]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/include/clang/AST/ExprCXX.h
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / include / clang / AST / ExprCXX.h
1 //===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the Expr interface and subclasses for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_EXPRCXX_H
15 #define LLVM_CLANG_AST_EXPRCXX_H
16
17 #include "clang/Basic/TypeTraits.h"
18 #include "clang/Basic/ExpressionTraits.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/UnresolvedSet.h"
21 #include "clang/AST/TemplateBase.h"
22
23 namespace clang {
24
25 class CXXConstructorDecl;
26 class CXXDestructorDecl;
27 class CXXMethodDecl;
28 class CXXTemporary;
29 class TemplateArgumentListInfo;
30
31 //===--------------------------------------------------------------------===//
32 // C++ Expressions.
33 //===--------------------------------------------------------------------===//
34
35 /// \brief A call to an overloaded operator written using operator
36 /// syntax.
37 ///
38 /// Represents a call to an overloaded operator written using operator
39 /// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
40 /// normal call, this AST node provides better information about the
41 /// syntactic representation of the call.
42 ///
43 /// In a C++ template, this expression node kind will be used whenever
44 /// any of the arguments are type-dependent. In this case, the
45 /// function itself will be a (possibly empty) set of functions and
46 /// function templates that were found by name lookup at template
47 /// definition time.
48 class CXXOperatorCallExpr : public CallExpr {
49   /// \brief The overloaded operator.
50   OverloadedOperatorKind Operator;
51
52 public:
53   CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
54                       Expr **args, unsigned numargs, QualType t,
55                       ExprValueKind VK, SourceLocation operatorloc)
56     : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
57                operatorloc),
58       Operator(Op) {}
59   explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
60     CallExpr(C, CXXOperatorCallExprClass, Empty) { }
61
62
63   /// getOperator - Returns the kind of overloaded operator that this
64   /// expression refers to.
65   OverloadedOperatorKind getOperator() const { return Operator; }
66   void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
67
68   /// getOperatorLoc - Returns the location of the operator symbol in
69   /// the expression. When @c getOperator()==OO_Call, this is the
70   /// location of the right parentheses; when @c
71   /// getOperator()==OO_Subscript, this is the location of the right
72   /// bracket.
73   SourceLocation getOperatorLoc() const { return getRParenLoc(); }
74
75   SourceRange getSourceRange() const;
76
77   static bool classof(const Stmt *T) {
78     return T->getStmtClass() == CXXOperatorCallExprClass;
79   }
80   static bool classof(const CXXOperatorCallExpr *) { return true; }
81 };
82
83 /// CXXMemberCallExpr - Represents a call to a member function that
84 /// may be written either with member call syntax (e.g., "obj.func()"
85 /// or "objptr->func()") or with normal function-call syntax
86 /// ("func()") within a member function that ends up calling a member
87 /// function. The callee in either case is a MemberExpr that contains
88 /// both the object argument and the member function, while the
89 /// arguments are the arguments within the parentheses (not including
90 /// the object argument).
91 class CXXMemberCallExpr : public CallExpr {
92 public:
93   CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
94                     QualType t, ExprValueKind VK, SourceLocation RP)
95     : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
96
97   CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
98     : CallExpr(C, CXXMemberCallExprClass, Empty) { }
99
100   /// getImplicitObjectArgument - Retrieves the implicit object
101   /// argument for the member call. For example, in "x.f(5)", this
102   /// operation would return "x".
103   Expr *getImplicitObjectArgument() const;
104   
105   /// Retrieves the declaration of the called method.
106   CXXMethodDecl *getMethodDecl() const;
107
108   /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
109   /// the implicit object argument. Note that this is may not be the same
110   /// declaration as that of the class context of the CXXMethodDecl which this
111   /// function is calling.
112   /// FIXME: Returns 0 for member pointer call exprs.
113   CXXRecordDecl *getRecordDecl();
114
115   static bool classof(const Stmt *T) {
116     return T->getStmtClass() == CXXMemberCallExprClass;
117   }
118   static bool classof(const CXXMemberCallExpr *) { return true; }
119 };
120
121 /// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
122 class CUDAKernelCallExpr : public CallExpr {
123 private:
124   enum { CONFIG, END_PREARG };
125
126 public:
127   CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
128                      Expr **args, unsigned numargs, QualType t,
129                      ExprValueKind VK, SourceLocation RP)
130     : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
131                RP) {
132     setConfig(Config);
133   }
134
135   CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
136     : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
137
138   const CallExpr *getConfig() const {
139     return cast_or_null<CallExpr>(getPreArg(CONFIG));
140   }
141   CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
142   void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
143
144   static bool classof(const Stmt *T) {
145     return T->getStmtClass() == CUDAKernelCallExprClass;
146   }
147   static bool classof(const CUDAKernelCallExpr *) { return true; }
148 };
149
150 /// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
151 /// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
152 /// const_cast.
153 ///
154 /// This abstract class is inherited by all of the classes
155 /// representing "named" casts, e.g., CXXStaticCastExpr,
156 /// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
157 class CXXNamedCastExpr : public ExplicitCastExpr {
158 private:
159   SourceLocation Loc; // the location of the casting op
160   SourceLocation RParenLoc; // the location of the right parenthesis
161   
162 protected:
163   CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
164                    CastKind kind, Expr *op, unsigned PathSize,
165                    TypeSourceInfo *writtenTy, SourceLocation l,
166                    SourceLocation RParenLoc)
167     : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
168       RParenLoc(RParenLoc) {}
169
170   explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
171     : ExplicitCastExpr(SC, Shell, PathSize) { }
172
173   friend class ASTStmtReader;
174   
175 public:
176   const char *getCastName() const;
177
178   /// \brief Retrieve the location of the cast operator keyword, e.g.,
179   /// "static_cast".
180   SourceLocation getOperatorLoc() const { return Loc; }
181
182   /// \brief Retrieve the location of the closing parenthesis.
183   SourceLocation getRParenLoc() const { return RParenLoc; }
184   
185   SourceRange getSourceRange() const {
186     return SourceRange(Loc, RParenLoc);
187   }
188   static bool classof(const Stmt *T) {
189     switch (T->getStmtClass()) {
190     case CXXStaticCastExprClass:
191     case CXXDynamicCastExprClass:
192     case CXXReinterpretCastExprClass:
193     case CXXConstCastExprClass:
194       return true;
195     default:
196       return false;
197     }
198   }
199   static bool classof(const CXXNamedCastExpr *) { return true; }
200 };
201
202 /// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
203 ///
204 /// This expression node represents a C++ static cast, e.g.,
205 /// @c static_cast<int>(1.0).
206 class CXXStaticCastExpr : public CXXNamedCastExpr {
207   CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
208                     unsigned pathSize, TypeSourceInfo *writtenTy,
209                     SourceLocation l, SourceLocation RParenLoc)
210     : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
211                        writtenTy, l, RParenLoc) {}
212
213   explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
214     : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
215
216 public:
217   static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
218                                    ExprValueKind VK, CastKind K, Expr *Op,
219                                    const CXXCastPath *Path,
220                                    TypeSourceInfo *Written, SourceLocation L, 
221                                    SourceLocation RParenLoc);
222   static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
223                                         unsigned PathSize);
224
225   static bool classof(const Stmt *T) {
226     return T->getStmtClass() == CXXStaticCastExprClass;
227   }
228   static bool classof(const CXXStaticCastExpr *) { return true; }
229 };
230
231 /// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
232 /// (C++ [expr.dynamic.cast]), which may perform a run-time check to
233 /// determine how to perform the type cast.
234 ///
235 /// This expression node represents a dynamic cast, e.g.,
236 /// @c dynamic_cast<Derived*>(BasePtr).
237 class CXXDynamicCastExpr : public CXXNamedCastExpr {
238   CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
239                      Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
240                      SourceLocation l, SourceLocation RParenLoc)
241     : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
242                        writtenTy, l, RParenLoc) {}
243
244   explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
245     : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
246
247 public:
248   static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
249                                     ExprValueKind VK, CastKind Kind, Expr *Op,
250                                     const CXXCastPath *Path,
251                                     TypeSourceInfo *Written, SourceLocation L, 
252                                     SourceLocation RParenLoc);
253   
254   static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
255                                          unsigned pathSize);
256
257   bool isAlwaysNull() const;
258
259   static bool classof(const Stmt *T) {
260     return T->getStmtClass() == CXXDynamicCastExprClass;
261   }
262   static bool classof(const CXXDynamicCastExpr *) { return true; }
263 };
264
265 /// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
266 /// [expr.reinterpret.cast]), which provides a differently-typed view
267 /// of a value but performs no actual work at run time.
268 ///
269 /// This expression node represents a reinterpret cast, e.g.,
270 /// @c reinterpret_cast<int>(VoidPtr).
271 class CXXReinterpretCastExpr : public CXXNamedCastExpr {
272   CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
273                          Expr *op, unsigned pathSize,
274                          TypeSourceInfo *writtenTy, SourceLocation l, 
275                          SourceLocation RParenLoc)
276     : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
277                        pathSize, writtenTy, l, RParenLoc) {}
278
279   CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
280     : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
281
282 public:
283   static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
284                                         ExprValueKind VK, CastKind Kind,
285                                         Expr *Op, const CXXCastPath *Path,
286                                  TypeSourceInfo *WrittenTy, SourceLocation L, 
287                                         SourceLocation RParenLoc);
288   static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
289                                              unsigned pathSize);
290
291   static bool classof(const Stmt *T) {
292     return T->getStmtClass() == CXXReinterpretCastExprClass;
293   }
294   static bool classof(const CXXReinterpretCastExpr *) { return true; }
295 };
296
297 /// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
298 /// which can remove type qualifiers but does not change the underlying value.
299 ///
300 /// This expression node represents a const cast, e.g.,
301 /// @c const_cast<char*>(PtrToConstChar).
302 class CXXConstCastExpr : public CXXNamedCastExpr {
303   CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
304                    TypeSourceInfo *writtenTy, SourceLocation l, 
305                    SourceLocation RParenLoc)
306     : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op, 
307                        0, writtenTy, l, RParenLoc) {}
308
309   explicit CXXConstCastExpr(EmptyShell Empty)
310     : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
311
312 public:
313   static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
314                                   ExprValueKind VK, Expr *Op,
315                                   TypeSourceInfo *WrittenTy, SourceLocation L, 
316                                   SourceLocation RParenLoc);
317   static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
318
319   static bool classof(const Stmt *T) {
320     return T->getStmtClass() == CXXConstCastExprClass;
321   }
322   static bool classof(const CXXConstCastExpr *) { return true; }
323 };
324
325 /// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
326 ///
327 class CXXBoolLiteralExpr : public Expr {
328   bool Value;
329   SourceLocation Loc;
330 public:
331   CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
332     Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
333          false, false),
334     Value(val), Loc(l) {}
335
336   explicit CXXBoolLiteralExpr(EmptyShell Empty)
337     : Expr(CXXBoolLiteralExprClass, Empty) { }
338
339   bool getValue() const { return Value; }
340   void setValue(bool V) { Value = V; }
341
342   SourceRange getSourceRange() const { return SourceRange(Loc); }
343
344   SourceLocation getLocation() const { return Loc; }
345   void setLocation(SourceLocation L) { Loc = L; }
346
347   static bool classof(const Stmt *T) {
348     return T->getStmtClass() == CXXBoolLiteralExprClass;
349   }
350   static bool classof(const CXXBoolLiteralExpr *) { return true; }
351
352   // Iterators
353   child_range children() { return child_range(); }
354 };
355
356 /// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
357 class CXXNullPtrLiteralExpr : public Expr {
358   SourceLocation Loc;
359 public:
360   CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
361     Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
362          false, false),
363     Loc(l) {}
364
365   explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
366     : Expr(CXXNullPtrLiteralExprClass, Empty) { }
367
368   SourceRange getSourceRange() const { return SourceRange(Loc); }
369
370   SourceLocation getLocation() const { return Loc; }
371   void setLocation(SourceLocation L) { Loc = L; }
372
373   static bool classof(const Stmt *T) {
374     return T->getStmtClass() == CXXNullPtrLiteralExprClass;
375   }
376   static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
377
378   child_range children() { return child_range(); }
379 };
380
381 /// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
382 /// the type_info that corresponds to the supplied type, or the (possibly
383 /// dynamic) type of the supplied expression.
384 ///
385 /// This represents code like @c typeid(int) or @c typeid(*objPtr)
386 class CXXTypeidExpr : public Expr {
387 private:
388   llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
389   SourceRange Range;
390
391 public:
392   CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
393     : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
394            // typeid is never type-dependent (C++ [temp.dep.expr]p4)
395            false,
396            // typeid is value-dependent if the type or expression are dependent
397            Operand->getType()->isDependentType(),
398            Operand->getType()->isInstantiationDependentType(),
399            Operand->getType()->containsUnexpandedParameterPack()),
400       Operand(Operand), Range(R) { }
401   
402   CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
403     : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
404         // typeid is never type-dependent (C++ [temp.dep.expr]p4)
405            false,
406         // typeid is value-dependent if the type or expression are dependent
407            Operand->isTypeDependent() || Operand->isValueDependent(),
408            Operand->isInstantiationDependent(),
409            Operand->containsUnexpandedParameterPack()),
410       Operand(Operand), Range(R) { }
411
412   CXXTypeidExpr(EmptyShell Empty, bool isExpr)
413     : Expr(CXXTypeidExprClass, Empty) {
414     if (isExpr)
415       Operand = (Expr*)0;
416     else
417       Operand = (TypeSourceInfo*)0;
418   }
419   
420   bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
421   
422   /// \brief Retrieves the type operand of this typeid() expression after
423   /// various required adjustments (removing reference types, cv-qualifiers).
424   QualType getTypeOperand() const;
425
426   /// \brief Retrieve source information for the type operand.
427   TypeSourceInfo *getTypeOperandSourceInfo() const {
428     assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
429     return Operand.get<TypeSourceInfo *>();
430   }
431
432   void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
433     assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
434     Operand = TSI;
435   }
436   
437   Expr *getExprOperand() const {
438     assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
439     return static_cast<Expr*>(Operand.get<Stmt *>());
440   }
441   
442   void setExprOperand(Expr *E) {
443     assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
444     Operand = E;
445   }
446   
447   SourceRange getSourceRange() const { return Range; }
448   void setSourceRange(SourceRange R) { Range = R; }
449   
450   static bool classof(const Stmt *T) {
451     return T->getStmtClass() == CXXTypeidExprClass;
452   }
453   static bool classof(const CXXTypeidExpr *) { return true; }
454
455   // Iterators
456   child_range children() {
457     if (isTypeOperand()) return child_range();
458     Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
459     return child_range(begin, begin + 1);
460   }
461 };
462
463 /// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
464 /// the _GUID that corresponds to the supplied type or expression.
465 ///
466 /// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
467 class CXXUuidofExpr : public Expr {
468 private:
469   llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
470   SourceRange Range;
471
472 public:
473   CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
474     : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
475            false, Operand->getType()->isDependentType(),
476            Operand->getType()->isInstantiationDependentType(),
477            Operand->getType()->containsUnexpandedParameterPack()),
478       Operand(Operand), Range(R) { }
479   
480   CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
481     : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
482            false, Operand->isTypeDependent(),
483            Operand->isInstantiationDependent(),
484            Operand->containsUnexpandedParameterPack()),
485       Operand(Operand), Range(R) { }
486
487   CXXUuidofExpr(EmptyShell Empty, bool isExpr)
488     : Expr(CXXUuidofExprClass, Empty) {
489     if (isExpr)
490       Operand = (Expr*)0;
491     else
492       Operand = (TypeSourceInfo*)0;
493   }
494   
495   bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
496   
497   /// \brief Retrieves the type operand of this __uuidof() expression after
498   /// various required adjustments (removing reference types, cv-qualifiers).
499   QualType getTypeOperand() const;
500
501   /// \brief Retrieve source information for the type operand.
502   TypeSourceInfo *getTypeOperandSourceInfo() const {
503     assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
504     return Operand.get<TypeSourceInfo *>();
505   }
506
507   void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
508     assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
509     Operand = TSI;
510   }
511   
512   Expr *getExprOperand() const {
513     assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
514     return static_cast<Expr*>(Operand.get<Stmt *>());
515   }
516   
517   void setExprOperand(Expr *E) {
518     assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
519     Operand = E;
520   }
521
522   SourceRange getSourceRange() const { return Range; }
523   void setSourceRange(SourceRange R) { Range = R; }
524   
525   static bool classof(const Stmt *T) {
526     return T->getStmtClass() == CXXUuidofExprClass;
527   }
528   static bool classof(const CXXUuidofExpr *) { return true; }
529
530   // Iterators
531   child_range children() {
532     if (isTypeOperand()) return child_range();
533     Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
534     return child_range(begin, begin + 1);
535   }
536 };
537
538 /// CXXThisExpr - Represents the "this" expression in C++, which is a
539 /// pointer to the object on which the current member function is
540 /// executing (C++ [expr.prim]p3). Example:
541 ///
542 /// @code
543 /// class Foo {
544 /// public:
545 ///   void bar();
546 ///   void test() { this->bar(); }
547 /// };
548 /// @endcode
549 class CXXThisExpr : public Expr {
550   SourceLocation Loc;
551   bool Implicit : 1;
552   
553 public:
554   CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
555     : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
556            // 'this' is type-dependent if the class type of the enclosing
557            // member function is dependent (C++ [temp.dep.expr]p2)
558            Type->isDependentType(), Type->isDependentType(),
559            Type->isInstantiationDependentType(),
560            /*ContainsUnexpandedParameterPack=*/false),
561       Loc(L), Implicit(isImplicit) { }
562
563   CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
564
565   SourceLocation getLocation() const { return Loc; }
566   void setLocation(SourceLocation L) { Loc = L; }
567
568   SourceRange getSourceRange() const { return SourceRange(Loc); }
569
570   bool isImplicit() const { return Implicit; }
571   void setImplicit(bool I) { Implicit = I; }
572   
573   static bool classof(const Stmt *T) {
574     return T->getStmtClass() == CXXThisExprClass;
575   }
576   static bool classof(const CXXThisExpr *) { return true; }
577
578   // Iterators
579   child_range children() { return child_range(); }
580 };
581
582 ///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
583 ///  'throw' and 'throw' assignment-expression.  When
584 ///  assignment-expression isn't present, Op will be null.
585 ///
586 class CXXThrowExpr : public Expr {
587   Stmt *Op;
588   SourceLocation ThrowLoc;
589   /// \brief Whether the thrown variable (if any) is in scope.
590   unsigned IsThrownVariableInScope : 1;
591   
592   friend class ASTStmtReader;
593   
594 public:
595   // Ty is the void type which is used as the result type of the
596   // exepression.  The l is the location of the throw keyword.  expr
597   // can by null, if the optional expression to throw isn't present.
598   CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
599                bool IsThrownVariableInScope) :
600     Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
601          expr && expr->isInstantiationDependent(),
602          expr && expr->containsUnexpandedParameterPack()),
603     Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
604   CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
605
606   const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
607   Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
608
609   SourceLocation getThrowLoc() const { return ThrowLoc; }
610
611   /// \brief Determines whether the variable thrown by this expression (if any!)
612   /// is within the innermost try block.
613   ///
614   /// This information is required to determine whether the NRVO can apply to
615   /// this variable.
616   bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
617   
618   SourceRange getSourceRange() const {
619     if (getSubExpr() == 0)
620       return SourceRange(ThrowLoc, ThrowLoc);
621     return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
622   }
623
624   static bool classof(const Stmt *T) {
625     return T->getStmtClass() == CXXThrowExprClass;
626   }
627   static bool classof(const CXXThrowExpr *) { return true; }
628
629   // Iterators
630   child_range children() {
631     return child_range(&Op, Op ? &Op+1 : &Op);
632   }
633 };
634
635 /// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
636 /// function call argument that was created from the corresponding
637 /// parameter's default argument, when the call did not explicitly
638 /// supply arguments for all of the parameters.
639 class CXXDefaultArgExpr : public Expr {
640   /// \brief The parameter whose default is being used.
641   ///
642   /// When the bit is set, the subexpression is stored after the 
643   /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
644   /// actual default expression is the subexpression.
645   llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
646
647   /// \brief The location where the default argument expression was used.
648   SourceLocation Loc;
649   
650   CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
651     : Expr(SC, 
652            param->hasUnparsedDefaultArg()
653              ? param->getType().getNonReferenceType()
654              : param->getDefaultArg()->getType(),
655            param->getDefaultArg()->getValueKind(),
656            param->getDefaultArg()->getObjectKind(), false, false, false, false),
657       Param(param, false), Loc(Loc) { }
658
659   CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param, 
660                     Expr *SubExpr)
661     : Expr(SC, SubExpr->getType(),
662            SubExpr->getValueKind(), SubExpr->getObjectKind(),
663            false, false, false, false), 
664       Param(param, true), Loc(Loc) {
665     *reinterpret_cast<Expr **>(this + 1) = SubExpr;
666   }
667   
668 public:
669   CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
670
671   
672   // Param is the parameter whose default argument is used by this
673   // expression.
674   static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
675                                    ParmVarDecl *Param) {
676     return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
677   }
678
679   // Param is the parameter whose default argument is used by this
680   // expression, and SubExpr is the expression that will actually be used.
681   static CXXDefaultArgExpr *Create(ASTContext &C, 
682                                    SourceLocation Loc,
683                                    ParmVarDecl *Param, 
684                                    Expr *SubExpr);
685   
686   // Retrieve the parameter that the argument was created from.
687   const ParmVarDecl *getParam() const { return Param.getPointer(); }
688   ParmVarDecl *getParam() { return Param.getPointer(); }
689   
690   // Retrieve the actual argument to the function call.
691   const Expr *getExpr() const { 
692     if (Param.getInt())
693       return *reinterpret_cast<Expr const * const*> (this + 1);
694     return getParam()->getDefaultArg(); 
695   }
696   Expr *getExpr() { 
697     if (Param.getInt())
698       return *reinterpret_cast<Expr **> (this + 1);
699     return getParam()->getDefaultArg(); 
700   }
701
702   /// \brief Retrieve the location where this default argument was actually 
703   /// used.
704   SourceLocation getUsedLocation() const { return Loc; }
705   
706   SourceRange getSourceRange() const {
707     // Default argument expressions have no representation in the
708     // source, so they have an empty source range.
709     return SourceRange();
710   }
711
712   static bool classof(const Stmt *T) {
713     return T->getStmtClass() == CXXDefaultArgExprClass;
714   }
715   static bool classof(const CXXDefaultArgExpr *) { return true; }
716
717   // Iterators
718   child_range children() { return child_range(); }
719
720   friend class ASTStmtReader;
721   friend class ASTStmtWriter;
722 };
723
724 /// CXXTemporary - Represents a C++ temporary.
725 class CXXTemporary {
726   /// Destructor - The destructor that needs to be called.
727   const CXXDestructorDecl *Destructor;
728
729   CXXTemporary(const CXXDestructorDecl *destructor)
730     : Destructor(destructor) { }
731
732 public:
733   static CXXTemporary *Create(ASTContext &C,
734                               const CXXDestructorDecl *Destructor);
735
736   const CXXDestructorDecl *getDestructor() const { return Destructor; }
737 };
738
739 /// \brief Represents binding an expression to a temporary.
740 ///
741 /// This ensures the destructor is called for the temporary. It should only be
742 /// needed for non-POD, non-trivially destructable class types. For example:
743 ///
744 /// \code
745 ///   struct S {
746 ///     S() { }  // User defined constructor makes S non-POD.
747 ///     ~S() { } // User defined destructor makes it non-trivial.
748 ///   };
749 ///   void test() {
750 ///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
751 ///   }
752 /// \endcode
753 class CXXBindTemporaryExpr : public Expr {
754   CXXTemporary *Temp;
755
756   Stmt *SubExpr;
757
758   CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
759    : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
760           VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(), 
761           SubExpr->isValueDependent(),
762           SubExpr->isInstantiationDependent(),
763           SubExpr->containsUnexpandedParameterPack()),
764      Temp(temp), SubExpr(SubExpr) { }
765
766 public:
767   CXXBindTemporaryExpr(EmptyShell Empty)
768     : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
769   
770   static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
771                                       Expr* SubExpr);
772
773   CXXTemporary *getTemporary() { return Temp; }
774   const CXXTemporary *getTemporary() const { return Temp; }
775   void setTemporary(CXXTemporary *T) { Temp = T; }
776
777   const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
778   Expr *getSubExpr() { return cast<Expr>(SubExpr); }
779   void setSubExpr(Expr *E) { SubExpr = E; }
780
781   SourceRange getSourceRange() const { 
782     return SubExpr->getSourceRange();
783   }
784
785   // Implement isa/cast/dyncast/etc.
786   static bool classof(const Stmt *T) {
787     return T->getStmtClass() == CXXBindTemporaryExprClass;
788   }
789   static bool classof(const CXXBindTemporaryExpr *) { return true; }
790
791   // Iterators
792   child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
793 };
794
795 /// CXXConstructExpr - Represents a call to a C++ constructor.
796 class CXXConstructExpr : public Expr {
797 public:
798   enum ConstructionKind {
799     CK_Complete,
800     CK_NonVirtualBase,
801     CK_VirtualBase,
802     CK_Delegating
803   };
804     
805 private:
806   CXXConstructorDecl *Constructor;
807
808   SourceLocation Loc;
809   SourceRange ParenRange;
810   bool Elidable : 1;
811   bool ZeroInitialization : 1;
812   unsigned ConstructKind : 2;
813   Stmt **Args;
814   unsigned NumArgs;
815
816 protected:
817   CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
818                    SourceLocation Loc,
819                    CXXConstructorDecl *d, bool elidable,
820                    Expr **args, unsigned numargs,
821                    bool ZeroInitialization = false,
822                    ConstructionKind ConstructKind = CK_Complete,
823                    SourceRange ParenRange = SourceRange());
824
825   /// \brief Construct an empty C++ construction expression.
826   CXXConstructExpr(StmtClass SC, EmptyShell Empty)
827     : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
828       ConstructKind(0), Args(0), NumArgs(0) { }
829
830 public:
831   /// \brief Construct an empty C++ construction expression.
832   explicit CXXConstructExpr(EmptyShell Empty)
833     : Expr(CXXConstructExprClass, Empty), Constructor(0),
834       Elidable(0), ZeroInitialization(0),
835       ConstructKind(0), Args(0), NumArgs(0) { }
836
837   static CXXConstructExpr *Create(ASTContext &C, QualType T,
838                                   SourceLocation Loc,
839                                   CXXConstructorDecl *D, bool Elidable,
840                                   Expr **Args, unsigned NumArgs,
841                                   bool ZeroInitialization = false,
842                                   ConstructionKind ConstructKind = CK_Complete,
843                                   SourceRange ParenRange = SourceRange());
844
845
846   CXXConstructorDecl* getConstructor() const { return Constructor; }
847   void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
848   
849   SourceLocation getLocation() const { return Loc; }
850   void setLocation(SourceLocation Loc) { this->Loc = Loc; }
851   
852   /// \brief Whether this construction is elidable.
853   bool isElidable() const { return Elidable; }
854   void setElidable(bool E) { Elidable = E; }
855   
856   /// \brief Whether this construction first requires
857   /// zero-initialization before the initializer is called.
858   bool requiresZeroInitialization() const { return ZeroInitialization; }
859   void setRequiresZeroInitialization(bool ZeroInit) {
860     ZeroInitialization = ZeroInit;
861   }
862   
863   /// \brief Determines whether this constructor is actually constructing
864   /// a base class (rather than a complete object).
865   ConstructionKind getConstructionKind() const {
866     return (ConstructionKind)ConstructKind;
867   }
868   void setConstructionKind(ConstructionKind CK) { 
869     ConstructKind = CK;
870   }
871   
872   typedef ExprIterator arg_iterator;
873   typedef ConstExprIterator const_arg_iterator;
874
875   arg_iterator arg_begin() { return Args; }
876   arg_iterator arg_end() { return Args + NumArgs; }
877   const_arg_iterator arg_begin() const { return Args; }
878   const_arg_iterator arg_end() const { return Args + NumArgs; }
879
880   Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
881   unsigned getNumArgs() const { return NumArgs; }
882
883   /// getArg - Return the specified argument.
884   Expr *getArg(unsigned Arg) {
885     assert(Arg < NumArgs && "Arg access out of range!");
886     return cast<Expr>(Args[Arg]);
887   }
888   const Expr *getArg(unsigned Arg) const {
889     assert(Arg < NumArgs && "Arg access out of range!");
890     return cast<Expr>(Args[Arg]);
891   }
892
893   /// setArg - Set the specified argument.
894   void setArg(unsigned Arg, Expr *ArgExpr) {
895     assert(Arg < NumArgs && "Arg access out of range!");
896     Args[Arg] = ArgExpr;
897   }
898
899   SourceRange getSourceRange() const;
900   SourceRange getParenRange() const { return ParenRange; }
901
902   static bool classof(const Stmt *T) {
903     return T->getStmtClass() == CXXConstructExprClass ||
904       T->getStmtClass() == CXXTemporaryObjectExprClass;
905   }
906   static bool classof(const CXXConstructExpr *) { return true; }
907
908   // Iterators
909   child_range children() {
910     return child_range(&Args[0], &Args[0]+NumArgs);
911   }
912
913   friend class ASTStmtReader;
914 };
915
916 /// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
917 /// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
918 /// x = int(0.5);
919 class CXXFunctionalCastExpr : public ExplicitCastExpr {
920   SourceLocation TyBeginLoc;
921   SourceLocation RParenLoc;
922
923   CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
924                         TypeSourceInfo *writtenTy,
925                         SourceLocation tyBeginLoc, CastKind kind,
926                         Expr *castExpr, unsigned pathSize,
927                         SourceLocation rParenLoc) 
928     : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
929                        castExpr, pathSize, writtenTy),
930       TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
931
932   explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
933     : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
934
935 public:
936   static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
937                                        ExprValueKind VK,
938                                        TypeSourceInfo *Written,
939                                        SourceLocation TyBeginLoc,
940                                        CastKind Kind, Expr *Op,
941                                        const CXXCastPath *Path,
942                                        SourceLocation RPLoc);
943   static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
944                                             unsigned PathSize);
945
946   SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
947   void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
948   SourceLocation getRParenLoc() const { return RParenLoc; }
949   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
950
951   SourceRange getSourceRange() const {
952     return SourceRange(TyBeginLoc, RParenLoc);
953   }
954   static bool classof(const Stmt *T) {
955     return T->getStmtClass() == CXXFunctionalCastExprClass;
956   }
957   static bool classof(const CXXFunctionalCastExpr *) { return true; }
958 };
959
960 /// @brief Represents a C++ functional cast expression that builds a
961 /// temporary object.
962 ///
963 /// This expression type represents a C++ "functional" cast
964 /// (C++[expr.type.conv]) with N != 1 arguments that invokes a
965 /// constructor to build a temporary object. With N == 1 arguments the 
966 /// functional cast expression will be represented by CXXFunctionalCastExpr.
967 /// Example:
968 /// @code
969 /// struct X { X(int, float); }
970 ///
971 /// X create_X() {
972 ///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
973 /// };
974 /// @endcode
975 class CXXTemporaryObjectExpr : public CXXConstructExpr {
976   TypeSourceInfo *Type;
977
978 public:
979   CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
980                          TypeSourceInfo *Type,
981                          Expr **Args,unsigned NumArgs,
982                          SourceRange parenRange,
983                          bool ZeroInitialization = false);
984   explicit CXXTemporaryObjectExpr(EmptyShell Empty)
985     : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
986
987   TypeSourceInfo *getTypeSourceInfo() const { return Type; }
988
989   SourceRange getSourceRange() const;
990   
991   static bool classof(const Stmt *T) {
992     return T->getStmtClass() == CXXTemporaryObjectExprClass;
993   }
994   static bool classof(const CXXTemporaryObjectExpr *) { return true; }
995
996   friend class ASTStmtReader;
997 };
998
999 /// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1000 /// Expression "T()" which creates a value-initialized rvalue of type
1001 /// T, which is a non-class type.
1002 ///
1003 class CXXScalarValueInitExpr : public Expr {
1004   SourceLocation RParenLoc;
1005   TypeSourceInfo *TypeInfo;
1006
1007   friend class ASTStmtReader;
1008   
1009 public:
1010   /// \brief Create an explicitly-written scalar-value initialization 
1011   /// expression.
1012   CXXScalarValueInitExpr(QualType Type,
1013                          TypeSourceInfo *TypeInfo,
1014                          SourceLocation rParenLoc ) :
1015     Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1016          false, false, Type->isInstantiationDependentType(), false),
1017     RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1018
1019   explicit CXXScalarValueInitExpr(EmptyShell Shell)
1020     : Expr(CXXScalarValueInitExprClass, Shell) { }
1021
1022   TypeSourceInfo *getTypeSourceInfo() const {
1023     return TypeInfo;
1024   }
1025   
1026   SourceLocation getRParenLoc() const { return RParenLoc; }
1027
1028   SourceRange getSourceRange() const;
1029
1030   static bool classof(const Stmt *T) {
1031     return T->getStmtClass() == CXXScalarValueInitExprClass;
1032   }
1033   static bool classof(const CXXScalarValueInitExpr *) { return true; }
1034
1035   // Iterators
1036   child_range children() { return child_range(); }
1037 };
1038
1039 /// CXXNewExpr - A new expression for memory allocation and constructor calls,
1040 /// e.g: "new CXXNewExpr(foo)".
1041 class CXXNewExpr : public Expr {
1042   // Was the usage ::new, i.e. is the global new to be used?
1043   bool GlobalNew : 1;
1044   // Is there an initializer? If not, built-ins are uninitialized, else they're
1045   // value-initialized.
1046   bool Initializer : 1;
1047   // Do we allocate an array? If so, the first SubExpr is the size expression.
1048   bool Array : 1;
1049   // If this is an array allocation, does the usual deallocation
1050   // function for the allocated type want to know the allocated size?
1051   bool UsualArrayDeleteWantsSize : 1;
1052   // The number of placement new arguments.
1053   unsigned NumPlacementArgs : 14;
1054   // The number of constructor arguments. This may be 1 even for non-class
1055   // types; use the pseudo copy constructor.
1056   unsigned NumConstructorArgs : 14;
1057   // Contains an optional array size expression, any number of optional
1058   // placement arguments, and any number of optional constructor arguments,
1059   // in that order.
1060   Stmt **SubExprs;
1061   // Points to the allocation function used.
1062   FunctionDecl *OperatorNew;
1063   // Points to the deallocation function used in case of error. May be null.
1064   FunctionDecl *OperatorDelete;
1065   // Points to the constructor used. Cannot be null if AllocType is a record;
1066   // it would still point at the default constructor (even an implicit one).
1067   // Must be null for all other types.
1068   CXXConstructorDecl *Constructor;
1069
1070   /// \brief The allocated type-source information, as written in the source.
1071   TypeSourceInfo *AllocatedTypeInfo;
1072   
1073   /// \brief If the allocated type was expressed as a parenthesized type-id, 
1074   /// the source range covering the parenthesized type-id.
1075   SourceRange TypeIdParens;
1076   
1077   SourceLocation StartLoc;
1078   SourceLocation EndLoc;
1079   SourceLocation ConstructorLParen;
1080   SourceLocation ConstructorRParen;
1081
1082   friend class ASTStmtReader;
1083 public:
1084   CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1085              Expr **placementArgs, unsigned numPlaceArgs,
1086              SourceRange TypeIdParens,
1087              Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1088              Expr **constructorArgs, unsigned numConsArgs,
1089              FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1090              QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1091              SourceLocation startLoc, SourceLocation endLoc,
1092              SourceLocation constructorLParen,
1093              SourceLocation constructorRParen);
1094   explicit CXXNewExpr(EmptyShell Shell)
1095     : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1096
1097   void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1098                          unsigned numConsArgs);
1099   
1100   QualType getAllocatedType() const {
1101     assert(getType()->isPointerType());
1102     return getType()->getAs<PointerType>()->getPointeeType();
1103   }
1104
1105   TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1106     return AllocatedTypeInfo;
1107   }
1108
1109   /// \brief True if the allocation result needs to be null-checked.
1110   /// C++0x [expr.new]p13:
1111   ///   If the allocation function returns null, initialization shall
1112   ///   not be done, the deallocation function shall not be called,
1113   ///   and the value of the new-expression shall be null.
1114   /// An allocation function is not allowed to return null unless it
1115   /// has a non-throwing exception-specification.  The '03 rule is
1116   /// identical except that the definition of a non-throwing
1117   /// exception specification is just "is it throw()?".
1118   bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1119   
1120   FunctionDecl *getOperatorNew() const { return OperatorNew; }
1121   void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1122   FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1123   void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1124   CXXConstructorDecl *getConstructor() const { return Constructor; }
1125   void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1126
1127   bool isArray() const { return Array; }
1128   Expr *getArraySize() {
1129     return Array ? cast<Expr>(SubExprs[0]) : 0;
1130   }
1131   const Expr *getArraySize() const {
1132     return Array ? cast<Expr>(SubExprs[0]) : 0;
1133   }
1134
1135   unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1136   Expr **getPlacementArgs() { 
1137     return reinterpret_cast<Expr **>(SubExprs + Array); 
1138   }
1139   
1140   Expr *getPlacementArg(unsigned i) {
1141     assert(i < NumPlacementArgs && "Index out of range");
1142     return cast<Expr>(SubExprs[Array + i]);
1143   }
1144   const Expr *getPlacementArg(unsigned i) const {
1145     assert(i < NumPlacementArgs && "Index out of range");
1146     return cast<Expr>(SubExprs[Array + i]);
1147   }
1148
1149   bool isParenTypeId() const { return TypeIdParens.isValid(); }
1150   SourceRange getTypeIdParens() const { return TypeIdParens; }
1151
1152   bool isGlobalNew() const { return GlobalNew; }
1153   bool hasInitializer() const { return Initializer; }
1154
1155   /// Answers whether the usual array deallocation function for the
1156   /// allocated type expects the size of the allocation as a
1157   /// parameter.
1158   bool doesUsualArrayDeleteWantSize() const {
1159     return UsualArrayDeleteWantsSize;
1160   }
1161
1162   unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1163   
1164   Expr **getConstructorArgs() {
1165     return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1166   }
1167   
1168   Expr *getConstructorArg(unsigned i) {
1169     assert(i < NumConstructorArgs && "Index out of range");
1170     return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1171   }
1172   const Expr *getConstructorArg(unsigned i) const {
1173     assert(i < NumConstructorArgs && "Index out of range");
1174     return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1175   }
1176
1177   typedef ExprIterator arg_iterator;
1178   typedef ConstExprIterator const_arg_iterator;
1179
1180   arg_iterator placement_arg_begin() {
1181     return SubExprs + Array;
1182   }
1183   arg_iterator placement_arg_end() {
1184     return SubExprs + Array + getNumPlacementArgs();
1185   }
1186   const_arg_iterator placement_arg_begin() const {
1187     return SubExprs + Array;
1188   }
1189   const_arg_iterator placement_arg_end() const {
1190     return SubExprs + Array + getNumPlacementArgs();
1191   }
1192
1193   arg_iterator constructor_arg_begin() {
1194     return SubExprs + Array + getNumPlacementArgs();
1195   }
1196   arg_iterator constructor_arg_end() {
1197     return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1198   }
1199   const_arg_iterator constructor_arg_begin() const {
1200     return SubExprs + Array + getNumPlacementArgs();
1201   }
1202   const_arg_iterator constructor_arg_end() const {
1203     return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1204   }
1205   
1206   typedef Stmt **raw_arg_iterator;
1207   raw_arg_iterator raw_arg_begin() { return SubExprs; }
1208   raw_arg_iterator raw_arg_end() {
1209     return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1210   }
1211   const_arg_iterator raw_arg_begin() const { return SubExprs; }
1212   const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1213
1214   SourceLocation getStartLoc() const { return StartLoc; }
1215   SourceLocation getEndLoc() const { return EndLoc; }
1216
1217   SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1218   SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1219
1220   SourceRange getSourceRange() const {
1221     return SourceRange(StartLoc, EndLoc);
1222   }
1223
1224   static bool classof(const Stmt *T) {
1225     return T->getStmtClass() == CXXNewExprClass;
1226   }
1227   static bool classof(const CXXNewExpr *) { return true; }
1228
1229   // Iterators
1230   child_range children() {
1231     return child_range(&SubExprs[0],
1232                        &SubExprs[0] + Array + getNumPlacementArgs()
1233                          + getNumConstructorArgs());
1234   }
1235 };
1236
1237 /// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1238 /// calls, e.g. "delete[] pArray".
1239 class CXXDeleteExpr : public Expr {
1240   // Is this a forced global delete, i.e. "::delete"?
1241   bool GlobalDelete : 1;
1242   // Is this the array form of delete, i.e. "delete[]"?
1243   bool ArrayForm : 1;
1244   // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1245   // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1246   // will be true).
1247   bool ArrayFormAsWritten : 1;
1248   // Does the usual deallocation function for the element type require
1249   // a size_t argument?
1250   bool UsualArrayDeleteWantsSize : 1;
1251   // Points to the operator delete overload that is used. Could be a member.
1252   FunctionDecl *OperatorDelete;
1253   // The pointer expression to be deleted.
1254   Stmt *Argument;
1255   // Location of the expression.
1256   SourceLocation Loc;
1257 public:
1258   CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1259                 bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1260                 FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1261     : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1262            arg->isInstantiationDependent(),
1263            arg->containsUnexpandedParameterPack()),
1264       GlobalDelete(globalDelete),
1265       ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1266       UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1267       OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1268   explicit CXXDeleteExpr(EmptyShell Shell)
1269     : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1270
1271   bool isGlobalDelete() const { return GlobalDelete; }
1272   bool isArrayForm() const { return ArrayForm; }
1273   bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1274
1275   /// Answers whether the usual array deallocation function for the
1276   /// allocated type expects the size of the allocation as a
1277   /// parameter.  This can be true even if the actual deallocation
1278   /// function that we're using doesn't want a size.
1279   bool doesUsualArrayDeleteWantSize() const {
1280     return UsualArrayDeleteWantsSize;
1281   }
1282
1283   FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1284
1285   Expr *getArgument() { return cast<Expr>(Argument); }
1286   const Expr *getArgument() const { return cast<Expr>(Argument); }
1287
1288   /// \brief Retrieve the type being destroyed.  If the type being
1289   /// destroyed is a dependent type which may or may not be a pointer,
1290   /// return an invalid type.
1291   QualType getDestroyedType() const;
1292   
1293   SourceRange getSourceRange() const {
1294     return SourceRange(Loc, Argument->getLocEnd());
1295   }
1296
1297   static bool classof(const Stmt *T) {
1298     return T->getStmtClass() == CXXDeleteExprClass;
1299   }
1300   static bool classof(const CXXDeleteExpr *) { return true; }
1301
1302   // Iterators
1303   child_range children() { return child_range(&Argument, &Argument+1); }
1304
1305   friend class ASTStmtReader;
1306 };
1307
1308 /// \brief Structure used to store the type being destroyed by a 
1309 /// pseudo-destructor expression.
1310 class PseudoDestructorTypeStorage {
1311   /// \brief Either the type source information or the name of the type, if 
1312   /// it couldn't be resolved due to type-dependence.
1313   llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1314   
1315   /// \brief The starting source location of the pseudo-destructor type.
1316   SourceLocation Location;
1317   
1318 public:
1319   PseudoDestructorTypeStorage() { }
1320   
1321   PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1322     : Type(II), Location(Loc) { }
1323   
1324   PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1325   
1326   TypeSourceInfo *getTypeSourceInfo() const { 
1327     return Type.dyn_cast<TypeSourceInfo *>(); 
1328   }
1329   
1330   IdentifierInfo *getIdentifier() const {
1331     return Type.dyn_cast<IdentifierInfo *>();
1332   }
1333   
1334   SourceLocation getLocation() const { return Location; }
1335 };
1336   
1337 /// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1338 ///
1339 /// A pseudo-destructor is an expression that looks like a member access to a
1340 /// destructor of a scalar type, except that scalar types don't have 
1341 /// destructors. For example:
1342 ///
1343 /// \code
1344 /// typedef int T;
1345 /// void f(int *p) {
1346 ///   p->T::~T();
1347 /// }
1348 /// \endcode
1349 ///
1350 /// Pseudo-destructors typically occur when instantiating templates such as:
1351 /// 
1352 /// \code
1353 /// template<typename T>
1354 /// void destroy(T* ptr) {
1355 ///   ptr->T::~T();
1356 /// }
1357 /// \endcode
1358 ///
1359 /// for scalar types. A pseudo-destructor expression has no run-time semantics
1360 /// beyond evaluating the base expression.
1361 class CXXPseudoDestructorExpr : public Expr {
1362   /// \brief The base expression (that is being destroyed).
1363   Stmt *Base;
1364
1365   /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1366   /// period ('.').
1367   bool IsArrow : 1;
1368
1369   /// \brief The location of the '.' or '->' operator.
1370   SourceLocation OperatorLoc;
1371   
1372   /// \brief The nested-name-specifier that follows the operator, if present.
1373   NestedNameSpecifierLoc QualifierLoc;
1374
1375   /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1376   /// expression.
1377   TypeSourceInfo *ScopeType;
1378   
1379   /// \brief The location of the '::' in a qualified pseudo-destructor 
1380   /// expression.
1381   SourceLocation ColonColonLoc;
1382   
1383   /// \brief The location of the '~'.
1384   SourceLocation TildeLoc;
1385   
1386   /// \brief The type being destroyed, or its name if we were unable to 
1387   /// resolve the name.
1388   PseudoDestructorTypeStorage DestroyedType;
1389
1390   friend class ASTStmtReader;
1391   
1392 public:
1393   CXXPseudoDestructorExpr(ASTContext &Context,
1394                           Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1395                           NestedNameSpecifierLoc QualifierLoc,
1396                           TypeSourceInfo *ScopeType,
1397                           SourceLocation ColonColonLoc,
1398                           SourceLocation TildeLoc,
1399                           PseudoDestructorTypeStorage DestroyedType);
1400
1401   explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1402     : Expr(CXXPseudoDestructorExprClass, Shell),
1403       Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1404
1405   Expr *getBase() const { return cast<Expr>(Base); }
1406
1407   /// \brief Determines whether this member expression actually had
1408   /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1409   /// x->Base::foo.
1410   bool hasQualifier() const { return QualifierLoc; }
1411
1412   /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1413   /// with source-location information.
1414   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1415   
1416   /// \brief If the member name was qualified, retrieves the
1417   /// nested-name-specifier that precedes the member name. Otherwise, returns
1418   /// NULL.
1419   NestedNameSpecifier *getQualifier() const { 
1420     return QualifierLoc.getNestedNameSpecifier(); 
1421   }
1422
1423   /// \brief Determine whether this pseudo-destructor expression was written
1424   /// using an '->' (otherwise, it used a '.').
1425   bool isArrow() const { return IsArrow; }
1426
1427   /// \brief Retrieve the location of the '.' or '->' operator.
1428   SourceLocation getOperatorLoc() const { return OperatorLoc; }
1429
1430   /// \brief Retrieve the scope type in a qualified pseudo-destructor 
1431   /// expression.
1432   ///
1433   /// Pseudo-destructor expressions can have extra qualification within them
1434   /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1435   /// Here, if the object type of the expression is (or may be) a scalar type,
1436   /// \p T may also be a scalar type and, therefore, cannot be part of a 
1437   /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1438   /// destructor expression.
1439   TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1440   
1441   /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1442   /// expression.
1443   SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1444   
1445   /// \brief Retrieve the location of the '~'.
1446   SourceLocation getTildeLoc() const { return TildeLoc; }
1447   
1448   /// \brief Retrieve the source location information for the type
1449   /// being destroyed.
1450   ///
1451   /// This type-source information is available for non-dependent 
1452   /// pseudo-destructor expressions and some dependent pseudo-destructor
1453   /// expressions. Returns NULL if we only have the identifier for a
1454   /// dependent pseudo-destructor expression.
1455   TypeSourceInfo *getDestroyedTypeInfo() const { 
1456     return DestroyedType.getTypeSourceInfo(); 
1457   }
1458   
1459   /// \brief In a dependent pseudo-destructor expression for which we do not
1460   /// have full type information on the destroyed type, provides the name
1461   /// of the destroyed type.
1462   IdentifierInfo *getDestroyedTypeIdentifier() const {
1463     return DestroyedType.getIdentifier();
1464   }
1465   
1466   /// \brief Retrieve the type being destroyed.
1467   QualType getDestroyedType() const;
1468   
1469   /// \brief Retrieve the starting location of the type being destroyed.
1470   SourceLocation getDestroyedTypeLoc() const { 
1471     return DestroyedType.getLocation(); 
1472   }
1473
1474   /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1475   /// expression.
1476   void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1477     DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1478   }
1479
1480   /// \brief Set the destroyed type.
1481   void setDestroyedType(TypeSourceInfo *Info) {
1482     DestroyedType = PseudoDestructorTypeStorage(Info);
1483   }
1484
1485   SourceRange getSourceRange() const;
1486
1487   static bool classof(const Stmt *T) {
1488     return T->getStmtClass() == CXXPseudoDestructorExprClass;
1489   }
1490   static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1491
1492   // Iterators
1493   child_range children() { return child_range(&Base, &Base + 1); }
1494 };
1495
1496 /// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1497 /// implementation of TR1/C++0x type trait templates.
1498 /// Example:
1499 /// __is_pod(int) == true
1500 /// __is_enum(std::string) == false
1501 class UnaryTypeTraitExpr : public Expr {
1502   /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1503   unsigned UTT : 31;
1504   /// The value of the type trait. Unspecified if dependent.
1505   bool Value : 1;
1506
1507   /// Loc - The location of the type trait keyword.
1508   SourceLocation Loc;
1509
1510   /// RParen - The location of the closing paren.
1511   SourceLocation RParen;
1512
1513   /// The type being queried.
1514   TypeSourceInfo *QueriedType;
1515
1516 public:
1517   UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, 
1518                      TypeSourceInfo *queried, bool value,
1519                      SourceLocation rparen, QualType ty)
1520     : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1521            false,  queried->getType()->isDependentType(),
1522            queried->getType()->isInstantiationDependentType(),
1523            queried->getType()->containsUnexpandedParameterPack()),
1524       UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1525
1526   explicit UnaryTypeTraitExpr(EmptyShell Empty)
1527     : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1528       QueriedType() { }
1529
1530   SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1531
1532   UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1533
1534   QualType getQueriedType() const { return QueriedType->getType(); }
1535
1536   TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1537   
1538   bool getValue() const { return Value; }
1539
1540   static bool classof(const Stmt *T) {
1541     return T->getStmtClass() == UnaryTypeTraitExprClass;
1542   }
1543   static bool classof(const UnaryTypeTraitExpr *) { return true; }
1544
1545   // Iterators
1546   child_range children() { return child_range(); }
1547
1548   friend class ASTStmtReader;
1549 };
1550
1551 /// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1552 /// implementation of TR1/C++0x type trait templates.
1553 /// Example:
1554 /// __is_base_of(Base, Derived) == true
1555 class BinaryTypeTraitExpr : public Expr {
1556   /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1557   unsigned BTT : 8;
1558
1559   /// The value of the type trait. Unspecified if dependent.
1560   bool Value : 1;
1561
1562   /// Loc - The location of the type trait keyword.
1563   SourceLocation Loc;
1564
1565   /// RParen - The location of the closing paren.
1566   SourceLocation RParen;
1567
1568   /// The lhs type being queried.
1569   TypeSourceInfo *LhsType;
1570
1571   /// The rhs type being queried.
1572   TypeSourceInfo *RhsType;
1573
1574 public:
1575   BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt, 
1576                      TypeSourceInfo *lhsType, TypeSourceInfo *rhsType, 
1577                      bool value, SourceLocation rparen, QualType ty)
1578     : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false, 
1579            lhsType->getType()->isDependentType() ||
1580            rhsType->getType()->isDependentType(),
1581            (lhsType->getType()->isInstantiationDependentType() ||
1582             rhsType->getType()->isInstantiationDependentType()),
1583            (lhsType->getType()->containsUnexpandedParameterPack() ||
1584             rhsType->getType()->containsUnexpandedParameterPack())),
1585       BTT(btt), Value(value), Loc(loc), RParen(rparen),
1586       LhsType(lhsType), RhsType(rhsType) { }
1587
1588
1589   explicit BinaryTypeTraitExpr(EmptyShell Empty)
1590     : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1591       LhsType(), RhsType() { }
1592
1593   SourceRange getSourceRange() const {
1594     return SourceRange(Loc, RParen);
1595   }
1596
1597   BinaryTypeTrait getTrait() const {
1598     return static_cast<BinaryTypeTrait>(BTT);
1599   }
1600
1601   QualType getLhsType() const { return LhsType->getType(); }
1602   QualType getRhsType() const { return RhsType->getType(); }
1603
1604   TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1605   TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1606   
1607   bool getValue() const { assert(!isTypeDependent()); return Value; }
1608
1609   static bool classof(const Stmt *T) {
1610     return T->getStmtClass() == BinaryTypeTraitExprClass;
1611   }
1612   static bool classof(const BinaryTypeTraitExpr *) { return true; }
1613
1614   // Iterators
1615   child_range children() { return child_range(); }
1616
1617   friend class ASTStmtReader;
1618 };
1619
1620 /// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1621 /// implementation of __array_rank and __array_extent.
1622 /// Example:
1623 /// __array_rank(int[10][20]) == 2
1624 /// __array_extent(int, 1)    == 20
1625 class ArrayTypeTraitExpr : public Expr {
1626   /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1627   unsigned ATT : 2;
1628
1629   /// The value of the type trait. Unspecified if dependent.
1630   uint64_t Value;
1631
1632   /// The array dimension being queried, or -1 if not used
1633   Expr *Dimension;
1634
1635   /// Loc - The location of the type trait keyword.
1636   SourceLocation Loc;
1637
1638   /// RParen - The location of the closing paren.
1639   SourceLocation RParen;
1640
1641   /// The type being queried.
1642   TypeSourceInfo *QueriedType;
1643
1644 public:
1645   ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1646                      TypeSourceInfo *queried, uint64_t value,
1647                      Expr *dimension, SourceLocation rparen, QualType ty)
1648     : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1649            false, queried->getType()->isDependentType(),
1650            (queried->getType()->isInstantiationDependentType() ||
1651             (dimension && dimension->isInstantiationDependent())),
1652            queried->getType()->containsUnexpandedParameterPack()),
1653       ATT(att), Value(value), Dimension(dimension),
1654       Loc(loc), RParen(rparen), QueriedType(queried) { }
1655
1656
1657   explicit ArrayTypeTraitExpr(EmptyShell Empty)
1658     : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1659       QueriedType() { }
1660
1661   virtual ~ArrayTypeTraitExpr() { }
1662
1663   virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen); }
1664
1665   ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1666
1667   QualType getQueriedType() const { return QueriedType->getType(); }
1668
1669   TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1670
1671   uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1672
1673   Expr *getDimensionExpression() const { return Dimension; }
1674
1675   static bool classof(const Stmt *T) {
1676     return T->getStmtClass() == ArrayTypeTraitExprClass;
1677   }
1678   static bool classof(const ArrayTypeTraitExpr *) { return true; }
1679
1680   // Iterators
1681   child_range children() { return child_range(); }
1682
1683   friend class ASTStmtReader;
1684 };
1685
1686 /// ExpressionTraitExpr - An expression trait intrinsic
1687 /// Example:
1688 /// __is_lvalue_expr(std::cout) == true
1689 /// __is_lvalue_expr(1) == false
1690 class ExpressionTraitExpr : public Expr {
1691   /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1692   unsigned ET : 31;
1693   /// The value of the type trait. Unspecified if dependent.
1694   bool Value : 1;
1695
1696   /// Loc - The location of the type trait keyword.
1697   SourceLocation Loc;
1698
1699   /// RParen - The location of the closing paren.
1700   SourceLocation RParen;
1701
1702   Expr* QueriedExpression;
1703 public:
1704   ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et, 
1705                      Expr *queried, bool value,
1706                      SourceLocation rparen, QualType resultType)
1707     : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1708            false, // Not type-dependent
1709            // Value-dependent if the argument is type-dependent.
1710            queried->isTypeDependent(),
1711            queried->isInstantiationDependent(),
1712            queried->containsUnexpandedParameterPack()),
1713       ET(et), Value(value), Loc(loc), RParen(rparen), QueriedExpression(queried) { }
1714
1715   explicit ExpressionTraitExpr(EmptyShell Empty)
1716     : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1717       QueriedExpression() { }
1718
1719   SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1720
1721   ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1722
1723   Expr *getQueriedExpression() const { return QueriedExpression; }
1724
1725   bool getValue() const { return Value; }
1726
1727   static bool classof(const Stmt *T) {
1728     return T->getStmtClass() == ExpressionTraitExprClass;
1729   }
1730   static bool classof(const ExpressionTraitExpr *) { return true; }
1731
1732   // Iterators
1733   child_range children() { return child_range(); }
1734
1735   friend class ASTStmtReader;
1736 };
1737
1738
1739 /// \brief A reference to an overloaded function set, either an
1740 /// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1741 class OverloadExpr : public Expr {
1742   /// The results.  These are undesugared, which is to say, they may
1743   /// include UsingShadowDecls.  Access is relative to the naming
1744   /// class.
1745   // FIXME: Allocate this data after the OverloadExpr subclass.
1746   DeclAccessPair *Results;
1747   unsigned NumResults;
1748
1749   /// The common name of these declarations.
1750   DeclarationNameInfo NameInfo;
1751
1752   /// \brief The nested-name-specifier that qualifies the name, if any.
1753   NestedNameSpecifierLoc QualifierLoc;
1754
1755 protected:
1756   /// True if the name was a template-id.
1757   bool HasExplicitTemplateArgs;
1758
1759   OverloadExpr(StmtClass K, ASTContext &C,
1760                NestedNameSpecifierLoc QualifierLoc,
1761                const DeclarationNameInfo &NameInfo,
1762                const TemplateArgumentListInfo *TemplateArgs,
1763                UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1764                bool KnownDependent,
1765                bool KnownInstantiationDependent,
1766                bool KnownContainsUnexpandedParameterPack);
1767
1768   OverloadExpr(StmtClass K, EmptyShell Empty)
1769     : Expr(K, Empty), Results(0), NumResults(0),
1770       QualifierLoc(), HasExplicitTemplateArgs(false) { }
1771
1772   void initializeResults(ASTContext &C,
1773                          UnresolvedSetIterator Begin,
1774                          UnresolvedSetIterator End);
1775
1776 public:
1777   struct FindResult {
1778     OverloadExpr *Expression;
1779     bool IsAddressOfOperand;
1780     bool HasFormOfMemberPointer;
1781   };
1782
1783   /// Finds the overloaded expression in the given expression of
1784   /// OverloadTy.
1785   ///
1786   /// \return the expression (which must be there) and true if it has
1787   /// the particular form of a member pointer expression
1788   static FindResult find(Expr *E) {
1789     assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1790
1791     FindResult Result;
1792
1793     E = E->IgnoreParens();
1794     if (isa<UnaryOperator>(E)) {
1795       assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1796       E = cast<UnaryOperator>(E)->getSubExpr();
1797       OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1798
1799       Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1800       Result.IsAddressOfOperand = true;
1801       Result.Expression = Ovl;
1802     } else {
1803       Result.HasFormOfMemberPointer = false;
1804       Result.IsAddressOfOperand = false;
1805       Result.Expression = cast<OverloadExpr>(E);
1806     }
1807
1808     return Result;
1809   }
1810
1811   /// Gets the naming class of this lookup, if any.
1812   CXXRecordDecl *getNamingClass() const;
1813
1814   typedef UnresolvedSetImpl::iterator decls_iterator;
1815   decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1816   decls_iterator decls_end() const { 
1817     return UnresolvedSetIterator(Results + NumResults);
1818   }
1819   
1820   /// Gets the number of declarations in the unresolved set.
1821   unsigned getNumDecls() const { return NumResults; }
1822
1823   /// Gets the full name info.
1824   const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1825
1826   /// Gets the name looked up.
1827   DeclarationName getName() const { return NameInfo.getName(); }
1828
1829   /// Gets the location of the name.
1830   SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1831
1832   /// Fetches the nested-name qualifier, if one was given.
1833   NestedNameSpecifier *getQualifier() const { 
1834     return QualifierLoc.getNestedNameSpecifier(); 
1835   }
1836
1837   /// Fetches the nested-name qualifier with source-location information, if 
1838   /// one was given.
1839   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1840
1841   /// \brief Determines whether this expression had an explicit
1842   /// template argument list, e.g. f<int>.
1843   bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1844
1845   ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1846
1847   const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1848     return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1849   }
1850
1851   /// \brief Retrieves the optional explicit template arguments.
1852   /// This points to the same data as getExplicitTemplateArgs(), but
1853   /// returns null if there are no explicit template arguments.
1854   const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1855     if (!hasExplicitTemplateArgs()) return 0;
1856     return &getExplicitTemplateArgs();
1857   }
1858
1859   static bool classof(const Stmt *T) {
1860     return T->getStmtClass() == UnresolvedLookupExprClass ||
1861            T->getStmtClass() == UnresolvedMemberExprClass;
1862   }
1863   static bool classof(const OverloadExpr *) { return true; }
1864
1865   friend class ASTStmtReader;
1866   friend class ASTStmtWriter;
1867 };
1868
1869 /// \brief A reference to a name which we were able to look up during
1870 /// parsing but could not resolve to a specific declaration.  This
1871 /// arises in several ways:
1872 ///   * we might be waiting for argument-dependent lookup
1873 ///   * the name might resolve to an overloaded function
1874 /// and eventually:
1875 ///   * the lookup might have included a function template
1876 /// These never include UnresolvedUsingValueDecls, which are always
1877 /// class members and therefore appear only in
1878 /// UnresolvedMemberLookupExprs.
1879 class UnresolvedLookupExpr : public OverloadExpr {
1880   /// True if these lookup results should be extended by
1881   /// argument-dependent lookup if this is the operand of a function
1882   /// call.
1883   bool RequiresADL;
1884
1885   /// True if namespace ::std should be considered an associated namespace
1886   /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
1887   bool StdIsAssociatedNamespace;
1888
1889   /// True if these lookup results are overloaded.  This is pretty
1890   /// trivially rederivable if we urgently need to kill this field.
1891   bool Overloaded;
1892
1893   /// The naming class (C++ [class.access.base]p5) of the lookup, if
1894   /// any.  This can generally be recalculated from the context chain,
1895   /// but that can be fairly expensive for unqualified lookups.  If we
1896   /// want to improve memory use here, this could go in a union
1897   /// against the qualified-lookup bits.
1898   CXXRecordDecl *NamingClass;
1899
1900   UnresolvedLookupExpr(ASTContext &C, 
1901                        CXXRecordDecl *NamingClass,
1902                        NestedNameSpecifierLoc QualifierLoc,
1903                        const DeclarationNameInfo &NameInfo,
1904                        bool RequiresADL, bool Overloaded, 
1905                        const TemplateArgumentListInfo *TemplateArgs,
1906                        UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1907                        bool StdIsAssociatedNamespace)
1908     : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo, 
1909                    TemplateArgs, Begin, End, false, false, false),
1910       RequiresADL(RequiresADL),
1911       StdIsAssociatedNamespace(StdIsAssociatedNamespace),
1912       Overloaded(Overloaded), NamingClass(NamingClass)
1913   {}
1914
1915   UnresolvedLookupExpr(EmptyShell Empty)
1916     : OverloadExpr(UnresolvedLookupExprClass, Empty),
1917       RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
1918       NamingClass(0)
1919   {}
1920
1921   friend class ASTStmtReader;
1922   
1923 public:
1924   static UnresolvedLookupExpr *Create(ASTContext &C,
1925                                       CXXRecordDecl *NamingClass,
1926                                       NestedNameSpecifierLoc QualifierLoc,
1927                                       const DeclarationNameInfo &NameInfo,
1928                                       bool ADL, bool Overloaded,
1929                                       UnresolvedSetIterator Begin, 
1930                                       UnresolvedSetIterator End,
1931                                       bool StdIsAssociatedNamespace = false) {
1932     assert((ADL || !StdIsAssociatedNamespace) &&
1933            "std considered associated namespace when not performing ADL");
1934     return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo, 
1935                                        ADL, Overloaded, 0, Begin, End,
1936                                        StdIsAssociatedNamespace);
1937   }
1938
1939   static UnresolvedLookupExpr *Create(ASTContext &C,
1940                                       CXXRecordDecl *NamingClass,
1941                                       NestedNameSpecifierLoc QualifierLoc,
1942                                       const DeclarationNameInfo &NameInfo,
1943                                       bool ADL,
1944                                       const TemplateArgumentListInfo &Args,
1945                                       UnresolvedSetIterator Begin, 
1946                                       UnresolvedSetIterator End);
1947
1948   static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1949                                            bool HasExplicitTemplateArgs,
1950                                            unsigned NumTemplateArgs);
1951
1952   /// True if this declaration should be extended by
1953   /// argument-dependent lookup.
1954   bool requiresADL() const { return RequiresADL; }
1955
1956   /// True if namespace ::std should be artificially added to the set of
1957   /// associated namespaecs for argument-dependent lookup purposes.
1958   bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
1959
1960   /// True if this lookup is overloaded.
1961   bool isOverloaded() const { return Overloaded; }
1962
1963   /// Gets the 'naming class' (in the sense of C++0x
1964   /// [class.access.base]p5) of the lookup.  This is the scope
1965   /// that was looked in to find these results.
1966   CXXRecordDecl *getNamingClass() const { return NamingClass; }
1967
1968   // Note that, inconsistently with the explicit-template-argument AST
1969   // nodes, users are *forbidden* from calling these methods on objects
1970   // without explicit template arguments.
1971
1972   ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1973     assert(hasExplicitTemplateArgs());
1974     return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1975   }
1976
1977   /// Gets a reference to the explicit template argument list.
1978   const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1979     assert(hasExplicitTemplateArgs());
1980     return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1981   }
1982
1983   /// \brief Retrieves the optional explicit template arguments.
1984   /// This points to the same data as getExplicitTemplateArgs(), but
1985   /// returns null if there are no explicit template arguments.
1986   const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1987     if (!hasExplicitTemplateArgs()) return 0;
1988     return &getExplicitTemplateArgs();
1989   }
1990
1991   /// \brief Copies the template arguments (if present) into the given
1992   /// structure.
1993   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1994     getExplicitTemplateArgs().copyInto(List);
1995   }
1996   
1997   SourceLocation getLAngleLoc() const {
1998     return getExplicitTemplateArgs().LAngleLoc;
1999   }
2000
2001   SourceLocation getRAngleLoc() const {
2002     return getExplicitTemplateArgs().RAngleLoc;
2003   }
2004
2005   TemplateArgumentLoc const *getTemplateArgs() const {
2006     return getExplicitTemplateArgs().getTemplateArgs();
2007   }
2008
2009   unsigned getNumTemplateArgs() const {
2010     return getExplicitTemplateArgs().NumTemplateArgs;
2011   }
2012
2013   SourceRange getSourceRange() const {
2014     SourceRange Range(getNameInfo().getSourceRange());
2015     if (getQualifierLoc()) 
2016       Range.setBegin(getQualifierLoc().getBeginLoc());
2017     if (hasExplicitTemplateArgs()) 
2018       Range.setEnd(getRAngleLoc());
2019     return Range;
2020   }
2021
2022   child_range children() { return child_range(); }
2023
2024   static bool classof(const Stmt *T) {
2025     return T->getStmtClass() == UnresolvedLookupExprClass;
2026   }
2027   static bool classof(const UnresolvedLookupExpr *) { return true; }
2028 };
2029
2030 /// \brief A qualified reference to a name whose declaration cannot
2031 /// yet be resolved.
2032 ///
2033 /// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2034 /// it expresses a reference to a declaration such as
2035 /// X<T>::value. The difference, however, is that an
2036 /// DependentScopeDeclRefExpr node is used only within C++ templates when
2037 /// the qualification (e.g., X<T>::) refers to a dependent type. In
2038 /// this case, X<T>::value cannot resolve to a declaration because the
2039 /// declaration will differ from on instantiation of X<T> to the
2040 /// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2041 /// qualifier (X<T>::) and the name of the entity being referenced
2042 /// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2043 /// declaration can be found.
2044 class DependentScopeDeclRefExpr : public Expr {
2045   /// \brief The nested-name-specifier that qualifies this unresolved
2046   /// declaration name.
2047   NestedNameSpecifierLoc QualifierLoc;
2048   
2049   /// The name of the entity we will be referencing.
2050   DeclarationNameInfo NameInfo;
2051
2052   /// \brief Whether the name includes explicit template arguments.
2053   bool HasExplicitTemplateArgs;
2054
2055   DependentScopeDeclRefExpr(QualType T,
2056                             NestedNameSpecifierLoc QualifierLoc,
2057                             const DeclarationNameInfo &NameInfo,
2058                             const TemplateArgumentListInfo *Args);
2059
2060 public:
2061   static DependentScopeDeclRefExpr *Create(ASTContext &C,
2062                                            NestedNameSpecifierLoc QualifierLoc,
2063                                            const DeclarationNameInfo &NameInfo,
2064                               const TemplateArgumentListInfo *TemplateArgs = 0);
2065
2066   static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2067                                                 bool HasExplicitTemplateArgs,
2068                                                 unsigned NumTemplateArgs);
2069
2070   /// \brief Retrieve the name that this expression refers to.
2071   const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2072
2073   /// \brief Retrieve the name that this expression refers to.
2074   DeclarationName getDeclName() const { return NameInfo.getName(); }
2075
2076   /// \brief Retrieve the location of the name within the expression.
2077   SourceLocation getLocation() const { return NameInfo.getLoc(); }
2078
2079   /// \brief Retrieve the nested-name-specifier that qualifies the
2080   /// name, with source location information.
2081   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2082   
2083   
2084   /// \brief Retrieve the nested-name-specifier that qualifies this
2085   /// declaration.
2086   NestedNameSpecifier *getQualifier() const { 
2087     return QualifierLoc.getNestedNameSpecifier(); 
2088   }
2089
2090   /// Determines whether this lookup had explicit template arguments.
2091   bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
2092
2093   // Note that, inconsistently with the explicit-template-argument AST
2094   // nodes, users are *forbidden* from calling these methods on objects
2095   // without explicit template arguments.
2096
2097   ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2098     assert(hasExplicitTemplateArgs());
2099     return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
2100   }
2101
2102   /// Gets a reference to the explicit template argument list.
2103   const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2104     assert(hasExplicitTemplateArgs());
2105     return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
2106   }
2107
2108   /// \brief Retrieves the optional explicit template arguments.
2109   /// This points to the same data as getExplicitTemplateArgs(), but
2110   /// returns null if there are no explicit template arguments.
2111   const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2112     if (!hasExplicitTemplateArgs()) return 0;
2113     return &getExplicitTemplateArgs();
2114   }
2115
2116   /// \brief Copies the template arguments (if present) into the given
2117   /// structure.
2118   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2119     getExplicitTemplateArgs().copyInto(List);
2120   }
2121   
2122   SourceLocation getLAngleLoc() const {
2123     return getExplicitTemplateArgs().LAngleLoc;
2124   }
2125
2126   SourceLocation getRAngleLoc() const {
2127     return getExplicitTemplateArgs().RAngleLoc;
2128   }
2129
2130   TemplateArgumentLoc const *getTemplateArgs() const {
2131     return getExplicitTemplateArgs().getTemplateArgs();
2132   }
2133
2134   unsigned getNumTemplateArgs() const {
2135     return getExplicitTemplateArgs().NumTemplateArgs;
2136   }
2137
2138   SourceRange getSourceRange() const {
2139     SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2140     if (hasExplicitTemplateArgs())
2141       Range.setEnd(getRAngleLoc());
2142     return Range;
2143   }
2144
2145   static bool classof(const Stmt *T) {
2146     return T->getStmtClass() == DependentScopeDeclRefExprClass;
2147   }
2148   static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2149
2150   child_range children() { return child_range(); }
2151
2152   friend class ASTStmtReader;
2153   friend class ASTStmtWriter;
2154 };
2155
2156 /// Represents an expression --- generally a full-expression --- which
2157 /// introduces cleanups to be run at the end of the sub-expression's
2158 /// evaluation.  The most common source of expression-introduced
2159 /// cleanups is temporary objects in C++, but several other C++
2160 /// expressions can create cleanups.
2161 class ExprWithCleanups : public Expr {
2162   Stmt *SubExpr;
2163
2164   CXXTemporary **Temps;
2165   unsigned NumTemps;
2166
2167   ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2168                    CXXTemporary **Temps, unsigned NumTemps);
2169   
2170 public:
2171   ExprWithCleanups(EmptyShell Empty)
2172     : Expr(ExprWithCleanupsClass, Empty),
2173       SubExpr(0), Temps(0), NumTemps(0) {}
2174                          
2175   static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2176                                         CXXTemporary **Temps, 
2177                                         unsigned NumTemps);
2178
2179   unsigned getNumTemporaries() const { return NumTemps; }
2180   void setNumTemporaries(ASTContext &C, unsigned N);
2181     
2182   CXXTemporary *getTemporary(unsigned i) {
2183     assert(i < NumTemps && "Index out of range");
2184     return Temps[i];
2185   }
2186   const CXXTemporary *getTemporary(unsigned i) const {
2187     return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2188   }
2189   void setTemporary(unsigned i, CXXTemporary *T) {
2190     assert(i < NumTemps && "Index out of range");
2191     Temps[i] = T;
2192   }
2193
2194   Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2195   const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2196   void setSubExpr(Expr *E) { SubExpr = E; }
2197
2198   SourceRange getSourceRange() const { 
2199     return SubExpr->getSourceRange();
2200   }
2201
2202   // Implement isa/cast/dyncast/etc.
2203   static bool classof(const Stmt *T) {
2204     return T->getStmtClass() == ExprWithCleanupsClass;
2205   }
2206   static bool classof(const ExprWithCleanups *) { return true; }
2207
2208   // Iterators
2209   child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2210 };
2211
2212 /// \brief Describes an explicit type conversion that uses functional
2213 /// notion but could not be resolved because one or more arguments are
2214 /// type-dependent.
2215 ///
2216 /// The explicit type conversions expressed by
2217 /// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2218 /// where \c T is some type and \c a1, a2, ..., aN are values, and
2219 /// either \C T is a dependent type or one or more of the \c a's is
2220 /// type-dependent. For example, this would occur in a template such
2221 /// as:
2222 ///
2223 /// \code
2224 ///   template<typename T, typename A1>
2225 ///   inline T make_a(const A1& a1) {
2226 ///     return T(a1);
2227 ///   }
2228 /// \endcode
2229 ///
2230 /// When the returned expression is instantiated, it may resolve to a
2231 /// constructor call, conversion function call, or some kind of type
2232 /// conversion.
2233 class CXXUnresolvedConstructExpr : public Expr {
2234   /// \brief The type being constructed.
2235   TypeSourceInfo *Type;
2236   
2237   /// \brief The location of the left parentheses ('(').
2238   SourceLocation LParenLoc;
2239
2240   /// \brief The location of the right parentheses (')').
2241   SourceLocation RParenLoc;
2242
2243   /// \brief The number of arguments used to construct the type.
2244   unsigned NumArgs;
2245
2246   CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2247                              SourceLocation LParenLoc,
2248                              Expr **Args,
2249                              unsigned NumArgs,
2250                              SourceLocation RParenLoc);
2251
2252   CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2253     : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2254
2255   friend class ASTStmtReader;
2256   
2257 public:
2258   static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2259                                             TypeSourceInfo *Type,
2260                                             SourceLocation LParenLoc,
2261                                             Expr **Args,
2262                                             unsigned NumArgs,
2263                                             SourceLocation RParenLoc);
2264
2265   static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2266                                                  unsigned NumArgs);
2267
2268   /// \brief Retrieve the type that is being constructed, as specified
2269   /// in the source code.
2270   QualType getTypeAsWritten() const { return Type->getType(); }
2271
2272   /// \brief Retrieve the type source information for the type being 
2273   /// constructed.
2274   TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2275   
2276   /// \brief Retrieve the location of the left parentheses ('(') that
2277   /// precedes the argument list.
2278   SourceLocation getLParenLoc() const { return LParenLoc; }
2279   void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2280
2281   /// \brief Retrieve the location of the right parentheses (')') that
2282   /// follows the argument list.
2283   SourceLocation getRParenLoc() const { return RParenLoc; }
2284   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2285
2286   /// \brief Retrieve the number of arguments.
2287   unsigned arg_size() const { return NumArgs; }
2288
2289   typedef Expr** arg_iterator;
2290   arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2291   arg_iterator arg_end() { return arg_begin() + NumArgs; }
2292
2293   typedef const Expr* const * const_arg_iterator;
2294   const_arg_iterator arg_begin() const {
2295     return reinterpret_cast<const Expr* const *>(this + 1);
2296   }
2297   const_arg_iterator arg_end() const {
2298     return arg_begin() + NumArgs;
2299   }
2300
2301   Expr *getArg(unsigned I) {
2302     assert(I < NumArgs && "Argument index out-of-range");
2303     return *(arg_begin() + I);
2304   }
2305
2306   const Expr *getArg(unsigned I) const {
2307     assert(I < NumArgs && "Argument index out-of-range");
2308     return *(arg_begin() + I);
2309   }
2310
2311   void setArg(unsigned I, Expr *E) {
2312     assert(I < NumArgs && "Argument index out-of-range");
2313     *(arg_begin() + I) = E;
2314   }
2315
2316   SourceRange getSourceRange() const;
2317   
2318   static bool classof(const Stmt *T) {
2319     return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2320   }
2321   static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2322
2323   // Iterators
2324   child_range children() {
2325     Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2326     return child_range(begin, begin + NumArgs);
2327   }
2328 };
2329
2330 /// \brief Represents a C++ member access expression where the actual
2331 /// member referenced could not be resolved because the base
2332 /// expression or the member name was dependent.
2333 ///
2334 /// Like UnresolvedMemberExprs, these can be either implicit or
2335 /// explicit accesses.  It is only possible to get one of these with
2336 /// an implicit access if a qualifier is provided.
2337 class CXXDependentScopeMemberExpr : public Expr {
2338   /// \brief The expression for the base pointer or class reference,
2339   /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2340   Stmt *Base;
2341
2342   /// \brief The type of the base expression.  Never null, even for
2343   /// implicit accesses.
2344   QualType BaseType;
2345
2346   /// \brief Whether this member expression used the '->' operator or
2347   /// the '.' operator.
2348   bool IsArrow : 1;
2349
2350   /// \brief Whether this member expression has explicitly-specified template
2351   /// arguments.
2352   bool HasExplicitTemplateArgs : 1;
2353
2354   /// \brief The location of the '->' or '.' operator.
2355   SourceLocation OperatorLoc;
2356
2357   /// \brief The nested-name-specifier that precedes the member name, if any.
2358   NestedNameSpecifierLoc QualifierLoc;
2359
2360   /// \brief In a qualified member access expression such as t->Base::f, this
2361   /// member stores the resolves of name lookup in the context of the member
2362   /// access expression, to be used at instantiation time.
2363   ///
2364   /// FIXME: This member, along with the QualifierLoc, could
2365   /// be stuck into a structure that is optionally allocated at the end of
2366   /// the CXXDependentScopeMemberExpr, to save space in the common case.
2367   NamedDecl *FirstQualifierFoundInScope;
2368
2369   /// \brief The member to which this member expression refers, which
2370   /// can be name, overloaded operator, or destructor.
2371   /// FIXME: could also be a template-id
2372   DeclarationNameInfo MemberNameInfo;
2373
2374   CXXDependentScopeMemberExpr(ASTContext &C,
2375                           Expr *Base, QualType BaseType, bool IsArrow,
2376                           SourceLocation OperatorLoc,
2377                           NestedNameSpecifierLoc QualifierLoc,
2378                           NamedDecl *FirstQualifierFoundInScope,
2379                           DeclarationNameInfo MemberNameInfo,
2380                           const TemplateArgumentListInfo *TemplateArgs);
2381
2382 public:
2383   CXXDependentScopeMemberExpr(ASTContext &C,
2384                               Expr *Base, QualType BaseType,
2385                               bool IsArrow,
2386                               SourceLocation OperatorLoc,
2387                               NestedNameSpecifierLoc QualifierLoc,
2388                               NamedDecl *FirstQualifierFoundInScope,
2389                               DeclarationNameInfo MemberNameInfo);
2390
2391   static CXXDependentScopeMemberExpr *
2392   Create(ASTContext &C,
2393          Expr *Base, QualType BaseType, bool IsArrow,
2394          SourceLocation OperatorLoc,
2395          NestedNameSpecifierLoc QualifierLoc,
2396          NamedDecl *FirstQualifierFoundInScope,
2397          DeclarationNameInfo MemberNameInfo,
2398          const TemplateArgumentListInfo *TemplateArgs);
2399
2400   static CXXDependentScopeMemberExpr *
2401   CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs, 
2402               unsigned NumTemplateArgs);
2403
2404   /// \brief True if this is an implicit access, i.e. one in which the
2405   /// member being accessed was not written in the source.  The source
2406   /// location of the operator is invalid in this case.
2407   bool isImplicitAccess() const;
2408
2409   /// \brief Retrieve the base object of this member expressions,
2410   /// e.g., the \c x in \c x.m.
2411   Expr *getBase() const {
2412     assert(!isImplicitAccess());
2413     return cast<Expr>(Base);
2414   }
2415
2416   QualType getBaseType() const { return BaseType; }
2417
2418   /// \brief Determine whether this member expression used the '->'
2419   /// operator; otherwise, it used the '.' operator.
2420   bool isArrow() const { return IsArrow; }
2421
2422   /// \brief Retrieve the location of the '->' or '.' operator.
2423   SourceLocation getOperatorLoc() const { return OperatorLoc; }
2424
2425   /// \brief Retrieve the nested-name-specifier that qualifies the member
2426   /// name.
2427   NestedNameSpecifier *getQualifier() const { 
2428     return QualifierLoc.getNestedNameSpecifier(); 
2429   }
2430
2431   /// \brief Retrieve the nested-name-specifier that qualifies the member
2432   /// name, with source location information.
2433   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2434   
2435   
2436   /// \brief Retrieve the first part of the nested-name-specifier that was
2437   /// found in the scope of the member access expression when the member access
2438   /// was initially parsed.
2439   ///
2440   /// This function only returns a useful result when member access expression
2441   /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2442   /// returned by this function describes what was found by unqualified name
2443   /// lookup for the identifier "Base" within the scope of the member access
2444   /// expression itself. At template instantiation time, this information is
2445   /// combined with the results of name lookup into the type of the object
2446   /// expression itself (the class type of x).
2447   NamedDecl *getFirstQualifierFoundInScope() const {
2448     return FirstQualifierFoundInScope;
2449   }
2450
2451   /// \brief Retrieve the name of the member that this expression
2452   /// refers to.
2453   const DeclarationNameInfo &getMemberNameInfo() const {
2454     return MemberNameInfo;
2455   }
2456
2457   /// \brief Retrieve the name of the member that this expression
2458   /// refers to.
2459   DeclarationName getMember() const { return MemberNameInfo.getName(); }
2460
2461   // \brief Retrieve the location of the name of the member that this
2462   // expression refers to.
2463   SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2464
2465   /// \brief Determines whether this member expression actually had a C++
2466   /// template argument list explicitly specified, e.g., x.f<int>.
2467   bool hasExplicitTemplateArgs() const {
2468     return HasExplicitTemplateArgs;
2469   }
2470
2471   /// \brief Retrieve the explicit template argument list that followed the
2472   /// member template name, if any.
2473   ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2474     assert(HasExplicitTemplateArgs);
2475     return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2476   }
2477
2478   /// \brief Retrieve the explicit template argument list that followed the
2479   /// member template name, if any.
2480   const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2481     return const_cast<CXXDependentScopeMemberExpr *>(this)
2482              ->getExplicitTemplateArgs();
2483   }
2484
2485   /// \brief Retrieves the optional explicit template arguments.
2486   /// This points to the same data as getExplicitTemplateArgs(), but
2487   /// returns null if there are no explicit template arguments.
2488   const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2489     if (!hasExplicitTemplateArgs()) return 0;
2490     return &getExplicitTemplateArgs();
2491   }
2492
2493   /// \brief Copies the template arguments (if present) into the given
2494   /// structure.
2495   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2496     getExplicitTemplateArgs().copyInto(List);
2497   }
2498
2499   /// \brief Initializes the template arguments using the given structure.
2500   void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2501     getExplicitTemplateArgs().initializeFrom(List);
2502   }
2503
2504   /// \brief Retrieve the location of the left angle bracket following the
2505   /// member name ('<'), if any.
2506   SourceLocation getLAngleLoc() const {
2507     return getExplicitTemplateArgs().LAngleLoc;
2508   }
2509
2510   /// \brief Retrieve the template arguments provided as part of this
2511   /// template-id.
2512   const TemplateArgumentLoc *getTemplateArgs() const {
2513     return getExplicitTemplateArgs().getTemplateArgs();
2514   }
2515
2516   /// \brief Retrieve the number of template arguments provided as part of this
2517   /// template-id.
2518   unsigned getNumTemplateArgs() const {
2519     return getExplicitTemplateArgs().NumTemplateArgs;
2520   }
2521
2522   /// \brief Retrieve the location of the right angle bracket following the
2523   /// template arguments ('>').
2524   SourceLocation getRAngleLoc() const {
2525     return getExplicitTemplateArgs().RAngleLoc;
2526   }
2527
2528   SourceRange getSourceRange() const {
2529     SourceRange Range;
2530     if (!isImplicitAccess())
2531       Range.setBegin(Base->getSourceRange().getBegin());
2532     else if (getQualifier())
2533       Range.setBegin(getQualifierLoc().getBeginLoc());
2534     else
2535       Range.setBegin(MemberNameInfo.getBeginLoc());
2536
2537     if (hasExplicitTemplateArgs())
2538       Range.setEnd(getRAngleLoc());
2539     else
2540       Range.setEnd(MemberNameInfo.getEndLoc());
2541     return Range;
2542   }
2543
2544   static bool classof(const Stmt *T) {
2545     return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2546   }
2547   static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2548
2549   // Iterators
2550   child_range children() {
2551     if (isImplicitAccess()) return child_range();
2552     return child_range(&Base, &Base + 1);
2553   }
2554
2555   friend class ASTStmtReader;
2556   friend class ASTStmtWriter;
2557 };
2558
2559 /// \brief Represents a C++ member access expression for which lookup
2560 /// produced a set of overloaded functions.
2561 ///
2562 /// The member access may be explicit or implicit:
2563 ///    struct A {
2564 ///      int a, b;
2565 ///      int explicitAccess() { return this->a + this->A::b; }
2566 ///      int implicitAccess() { return a + A::b; }
2567 ///    };
2568 ///
2569 /// In the final AST, an explicit access always becomes a MemberExpr.
2570 /// An implicit access may become either a MemberExpr or a
2571 /// DeclRefExpr, depending on whether the member is static.
2572 class UnresolvedMemberExpr : public OverloadExpr {
2573   /// \brief Whether this member expression used the '->' operator or
2574   /// the '.' operator.
2575   bool IsArrow : 1;
2576
2577   /// \brief Whether the lookup results contain an unresolved using
2578   /// declaration.
2579   bool HasUnresolvedUsing : 1;
2580
2581   /// \brief The expression for the base pointer or class reference,
2582   /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2583   /// member expression
2584   Stmt *Base;
2585
2586   /// \brief The type of the base expression;  never null.
2587   QualType BaseType;
2588
2589   /// \brief The location of the '->' or '.' operator.
2590   SourceLocation OperatorLoc;
2591
2592   UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2593                        Expr *Base, QualType BaseType, bool IsArrow,
2594                        SourceLocation OperatorLoc,
2595                        NestedNameSpecifierLoc QualifierLoc,
2596                        const DeclarationNameInfo &MemberNameInfo,
2597                        const TemplateArgumentListInfo *TemplateArgs,
2598                        UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2599   
2600   UnresolvedMemberExpr(EmptyShell Empty)
2601     : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2602       HasUnresolvedUsing(false), Base(0) { }
2603
2604   friend class ASTStmtReader;
2605   
2606 public:
2607   static UnresolvedMemberExpr *
2608   Create(ASTContext &C, bool HasUnresolvedUsing,
2609          Expr *Base, QualType BaseType, bool IsArrow,
2610          SourceLocation OperatorLoc,
2611          NestedNameSpecifierLoc QualifierLoc,
2612          const DeclarationNameInfo &MemberNameInfo,
2613          const TemplateArgumentListInfo *TemplateArgs,
2614          UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2615
2616   static UnresolvedMemberExpr *
2617   CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2618               unsigned NumTemplateArgs);
2619
2620   /// \brief True if this is an implicit access, i.e. one in which the
2621   /// member being accessed was not written in the source.  The source
2622   /// location of the operator is invalid in this case.
2623   bool isImplicitAccess() const;
2624
2625   /// \brief Retrieve the base object of this member expressions,
2626   /// e.g., the \c x in \c x.m.
2627   Expr *getBase() {
2628     assert(!isImplicitAccess());
2629     return cast<Expr>(Base);
2630   }
2631   const Expr *getBase() const {
2632     assert(!isImplicitAccess());
2633     return cast<Expr>(Base);
2634   }
2635
2636   QualType getBaseType() const { return BaseType; }
2637
2638   /// \brief Determine whether the lookup results contain an unresolved using
2639   /// declaration.
2640   bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2641
2642   /// \brief Determine whether this member expression used the '->'
2643   /// operator; otherwise, it used the '.' operator.
2644   bool isArrow() const { return IsArrow; }
2645
2646   /// \brief Retrieve the location of the '->' or '.' operator.
2647   SourceLocation getOperatorLoc() const { return OperatorLoc; }
2648
2649   /// \brief Retrieves the naming class of this lookup.
2650   CXXRecordDecl *getNamingClass() const;
2651
2652   /// \brief Retrieve the full name info for the member that this expression
2653   /// refers to.
2654   const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2655
2656   /// \brief Retrieve the name of the member that this expression
2657   /// refers to.
2658   DeclarationName getMemberName() const { return getName(); }
2659
2660   // \brief Retrieve the location of the name of the member that this
2661   // expression refers to.
2662   SourceLocation getMemberLoc() const { return getNameLoc(); }
2663
2664   /// \brief Retrieve the explicit template argument list that followed the
2665   /// member template name.
2666   ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2667     assert(hasExplicitTemplateArgs());
2668     return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2669   }
2670
2671   /// \brief Retrieve the explicit template argument list that followed the
2672   /// member template name, if any.
2673   const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2674     assert(hasExplicitTemplateArgs());
2675     return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2676   }
2677
2678   /// \brief Retrieves the optional explicit template arguments.
2679   /// This points to the same data as getExplicitTemplateArgs(), but
2680   /// returns null if there are no explicit template arguments.
2681   const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2682     if (!hasExplicitTemplateArgs()) return 0;
2683     return &getExplicitTemplateArgs();
2684   }
2685
2686   /// \brief Copies the template arguments into the given structure.
2687   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2688     getExplicitTemplateArgs().copyInto(List);
2689   }
2690
2691   /// \brief Retrieve the location of the left angle bracket following
2692   /// the member name ('<').
2693   SourceLocation getLAngleLoc() const {
2694     return getExplicitTemplateArgs().LAngleLoc;
2695   }
2696
2697   /// \brief Retrieve the template arguments provided as part of this
2698   /// template-id.
2699   const TemplateArgumentLoc *getTemplateArgs() const {
2700     return getExplicitTemplateArgs().getTemplateArgs();
2701   }
2702
2703   /// \brief Retrieve the number of template arguments provided as
2704   /// part of this template-id.
2705   unsigned getNumTemplateArgs() const {
2706     return getExplicitTemplateArgs().NumTemplateArgs;
2707   }
2708
2709   /// \brief Retrieve the location of the right angle bracket
2710   /// following the template arguments ('>').
2711   SourceLocation getRAngleLoc() const {
2712     return getExplicitTemplateArgs().RAngleLoc;
2713   }
2714
2715   SourceRange getSourceRange() const {
2716     SourceRange Range = getMemberNameInfo().getSourceRange();
2717     if (!isImplicitAccess())
2718       Range.setBegin(Base->getSourceRange().getBegin());
2719     else if (getQualifierLoc())
2720       Range.setBegin(getQualifierLoc().getBeginLoc());
2721
2722     if (hasExplicitTemplateArgs())
2723       Range.setEnd(getRAngleLoc());
2724     return Range;
2725   }
2726
2727   static bool classof(const Stmt *T) {
2728     return T->getStmtClass() == UnresolvedMemberExprClass;
2729   }
2730   static bool classof(const UnresolvedMemberExpr *) { return true; }
2731
2732   // Iterators
2733   child_range children() {
2734     if (isImplicitAccess()) return child_range();
2735     return child_range(&Base, &Base + 1);
2736   }
2737 };
2738
2739 /// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2740 ///
2741 /// The noexcept expression tests whether a given expression might throw. Its
2742 /// result is a boolean constant.
2743 class CXXNoexceptExpr : public Expr {
2744   bool Value : 1;
2745   Stmt *Operand;
2746   SourceRange Range;
2747
2748   friend class ASTStmtReader;
2749
2750 public:
2751   CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2752                   SourceLocation Keyword, SourceLocation RParen)
2753     : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2754            /*TypeDependent*/false,
2755            /*ValueDependent*/Val == CT_Dependent,
2756            Val == CT_Dependent || Operand->isInstantiationDependent(),
2757            Operand->containsUnexpandedParameterPack()),
2758       Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2759   { }
2760
2761   CXXNoexceptExpr(EmptyShell Empty)
2762     : Expr(CXXNoexceptExprClass, Empty)
2763   { }
2764
2765   Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2766
2767   SourceRange getSourceRange() const { return Range; }
2768
2769   bool getValue() const { return Value; }
2770
2771   static bool classof(const Stmt *T) {
2772     return T->getStmtClass() == CXXNoexceptExprClass;
2773   }
2774   static bool classof(const CXXNoexceptExpr *) { return true; }
2775
2776   // Iterators
2777   child_range children() { return child_range(&Operand, &Operand + 1); }
2778 };
2779
2780 /// \brief Represents a C++0x pack expansion that produces a sequence of 
2781 /// expressions.
2782 ///
2783 /// A pack expansion expression contains a pattern (which itself is an
2784 /// expression) followed by an ellipsis. For example:
2785 ///
2786 /// \code
2787 /// template<typename F, typename ...Types>
2788 /// void forward(F f, Types &&...args) {
2789 ///   f(static_cast<Types&&>(args)...);
2790 /// }
2791 /// \endcode
2792 ///
2793 /// Here, the argument to the function object \c f is a pack expansion whose
2794 /// pattern is \c static_cast<Types&&>(args). When the \c forward function 
2795 /// template is instantiated, the pack expansion will instantiate to zero or
2796 /// or more function arguments to the function object \c f.
2797 class PackExpansionExpr : public Expr {
2798   SourceLocation EllipsisLoc;
2799   
2800   /// \brief The number of expansions that will be produced by this pack
2801   /// expansion expression, if known.
2802   ///
2803   /// When zero, the number of expansions is not known. Otherwise, this value
2804   /// is the number of expansions + 1.
2805   unsigned NumExpansions;
2806   
2807   Stmt *Pattern;
2808   
2809   friend class ASTStmtReader;
2810   friend class ASTStmtWriter;
2811   
2812 public:
2813   PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2814                     llvm::Optional<unsigned> NumExpansions)
2815     : Expr(PackExpansionExprClass, T, Pattern->getValueKind(), 
2816            Pattern->getObjectKind(), /*TypeDependent=*/true, 
2817            /*ValueDependent=*/true, /*InstantiationDependent=*/true,
2818            /*ContainsUnexpandedParameterPack=*/false),
2819       EllipsisLoc(EllipsisLoc),
2820       NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2821       Pattern(Pattern) { }
2822
2823   PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2824   
2825   /// \brief Retrieve the pattern of the pack expansion.
2826   Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2827
2828   /// \brief Retrieve the pattern of the pack expansion.
2829   const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2830
2831   /// \brief Retrieve the location of the ellipsis that describes this pack
2832   /// expansion.
2833   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2834   
2835   /// \brief Determine the number of expansions that will be produced when 
2836   /// this pack expansion is instantiated, if already known.
2837   llvm::Optional<unsigned> getNumExpansions() const {
2838     if (NumExpansions)
2839       return NumExpansions - 1;
2840     
2841     return llvm::Optional<unsigned>();
2842   }
2843   
2844   SourceRange getSourceRange() const {
2845     return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2846   }
2847
2848   static bool classof(const Stmt *T) {
2849     return T->getStmtClass() == PackExpansionExprClass;
2850   }
2851   static bool classof(const PackExpansionExpr *) { return true; }
2852   
2853   // Iterators
2854   child_range children() {
2855     return child_range(&Pattern, &Pattern + 1);
2856   }
2857 };
2858   
2859 inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2860   if (isa<UnresolvedLookupExpr>(this))
2861     return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2862   else
2863     return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2864 }
2865
2866 /// \brief Represents an expression that computes the length of a parameter 
2867 /// pack.
2868 ///
2869 /// \code
2870 /// template<typename ...Types>
2871 /// struct count {
2872 ///   static const unsigned value = sizeof...(Types);
2873 /// };
2874 /// \endcode
2875 class SizeOfPackExpr : public Expr {
2876   /// \brief The location of the 'sizeof' keyword.
2877   SourceLocation OperatorLoc;
2878   
2879   /// \brief The location of the name of the parameter pack.
2880   SourceLocation PackLoc;
2881   
2882   /// \brief The location of the closing parenthesis.
2883   SourceLocation RParenLoc;
2884   
2885   /// \brief The length of the parameter pack, if known.
2886   ///
2887   /// When this expression is value-dependent, the length of the parameter pack
2888   /// is unknown. When this expression is not value-dependent, the length is
2889   /// known.
2890   unsigned Length;
2891   
2892   /// \brief The parameter pack itself.
2893   NamedDecl *Pack;
2894   
2895   friend class ASTStmtReader;
2896   friend class ASTStmtWriter;
2897   
2898 public:
2899   /// \brief Creates a value-dependent expression that computes the length of
2900   /// the given parameter pack.
2901   SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack, 
2902                  SourceLocation PackLoc, SourceLocation RParenLoc)
2903     : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2904            /*TypeDependent=*/false, /*ValueDependent=*/true,
2905            /*InstantiationDependent=*/true,
2906            /*ContainsUnexpandedParameterPack=*/false),
2907       OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2908       Length(0), Pack(Pack) { }
2909
2910   /// \brief Creates an expression that computes the length of
2911   /// the given parameter pack, which is already known.
2912   SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack, 
2913                  SourceLocation PackLoc, SourceLocation RParenLoc,
2914                  unsigned Length)
2915   : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2916          /*TypeDependent=*/false, /*ValueDependent=*/false,
2917          /*InstantiationDependent=*/false,
2918          /*ContainsUnexpandedParameterPack=*/false),
2919     OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2920     Length(Length), Pack(Pack) { }
2921
2922   /// \brief Create an empty expression.
2923   SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2924   
2925   /// \brief Determine the location of the 'sizeof' keyword.
2926   SourceLocation getOperatorLoc() const { return OperatorLoc; }
2927
2928   /// \brief Determine the location of the parameter pack.
2929   SourceLocation getPackLoc() const { return PackLoc; }
2930   
2931   /// \brief Determine the location of the right parenthesis.
2932   SourceLocation getRParenLoc() const { return RParenLoc; }
2933   
2934   /// \brief Retrieve the parameter pack.
2935   NamedDecl *getPack() const { return Pack; }
2936   
2937   /// \brief Retrieve the length of the parameter pack.
2938   ///
2939   /// This routine may only be invoked when the expression is not 
2940   /// value-dependent.
2941   unsigned getPackLength() const {
2942     assert(!isValueDependent() && 
2943            "Cannot get the length of a value-dependent pack size expression");
2944     return Length;
2945   }
2946   
2947   SourceRange getSourceRange() const {
2948     return SourceRange(OperatorLoc, RParenLoc);
2949   }
2950   
2951   static bool classof(const Stmt *T) {
2952     return T->getStmtClass() == SizeOfPackExprClass;
2953   }
2954   static bool classof(const SizeOfPackExpr *) { return true; }
2955   
2956   // Iterators
2957   child_range children() { return child_range(); }
2958 };
2959
2960 /// \brief Represents a reference to a non-type template parameter
2961 /// that has been substituted with a template argument.
2962 class SubstNonTypeTemplateParmExpr : public Expr {
2963   /// \brief The replaced parameter.
2964   NonTypeTemplateParmDecl *Param;
2965
2966   /// \brief The replacement expression.
2967   Stmt *Replacement;
2968
2969   /// \brief The location of the non-type template parameter reference.
2970   SourceLocation NameLoc;
2971
2972   friend class ASTReader;
2973   friend class ASTStmtReader;
2974   explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty) 
2975     : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
2976
2977 public:
2978   SubstNonTypeTemplateParmExpr(QualType type, 
2979                                ExprValueKind valueKind,
2980                                SourceLocation loc,
2981                                NonTypeTemplateParmDecl *param,
2982                                Expr *replacement)
2983     : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
2984            replacement->isTypeDependent(), replacement->isValueDependent(),
2985            replacement->isInstantiationDependent(),
2986            replacement->containsUnexpandedParameterPack()),
2987       Param(param), Replacement(replacement), NameLoc(loc) {}
2988
2989   SourceLocation getNameLoc() const { return NameLoc; }
2990   SourceRange getSourceRange() const { return NameLoc; }
2991
2992   Expr *getReplacement() const { return cast<Expr>(Replacement); }
2993     
2994   NonTypeTemplateParmDecl *getParameter() const { return Param; }
2995
2996   static bool classof(const Stmt *s) {
2997     return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
2998   }
2999   static bool classof(const SubstNonTypeTemplateParmExpr *) { 
3000     return true; 
3001   }
3002   
3003   // Iterators
3004   child_range children() { return child_range(&Replacement, &Replacement+1); }
3005 };
3006
3007 /// \brief Represents a reference to a non-type template parameter pack that
3008 /// has been substituted with a non-template argument pack.
3009 ///
3010 /// When a pack expansion in the source code contains multiple parameter packs
3011 /// and those parameter packs correspond to different levels of template
3012 /// parameter lists, this node node is used to represent a non-type template 
3013 /// parameter pack from an outer level, which has already had its argument pack
3014 /// substituted but that still lives within a pack expansion that itself
3015 /// could not be instantiated. When actually performing a substitution into
3016 /// that pack expansion (e.g., when all template parameters have corresponding
3017 /// arguments), this type will be replaced with the appropriate underlying
3018 /// expression at the current pack substitution index.
3019 class SubstNonTypeTemplateParmPackExpr : public Expr {
3020   /// \brief The non-type template parameter pack itself.
3021   NonTypeTemplateParmDecl *Param;
3022   
3023   /// \brief A pointer to the set of template arguments that this
3024   /// parameter pack is instantiated with.
3025   const TemplateArgument *Arguments;
3026   
3027   /// \brief The number of template arguments in \c Arguments.
3028   unsigned NumArguments;
3029   
3030   /// \brief The location of the non-type template parameter pack reference.
3031   SourceLocation NameLoc;
3032   
3033   friend class ASTReader;
3034   friend class ASTStmtReader;
3035   explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty) 
3036     : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3037   
3038 public:
3039   SubstNonTypeTemplateParmPackExpr(QualType T, 
3040                                    NonTypeTemplateParmDecl *Param,
3041                                    SourceLocation NameLoc,
3042                                    const TemplateArgument &ArgPack);
3043   
3044   /// \brief Retrieve the non-type template parameter pack being substituted.
3045   NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3046
3047   /// \brief Retrieve the location of the parameter pack name.
3048   SourceLocation getParameterPackLocation() const { return NameLoc; }
3049   
3050   /// \brief Retrieve the template argument pack containing the substituted
3051   /// template arguments.
3052   TemplateArgument getArgumentPack() const;
3053
3054   SourceRange getSourceRange() const { return NameLoc; }
3055   
3056   static bool classof(const Stmt *T) {
3057     return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3058   }
3059   static bool classof(const SubstNonTypeTemplateParmPackExpr *) { 
3060     return true; 
3061   }
3062   
3063   // Iterators
3064   child_range children() { return child_range(); }
3065 };
3066
3067 /// \brief Represents a prvalue temporary that written into memory so that
3068 /// a reference can bind to it.
3069 ///
3070 /// Prvalue expressions are materialized when they need to have an address
3071 /// in memory for a reference to bind to. This happens when binding a
3072 /// reference to the result of a conversion, e.g.,
3073 ///
3074 /// \code
3075 /// const int &r = 1.0;
3076 /// \endcode
3077 ///
3078 /// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3079 /// then materialized via a \c MaterializeTemporaryExpr, and the reference
3080 /// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3081 /// (either an lvalue or an xvalue, depending on the kind of reference binding
3082 /// to it), maintaining the invariant that references always bind to glvalues.
3083 class MaterializeTemporaryExpr : public Expr {
3084   /// \brief The temporary-generating expression whose value will be
3085   /// materialized.
3086  Stmt *Temporary;
3087   
3088   friend class ASTStmtReader;
3089   friend class ASTStmtWriter;
3090   
3091 public:
3092   MaterializeTemporaryExpr(QualType T, Expr *Temporary, 
3093                            bool BoundToLvalueReference)
3094     : Expr(MaterializeTemporaryExprClass, T,
3095            BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3096            Temporary->isTypeDependent(), Temporary->isValueDependent(),
3097            Temporary->isInstantiationDependent(),
3098            Temporary->containsUnexpandedParameterPack()),
3099       Temporary(Temporary) { }
3100   
3101   MaterializeTemporaryExpr(EmptyShell Empty) 
3102     : Expr(MaterializeTemporaryExprClass, Empty) { }
3103   
3104   /// \brief Retrieve the temporary-generating subexpression whose value will
3105   /// be materialized into a glvalue.
3106   Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3107   
3108   /// \brief Determine whether this materialized temporary is bound to an
3109   /// lvalue reference; otherwise, it's bound to an rvalue reference.
3110   bool isBoundToLvalueReference() const { 
3111     return getValueKind() == VK_LValue;
3112   }
3113   
3114   SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3115   
3116   static bool classof(const Stmt *T) {
3117     return T->getStmtClass() == MaterializeTemporaryExprClass;
3118   }
3119   static bool classof(const MaterializeTemporaryExpr *) { 
3120     return true; 
3121   }
3122   
3123   // Iterators
3124   child_range children() { return child_range(&Temporary, &Temporary + 1); }
3125 };
3126   
3127 }  // end namespace clang
3128
3129 #endif