]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/include/clang/Sema/Ownership.h
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / include / clang / Sema / Ownership.h
1 //===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file contains classes for managing ownership of Stmt and Expr nodes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
15 #define LLVM_CLANG_SEMA_OWNERSHIP_H
16
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/PointerIntPair.h"
19
20 //===----------------------------------------------------------------------===//
21 // OpaquePtr
22 //===----------------------------------------------------------------------===//
23
24 namespace clang {
25   class Attr;
26   class CXXCtorInitializer;
27   class CXXBaseSpecifier;
28   class Decl;
29   class DeclGroupRef;
30   class Expr;
31   class NestedNameSpecifier;
32   class QualType;
33   class Sema;
34   class Stmt;
35   class TemplateName;
36   class TemplateParameterList;
37
38   /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
39   /// Parser doesn't know about but that Sema or another client does.  The UID
40   /// template argument is used to make sure that "Decl" pointers are not
41   /// compatible with "Type" pointers for example.
42   template <class PtrTy>
43   class OpaquePtr {
44     void *Ptr;
45     explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {}
46
47     typedef llvm::PointerLikeTypeTraits<PtrTy> Traits;
48
49   public:
50     OpaquePtr() : Ptr(0) {}
51
52     static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; }
53
54     template <typename T> T* getAs() const {
55       return get();
56     }
57
58     template <typename T> T getAsVal() const {
59       return get();
60     }
61
62     PtrTy get() const {
63       return Traits::getFromVoidPointer(Ptr);
64     }
65
66     void set(PtrTy P) {
67       Ptr = Traits::getAsVoidPointer(P);
68     }
69
70     operator bool() const { return Ptr != 0; }
71
72     void *getAsOpaquePtr() const { return Ptr; }
73     static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); }
74   };
75
76   /// UnionOpaquePtr - A version of OpaquePtr suitable for membership
77   /// in a union.
78   template <class T> struct UnionOpaquePtr {
79     void *Ptr;
80
81     static UnionOpaquePtr make(OpaquePtr<T> P) {
82       UnionOpaquePtr OP = { P.getAsOpaquePtr() };
83       return OP;
84     }
85
86     OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); }
87     operator OpaquePtr<T>() const { return get(); }
88
89     UnionOpaquePtr &operator=(OpaquePtr<T> P) {
90       Ptr = P.getAsOpaquePtr();
91       return *this;
92     }
93   };
94 }
95
96 namespace llvm {
97   template <class T>
98   class PointerLikeTypeTraits<clang::OpaquePtr<T> > {
99   public:
100     static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) {
101       // FIXME: Doesn't work? return P.getAs< void >();
102       return P.getAsOpaquePtr();
103     }
104     static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) {
105       return clang::OpaquePtr<T>::getFromOpaquePtr(P);
106     }
107     enum { NumLowBitsAvailable = 0 };
108   };
109
110   template <class T>
111   struct isPodLike<clang::OpaquePtr<T> > { static const bool value = true; };
112 }
113
114
115
116 // -------------------------- About Move Emulation -------------------------- //
117 // The smart pointer classes in this file attempt to emulate move semantics
118 // as they appear in C++0x with rvalue references. Since C++03 doesn't have
119 // rvalue references, some tricks are needed to get similar results.
120 // Move semantics in C++0x have the following properties:
121 // 1) "Moving" means transferring the value of an object to another object,
122 //    similar to copying, but without caring what happens to the old object.
123 //    In particular, this means that the new object can steal the old object's
124 //    resources instead of creating a copy.
125 // 2) Since moving can modify the source object, it must either be explicitly
126 //    requested by the user, or the modifications must be unnoticeable.
127 // 3) As such, C++0x moving is only allowed in three contexts:
128 //    * By explicitly using std::move() to request it.
129 //    * From a temporary object, since that object cannot be accessed
130 //      afterwards anyway, thus making the state unobservable.
131 //    * On function return, since the object is not observable afterwards.
132 //
133 // To sum up: moving from a named object should only be possible with an
134 // explicit std::move(), or on function return. Moving from a temporary should
135 // be implicitly done. Moving from a const object is forbidden.
136 //
137 // The emulation is not perfect, and has the following shortcomings:
138 // * move() is not in namespace std.
139 // * move() is required on function return.
140 // * There are difficulties with implicit conversions.
141 // * Microsoft's compiler must be given the /Za switch to successfully compile.
142 //
143 // -------------------------- Implementation -------------------------------- //
144 // The move emulation relies on the peculiar reference binding semantics of
145 // C++03: as a rule, a non-const reference may not bind to a temporary object,
146 // except for the implicit object parameter in a member function call, which
147 // can refer to a temporary even when not being const.
148 // The moveable object has five important functions to facilitate moving:
149 // * A private, unimplemented constructor taking a non-const reference to its
150 //   own class. This constructor serves a two-fold purpose.
151 //   - It prevents the creation of a copy constructor that takes a const
152 //     reference. Temporaries would be able to bind to the argument of such a
153 //     constructor, and that would be bad.
154 //   - Named objects will bind to the non-const reference, but since it's
155 //     private, this will fail to compile. This prevents implicit moving from
156 //     named objects.
157 //   There's also a copy assignment operator for the same purpose.
158 // * An implicit, non-const conversion operator to a special mover type. This
159 //   type represents the rvalue reference of C++0x. Being a non-const member,
160 //   its implicit this parameter can bind to temporaries.
161 // * A constructor that takes an object of this mover type. This constructor
162 //   performs the actual move operation. There is an equivalent assignment
163 //   operator.
164 // There is also a free move() function that takes a non-const reference to
165 // an object and returns a temporary. Internally, this function uses explicit
166 // constructor calls to move the value from the referenced object to the return
167 // value.
168 //
169 // There are now three possible scenarios of use.
170 // * Copying from a const object. Constructor overload resolution will find the
171 //   non-const copy constructor, and the move constructor. The first is not
172 //   viable because the const object cannot be bound to the non-const reference.
173 //   The second fails because the conversion to the mover object is non-const.
174 //   Moving from a const object fails as intended.
175 // * Copying from a named object. Constructor overload resolution will select
176 //   the non-const copy constructor, but fail as intended, because this
177 //   constructor is private.
178 // * Copying from a temporary. Constructor overload resolution cannot select
179 //   the non-const copy constructor, because the temporary cannot be bound to
180 //   the non-const reference. It thus selects the move constructor. The
181 //   temporary can be bound to the implicit this parameter of the conversion
182 //   operator, because of the special binding rule. Construction succeeds.
183 //   Note that the Microsoft compiler, as an extension, allows binding
184 //   temporaries against non-const references. The compiler thus selects the
185 //   non-const copy constructor and fails, because the constructor is private.
186 //   Passing /Za (disable extensions) disables this behaviour.
187 // The free move() function is used to move from a named object.
188 //
189 // Note that when passing an object of a different type (the classes below
190 // have OwningResult and OwningPtr, which should be mixable), you get a problem.
191 // Argument passing and function return use copy initialization rules. The
192 // effect of this is that, when the source object is not already of the target
193 // type, the compiler will first seek a way to convert the source object to the
194 // target type, and only then attempt to copy the resulting object. This means
195 // that when passing an OwningResult where an OwningPtr is expected, the
196 // compiler will first seek a conversion from OwningResult to OwningPtr, then
197 // copy the OwningPtr. The resulting conversion sequence is:
198 // OwningResult object -> ResultMover -> OwningResult argument to
199 // OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
200 // This conversion sequence is too complex to be allowed. Thus the special
201 // move_* functions, which help the compiler out with some explicit
202 // conversions.
203
204 namespace clang {
205   // Basic
206   class DiagnosticBuilder;
207
208   // Determines whether the low bit of the result pointer for the
209   // given UID is always zero. If so, ActionResult will use that bit
210   // for it's "invalid" flag.
211   template<class Ptr>
212   struct IsResultPtrLowBitFree {
213     static const bool value = false;
214   };
215
216   /// ActionResult - This structure is used while parsing/acting on
217   /// expressions, stmts, etc.  It encapsulates both the object returned by
218   /// the action, plus a sense of whether or not it is valid.
219   /// When CompressInvalid is true, the "invalid" flag will be
220   /// stored in the low bit of the Val pointer.
221   template<class PtrTy,
222            bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
223   class ActionResult {
224     PtrTy Val;
225     bool Invalid;
226
227   public:
228     ActionResult(bool Invalid = false)
229       : Val(PtrTy()), Invalid(Invalid) {}
230     ActionResult(PtrTy val) : Val(val), Invalid(false) {}
231     ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
232
233     // These two overloads prevent void* -> bool conversions.
234     ActionResult(const void *);
235     ActionResult(volatile void *);
236
237     bool isInvalid() const { return Invalid; }
238     bool isUsable() const { return !Invalid && Val; }
239
240     PtrTy get() const { return Val; }
241     PtrTy release() const { return Val; }
242     PtrTy take() const { return Val; }
243     template <typename T> T *takeAs() { return static_cast<T*>(get()); }
244
245     void set(PtrTy V) { Val = V; }
246
247     const ActionResult &operator=(PtrTy RHS) {
248       Val = RHS;
249       Invalid = false;
250       return *this;
251     }
252   };
253
254   // This ActionResult partial specialization places the "invalid"
255   // flag into the low bit of the pointer.
256   template<typename PtrTy>
257   class ActionResult<PtrTy, true> {
258     // A pointer whose low bit is 1 if this result is invalid, 0
259     // otherwise.
260     uintptr_t PtrWithInvalid;
261     typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
262   public:
263     ActionResult(bool Invalid = false)
264       : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
265
266     ActionResult(PtrTy V) {
267       void *VP = PtrTraits::getAsVoidPointer(V);
268       PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
269       assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
270     }
271     ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
272
273     // These two overloads prevent void* -> bool conversions.
274     ActionResult(const void *);
275     ActionResult(volatile void *);
276
277     bool isInvalid() const { return PtrWithInvalid & 0x01; }
278     bool isUsable() const { return PtrWithInvalid > 0x01; }
279
280     PtrTy get() const {
281       void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
282       return PtrTraits::getFromVoidPointer(VP);
283     }
284     PtrTy take() const { return get(); }
285     PtrTy release() const { return get(); }
286     template <typename T> T *takeAs() { return static_cast<T*>(get()); }
287
288     void set(PtrTy V) {
289       void *VP = PtrTraits::getAsVoidPointer(V);
290       PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
291       assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
292     }
293
294     const ActionResult &operator=(PtrTy RHS) {
295       void *VP = PtrTraits::getAsVoidPointer(RHS);
296       PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
297       assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
298       return *this;
299     }
300   };
301
302   /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
303   /// the individual pointers, not the array holding them.
304   template <typename PtrTy> class ASTMultiPtr;
305
306   template <class PtrTy>
307   class ASTMultiPtr {
308     PtrTy *Nodes;
309     unsigned Count;
310
311   public:
312     // Normal copying implicitly defined
313     ASTMultiPtr() : Nodes(0), Count(0) {}
314     explicit ASTMultiPtr(Sema &) : Nodes(0), Count(0) {}
315     ASTMultiPtr(Sema &, PtrTy *nodes, unsigned count)
316       : Nodes(nodes), Count(count) {}
317     // Fake mover in Parse/AstGuard.h needs this:
318     ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {}
319
320     /// Access to the raw pointers.
321     PtrTy *get() const { return Nodes; }
322
323     /// Access to the count.
324     unsigned size() const { return Count; }
325
326     PtrTy *release() {
327       return Nodes;
328     }
329   };
330
331   class ParsedTemplateArgument;
332     
333   class ASTTemplateArgsPtr {
334     ParsedTemplateArgument *Args;
335     mutable unsigned Count;
336
337   public:
338     ASTTemplateArgsPtr(Sema &actions, ParsedTemplateArgument *args,
339                        unsigned count) :
340       Args(args), Count(count) { }
341
342     // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
343     ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
344       Args(Other.Args), Count(Other.Count) {
345     }
346
347     // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
348     ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other)  {
349       Args = Other.Args;
350       Count = Other.Count;
351       return *this;
352     }
353
354     ParsedTemplateArgument *getArgs() const { return Args; }
355     unsigned size() const { return Count; }
356
357     void reset(ParsedTemplateArgument *args, unsigned count) {
358       Args = args;
359       Count = count;
360     }
361
362     const ParsedTemplateArgument &operator[](unsigned Arg) const;
363
364     ParsedTemplateArgument *release() const {
365       return Args;
366     }
367   };
368
369   /// \brief A small vector that owns a set of AST nodes.
370   template <class PtrTy, unsigned N = 8>
371   class ASTOwningVector : public llvm::SmallVector<PtrTy, N> {
372     ASTOwningVector(ASTOwningVector &); // do not implement
373     ASTOwningVector &operator=(ASTOwningVector &); // do not implement
374
375   public:
376     explicit ASTOwningVector(Sema &Actions)
377     { }
378
379     PtrTy *take() {
380       return &this->front();
381     }
382
383     template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); }
384   };
385
386   /// An opaque type for threading parsed type information through the
387   /// parser.
388   typedef OpaquePtr<QualType> ParsedType;
389   typedef UnionOpaquePtr<QualType> UnionParsedType;
390
391   /// A SmallVector of statements, with stack size 32 (as that is the only one
392   /// used.)
393   typedef ASTOwningVector<Stmt*, 32> StmtVector;
394   /// A SmallVector of expressions, with stack size 12 (the maximum used.)
395   typedef ASTOwningVector<Expr*, 12> ExprVector;
396   /// A SmallVector of types.
397   typedef ASTOwningVector<ParsedType, 12> TypeVector;
398
399   template <class T, unsigned N> inline
400   ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) {
401     return ASTMultiPtr<T>(vec.take(), vec.size());
402   }
403
404   // These versions are hopefully no-ops.
405   template <class T, bool C>
406   inline ActionResult<T,C> move(ActionResult<T,C> &ptr) {
407     return ptr;
408   }
409
410   template <class T> inline
411   ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) {
412     return ptr;
413   }
414
415   // We can re-use the low bit of expression, statement, base, and
416   // member-initializer pointers for the "invalid" flag of
417   // ActionResult.
418   template<> struct IsResultPtrLowBitFree<Expr*> {
419     static const bool value = true;
420   };
421   template<> struct IsResultPtrLowBitFree<Stmt*> {
422     static const bool value = true;
423   };
424   template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
425     static const bool value = true;
426   };
427   template<> struct IsResultPtrLowBitFree<CXXCtorInitializer*> {
428     static const bool value = true;
429   };
430
431   typedef ActionResult<Expr*> ExprResult;
432   typedef ActionResult<Stmt*> StmtResult;
433   typedef ActionResult<ParsedType> TypeResult;
434   typedef ActionResult<CXXBaseSpecifier*> BaseResult;
435   typedef ActionResult<CXXCtorInitializer*> MemInitResult;
436
437   typedef ActionResult<Decl*> DeclResult;
438   typedef OpaquePtr<TemplateName> ParsedTemplateTy;
439
440   inline Expr *move(Expr *E) { return E; }
441   inline Stmt *move(Stmt *S) { return S; }
442
443   typedef ASTMultiPtr<Expr*> MultiExprArg;
444   typedef ASTMultiPtr<Stmt*> MultiStmtArg;
445   typedef ASTMultiPtr<ParsedType> MultiTypeArg;
446   typedef ASTMultiPtr<TemplateParameterList*> MultiTemplateParamsArg;
447
448   inline ExprResult ExprError() { return ExprResult(true); }
449   inline StmtResult StmtError() { return StmtResult(true); }
450
451   inline ExprResult ExprError(const DiagnosticBuilder&) { return ExprError(); }
452   inline StmtResult StmtError(const DiagnosticBuilder&) { return StmtError(); }
453
454   inline ExprResult ExprEmpty() { return ExprResult(false); }
455   inline StmtResult StmtEmpty() { return StmtResult(false); }
456
457   inline Expr *AssertSuccess(ExprResult R) {
458     assert(!R.isInvalid() && "operation was asserted to never fail!");
459     return R.get();
460   }
461
462   inline Stmt *AssertSuccess(StmtResult R) {
463     assert(!R.isInvalid() && "operation was asserted to never fail!");
464     return R.get();
465   }
466 }
467
468 #endif