsertBefore) {
1972   assert(castIsValid(op, S, Ty) && "Invalid cast!");
1973   // Construct and return the appropriate CastInst subclass
1974   switch (op) {
1975     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
1976     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
1977     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
1978     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
1979     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
1980     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
1981     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
1982     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
1983     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
1984     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
1985     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
1986     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
1987     default:
1988       assert(!"Invalid opcode provided");
1989   }
1990   return 0;
1991 }
1992
1993 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
1994   const Twine &Name, BasicBlock *InsertAtEnd) {
1995   assert(castIsValid(op, S, Ty) && "Invalid cast!");
1996   // Construct and return the appropriate CastInst subclass
1997   switch (op) {
1998     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
1999     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2000     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2001     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2002     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2003     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2004     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2005     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2006     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2007     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2008     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2009     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2010     default:
2011       assert(!"Invalid opcode provided");
2012   }
2013   return 0;
2014 }
2015
2016 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty, 
2017                                         const Twine &Name,
2018                                         Instruction *InsertBefore) {
2019   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2020     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2021   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2022 }
2023
2024 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty, 
2025                                         const Twine &Name,
2026                                         BasicBlock *InsertAtEnd) {
2027   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2028     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2029   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2030 }
2031
2032 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty, 
2033                                         const Twine &Name,
2034                                         Instruction *InsertBefore) {
2035   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2036     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2037   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2038 }
2039
2040 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty, 
2041                                         const Twine &Name,
2042                                         BasicBlock *InsertAtEnd) {
2043   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2044     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2045   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2046 }
2047
2048 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2049                                          const Twine &Name,
2050                                          Instruction *InsertBefore) {
2051   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2052     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2053   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2054 }
2055
2056 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2057                                          const Twine &Name, 
2058                                          BasicBlock *InsertAtEnd) {
2059   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2060     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2061   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2062 }
2063
2064 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2065                                       const Twine &Name,
2066                                       BasicBlock *InsertAtEnd) {
2067   assert(S->getType()->isPointerTy() && "Invalid cast");
2068   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2069          "Invalid cast");
2070
2071   if (Ty->isIntegerTy())
2072     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2073   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2074 }
2075
2076 /// @brief Create a BitCast or a PtrToInt cast instruction
2077 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty, 
2078                                       const Twine &Name, 
2079                                       Instruction *InsertBefore) {
2080   assert(S->getType()->isPointerTy() && "Invalid cast");
2081   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2082          "Invalid cast");
2083
2084   if (Ty->isIntegerTy())
2085     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2086   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2087 }
2088
2089 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty, 
2090                                       bool isSigned, const Twine &Name,
2091                                       Instruction *InsertBefore) {
2092   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2093          "Invalid integer cast");
2094   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2095   unsigned DstBits = Ty->getScalarSizeInBits();
2096   Instruction::CastOps opcode =
2097     (SrcBits == DstBits ? Instruction::BitCast :
2098      (SrcBits > DstBits ? Instruction::Trunc :
2099       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2100   return Create(opcode, C, Ty, Name, InsertBefore);
2101 }
2102
2103 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty, 
2104                                       bool isSigned, const Twine &Name,
2105                                       BasicBlock *InsertAtEnd) {
2106   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2107          "Invalid cast");
2108   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2109   unsigned DstBits = Ty->getScalarSizeInBits();
2110   Instruction::CastOps opcode =
2111     (SrcBits == DstBits ? Instruction::BitCast :
2112      (SrcBits > DstBits ? Instruction::Trunc :
2113       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2114   return Create(opcode, C, Ty, Name, InsertAtEnd);
2115 }
2116
2117 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty, 
2118                                  const Twine &Name, 
2119                                  Instruction *InsertBefore) {
2120   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2121          "Invalid cast");
2122   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2123   unsigned DstBits = Ty->getScalarSizeInBits();
2124   Instruction::CastOps opcode =
2125     (SrcBits == DstBits ? Instruction::BitCast :
2126      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2127   return Create(opcode, C, Ty, Name, InsertBefore);
2128 }
2129
2130 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty, 
2131                                  const Twine &Name, 
2132                                  BasicBlock *InsertAtEnd) {
2133   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2134          "Invalid cast");
2135   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2136   unsigned DstBits = Ty->getScalarSizeInBits();
2137   Instruction::CastOps opcode =
2138     (SrcBits == DstBits ? Instruction::BitCast :
2139      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2140   return Create(opcode, C, Ty, Name, InsertAtEnd);
2141 }
2142
2143 // Check whether it is valid to call getCastOpcode for these types.
2144 // This routine must be kept in sync with getCastOpcode.
2145 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2146   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2147     return false;
2148
2149   if (SrcTy == DestTy)
2150     return true;
2151
2152   if (const VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2153     if (const VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2154       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2155         // An element by element cast.  Valid if casting the elements is valid.
2156         SrcTy = SrcVecTy->getElementType();
2157         DestTy = DestVecTy->getElementType();
2158       }
2159
2160   // Get the bit sizes, we'll need these
2161   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2162   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2163
2164   // Run through the possibilities ...
2165   if (DestTy->isIntegerTy()) {               // Casting to integral
2166     if (SrcTy->isIntegerTy()) {                // Casting from integral
2167         return true;
2168     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2169       return true;
2170     } else if (SrcTy->isVectorTy()) {          // Casting from vector
2171       return DestBits == SrcBits;
2172     } else {                                   // Casting from something else
2173       return SrcTy->isPointerTy();
2174     }
2175   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2176     if (SrcTy->isIntegerTy()) {                // Casting from integral
2177       return true;
2178     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2179       return true;
2180     } else if (SrcTy->isVectorTy()) {          // Casting from vector
2181       return DestBits == SrcBits;
2182     } else {                                   // Casting from something else
2183       return false;
2184     }
2185   } else if (DestTy->isVectorTy()) {         // Casting to vector
2186     return DestBits == SrcBits;
2187   } else if (DestTy->isPointerTy()) {        // Casting to pointer
2188     if (SrcTy->isPointerTy()) {                // Casting from pointer
2189       return true;
2190     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2191       return true;
2192     } else {                                   // Casting from something else
2193       return false;
2194     }
2195   } else if (DestTy->isX86_MMXTy()) {
2196     if (SrcTy->isVectorTy()) {
2197       return DestBits == SrcBits;       // 64-bit vector to MMX
2198     } else {
2199       return false;
2200     }
2201   } else {                                   // Casting to something else
2202     return false;
2203   }
2204 }
2205
2206 // Provide a way to get a "cast" where the cast opcode is inferred from the 
2207 // types and size of the operand. This, basically, is a parallel of the 
2208 // logic in the castIsValid function below.  This axiom should hold:
2209 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2210 // should not assert in castIsValid. In other words, this produces a "correct"
2211 // casting opcode for the arguments passed to it.
2212 // This routine must be kept in sync with isCastable.
2213 Instruction::CastOps
2214 CastInst::getCastOpcode(
2215   const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2216   const Type *SrcTy = Src->getType();
2217
2218   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2219          "Only first class types are castable!");
2220
2221   if (SrcTy == DestTy)
2222     return BitCast;
2223
2224   if (const VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2225     if (const VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2226       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2227         // An element by element cast.  Find the appropriate opcode based on the
2228         // element types.
2229         SrcTy = SrcVecTy->getElementType();
2230         DestTy = DestVecTy->getElementType();
2231       }
2232
2233   // Get the bit sizes, we'll need these
2234   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2235   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2236
2237   // Run through the possibilities ...
2238   if (DestTy->isIntegerTy()) {                      // Casting to integral
2239     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2240       if (DestBits < SrcBits)
2241         return Trunc;                               // int -> smaller int
2242       else if (DestBits > SrcBits) {                // its an extension
2243         if (SrcIsSigned)
2244           return SExt;                              // signed -> SEXT
2245         else
2246           return ZExt;                              // unsigned -> ZEXT
2247       } else {
2248         return BitCast;                             // Same size, No-op cast
2249       }
2250     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2251       if (DestIsSigned) 
2252         return FPToSI;                              // FP -> sint
2253       else
2254         return FPToUI;                              // FP -> uint 
2255     } else if (SrcTy->isVectorTy()) {
2256       assert(DestBits == SrcBits &&
2257              "Casting vector to integer of different width");
2258       return BitCast;                             // Same size, no-op cast
2259     } else {
2260       assert(SrcTy->isPointerTy() &&
2261              "Casting from a value that is not first-class type");
2262       return PtrToInt;                              // ptr -> int
2263     }
2264   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2265     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2266       if (SrcIsSigned)
2267         return SIToFP;                              // sint -> FP
2268       else
2269         return UIToFP;                              // uint -> FP
2270     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2271       if (DestBits < SrcBits) {
2272         return FPTrunc;                             // FP -> smaller FP
2273       } else if (DestBits > SrcBits) {
2274         return FPExt;                               // FP -> larger FP
2275       } else  {
2276         return BitCast;                             // same size, no-op cast
2277       }
2278     } else if (SrcTy->isVectorTy()) {
2279       assert(DestBits == SrcBits &&
2280              "Casting vector to floating point of different width");
2281       return BitCast;                             // same size, no-op cast
2282     } else {
2283       llvm_unreachable("Casting pointer or non-first class to float");
2284     }
2285   } else if (DestTy->isVectorTy()) {
2286     assert(DestBits == SrcBits &&
2287            "Illegal cast to vector (wrong type or size)");
2288     return BitCast;
2289   } else if (DestTy->isPointerTy()) {
2290     if (SrcTy->isPointerTy()) {
2291       return BitCast;                               // ptr -> ptr
2292     } else if (SrcTy->isIntegerTy()) {
2293       return IntToPtr;                              // int -> ptr
2294     } else {
2295       assert(!"Casting pointer to other than pointer or int");
2296     }
2297   } else if (DestTy->isX86_MMXTy()) {
2298     if (SrcTy->isVectorTy()) {
2299       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2300       return BitCast;                               // 64-bit vector to MMX
2301     } else {
2302       assert(!"Illegal cast to X86_MMX");
2303     }
2304   } else {
2305     assert(!"Casting to type that is not first-class");
2306   }
2307
2308   // If we fall through to here we probably hit an assertion cast above
2309   // and assertions are not turned on. Anything we return is an error, so
2310   // BitCast is as good a choice as any.
2311   return BitCast;
2312 }
2313
2314 //===----------------------------------------------------------------------===//
2315 //                    CastInst SubClass Constructors
2316 //===----------------------------------------------------------------------===//
2317
2318 /// Check that the construction parameters for a CastInst are correct. This
2319 /// could be broken out into the separate constructors but it is useful to have
2320 /// it in one place and to eliminate the redundant code for getting the sizes
2321 /// of the types involved.
2322 bool 
2323 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2324
2325   // Check for type sanity on the arguments
2326   const Type *SrcTy = S->getType();
2327   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2328       SrcTy->isAggregateType() || DstTy->isAggregateType())
2329     return false;
2330
2331   // Get the size of the types in bits, we'll need this later
2332   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2333   unsigned DstBitSize = DstTy->getScalarSizeInBits();
2334
2335   // If these are vector types, get the lengths of the vectors (using zero for
2336   // scalar types means that checking that vector lengths match also checks that
2337   // scalars are not being converted to vectors or vectors to scalars).
2338   unsigned SrcLength = SrcTy->isVectorTy() ?
2339     cast<VectorType>(SrcTy)->getNumElements() : 0;
2340   unsigned DstLength = DstTy->isVectorTy() ?
2341     cast<VectorType>(DstTy)->getNumElements() : 0;
2342
2343   // Switch on the opcode provided
2344   switch (op) {
2345   default: return false; // This is an input error
2346   case Instruction::Trunc:
2347     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2348       SrcLength == DstLength && SrcBitSize > DstBitSize;
2349   case Instruction::ZExt:
2350     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2351       SrcLength == DstLength && SrcBitSize < DstBitSize;
2352   case Instruction::SExt: 
2353     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2354       SrcLength == DstLength && SrcBitSize < DstBitSize;
2355   case Instruction::FPTrunc:
2356     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2357       SrcLength == DstLength && SrcBitSize > DstBitSize;
2358   case Instruction::FPExt:
2359     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2360       SrcLength == DstLength && SrcBitSize < DstBitSize;
2361   case Instruction::UIToFP:
2362   case Instruction::SIToFP:
2363     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2364       SrcLength == DstLength;
2365   case Instruction::FPToUI:
2366   case Instruction::FPToSI:
2367     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2368       SrcLength == DstLength;
2369   case Instruction::PtrToInt:
2370     return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2371   case Instruction::IntToPtr:
2372     return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2373   case Instruction::BitCast:
2374     // BitCast implies a no-op cast of type only. No bits change.
2375     // However, you can't cast pointers to anything but pointers.
2376     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2377       return false;
2378
2379     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2380     // these cases, the cast is okay if the source and destination bit widths
2381     // are identical.
2382     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2383   }
2384 }
2385
2386 TruncInst::TruncInst(
2387   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2388 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2389   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2390 }
2391
2392 TruncInst::TruncInst(
2393   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2394 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
2395   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2396 }
2397
2398 ZExtInst::ZExtInst(
2399   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2400 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
2401   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2402 }
2403
2404 ZExtInst::ZExtInst(
2405   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2406 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
2407   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2408 }
2409 SExtInst::SExtInst(
2410   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2411 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
2412   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2413 }
2414
2415 SExtInst::SExtInst(
2416   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2417 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
2418   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2419 }
2420
2421 FPTruncInst::FPTruncInst(
2422   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2423 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
2424   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2425 }
2426
2427 FPTruncInst::FPTruncInst(
2428   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2429 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
2430   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2431 }
2432
2433 FPExtInst::FPExtInst(
2434   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2435 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
2436   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2437 }
2438
2439 FPExtInst::FPExtInst(
2440   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2441 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
2442   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2443 }
2444
2445 UIToFPInst::UIToFPInst(
2446   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2447 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
2448   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2449 }
2450
2451 UIToFPInst::UIToFPInst(
2452   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2453 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
2454   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2455 }
2456
2457 SIToFPInst::SIToFPInst(
2458   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2459 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
2460   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2461 }
2462
2463 SIToFPInst::SIToFPInst(
2464   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2465 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
2466   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2467 }
2468
2469 FPToUIInst::FPToUIInst(
2470   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2471 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
2472   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2473 }
2474
2475 FPToUIInst::FPToUIInst(
2476   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2477 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
2478   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2479 }
2480
2481 FPToSIInst::FPToSIInst(
2482   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2483 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
2484   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2485 }
2486
2487 FPToSIInst::FPToSIInst(
2488   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2489 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
2490   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2491 }
2492
2493 PtrToIntInst::PtrToIntInst(
2494   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2495 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
2496   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2497 }
2498
2499 PtrToIntInst::PtrToIntInst(
2500   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2501 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
2502   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2503 }
2504
2505 IntToPtrInst::IntToPtrInst(
2506   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2507 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
2508   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2509 }
2510
2511 IntToPtrInst::IntToPtrInst(
2512   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2513 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
2514   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2515 }
2516
2517 BitCastInst::BitCastInst(
2518   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2519 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
2520   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2521 }
2522
2523 BitCastInst::BitCastInst(
2524   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2525 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
2526   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2527 }
2528
2529 //===----------------------------------------------------------------------===//
2530 //                               CmpInst Classes
2531 //===----------------------------------------------------------------------===//
2532
2533 void CmpInst::Anchor() const {}
2534
2535 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2536                  Value *LHS, Value *RHS, const Twine &Name,
2537                  Instruction *InsertBefore)
2538   : Instruction(ty, op,
2539                 OperandTraits<CmpInst>::op_begin(this),
2540                 OperandTraits<CmpInst>::operands(this),
2541                 InsertBefore) {
2542     Op<0>() = LHS;
2543     Op<1>() = RHS;
2544   setPredicate((Predicate)predicate);
2545   setName(Name);
2546 }
2547
2548 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2549                  Value *LHS, Value *RHS, const Twine &Name,
2550                  BasicBlock *InsertAtEnd)
2551   : Instruction(ty, op,
2552                 OperandTraits<CmpInst>::op_begin(this),
2553                 OperandTraits<CmpInst>::operands(this),
2554                 InsertAtEnd) {
2555   Op<0>() = LHS;
2556   Op<1>() = RHS;
2557   setPredicate((Predicate)predicate);
2558   setName(Name);
2559 }
2560
2561 CmpInst *
2562 CmpInst::Create(OtherOps Op, unsigned short predicate,
2563                 Value *S1, Value *S2, 
2564                 const Twine &Name, Instruction *InsertBefore) {
2565   if (Op == Instruction::ICmp) {
2566     if (InsertBefore)
2567       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2568                           S1, S2, Name);
2569     else
2570       return new ICmpInst(CmpInst::Predicate(predicate),
2571                           S1, S2, Name);
2572   }
2573   
2574   if (InsertBefore)
2575     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2576                         S1, S2, Name);
2577   else
2578     return new FCmpInst(CmpInst::Predicate(predicate),
2579                         S1, S2, Name);
2580 }
2581
2582 CmpInst *
2583 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
2584                 const Twine &Name, BasicBlock *InsertAtEnd) {
2585   if (Op == Instruction::ICmp) {
2586     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2587                         S1, S2, Name);
2588   }
2589   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2590                       S1, S2, Name);
2591 }
2592
2593 void CmpInst::swapOperands() {
2594   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2595     IC->swapOperands();
2596   else
2597     cast<FCmpInst>(this)->swapOperands();
2598 }
2599
2600 bool CmpInst::isCommutative() const {
2601   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2602     return IC->isCommutative();
2603   return cast<FCmpInst>(this)->isCommutative();
2604 }
2605
2606 bool CmpInst::isEquality() const {
2607   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2608     return IC->isEquality();
2609   return cast<FCmpInst>(this)->isEquality();
2610 }
2611
2612
2613 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2614   switch (pred) {
2615     default: assert(!"Unknown cmp predicate!");
2616     case ICMP_EQ: return ICMP_NE;
2617     case ICMP_NE: return ICMP_EQ;
2618     case ICMP_UGT: return ICMP_ULE;
2619     case ICMP_ULT: return ICMP_UGE;
2620     case ICMP_UGE: return ICMP_ULT;
2621     case ICMP_ULE: return ICMP_UGT;
2622     case ICMP_SGT: return ICMP_SLE;
2623     case ICMP_SLT: return ICMP_SGE;
2624     case ICMP_SGE: return ICMP_SLT;
2625     case ICMP_SLE: return ICMP_SGT;
2626
2627     case FCMP_OEQ: return FCMP_UNE;
2628     case FCMP_ONE: return FCMP_UEQ;
2629     case FCMP_OGT: return FCMP_ULE;
2630     case FCMP_OLT: return FCMP_UGE;
2631     case FCMP_OGE: return FCMP_ULT;
2632     case FCMP_OLE: return FCMP_UGT;
2633     case FCMP_UEQ: return FCMP_ONE;
2634     case FCMP_UNE: return FCMP_OEQ;
2635     case FCMP_UGT: return FCMP_OLE;
2636     case FCMP_ULT: return FCMP_OGE;
2637     case FCMP_UGE: return FCMP_OLT;
2638     case FCMP_ULE: return FCMP_OGT;
2639     case FCMP_ORD: return FCMP_UNO;
2640     case FCMP_UNO: return FCMP_ORD;
2641     case FCMP_TRUE: return FCMP_FALSE;
2642     case FCMP_FALSE: return FCMP_TRUE;
2643   }
2644 }
2645
2646 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2647   switch (pred) {
2648     default: assert(! "Unknown icmp predicate!");
2649     case ICMP_EQ: case ICMP_NE: 
2650     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
2651        return pred;
2652     case ICMP_UGT: return ICMP_SGT;
2653     case ICMP_ULT: return ICMP_SLT;
2654     case ICMP_UGE: return ICMP_SGE;
2655     case ICMP_ULE: return ICMP_SLE;
2656   }
2657 }
2658
2659 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2660   switch (pred) {
2661     default: assert(! "Unknown icmp predicate!");
2662     case ICMP_EQ: case ICMP_NE: 
2663     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
2664        return pred;
2665     case ICMP_SGT: return ICMP_UGT;
2666     case ICMP_SLT: return ICMP_ULT;
2667     case ICMP_SGE: return ICMP_UGE;
2668     case ICMP_SLE: return ICMP_ULE;
2669   }
2670 }
2671
2672 /// Initialize a set of values that all satisfy the condition with C.
2673 ///
2674 ConstantRange 
2675 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2676   APInt Lower(C);
2677   APInt Upper(C);
2678   uint32_t BitWidth = C.getBitWidth();
2679   switch (pred) {
2680   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2681   case ICmpInst::ICMP_EQ: Upper++; break;
2682   case ICmpInst::ICMP_NE: Lower++; break;
2683   case ICmpInst::ICMP_ULT:
2684     Lower = APInt::getMinValue(BitWidth);
2685     // Check for an empty-set condition.
2686     if (Lower == Upper)
2687       return ConstantRange(BitWidth, /*isFullSet=*/false);
2688     break;
2689   case ICmpInst::ICMP_SLT:
2690     Lower = APInt::getSignedMinValue(BitWidth);
2691     // Check for an empty-set condition.
2692     if (Lower == Upper)
2693       return ConstantRange(BitWidth, /*isFullSet=*/false);
2694     break;
2695   case ICmpInst::ICMP_UGT: 
2696     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2697     // Check for an empty-set condition.
2698     if (Lower == Upper)
2699       return ConstantRange(BitWidth, /*isFullSet=*/false);
2700     break;
2701   case ICmpInst::ICMP_SGT:
2702     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2703     // Check for an empty-set condition.
2704     if (Lower == Upper)
2705       return ConstantRange(BitWidth, /*isFullSet=*/false);
2706     break;
2707   case ICmpInst::ICMP_ULE: 
2708     Lower = APInt::getMinValue(BitWidth); Upper++; 
2709     // Check for a full-set condition.
2710     if (Lower == Upper)
2711       return ConstantRange(BitWidth, /*isFullSet=*/true);
2712     break;
2713   case ICmpInst::ICMP_SLE: 
2714     Lower = APInt::getSignedMinValue(BitWidth); Upper++; 
2715     // Check for a full-set condition.
2716     if (Lower == Upper)
2717       return ConstantRange(BitWidth, /*isFullSet=*/true);
2718     break;
2719   case ICmpInst::ICMP_UGE:
2720     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2721     // Check for a full-set condition.
2722     if (Lower == Upper)
2723       return ConstantRange(BitWidth, /*isFullSet=*/true);
2724     break;
2725   case ICmpInst::ICMP_SGE:
2726     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2727     // Check for a full-set condition.
2728     if (Lower == Upper)
2729       return ConstantRange(BitWidth, /*isFullSet=*/true);
2730     break;
2731   }
2732   return ConstantRange(Lower, Upper);
2733 }
2734
2735 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2736   switch (pred) {
2737     default: assert(!"Unknown cmp predicate!");
2738     case ICMP_EQ: case ICMP_NE:
2739       return pred;
2740     case ICMP_SGT: return ICMP_SLT;
2741     case ICMP_SLT: return ICMP_SGT;
2742     case ICMP_SGE: return ICMP_SLE;
2743     case ICMP_SLE: return ICMP_SGE;
2744     case ICMP_UGT: return ICMP_ULT;
2745     case ICMP_ULT: return ICMP_UGT;
2746     case ICMP_UGE: return ICMP_ULE;
2747     case ICMP_ULE: return ICMP_UGE;
2748   
2749     case FCMP_FALSE: case FCMP_TRUE:
2750     case FCMP_OEQ: case FCMP_ONE:
2751     case FCMP_UEQ: case FCMP_UNE:
2752     case FCMP_ORD: case FCMP_UNO:
2753       return pred;
2754     case FCMP_OGT: return FCMP_OLT;
2755     case FCMP_OLT: return FCMP_OGT;
2756     case FCMP_OGE: return FCMP_OLE;
2757     case FCMP_OLE: return FCMP_OGE;
2758     case FCMP_UGT: return FCMP_ULT;
2759     case FCMP_ULT: return FCMP_UGT;
2760     case FCMP_UGE: return FCMP_ULE;
2761     case FCMP_ULE: return FCMP_UGE;
2762   }
2763 }
2764
2765 bool CmpInst::isUnsigned(unsigned short predicate) {
2766   switch (predicate) {
2767     default: return false;
2768     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
2769     case ICmpInst::ICMP_UGE: return true;
2770   }
2771 }
2772
2773 bool CmpInst::isSigned(unsigned short predicate) {
2774   switch (predicate) {
2775     default: return false;
2776     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
2777     case ICmpInst::ICMP_SGE: return true;
2778   }
2779 }
2780
2781 bool CmpInst::isOrdered(unsigned short predicate) {
2782   switch (predicate) {
2783     default: return false;
2784     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
2785     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
2786     case FCmpInst::FCMP_ORD: return true;
2787   }
2788 }
2789       
2790 bool CmpInst::isUnordered(unsigned short predicate) {
2791   switch (predicate) {
2792     default: return false;
2793     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
2794     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
2795     case FCmpInst::FCMP_UNO: return true;
2796   }
2797 }
2798
2799 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
2800   switch(predicate) {
2801     default: return false;
2802     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
2803     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
2804   }
2805 }
2806
2807 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
2808   switch(predicate) {
2809   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
2810   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
2811   default: return false;
2812   }
2813 }
2814
2815
2816 //===----------------------------------------------------------------------===//
2817 //                        SwitchInst Implementation
2818 //===----------------------------------------------------------------------===//
2819
2820 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
2821   assert(Value && Default && NumReserved);
2822   ReservedSpace = NumReserved;
2823   NumOperands = 2;
2824   OperandList = allocHungoffUses(ReservedSpace);
2825
2826   OperandList[0] = Value;
2827   OperandList[1] = Default;
2828 }
2829
2830 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2831 /// switch on and a default destination.  The number of additional cases can
2832 /// be specified here to make memory allocation more efficient.  This
2833 /// constructor can also autoinsert before another instruction.
2834 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2835                        Instruction *InsertBefore)
2836   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2837                    0, 0, InsertBefore) {
2838   init(Value, Default, 2+NumCases*2);
2839 }
2840
2841 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2842 /// switch on and a default destination.  The number of additional cases can
2843 /// be specified here to make memory allocation more efficient.  This
2844 /// constructor also autoinserts at the end of the specified BasicBlock.
2845 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2846                        BasicBlock *InsertAtEnd)
2847   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2848                    0, 0, InsertAtEnd) {
2849   init(Value, Default, 2+NumCases*2);
2850 }
2851
2852 SwitchInst::SwitchInst(const SwitchInst &SI)
2853   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
2854   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
2855   NumOperands = SI.getNumOperands();
2856   Use *OL = OperandList, *InOL = SI.OperandList;
2857   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
2858     OL[i] = InOL[i];
2859     OL[i+1] = InOL[i+1];
2860   }
2861   SubclassOptionalData = SI.SubclassOptionalData;
2862 }
2863
2864 SwitchInst::~SwitchInst() {
2865   dropHungoffUses();
2866 }
2867
2868
2869 /// addCase - Add an entry to the switch instruction...
2870 ///
2871 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2872   unsigned OpNo = NumOperands;
2873   if (OpNo+2 > ReservedSpace)
2874     growOperands();  // Get more space!
2875   // Initialize some new operands.
2876   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2877   NumOperands = OpNo+2;
2878   OperandList[OpNo] = OnVal;
2879   OperandList[OpNo+1] = Dest;
2880 }
2881
2882 /// removeCase - This method removes the specified successor from the switch
2883 /// instruction.  Note that this cannot be used to remove the default
2884 /// destination (successor #0).
2885 ///
2886 void SwitchInst::removeCase(unsigned idx) {
2887   assert(idx != 0 && "Cannot remove the default case!");
2888   assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2889
2890   unsigned NumOps = getNumOperands();
2891   Use *OL = OperandList;
2892
2893   // Overwrite this case with the end of the list.
2894   if ((idx + 1) * 2 != NumOps) {
2895     OL[idx * 2] = OL[NumOps - 2];
2896     OL[idx * 2 + 1] = OL[NumOps - 1];
2897   }
2898
2899   // Nuke the last value.
2900   OL[NumOps-2].set(0);
2901   OL[NumOps-2+1].set(0);
2902   NumOperands = NumOps-2;
2903 }
2904
2905 /// growOperands - grow operands - This grows the operand list in response
2906 /// to a push_back style of operation.  This grows the number of ops by 3 times.
2907 ///
2908 void SwitchInst::growOperands() {
2909   unsigned e = getNumOperands();
2910   unsigned NumOps = e*3;
2911
2912   ReservedSpace = NumOps;
2913   Use *NewOps = allocHungoffUses(NumOps);
2914   Use *OldOps = OperandList;
2915   for (unsigned i = 0; i != e; ++i) {
2916       NewOps[i] = OldOps[i];
2917   }
2918   OperandList = NewOps;
2919   Use::zap(OldOps, OldOps + e, true);
2920 }
2921
2922
2923 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
2924   return getSuccessor(idx);
2925 }
2926 unsigned SwitchInst::getNumSuccessorsV() const {
2927   return getNumSuccessors();
2928 }
2929 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
2930   setSuccessor(idx, B);
2931 }
2932
2933 //===----------------------------------------------------------------------===//
2934 //                        IndirectBrInst Implementation
2935 //===----------------------------------------------------------------------===//
2936
2937 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
2938   assert(Address && Address->getType()->isPointerTy() &&
2939          "Address of indirectbr must be a pointer");
2940   ReservedSpace = 1+NumDests;
2941   NumOperands = 1;
2942   OperandList = allocHungoffUses(ReservedSpace);
2943   
2944   OperandList[0] = Address;
2945 }
2946
2947
2948 /// growOperands - grow operands - This grows the operand list in response
2949 /// to a push_back style of operation.  This grows the number of ops by 2 times.
2950 ///
2951 void IndirectBrInst::growOperands() {
2952   unsigned e = getNumOperands();
2953   unsigned NumOps = e*2;
2954   
2955   ReservedSpace = NumOps;
2956   Use *NewOps = allocHungoffUses(NumOps);
2957   Use *OldOps = OperandList;
2958   for (unsigned i = 0; i != e; ++i)
2959     NewOps[i] = OldOps[i];
2960   OperandList = NewOps;
2961   Use::zap(OldOps, OldOps + e, true);
2962 }
2963
2964 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
2965                                Instruction *InsertBefore)
2966 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
2967                  0, 0, InsertBefore) {
2968   init(Address, NumCases);
2969 }
2970
2971 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
2972                                BasicBlock *InsertAtEnd)
2973 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
2974                  0, 0, InsertAtEnd) {
2975   init(Address, NumCases);
2976 }
2977
2978 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
2979   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
2980                    allocHungoffUses(IBI.getNumOperands()),
2981                    IBI.getNumOperands()) {
2982   Use *OL = OperandList, *InOL = IBI.OperandList;
2983   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
2984     OL[i] = InOL[i];
2985   SubclassOptionalData = IBI.SubclassOptionalData;
2986 }
2987
2988 IndirectBrInst::~IndirectBrInst() {
2989   dropHungoffUses();
2990 }
2991
2992 /// addDestination - Add a destination.
2993 ///
2994 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
2995   unsigned OpNo = NumOperands;
2996   if (OpNo+1 > ReservedSpace)
2997     growOperands();  // Get more space!
2998   // Initialize some new operands.
2999   assert(OpNo < ReservedSpace && "Growing didn't work!");
3000   NumOperands = OpNo+1;
3001   OperandList[OpNo] = DestBB;
3002 }
3003
3004 /// removeDestination - This method removes the specified successor from the
3005 /// indirectbr instruction.
3006 void IndirectBrInst::removeDestination(unsigned idx) {
3007   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3008   
3009   unsigned NumOps = getNumOperands();
3010   Use *OL = OperandList;
3011
3012   // Replace this value with the last one.
3013   OL[idx+1] = OL[NumOps-1];
3014   
3015   // Nuke the last value.
3016   OL[NumOps-1].set(0);
3017   NumOperands = NumOps-1;
3018 }
3019
3020 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3021   return getSuccessor(idx);
3022 }
3023 unsigned IndirectBrInst::getNumSuccessorsV() const {
3024   return getNumSuccessors();
3025 }
3026 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3027   setSuccessor(idx, B);
3028 }
3029
3030 //===----------------------------------------------------------------------===//
3031 //                           clone_impl() implementations
3032 //===----------------------------------------------------------------------===//
3033
3034 // Define these methods here so vtables don't get emitted into every translation
3035 // unit that uses these classes.
3036
3037 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3038   return new (getNumOperands()) GetElementPtrInst(*this);
3039 }
3040
3041 BinaryOperator *BinaryOperator::clone_impl() const {
3042   return Create(getOpcode(), Op<0>(), Op<1>());
3043 }
3044
3045 FCmpInst* FCmpInst::clone_impl() const {
3046   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3047 }
3048
3049 ICmpInst* ICmpInst::clone_impl() const {
3050   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3051 }
3052
3053 ExtractValueInst *ExtractValueInst::clone_impl() const {
3054   return new ExtractValueInst(*this);
3055 }
3056
3057 InsertValueInst *InsertValueInst::clone_impl() const {
3058   return new InsertValueInst(*this);
3059 }
3060
3061 AllocaInst *AllocaInst::clone_impl() const {
3062   return new AllocaInst(getAllocatedType(),
3063                         (Value*)getOperand(0),
3064                         getAlignment());
3065 }
3066
3067 LoadInst *LoadInst::clone_impl() const {
3068   return new LoadInst(getOperand(0),
3069                       Twine(), isVolatile(),
3070                       getAlignment());
3071 }
3072
3073 StoreInst *StoreInst::clone_impl() const {
3074   return new StoreInst(getOperand(0), getOperand(1),
3075                        isVolatile(), getAlignment());
3076 }
3077
3078 TruncInst *TruncInst::clone_impl() const {
3079   return new TruncInst(getOperand(0), getType());
3080 }
3081
3082 ZExtInst *ZExtInst::clone_impl() const {
3083   return new ZExtInst(getOperand(0), getType());
3084 }
3085
3086 SExtInst *SExtInst::clone_impl() const {
3087   return new SExtInst(getOperand(0), getType());
3088 }
3089
3090 FPTruncInst *FPTruncInst::clone_impl() const {
3091   return new FPTruncInst(getOperand(0), getType());
3092 }
3093
3094 FPExtInst *FPExtInst::clone_impl() const {
3095   return new FPExtInst(getOperand(0), getType());
3096 }
3097
3098 UIToFPInst *UIToFPInst::clone_impl() const {
3099   return new UIToFPInst(getOperand(0), getType());
3100 }
3101
3102 SIToFPInst *SIToFPInst::clone_impl() const {
3103   return new SIToFPInst(getOperand(0), getType());
3104 }
3105
3106 FPToUIInst *FPToUIInst::clone_impl() const {
3107   return new FPToUIInst(getOperand(0), getType());
3108 }
3109
3110 FPToSIInst *FPToSIInst::clone_impl() const {
3111   return new FPToSIInst(getOperand(0), getType());
3112 }
3113
3114 PtrToIntInst *PtrToIntInst::clone_impl() const {
3115   return new PtrToIntInst(getOperand(0), getType());
3116 }
3117
3118 IntToPtrInst *IntToPtrInst::clone_impl() const {
3119   return new IntToPtrInst(getOperand(0), getType());
3120 }
3121
3122 BitCastInst *BitCastInst::clone_impl() const {
3123   return new BitCastInst(getOperand(0), getType());
3124 }
3125
3126 CallInst *CallInst::clone_impl() const {
3127   return  new(getNumOperands()) CallInst(*this);
3128 }
3129
3130 SelectInst *SelectInst::clone_impl() const {
3131   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3132 }
3133
3134 VAArgInst *VAArgInst::clone_impl() const {
3135   return new VAArgInst(getOperand(0), getType());
3136 }
3137
3138 ExtractElementInst *ExtractElementInst::clone_impl() const {
3139   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3140 }
3141
3142 InsertElementInst *InsertElementInst::clone_impl() const {
3143   return InsertElementInst::Create(getOperand(0),
3144                                    getOperand(1),
3145                                    getOperand(2));
3146 }
3147
3148 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3149   return new ShuffleVectorInst(getOperand(0),
3150                            getOperand(1),
3151                            getOperand(2));
3152 }
3153
3154 PHINode *PHINode::clone_impl() const {
3155   return new PHINode(*this);
3156 }
3157
3158 ReturnInst *ReturnInst::clone_impl() const {
3159   return new(getNumOperands()) ReturnInst(*this);
3160 }
3161
3162 BranchInst *BranchInst::clone_impl() const {
3163   return new(getNumOperands()) BranchInst(*this);
3164 }
3165
3166 SwitchInst *SwitchInst::clone_impl() const {
3167   return new SwitchInst(*this);
3168 }
3169
3170 IndirectBrInst *IndirectBrInst::clone_impl() const {
3171   return new IndirectBrInst(*this);
3172 }
3173
3174
3175 InvokeInst *InvokeInst::clone_impl() const {
3176   return new(getNumOperands()) InvokeInst(*this);
3177 }
3178
3179 UnwindInst *UnwindInst::clone_impl() const {
3180   LLVMContext &Context = getContext();
3181   return new UnwindInst(Context);
3182 }
3183
3184 UnreachableInst *UnreachableInst::clone_impl() const {
3185   LLVMContext &Context = getContext();
3186   return new UnreachableInst(Context);
3187 }