]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/AST/Decl.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / AST / Decl.cpp
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/ASTMutationListener.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/IdentifierTable.h"
27 #include "clang/Basic/Specifiers.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/Support/ErrorHandling.h"
30
31 using namespace clang;
32
33 //===----------------------------------------------------------------------===//
34 // NamedDecl Implementation
35 //===----------------------------------------------------------------------===//
36
37 static llvm::Optional<Visibility> getVisibilityOf(const Decl *D) {
38   // If this declaration has an explicit visibility attribute, use it.
39   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
40     switch (A->getVisibility()) {
41     case VisibilityAttr::Default:
42       return DefaultVisibility;
43     case VisibilityAttr::Hidden:
44       return HiddenVisibility;
45     case VisibilityAttr::Protected:
46       return ProtectedVisibility;
47     }
48
49     return DefaultVisibility;
50   }
51
52   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
53   // implies visibility(default).
54   if (D->getASTContext().Target.getTriple().isOSDarwin()) {
55     for (specific_attr_iterator<AvailabilityAttr> 
56               A = D->specific_attr_begin<AvailabilityAttr>(),
57            AEnd = D->specific_attr_end<AvailabilityAttr>();
58          A != AEnd; ++A)
59       if ((*A)->getPlatform()->getName().equals("macosx"))
60         return DefaultVisibility;
61   }
62
63   return llvm::Optional<Visibility>();
64 }
65
66 typedef NamedDecl::LinkageInfo LinkageInfo;
67 typedef std::pair<Linkage,Visibility> LVPair;
68
69 static LVPair merge(LVPair L, LVPair R) {
70   return LVPair(minLinkage(L.first, R.first),
71                 minVisibility(L.second, R.second));
72 }
73
74 static LVPair merge(LVPair L, LinkageInfo R) {
75   return LVPair(minLinkage(L.first, R.linkage()),
76                 minVisibility(L.second, R.visibility()));
77 }
78
79 namespace {
80 /// Flags controlling the computation of linkage and visibility.
81 struct LVFlags {
82   bool ConsiderGlobalVisibility;
83   bool ConsiderVisibilityAttributes;
84   bool ConsiderTemplateParameterTypes;
85
86   LVFlags() : ConsiderGlobalVisibility(true), 
87               ConsiderVisibilityAttributes(true),
88               ConsiderTemplateParameterTypes(true) {
89   }
90
91   /// \brief Returns a set of flags that is only useful for computing the 
92   /// linkage, not the visibility, of a declaration.
93   static LVFlags CreateOnlyDeclLinkage() {
94     LVFlags F;
95     F.ConsiderGlobalVisibility = false;
96     F.ConsiderVisibilityAttributes = false;
97     F.ConsiderTemplateParameterTypes = false;
98     return F;
99   }
100   
101   /// Returns a set of flags, otherwise based on these, which ignores
102   /// off all sources of visibility except template arguments.
103   LVFlags onlyTemplateVisibility() const {
104     LVFlags F = *this;
105     F.ConsiderGlobalVisibility = false;
106     F.ConsiderVisibilityAttributes = false;
107     F.ConsiderTemplateParameterTypes = false;
108     return F;
109   }
110 }; 
111 } // end anonymous namespace
112
113 /// \brief Get the most restrictive linkage for the types in the given
114 /// template parameter list.
115 static LVPair 
116 getLVForTemplateParameterList(const TemplateParameterList *Params) {
117   LVPair LV(ExternalLinkage, DefaultVisibility);
118   for (TemplateParameterList::const_iterator P = Params->begin(),
119                                           PEnd = Params->end();
120        P != PEnd; ++P) {
121     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122       if (NTTP->isExpandedParameterPack()) {
123         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
124           QualType T = NTTP->getExpansionType(I);
125           if (!T->isDependentType())
126             LV = merge(LV, T->getLinkageAndVisibility());
127         }
128         continue;
129       }
130       
131       if (!NTTP->getType()->isDependentType()) {
132         LV = merge(LV, NTTP->getType()->getLinkageAndVisibility());
133         continue;
134       }
135     }
136
137     if (TemplateTemplateParmDecl *TTP
138                                    = dyn_cast<TemplateTemplateParmDecl>(*P)) {
139       LV = merge(LV, getLVForTemplateParameterList(TTP->getTemplateParameters()));
140     }
141   }
142
143   return LV;
144 }
145
146 /// getLVForDecl - Get the linkage and visibility for the given declaration.
147 static LinkageInfo getLVForDecl(const NamedDecl *D, LVFlags F);
148
149 /// \brief Get the most restrictive linkage for the types and
150 /// declarations in the given template argument list.
151 static LVPair getLVForTemplateArgumentList(const TemplateArgument *Args,
152                                            unsigned NumArgs,
153                                            LVFlags &F) {
154   LVPair LV(ExternalLinkage, DefaultVisibility);
155
156   for (unsigned I = 0; I != NumArgs; ++I) {
157     switch (Args[I].getKind()) {
158     case TemplateArgument::Null:
159     case TemplateArgument::Integral:
160     case TemplateArgument::Expression:
161       break;
162       
163     case TemplateArgument::Type:
164       LV = merge(LV, Args[I].getAsType()->getLinkageAndVisibility());
165       break;
166
167     case TemplateArgument::Declaration:
168       // The decl can validly be null as the representation of nullptr
169       // arguments, valid only in C++0x.
170       if (Decl *D = Args[I].getAsDecl()) {
171         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
172           LV = merge(LV, getLVForDecl(ND, F));
173       }
174       break;
175
176     case TemplateArgument::Template:
177     case TemplateArgument::TemplateExpansion:
178       if (TemplateDecl *Template 
179                 = Args[I].getAsTemplateOrTemplatePattern().getAsTemplateDecl())
180         LV = merge(LV, getLVForDecl(Template, F));
181       break;
182
183     case TemplateArgument::Pack:
184       LV = merge(LV, getLVForTemplateArgumentList(Args[I].pack_begin(),
185                                                   Args[I].pack_size(),
186                                                   F));
187       break;
188     }
189   }
190
191   return LV;
192 }
193
194 static LVPair
195 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
196                              LVFlags &F) {
197   return getLVForTemplateArgumentList(TArgs.data(), TArgs.size(), F);
198 }
199
200 static bool shouldConsiderTemplateLV(const FunctionDecl *fn,
201                                const FunctionTemplateSpecializationInfo *spec) {
202   return !(spec->isExplicitSpecialization() &&
203            fn->hasAttr<VisibilityAttr>());
204 }
205
206 static bool shouldConsiderTemplateLV(const ClassTemplateSpecializationDecl *d) {
207   return !(d->isExplicitSpecialization() && d->hasAttr<VisibilityAttr>());
208 }
209
210 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, LVFlags F) {
211   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
212          "Not a name having namespace scope");
213   ASTContext &Context = D->getASTContext();
214
215   // C++ [basic.link]p3:
216   //   A name having namespace scope (3.3.6) has internal linkage if it
217   //   is the name of
218   //     - an object, reference, function or function template that is
219   //       explicitly declared static; or,
220   // (This bullet corresponds to C99 6.2.2p3.)
221   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
222     // Explicitly declared static.
223     if (Var->getStorageClass() == SC_Static)
224       return LinkageInfo::internal();
225
226     // - an object or reference that is explicitly declared const
227     //   and neither explicitly declared extern nor previously
228     //   declared to have external linkage; or
229     // (there is no equivalent in C99)
230     if (Context.getLangOptions().CPlusPlus &&
231         Var->getType().isConstant(Context) && 
232         Var->getStorageClass() != SC_Extern &&
233         Var->getStorageClass() != SC_PrivateExtern) {
234       bool FoundExtern = false;
235       for (const VarDecl *PrevVar = Var->getPreviousDeclaration();
236            PrevVar && !FoundExtern; 
237            PrevVar = PrevVar->getPreviousDeclaration())
238         if (isExternalLinkage(PrevVar->getLinkage()))
239           FoundExtern = true;
240       
241       if (!FoundExtern)
242         return LinkageInfo::internal();
243     }
244     if (Var->getStorageClass() == SC_None) {
245       const VarDecl *PrevVar = Var->getPreviousDeclaration();
246       for (; PrevVar; PrevVar = PrevVar->getPreviousDeclaration())
247         if (PrevVar->getStorageClass() == SC_PrivateExtern)
248           break;
249         if (PrevVar)
250           return PrevVar->getLinkageAndVisibility();
251     }
252   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
253     // C++ [temp]p4:
254     //   A non-member function template can have internal linkage; any
255     //   other template name shall have external linkage.
256     const FunctionDecl *Function = 0;
257     if (const FunctionTemplateDecl *FunTmpl
258                                         = dyn_cast<FunctionTemplateDecl>(D))
259       Function = FunTmpl->getTemplatedDecl();
260     else
261       Function = cast<FunctionDecl>(D);
262
263     // Explicitly declared static.
264     if (Function->getStorageClass() == SC_Static)
265       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
266   } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
267     //   - a data member of an anonymous union.
268     if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
269       return LinkageInfo::internal();
270   }
271
272   if (D->isInAnonymousNamespace()) {
273     const VarDecl *Var = dyn_cast<VarDecl>(D);
274     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
275     if ((!Var || !Var->isExternC()) && (!Func || !Func->isExternC()))
276       return LinkageInfo::uniqueExternal();
277   }
278
279   // Set up the defaults.
280
281   // C99 6.2.2p5:
282   //   If the declaration of an identifier for an object has file
283   //   scope and no storage-class specifier, its linkage is
284   //   external.
285   LinkageInfo LV;
286
287   if (F.ConsiderVisibilityAttributes) {
288     if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
289       LV.setVisibility(*Vis, true);
290       F.ConsiderGlobalVisibility = false;
291     } else {
292       // If we're declared in a namespace with a visibility attribute,
293       // use that namespace's visibility, but don't call it explicit.
294       for (const DeclContext *DC = D->getDeclContext();
295            !isa<TranslationUnitDecl>(DC);
296            DC = DC->getParent()) {
297         if (!isa<NamespaceDecl>(DC)) continue;
298         if (llvm::Optional<Visibility> Vis
299                            = cast<NamespaceDecl>(DC)->getExplicitVisibility()) {
300           LV.setVisibility(*Vis, false);
301           F.ConsiderGlobalVisibility = false;
302           break;
303         }
304       }
305     }
306   }
307
308   // C++ [basic.link]p4:
309
310   //   A name having namespace scope has external linkage if it is the
311   //   name of
312   //
313   //     - an object or reference, unless it has internal linkage; or
314   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
315     // GCC applies the following optimization to variables and static
316     // data members, but not to functions:
317     //
318     // Modify the variable's LV by the LV of its type unless this is
319     // C or extern "C".  This follows from [basic.link]p9:
320     //   A type without linkage shall not be used as the type of a
321     //   variable or function with external linkage unless
322     //    - the entity has C language linkage, or
323     //    - the entity is declared within an unnamed namespace, or
324     //    - the entity is not used or is defined in the same
325     //      translation unit.
326     // and [basic.link]p10:
327     //   ...the types specified by all declarations referring to a
328     //   given variable or function shall be identical...
329     // C does not have an equivalent rule.
330     //
331     // Ignore this if we've got an explicit attribute;  the user
332     // probably knows what they're doing.
333     //
334     // Note that we don't want to make the variable non-external
335     // because of this, but unique-external linkage suits us.
336     if (Context.getLangOptions().CPlusPlus && !Var->isExternC()) {
337       LVPair TypeLV = Var->getType()->getLinkageAndVisibility();
338       if (TypeLV.first != ExternalLinkage)
339         return LinkageInfo::uniqueExternal();
340       if (!LV.visibilityExplicit())
341         LV.mergeVisibility(TypeLV.second);
342     }
343
344     if (Var->getStorageClass() == SC_PrivateExtern)
345       LV.setVisibility(HiddenVisibility, true);
346
347     if (!Context.getLangOptions().CPlusPlus &&
348         (Var->getStorageClass() == SC_Extern ||
349          Var->getStorageClass() == SC_PrivateExtern)) {
350
351       // C99 6.2.2p4:
352       //   For an identifier declared with the storage-class specifier
353       //   extern in a scope in which a prior declaration of that
354       //   identifier is visible, if the prior declaration specifies
355       //   internal or external linkage, the linkage of the identifier
356       //   at the later declaration is the same as the linkage
357       //   specified at the prior declaration. If no prior declaration
358       //   is visible, or if the prior declaration specifies no
359       //   linkage, then the identifier has external linkage.
360       if (const VarDecl *PrevVar = Var->getPreviousDeclaration()) {
361         LinkageInfo PrevLV = getLVForDecl(PrevVar, F);
362         if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
363         LV.mergeVisibility(PrevLV);
364       }
365     }
366
367   //     - a function, unless it has internal linkage; or
368   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
369     // In theory, we can modify the function's LV by the LV of its
370     // type unless it has C linkage (see comment above about variables
371     // for justification).  In practice, GCC doesn't do this, so it's
372     // just too painful to make work.
373
374     if (Function->getStorageClass() == SC_PrivateExtern)
375       LV.setVisibility(HiddenVisibility, true);
376
377     // C99 6.2.2p5:
378     //   If the declaration of an identifier for a function has no
379     //   storage-class specifier, its linkage is determined exactly
380     //   as if it were declared with the storage-class specifier
381     //   extern.
382     if (!Context.getLangOptions().CPlusPlus &&
383         (Function->getStorageClass() == SC_Extern ||
384          Function->getStorageClass() == SC_PrivateExtern ||
385          Function->getStorageClass() == SC_None)) {
386       // C99 6.2.2p4:
387       //   For an identifier declared with the storage-class specifier
388       //   extern in a scope in which a prior declaration of that
389       //   identifier is visible, if the prior declaration specifies
390       //   internal or external linkage, the linkage of the identifier
391       //   at the later declaration is the same as the linkage
392       //   specified at the prior declaration. If no prior declaration
393       //   is visible, or if the prior declaration specifies no
394       //   linkage, then the identifier has external linkage.
395       if (const FunctionDecl *PrevFunc = Function->getPreviousDeclaration()) {
396         LinkageInfo PrevLV = getLVForDecl(PrevFunc, F);
397         if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
398         LV.mergeVisibility(PrevLV);
399       }
400     }
401
402     // In C++, then if the type of the function uses a type with
403     // unique-external linkage, it's not legally usable from outside
404     // this translation unit.  However, we should use the C linkage
405     // rules instead for extern "C" declarations.
406     if (Context.getLangOptions().CPlusPlus && !Function->isExternC() &&
407         Function->getType()->getLinkage() == UniqueExternalLinkage)
408       return LinkageInfo::uniqueExternal();
409
410     // Consider LV from the template and the template arguments unless
411     // this is an explicit specialization with a visibility attribute.
412     if (FunctionTemplateSpecializationInfo *specInfo
413                                = Function->getTemplateSpecializationInfo()) {
414       if (shouldConsiderTemplateLV(Function, specInfo)) {
415         LV.merge(getLVForDecl(specInfo->getTemplate(),
416                               F.onlyTemplateVisibility()));
417         const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
418         LV.merge(getLVForTemplateArgumentList(templateArgs, F));
419       }
420     }
421
422   //     - a named class (Clause 9), or an unnamed class defined in a
423   //       typedef declaration in which the class has the typedef name
424   //       for linkage purposes (7.1.3); or
425   //     - a named enumeration (7.2), or an unnamed enumeration
426   //       defined in a typedef declaration in which the enumeration
427   //       has the typedef name for linkage purposes (7.1.3); or
428   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
429     // Unnamed tags have no linkage.
430     if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl())
431       return LinkageInfo::none();
432
433     // If this is a class template specialization, consider the
434     // linkage of the template and template arguments.
435     if (const ClassTemplateSpecializationDecl *spec
436           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
437       if (shouldConsiderTemplateLV(spec)) {
438         // From the template.
439         LV.merge(getLVForDecl(spec->getSpecializedTemplate(),
440                               F.onlyTemplateVisibility()));
441
442         // The arguments at which the template was instantiated.
443         const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
444         LV.merge(getLVForTemplateArgumentList(TemplateArgs, F));
445       }
446     }
447
448     // Consider -fvisibility unless the type has C linkage.
449     if (F.ConsiderGlobalVisibility)
450       F.ConsiderGlobalVisibility =
451         (Context.getLangOptions().CPlusPlus &&
452          !Tag->getDeclContext()->isExternCContext());
453
454   //     - an enumerator belonging to an enumeration with external linkage;
455   } else if (isa<EnumConstantDecl>(D)) {
456     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), F);
457     if (!isExternalLinkage(EnumLV.linkage()))
458       return LinkageInfo::none();
459     LV.merge(EnumLV);
460
461   //     - a template, unless it is a function template that has
462   //       internal linkage (Clause 14);
463   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
464     if (F.ConsiderTemplateParameterTypes)
465       LV.merge(getLVForTemplateParameterList(temp->getTemplateParameters()));
466
467   //     - a namespace (7.3), unless it is declared within an unnamed
468   //       namespace.
469   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
470     return LV;
471
472   // By extension, we assign external linkage to Objective-C
473   // interfaces.
474   } else if (isa<ObjCInterfaceDecl>(D)) {
475     // fallout
476
477   // Everything not covered here has no linkage.
478   } else {
479     return LinkageInfo::none();
480   }
481
482   // If we ended up with non-external linkage, visibility should
483   // always be default.
484   if (LV.linkage() != ExternalLinkage)
485     return LinkageInfo(LV.linkage(), DefaultVisibility, false);
486
487   // If we didn't end up with hidden visibility, consider attributes
488   // and -fvisibility.
489   if (F.ConsiderGlobalVisibility)
490     LV.mergeVisibility(Context.getLangOptions().getVisibilityMode());
491
492   return LV;
493 }
494
495 static LinkageInfo getLVForClassMember(const NamedDecl *D, LVFlags F) {
496   // Only certain class members have linkage.  Note that fields don't
497   // really have linkage, but it's convenient to say they do for the
498   // purposes of calculating linkage of pointer-to-data-member
499   // template arguments.
500   if (!(isa<CXXMethodDecl>(D) ||
501         isa<VarDecl>(D) ||
502         isa<FieldDecl>(D) ||
503         (isa<TagDecl>(D) &&
504          (D->getDeclName() || cast<TagDecl>(D)->getTypedefNameForAnonDecl()))))
505     return LinkageInfo::none();
506
507   LinkageInfo LV;
508
509   // The flags we're going to use to compute the class's visibility.
510   LVFlags ClassF = F;
511
512   // If we have an explicit visibility attribute, merge that in.
513   if (F.ConsiderVisibilityAttributes) {
514     if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
515       LV.mergeVisibility(*Vis, true);
516
517       // Ignore global visibility later, but not this attribute.
518       F.ConsiderGlobalVisibility = false;
519
520       // Ignore both global visibility and attributes when computing our
521       // parent's visibility.
522       ClassF = F.onlyTemplateVisibility();
523     }
524   }
525
526   // Class members only have linkage if their class has external
527   // linkage.
528   LV.merge(getLVForDecl(cast<RecordDecl>(D->getDeclContext()), ClassF));
529   if (!isExternalLinkage(LV.linkage()))
530     return LinkageInfo::none();
531
532   // If the class already has unique-external linkage, we can't improve.
533   if (LV.linkage() == UniqueExternalLinkage)
534     return LinkageInfo::uniqueExternal();
535
536   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
537     // If the type of the function uses a type with unique-external
538     // linkage, it's not legally usable from outside this translation unit.
539     if (MD->getType()->getLinkage() == UniqueExternalLinkage)
540       return LinkageInfo::uniqueExternal();
541
542     TemplateSpecializationKind TSK = TSK_Undeclared;
543
544     // If this is a method template specialization, use the linkage for
545     // the template parameters and arguments.
546     if (FunctionTemplateSpecializationInfo *spec
547            = MD->getTemplateSpecializationInfo()) {
548       if (shouldConsiderTemplateLV(MD, spec)) {
549         LV.merge(getLVForTemplateArgumentList(*spec->TemplateArguments, F));
550         if (F.ConsiderTemplateParameterTypes)
551           LV.merge(getLVForTemplateParameterList(
552                               spec->getTemplate()->getTemplateParameters()));
553       }
554
555       TSK = spec->getTemplateSpecializationKind();
556     } else if (MemberSpecializationInfo *MSI =
557                  MD->getMemberSpecializationInfo()) {
558       TSK = MSI->getTemplateSpecializationKind();
559     }
560
561     // If we're paying attention to global visibility, apply
562     // -finline-visibility-hidden if this is an inline method.
563     //
564     // Note that ConsiderGlobalVisibility doesn't yet have information
565     // about whether containing classes have visibility attributes,
566     // and that's intentional.
567     if (TSK != TSK_ExplicitInstantiationDeclaration &&
568         F.ConsiderGlobalVisibility &&
569         MD->getASTContext().getLangOptions().InlineVisibilityHidden) {
570       // InlineVisibilityHidden only applies to definitions, and
571       // isInlined() only gives meaningful answers on definitions
572       // anyway.
573       const FunctionDecl *Def = 0;
574       if (MD->hasBody(Def) && Def->isInlined())
575         LV.setVisibility(HiddenVisibility);
576     }
577
578     // Note that in contrast to basically every other situation, we
579     // *do* apply -fvisibility to method declarations.
580
581   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
582     if (const ClassTemplateSpecializationDecl *spec
583         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
584       if (shouldConsiderTemplateLV(spec)) {
585         // Merge template argument/parameter information for member
586         // class template specializations.
587         LV.merge(getLVForTemplateArgumentList(spec->getTemplateArgs(), F));
588       if (F.ConsiderTemplateParameterTypes)
589         LV.merge(getLVForTemplateParameterList(
590                     spec->getSpecializedTemplate()->getTemplateParameters()));
591       }
592     }
593
594   // Static data members.
595   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
596     // Modify the variable's linkage by its type, but ignore the
597     // type's visibility unless it's a definition.
598     LVPair TypeLV = VD->getType()->getLinkageAndVisibility();
599     if (TypeLV.first != ExternalLinkage)
600       LV.mergeLinkage(UniqueExternalLinkage);
601     if (!LV.visibilityExplicit())
602       LV.mergeVisibility(TypeLV.second);
603   }
604
605   F.ConsiderGlobalVisibility &= !LV.visibilityExplicit();
606
607   // Apply -fvisibility if desired.
608   if (F.ConsiderGlobalVisibility && LV.visibility() != HiddenVisibility) {
609     LV.mergeVisibility(D->getASTContext().getLangOptions().getVisibilityMode());
610   }
611
612   return LV;
613 }
614
615 static void clearLinkageForClass(const CXXRecordDecl *record) {
616   for (CXXRecordDecl::decl_iterator
617          i = record->decls_begin(), e = record->decls_end(); i != e; ++i) {
618     Decl *child = *i;
619     if (isa<NamedDecl>(child))
620       cast<NamedDecl>(child)->ClearLinkageCache();
621   }
622 }
623
624 void NamedDecl::ClearLinkageCache() {
625   // Note that we can't skip clearing the linkage of children just
626   // because the parent doesn't have cached linkage:  we don't cache
627   // when computing linkage for parent contexts.
628
629   HasCachedLinkage = 0;
630
631   // If we're changing the linkage of a class, we need to reset the
632   // linkage of child declarations, too.
633   if (const CXXRecordDecl *record = dyn_cast<CXXRecordDecl>(this))
634     clearLinkageForClass(record);
635
636   if (ClassTemplateDecl *temp =
637         dyn_cast<ClassTemplateDecl>(const_cast<NamedDecl*>(this))) {
638     // Clear linkage for the template pattern.
639     CXXRecordDecl *record = temp->getTemplatedDecl();
640     record->HasCachedLinkage = 0;
641     clearLinkageForClass(record);
642
643     // We need to clear linkage for specializations, too.
644     for (ClassTemplateDecl::spec_iterator
645            i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
646       i->ClearLinkageCache();
647   }
648
649   // Clear cached linkage for function template decls, too.
650   if (FunctionTemplateDecl *temp =
651         dyn_cast<FunctionTemplateDecl>(const_cast<NamedDecl*>(this))) {
652     temp->getTemplatedDecl()->ClearLinkageCache();
653     for (FunctionTemplateDecl::spec_iterator
654            i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
655       i->ClearLinkageCache();
656   }
657     
658 }
659
660 Linkage NamedDecl::getLinkage() const {
661   if (HasCachedLinkage) {
662     assert(Linkage(CachedLinkage) ==
663              getLVForDecl(this, LVFlags::CreateOnlyDeclLinkage()).linkage());
664     return Linkage(CachedLinkage);
665   }
666
667   CachedLinkage = getLVForDecl(this, 
668                                LVFlags::CreateOnlyDeclLinkage()).linkage();
669   HasCachedLinkage = 1;
670   return Linkage(CachedLinkage);
671 }
672
673 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
674   LinkageInfo LI = getLVForDecl(this, LVFlags());
675   assert(!HasCachedLinkage || Linkage(CachedLinkage) == LI.linkage());
676   HasCachedLinkage = 1;
677   CachedLinkage = LI.linkage();
678   return LI;
679 }
680
681 llvm::Optional<Visibility> NamedDecl::getExplicitVisibility() const {
682   // Use the most recent declaration of a variable.
683   if (const VarDecl *var = dyn_cast<VarDecl>(this))
684     return getVisibilityOf(var->getMostRecentDeclaration());
685
686   // Use the most recent declaration of a function, and also handle
687   // function template specializations.
688   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
689     if (llvm::Optional<Visibility> V
690                             = getVisibilityOf(fn->getMostRecentDeclaration())) 
691       return V;
692
693     // If the function is a specialization of a template with an
694     // explicit visibility attribute, use that.
695     if (FunctionTemplateSpecializationInfo *templateInfo
696           = fn->getTemplateSpecializationInfo())
697       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl());
698
699     return llvm::Optional<Visibility>();
700   }
701
702   // Otherwise, just check the declaration itself first.
703   if (llvm::Optional<Visibility> V = getVisibilityOf(this))
704     return V;
705
706   // If there wasn't explicit visibility there, and this is a
707   // specialization of a class template, check for visibility
708   // on the pattern.
709   if (const ClassTemplateSpecializationDecl *spec
710         = dyn_cast<ClassTemplateSpecializationDecl>(this))
711     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl());
712
713   return llvm::Optional<Visibility>();
714 }
715
716 static LinkageInfo getLVForDecl(const NamedDecl *D, LVFlags Flags) {
717   // Objective-C: treat all Objective-C declarations as having external
718   // linkage.
719   switch (D->getKind()) {
720     default:
721       break;
722     case Decl::TemplateTemplateParm: // count these as external
723     case Decl::NonTypeTemplateParm:
724     case Decl::ObjCAtDefsField:
725     case Decl::ObjCCategory:
726     case Decl::ObjCCategoryImpl:
727     case Decl::ObjCCompatibleAlias:
728     case Decl::ObjCForwardProtocol:
729     case Decl::ObjCImplementation:
730     case Decl::ObjCMethod:
731     case Decl::ObjCProperty:
732     case Decl::ObjCPropertyImpl:
733     case Decl::ObjCProtocol:
734       return LinkageInfo::external();
735   }
736
737   // Handle linkage for namespace-scope names.
738   if (D->getDeclContext()->getRedeclContext()->isFileContext())
739     return getLVForNamespaceScopeDecl(D, Flags);
740   
741   // C++ [basic.link]p5:
742   //   In addition, a member function, static data member, a named
743   //   class or enumeration of class scope, or an unnamed class or
744   //   enumeration defined in a class-scope typedef declaration such
745   //   that the class or enumeration has the typedef name for linkage
746   //   purposes (7.1.3), has external linkage if the name of the class
747   //   has external linkage.
748   if (D->getDeclContext()->isRecord())
749     return getLVForClassMember(D, Flags);
750
751   // C++ [basic.link]p6:
752   //   The name of a function declared in block scope and the name of
753   //   an object declared by a block scope extern declaration have
754   //   linkage. If there is a visible declaration of an entity with
755   //   linkage having the same name and type, ignoring entities
756   //   declared outside the innermost enclosing namespace scope, the
757   //   block scope declaration declares that same entity and receives
758   //   the linkage of the previous declaration. If there is more than
759   //   one such matching entity, the program is ill-formed. Otherwise,
760   //   if no matching entity is found, the block scope entity receives
761   //   external linkage.
762   if (D->getLexicalDeclContext()->isFunctionOrMethod()) {
763     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
764       if (Function->isInAnonymousNamespace() && !Function->isExternC())
765         return LinkageInfo::uniqueExternal();
766
767       LinkageInfo LV;
768       if (Flags.ConsiderVisibilityAttributes) {
769         if (llvm::Optional<Visibility> Vis = Function->getExplicitVisibility())
770           LV.setVisibility(*Vis);
771       }
772       
773       if (const FunctionDecl *Prev = Function->getPreviousDeclaration()) {
774         LinkageInfo PrevLV = getLVForDecl(Prev, Flags);
775         if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
776         LV.mergeVisibility(PrevLV);
777       }
778
779       return LV;
780     }
781
782     if (const VarDecl *Var = dyn_cast<VarDecl>(D))
783       if (Var->getStorageClass() == SC_Extern ||
784           Var->getStorageClass() == SC_PrivateExtern) {
785         if (Var->isInAnonymousNamespace() && !Var->isExternC())
786           return LinkageInfo::uniqueExternal();
787
788         LinkageInfo LV;
789         if (Var->getStorageClass() == SC_PrivateExtern)
790           LV.setVisibility(HiddenVisibility);
791         else if (Flags.ConsiderVisibilityAttributes) {
792           if (llvm::Optional<Visibility> Vis = Var->getExplicitVisibility())
793             LV.setVisibility(*Vis);
794         }
795         
796         if (const VarDecl *Prev = Var->getPreviousDeclaration()) {
797           LinkageInfo PrevLV = getLVForDecl(Prev, Flags);
798           if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
799           LV.mergeVisibility(PrevLV);
800         }
801
802         return LV;
803       }
804   }
805
806   // C++ [basic.link]p6:
807   //   Names not covered by these rules have no linkage.
808   return LinkageInfo::none();
809 }
810
811 std::string NamedDecl::getQualifiedNameAsString() const {
812   return getQualifiedNameAsString(getASTContext().getLangOptions());
813 }
814
815 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
816   const DeclContext *Ctx = getDeclContext();
817
818   if (Ctx->isFunctionOrMethod())
819     return getNameAsString();
820
821   typedef llvm::SmallVector<const DeclContext *, 8> ContextsTy;
822   ContextsTy Contexts;
823
824   // Collect contexts.
825   while (Ctx && isa<NamedDecl>(Ctx)) {
826     Contexts.push_back(Ctx);
827     Ctx = Ctx->getParent();
828   };
829
830   std::string QualName;
831   llvm::raw_string_ostream OS(QualName);
832
833   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
834        I != E; ++I) {
835     if (const ClassTemplateSpecializationDecl *Spec
836           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
837       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
838       std::string TemplateArgsStr
839         = TemplateSpecializationType::PrintTemplateArgumentList(
840                                            TemplateArgs.data(),
841                                            TemplateArgs.size(),
842                                            P);
843       OS << Spec->getName() << TemplateArgsStr;
844     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
845       if (ND->isAnonymousNamespace())
846         OS << "<anonymous namespace>";
847       else
848         OS << ND;
849     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
850       if (!RD->getIdentifier())
851         OS << "<anonymous " << RD->getKindName() << '>';
852       else
853         OS << RD;
854     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
855       const FunctionProtoType *FT = 0;
856       if (FD->hasWrittenPrototype())
857         FT = dyn_cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
858
859       OS << FD << '(';
860       if (FT) {
861         unsigned NumParams = FD->getNumParams();
862         for (unsigned i = 0; i < NumParams; ++i) {
863           if (i)
864             OS << ", ";
865           std::string Param;
866           FD->getParamDecl(i)->getType().getAsStringInternal(Param, P);
867           OS << Param;
868         }
869
870         if (FT->isVariadic()) {
871           if (NumParams > 0)
872             OS << ", ";
873           OS << "...";
874         }
875       }
876       OS << ')';
877     } else {
878       OS << cast<NamedDecl>(*I);
879     }
880     OS << "::";
881   }
882
883   if (getDeclName())
884     OS << this;
885   else
886     OS << "<anonymous>";
887
888   return OS.str();
889 }
890
891 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
892   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
893
894   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
895   // We want to keep it, unless it nominates same namespace.
896   if (getKind() == Decl::UsingDirective) {
897     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
898              ->getOriginalNamespace() ==
899            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
900              ->getOriginalNamespace();
901   }
902
903   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
904     // For function declarations, we keep track of redeclarations.
905     return FD->getPreviousDeclaration() == OldD;
906
907   // For function templates, the underlying function declarations are linked.
908   if (const FunctionTemplateDecl *FunctionTemplate
909         = dyn_cast<FunctionTemplateDecl>(this))
910     if (const FunctionTemplateDecl *OldFunctionTemplate
911           = dyn_cast<FunctionTemplateDecl>(OldD))
912       return FunctionTemplate->getTemplatedDecl()
913                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
914
915   // For method declarations, we keep track of redeclarations.
916   if (isa<ObjCMethodDecl>(this))
917     return false;
918
919   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
920     return true;
921
922   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
923     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
924            cast<UsingShadowDecl>(OldD)->getTargetDecl();
925
926   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
927     ASTContext &Context = getASTContext();
928     return Context.getCanonicalNestedNameSpecifier(
929                                      cast<UsingDecl>(this)->getQualifier()) ==
930            Context.getCanonicalNestedNameSpecifier(
931                                         cast<UsingDecl>(OldD)->getQualifier());
932   }
933
934   // For non-function declarations, if the declarations are of the
935   // same kind then this must be a redeclaration, or semantic analysis
936   // would not have given us the new declaration.
937   return this->getKind() == OldD->getKind();
938 }
939
940 bool NamedDecl::hasLinkage() const {
941   return getLinkage() != NoLinkage;
942 }
943
944 NamedDecl *NamedDecl::getUnderlyingDecl() {
945   NamedDecl *ND = this;
946   while (true) {
947     if (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
948       ND = UD->getTargetDecl();
949     else if (ObjCCompatibleAliasDecl *AD
950               = dyn_cast<ObjCCompatibleAliasDecl>(ND))
951       return AD->getClassInterface();
952     else
953       return ND;
954   }
955 }
956
957 bool NamedDecl::isCXXInstanceMember() const {
958   assert(isCXXClassMember() &&
959          "checking whether non-member is instance member");
960
961   const NamedDecl *D = this;
962   if (isa<UsingShadowDecl>(D))
963     D = cast<UsingShadowDecl>(D)->getTargetDecl();
964
965   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
966     return true;
967   if (isa<CXXMethodDecl>(D))
968     return cast<CXXMethodDecl>(D)->isInstance();
969   if (isa<FunctionTemplateDecl>(D))
970     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
971                                  ->getTemplatedDecl())->isInstance();
972   return false;
973 }
974
975 //===----------------------------------------------------------------------===//
976 // DeclaratorDecl Implementation
977 //===----------------------------------------------------------------------===//
978
979 template <typename DeclT>
980 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
981   if (decl->getNumTemplateParameterLists() > 0)
982     return decl->getTemplateParameterList(0)->getTemplateLoc();
983   else
984     return decl->getInnerLocStart();
985 }
986
987 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
988   TypeSourceInfo *TSI = getTypeSourceInfo();
989   if (TSI) return TSI->getTypeLoc().getBeginLoc();
990   return SourceLocation();
991 }
992
993 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
994   if (QualifierLoc) {
995     // Make sure the extended decl info is allocated.
996     if (!hasExtInfo()) {
997       // Save (non-extended) type source info pointer.
998       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
999       // Allocate external info struct.
1000       DeclInfo = new (getASTContext()) ExtInfo;
1001       // Restore savedTInfo into (extended) decl info.
1002       getExtInfo()->TInfo = savedTInfo;
1003     }
1004     // Set qualifier info.
1005     getExtInfo()->QualifierLoc = QualifierLoc;
1006   }
1007   else {
1008     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1009     if (hasExtInfo()) {
1010       if (getExtInfo()->NumTemplParamLists == 0) {
1011         // Save type source info pointer.
1012         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1013         // Deallocate the extended decl info.
1014         getASTContext().Deallocate(getExtInfo());
1015         // Restore savedTInfo into (non-extended) decl info.
1016         DeclInfo = savedTInfo;
1017       }
1018       else
1019         getExtInfo()->QualifierLoc = QualifierLoc;
1020     }
1021   }
1022 }
1023
1024 void
1025 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1026                                               unsigned NumTPLists,
1027                                               TemplateParameterList **TPLists) {
1028   assert(NumTPLists > 0);
1029   // Make sure the extended decl info is allocated.
1030   if (!hasExtInfo()) {
1031     // Save (non-extended) type source info pointer.
1032     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1033     // Allocate external info struct.
1034     DeclInfo = new (getASTContext()) ExtInfo;
1035     // Restore savedTInfo into (extended) decl info.
1036     getExtInfo()->TInfo = savedTInfo;
1037   }
1038   // Set the template parameter lists info.
1039   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1040 }
1041
1042 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1043   return getTemplateOrInnerLocStart(this);
1044 }
1045
1046 namespace {
1047
1048 // Helper function: returns true if QT is or contains a type
1049 // having a postfix component.
1050 bool typeIsPostfix(clang::QualType QT) {
1051   while (true) {
1052     const Type* T = QT.getTypePtr();
1053     switch (T->getTypeClass()) {
1054     default:
1055       return false;
1056     case Type::Pointer:
1057       QT = cast<PointerType>(T)->getPointeeType();
1058       break;
1059     case Type::BlockPointer:
1060       QT = cast<BlockPointerType>(T)->getPointeeType();
1061       break;
1062     case Type::MemberPointer:
1063       QT = cast<MemberPointerType>(T)->getPointeeType();
1064       break;
1065     case Type::LValueReference:
1066     case Type::RValueReference:
1067       QT = cast<ReferenceType>(T)->getPointeeType();
1068       break;
1069     case Type::PackExpansion:
1070       QT = cast<PackExpansionType>(T)->getPattern();
1071       break;
1072     case Type::Paren:
1073     case Type::ConstantArray:
1074     case Type::DependentSizedArray:
1075     case Type::IncompleteArray:
1076     case Type::VariableArray:
1077     case Type::FunctionProto:
1078     case Type::FunctionNoProto:
1079       return true;
1080     }
1081   }
1082 }
1083
1084 } // namespace
1085
1086 SourceRange DeclaratorDecl::getSourceRange() const {
1087   SourceLocation RangeEnd = getLocation();
1088   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1089     if (typeIsPostfix(TInfo->getType()))
1090       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1091   }
1092   return SourceRange(getOuterLocStart(), RangeEnd);
1093 }
1094
1095 void
1096 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1097                                              unsigned NumTPLists,
1098                                              TemplateParameterList **TPLists) {
1099   assert((NumTPLists == 0 || TPLists != 0) &&
1100          "Empty array of template parameters with positive size!");
1101
1102   // Free previous template parameters (if any).
1103   if (NumTemplParamLists > 0) {
1104     Context.Deallocate(TemplParamLists);
1105     TemplParamLists = 0;
1106     NumTemplParamLists = 0;
1107   }
1108   // Set info on matched template parameter lists (if any).
1109   if (NumTPLists > 0) {
1110     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1111     NumTemplParamLists = NumTPLists;
1112     for (unsigned i = NumTPLists; i-- > 0; )
1113       TemplParamLists[i] = TPLists[i];
1114   }
1115 }
1116
1117 //===----------------------------------------------------------------------===//
1118 // VarDecl Implementation
1119 //===----------------------------------------------------------------------===//
1120
1121 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1122   switch (SC) {
1123   case SC_None:          break;
1124   case SC_Auto:          return "auto"; break;
1125   case SC_Extern:        return "extern"; break;
1126   case SC_PrivateExtern: return "__private_extern__"; break;
1127   case SC_Register:      return "register"; break;
1128   case SC_Static:        return "static"; break;
1129   }
1130
1131   assert(0 && "Invalid storage class");
1132   return 0;
1133 }
1134
1135 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1136                          SourceLocation StartL, SourceLocation IdL,
1137                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1138                          StorageClass S, StorageClass SCAsWritten) {
1139   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
1140 }
1141
1142 void VarDecl::setStorageClass(StorageClass SC) {
1143   assert(isLegalForVariable(SC));
1144   if (getStorageClass() != SC)
1145     ClearLinkageCache();
1146   
1147   VarDeclBits.SClass = SC;
1148 }
1149
1150 SourceRange VarDecl::getSourceRange() const {
1151   if (getInit())
1152     return SourceRange(getOuterLocStart(), getInit()->getLocEnd());
1153   return DeclaratorDecl::getSourceRange();
1154 }
1155
1156 bool VarDecl::isExternC() const {
1157   ASTContext &Context = getASTContext();
1158   if (!Context.getLangOptions().CPlusPlus)
1159     return (getDeclContext()->isTranslationUnit() &&
1160             getStorageClass() != SC_Static) ||
1161       (getDeclContext()->isFunctionOrMethod() && hasExternalStorage());
1162
1163   const DeclContext *DC = getDeclContext();
1164   if (DC->isFunctionOrMethod())
1165     return false;
1166
1167   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
1168     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))  {
1169       if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
1170         return getStorageClass() != SC_Static;
1171
1172       break;
1173     }
1174
1175   }
1176
1177   return false;
1178 }
1179
1180 VarDecl *VarDecl::getCanonicalDecl() {
1181   return getFirstDeclaration();
1182 }
1183
1184 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition() const {
1185   // C++ [basic.def]p2:
1186   //   A declaration is a definition unless [...] it contains the 'extern'
1187   //   specifier or a linkage-specification and neither an initializer [...],
1188   //   it declares a static data member in a class declaration [...].
1189   // C++ [temp.expl.spec]p15:
1190   //   An explicit specialization of a static data member of a template is a
1191   //   definition if the declaration includes an initializer; otherwise, it is
1192   //   a declaration.
1193   if (isStaticDataMember()) {
1194     if (isOutOfLine() && (hasInit() ||
1195           getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
1196       return Definition;
1197     else
1198       return DeclarationOnly;
1199   }
1200   // C99 6.7p5:
1201   //   A definition of an identifier is a declaration for that identifier that
1202   //   [...] causes storage to be reserved for that object.
1203   // Note: that applies for all non-file-scope objects.
1204   // C99 6.9.2p1:
1205   //   If the declaration of an identifier for an object has file scope and an
1206   //   initializer, the declaration is an external definition for the identifier
1207   if (hasInit())
1208     return Definition;
1209   // AST for 'extern "C" int foo;' is annotated with 'extern'.
1210   if (hasExternalStorage())
1211     return DeclarationOnly;
1212   
1213   if (getStorageClassAsWritten() == SC_Extern ||
1214        getStorageClassAsWritten() == SC_PrivateExtern) {
1215     for (const VarDecl *PrevVar = getPreviousDeclaration();
1216          PrevVar; PrevVar = PrevVar->getPreviousDeclaration()) {
1217       if (PrevVar->getLinkage() == InternalLinkage && PrevVar->hasInit())
1218         return DeclarationOnly;
1219     }
1220   }
1221   // C99 6.9.2p2:
1222   //   A declaration of an object that has file scope without an initializer,
1223   //   and without a storage class specifier or the scs 'static', constitutes
1224   //   a tentative definition.
1225   // No such thing in C++.
1226   if (!getASTContext().getLangOptions().CPlusPlus && isFileVarDecl())
1227     return TentativeDefinition;
1228
1229   // What's left is (in C, block-scope) declarations without initializers or
1230   // external storage. These are definitions.
1231   return Definition;
1232 }
1233
1234 VarDecl *VarDecl::getActingDefinition() {
1235   DefinitionKind Kind = isThisDeclarationADefinition();
1236   if (Kind != TentativeDefinition)
1237     return 0;
1238
1239   VarDecl *LastTentative = 0;
1240   VarDecl *First = getFirstDeclaration();
1241   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1242        I != E; ++I) {
1243     Kind = (*I)->isThisDeclarationADefinition();
1244     if (Kind == Definition)
1245       return 0;
1246     else if (Kind == TentativeDefinition)
1247       LastTentative = *I;
1248   }
1249   return LastTentative;
1250 }
1251
1252 bool VarDecl::isTentativeDefinitionNow() const {
1253   DefinitionKind Kind = isThisDeclarationADefinition();
1254   if (Kind != TentativeDefinition)
1255     return false;
1256
1257   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1258     if ((*I)->isThisDeclarationADefinition() == Definition)
1259       return false;
1260   }
1261   return true;
1262 }
1263
1264 VarDecl *VarDecl::getDefinition() {
1265   VarDecl *First = getFirstDeclaration();
1266   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1267        I != E; ++I) {
1268     if ((*I)->isThisDeclarationADefinition() == Definition)
1269       return *I;
1270   }
1271   return 0;
1272 }
1273
1274 VarDecl::DefinitionKind VarDecl::hasDefinition() const {
1275   DefinitionKind Kind = DeclarationOnly;
1276   
1277   const VarDecl *First = getFirstDeclaration();
1278   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1279        I != E; ++I)
1280     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition());
1281
1282   return Kind;
1283 }
1284
1285 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1286   redecl_iterator I = redecls_begin(), E = redecls_end();
1287   while (I != E && !I->getInit())
1288     ++I;
1289
1290   if (I != E) {
1291     D = *I;
1292     return I->getInit();
1293   }
1294   return 0;
1295 }
1296
1297 bool VarDecl::isOutOfLine() const {
1298   if (Decl::isOutOfLine())
1299     return true;
1300
1301   if (!isStaticDataMember())
1302     return false;
1303
1304   // If this static data member was instantiated from a static data member of
1305   // a class template, check whether that static data member was defined 
1306   // out-of-line.
1307   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1308     return VD->isOutOfLine();
1309   
1310   return false;
1311 }
1312
1313 VarDecl *VarDecl::getOutOfLineDefinition() {
1314   if (!isStaticDataMember())
1315     return 0;
1316   
1317   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1318        RD != RDEnd; ++RD) {
1319     if (RD->getLexicalDeclContext()->isFileContext())
1320       return *RD;
1321   }
1322   
1323   return 0;
1324 }
1325
1326 void VarDecl::setInit(Expr *I) {
1327   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1328     Eval->~EvaluatedStmt();
1329     getASTContext().Deallocate(Eval);
1330   }
1331
1332   Init = I;
1333 }
1334
1335 bool VarDecl::extendsLifetimeOfTemporary() const {
1336   assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
1337   
1338   const Expr *E = getInit();
1339   if (!E)
1340     return false;
1341   
1342   if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
1343     E = Cleanups->getSubExpr();
1344   
1345   return isa<MaterializeTemporaryExpr>(E);
1346 }
1347
1348 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
1349   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1350     return cast<VarDecl>(MSI->getInstantiatedFrom());
1351   
1352   return 0;
1353 }
1354
1355 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
1356   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1357     return MSI->getTemplateSpecializationKind();
1358   
1359   return TSK_Undeclared;
1360 }
1361
1362 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
1363   return getASTContext().getInstantiatedFromStaticDataMember(this);
1364 }
1365
1366 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1367                                          SourceLocation PointOfInstantiation) {
1368   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
1369   assert(MSI && "Not an instantiated static data member?");
1370   MSI->setTemplateSpecializationKind(TSK);
1371   if (TSK != TSK_ExplicitSpecialization &&
1372       PointOfInstantiation.isValid() &&
1373       MSI->getPointOfInstantiation().isInvalid())
1374     MSI->setPointOfInstantiation(PointOfInstantiation);
1375 }
1376
1377 //===----------------------------------------------------------------------===//
1378 // ParmVarDecl Implementation
1379 //===----------------------------------------------------------------------===//
1380
1381 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
1382                                  SourceLocation StartLoc,
1383                                  SourceLocation IdLoc, IdentifierInfo *Id,
1384                                  QualType T, TypeSourceInfo *TInfo,
1385                                  StorageClass S, StorageClass SCAsWritten,
1386                                  Expr *DefArg) {
1387   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
1388                              S, SCAsWritten, DefArg);
1389 }
1390
1391 Expr *ParmVarDecl::getDefaultArg() {
1392   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
1393   assert(!hasUninstantiatedDefaultArg() &&
1394          "Default argument is not yet instantiated!");
1395   
1396   Expr *Arg = getInit();
1397   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
1398     return E->getSubExpr();
1399
1400   return Arg;
1401 }
1402
1403 unsigned ParmVarDecl::getNumDefaultArgTemporaries() const {
1404   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(getInit()))
1405     return E->getNumTemporaries();
1406
1407   return 0;
1408 }
1409
1410 CXXTemporary *ParmVarDecl::getDefaultArgTemporary(unsigned i) {
1411   assert(getNumDefaultArgTemporaries() && 
1412          "Default arguments does not have any temporaries!");
1413
1414   ExprWithCleanups *E = cast<ExprWithCleanups>(getInit());
1415   return E->getTemporary(i);
1416 }
1417
1418 SourceRange ParmVarDecl::getDefaultArgRange() const {
1419   if (const Expr *E = getInit())
1420     return E->getSourceRange();
1421
1422   if (hasUninstantiatedDefaultArg())
1423     return getUninstantiatedDefaultArg()->getSourceRange();
1424
1425   return SourceRange();
1426 }
1427
1428 bool ParmVarDecl::isParameterPack() const {
1429   return isa<PackExpansionType>(getType());
1430 }
1431
1432 //===----------------------------------------------------------------------===//
1433 // FunctionDecl Implementation
1434 //===----------------------------------------------------------------------===//
1435
1436 void FunctionDecl::getNameForDiagnostic(std::string &S,
1437                                         const PrintingPolicy &Policy,
1438                                         bool Qualified) const {
1439   NamedDecl::getNameForDiagnostic(S, Policy, Qualified);
1440   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
1441   if (TemplateArgs)
1442     S += TemplateSpecializationType::PrintTemplateArgumentList(
1443                                                          TemplateArgs->data(),
1444                                                          TemplateArgs->size(),
1445                                                                Policy);
1446     
1447 }
1448
1449 bool FunctionDecl::isVariadic() const {
1450   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
1451     return FT->isVariadic();
1452   return false;
1453 }
1454
1455 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
1456   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1457     if (I->Body || I->IsLateTemplateParsed) {
1458       Definition = *I;
1459       return true;
1460     }
1461   }
1462
1463   return false;
1464 }
1465
1466 bool FunctionDecl::hasTrivialBody() const
1467 {
1468   Stmt *S = getBody();
1469   if (!S) {
1470     // Since we don't have a body for this function, we don't know if it's
1471     // trivial or not.
1472     return false;
1473   }
1474
1475   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
1476     return true;
1477   return false;
1478 }
1479
1480 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
1481   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1482     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
1483       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
1484       return true;
1485     }
1486   }
1487
1488   return false;
1489 }
1490
1491 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
1492   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1493     if (I->Body) {
1494       Definition = *I;
1495       return I->Body.get(getASTContext().getExternalSource());
1496     } else if (I->IsLateTemplateParsed) {
1497       Definition = *I;
1498       return 0;
1499     }
1500   }
1501
1502   return 0;
1503 }
1504
1505 void FunctionDecl::setBody(Stmt *B) {
1506   Body = B;
1507   if (B)
1508     EndRangeLoc = B->getLocEnd();
1509 }
1510
1511 void FunctionDecl::setPure(bool P) {
1512   IsPure = P;
1513   if (P)
1514     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
1515       Parent->markedVirtualFunctionPure();
1516 }
1517
1518 bool FunctionDecl::isMain() const {
1519   const TranslationUnitDecl *tunit =
1520     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
1521   return tunit &&
1522          !tunit->getASTContext().getLangOptions().Freestanding &&
1523          getIdentifier() &&
1524          getIdentifier()->isStr("main");
1525 }
1526
1527 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
1528   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
1529   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
1530          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
1531          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
1532          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
1533
1534   if (isa<CXXRecordDecl>(getDeclContext())) return false;
1535   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
1536
1537   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
1538   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
1539
1540   ASTContext &Context =
1541     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
1542       ->getASTContext();
1543
1544   // The result type and first argument type are constant across all
1545   // these operators.  The second argument must be exactly void*.
1546   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
1547 }
1548
1549 bool FunctionDecl::isExternC() const {
1550   ASTContext &Context = getASTContext();
1551   // In C, any non-static, non-overloadable function has external
1552   // linkage.
1553   if (!Context.getLangOptions().CPlusPlus)
1554     return getStorageClass() != SC_Static && !getAttr<OverloadableAttr>();
1555
1556   const DeclContext *DC = getDeclContext();
1557   if (DC->isRecord())
1558     return false;
1559
1560   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
1561     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))  {
1562       if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
1563         return getStorageClass() != SC_Static &&
1564                !getAttr<OverloadableAttr>();
1565
1566       break;
1567     }
1568   }
1569
1570   return isMain();
1571 }
1572
1573 bool FunctionDecl::isGlobal() const {
1574   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
1575     return Method->isStatic();
1576
1577   if (getStorageClass() == SC_Static)
1578     return false;
1579
1580   for (const DeclContext *DC = getDeclContext();
1581        DC->isNamespace();
1582        DC = DC->getParent()) {
1583     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
1584       if (!Namespace->getDeclName())
1585         return false;
1586       break;
1587     }
1588   }
1589
1590   return true;
1591 }
1592
1593 void
1594 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
1595   redeclarable_base::setPreviousDeclaration(PrevDecl);
1596
1597   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
1598     FunctionTemplateDecl *PrevFunTmpl
1599       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
1600     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
1601     FunTmpl->setPreviousDeclaration(PrevFunTmpl);
1602   }
1603   
1604   if (PrevDecl->IsInline)
1605     IsInline = true;
1606 }
1607
1608 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
1609   return getFirstDeclaration();
1610 }
1611
1612 FunctionDecl *FunctionDecl::getCanonicalDecl() {
1613   return getFirstDeclaration();
1614 }
1615
1616 void FunctionDecl::setStorageClass(StorageClass SC) {
1617   assert(isLegalForFunction(SC));
1618   if (getStorageClass() != SC)
1619     ClearLinkageCache();
1620   
1621   SClass = SC;
1622 }
1623
1624 /// \brief Returns a value indicating whether this function
1625 /// corresponds to a builtin function.
1626 ///
1627 /// The function corresponds to a built-in function if it is
1628 /// declared at translation scope or within an extern "C" block and
1629 /// its name matches with the name of a builtin. The returned value
1630 /// will be 0 for functions that do not correspond to a builtin, a
1631 /// value of type \c Builtin::ID if in the target-independent range
1632 /// \c [1,Builtin::First), or a target-specific builtin value.
1633 unsigned FunctionDecl::getBuiltinID() const {
1634   ASTContext &Context = getASTContext();
1635   if (!getIdentifier() || !getIdentifier()->getBuiltinID())
1636     return 0;
1637
1638   unsigned BuiltinID = getIdentifier()->getBuiltinID();
1639   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1640     return BuiltinID;
1641
1642   // This function has the name of a known C library
1643   // function. Determine whether it actually refers to the C library
1644   // function or whether it just has the same name.
1645
1646   // If this is a static function, it's not a builtin.
1647   if (getStorageClass() == SC_Static)
1648     return 0;
1649
1650   // If this function is at translation-unit scope and we're not in
1651   // C++, it refers to the C library function.
1652   if (!Context.getLangOptions().CPlusPlus &&
1653       getDeclContext()->isTranslationUnit())
1654     return BuiltinID;
1655
1656   // If the function is in an extern "C" linkage specification and is
1657   // not marked "overloadable", it's the real function.
1658   if (isa<LinkageSpecDecl>(getDeclContext()) &&
1659       cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
1660         == LinkageSpecDecl::lang_c &&
1661       !getAttr<OverloadableAttr>())
1662     return BuiltinID;
1663
1664   // Not a builtin
1665   return 0;
1666 }
1667
1668
1669 /// getNumParams - Return the number of parameters this function must have
1670 /// based on its FunctionType.  This is the length of the ParamInfo array
1671 /// after it has been created.
1672 unsigned FunctionDecl::getNumParams() const {
1673   const FunctionType *FT = getType()->getAs<FunctionType>();
1674   if (isa<FunctionNoProtoType>(FT))
1675     return 0;
1676   return cast<FunctionProtoType>(FT)->getNumArgs();
1677
1678 }
1679
1680 void FunctionDecl::setParams(ASTContext &C,
1681                              ParmVarDecl **NewParamInfo, unsigned NumParams) {
1682   assert(ParamInfo == 0 && "Already has param info!");
1683   assert(NumParams == getNumParams() && "Parameter count mismatch!");
1684
1685   // Zero params -> null pointer.
1686   if (NumParams) {
1687     void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams);
1688     ParamInfo = new (Mem) ParmVarDecl*[NumParams];
1689     memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
1690
1691     // Update source range. The check below allows us to set EndRangeLoc before
1692     // setting the parameters.
1693     if (EndRangeLoc.isInvalid() || EndRangeLoc == getLocation())
1694       EndRangeLoc = NewParamInfo[NumParams-1]->getLocEnd();
1695   }
1696 }
1697
1698 /// getMinRequiredArguments - Returns the minimum number of arguments
1699 /// needed to call this function. This may be fewer than the number of
1700 /// function parameters, if some of the parameters have default
1701 /// arguments (in C++) or the last parameter is a parameter pack.
1702 unsigned FunctionDecl::getMinRequiredArguments() const {
1703   if (!getASTContext().getLangOptions().CPlusPlus)
1704     return getNumParams();
1705   
1706   unsigned NumRequiredArgs = getNumParams();  
1707   
1708   // If the last parameter is a parameter pack, we don't need an argument for 
1709   // it.
1710   if (NumRequiredArgs > 0 &&
1711       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
1712     --NumRequiredArgs;
1713       
1714   // If this parameter has a default argument, we don't need an argument for
1715   // it.
1716   while (NumRequiredArgs > 0 &&
1717          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
1718     --NumRequiredArgs;
1719
1720   // We might have parameter packs before the end. These can't be deduced,
1721   // but they can still handle multiple arguments.
1722   unsigned ArgIdx = NumRequiredArgs;
1723   while (ArgIdx > 0) {
1724     if (getParamDecl(ArgIdx - 1)->isParameterPack())
1725       NumRequiredArgs = ArgIdx;
1726     
1727     --ArgIdx;
1728   }
1729   
1730   return NumRequiredArgs;
1731 }
1732
1733 bool FunctionDecl::isInlined() const {
1734   if (IsInline)
1735     return true;
1736   
1737   if (isa<CXXMethodDecl>(this)) {
1738     if (!isOutOfLine() || getCanonicalDecl()->isInlineSpecified())
1739       return true;
1740   }
1741
1742   switch (getTemplateSpecializationKind()) {
1743   case TSK_Undeclared:
1744   case TSK_ExplicitSpecialization:
1745     return false;
1746
1747   case TSK_ImplicitInstantiation:
1748   case TSK_ExplicitInstantiationDeclaration:
1749   case TSK_ExplicitInstantiationDefinition:
1750     // Handle below.
1751     break;
1752   }
1753
1754   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
1755   bool HasPattern = false;
1756   if (PatternDecl)
1757     HasPattern = PatternDecl->hasBody(PatternDecl);
1758   
1759   if (HasPattern && PatternDecl)
1760     return PatternDecl->isInlined();
1761   
1762   return false;
1763 }
1764
1765 /// \brief For an inline function definition in C or C++, determine whether the 
1766 /// definition will be externally visible.
1767 ///
1768 /// Inline function definitions are always available for inlining optimizations.
1769 /// However, depending on the language dialect, declaration specifiers, and
1770 /// attributes, the definition of an inline function may or may not be
1771 /// "externally" visible to other translation units in the program.
1772 ///
1773 /// In C99, inline definitions are not externally visible by default. However,
1774 /// if even one of the global-scope declarations is marked "extern inline", the
1775 /// inline definition becomes externally visible (C99 6.7.4p6).
1776 ///
1777 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
1778 /// definition, we use the GNU semantics for inline, which are nearly the 
1779 /// opposite of C99 semantics. In particular, "inline" by itself will create 
1780 /// an externally visible symbol, but "extern inline" will not create an 
1781 /// externally visible symbol.
1782 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
1783   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
1784   assert(isInlined() && "Function must be inline");
1785   ASTContext &Context = getASTContext();
1786   
1787   if (Context.getLangOptions().GNUInline || hasAttr<GNUInlineAttr>()) {
1788     // If it's not the case that both 'inline' and 'extern' are
1789     // specified on the definition, then this inline definition is
1790     // externally visible.
1791     if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
1792       return true;
1793     
1794     // If any declaration is 'inline' but not 'extern', then this definition
1795     // is externally visible.
1796     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
1797          Redecl != RedeclEnd;
1798          ++Redecl) {
1799       if (Redecl->isInlineSpecified() && 
1800           Redecl->getStorageClassAsWritten() != SC_Extern)
1801         return true;
1802     }    
1803     
1804     return false;
1805   }
1806   
1807   // C99 6.7.4p6:
1808   //   [...] If all of the file scope declarations for a function in a 
1809   //   translation unit include the inline function specifier without extern, 
1810   //   then the definition in that translation unit is an inline definition.
1811   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
1812        Redecl != RedeclEnd;
1813        ++Redecl) {
1814     // Only consider file-scope declarations in this test.
1815     if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
1816       continue;
1817     
1818     if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 
1819       return true; // Not an inline definition
1820   }
1821   
1822   // C99 6.7.4p6:
1823   //   An inline definition does not provide an external definition for the 
1824   //   function, and does not forbid an external definition in another 
1825   //   translation unit.
1826   return false;
1827 }
1828
1829 /// getOverloadedOperator - Which C++ overloaded operator this
1830 /// function represents, if any.
1831 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
1832   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
1833     return getDeclName().getCXXOverloadedOperator();
1834   else
1835     return OO_None;
1836 }
1837
1838 /// getLiteralIdentifier - The literal suffix identifier this function
1839 /// represents, if any.
1840 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
1841   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
1842     return getDeclName().getCXXLiteralIdentifier();
1843   else
1844     return 0;
1845 }
1846
1847 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
1848   if (TemplateOrSpecialization.isNull())
1849     return TK_NonTemplate;
1850   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
1851     return TK_FunctionTemplate;
1852   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
1853     return TK_MemberSpecialization;
1854   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
1855     return TK_FunctionTemplateSpecialization;
1856   if (TemplateOrSpecialization.is
1857                                <DependentFunctionTemplateSpecializationInfo*>())
1858     return TK_DependentFunctionTemplateSpecialization;
1859
1860   assert(false && "Did we miss a TemplateOrSpecialization type?");
1861   return TK_NonTemplate;
1862 }
1863
1864 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
1865   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
1866     return cast<FunctionDecl>(Info->getInstantiatedFrom());
1867   
1868   return 0;
1869 }
1870
1871 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
1872   return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
1873 }
1874
1875 void 
1876 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
1877                                                FunctionDecl *FD,
1878                                                TemplateSpecializationKind TSK) {
1879   assert(TemplateOrSpecialization.isNull() && 
1880          "Member function is already a specialization");
1881   MemberSpecializationInfo *Info 
1882     = new (C) MemberSpecializationInfo(FD, TSK);
1883   TemplateOrSpecialization = Info;
1884 }
1885
1886 bool FunctionDecl::isImplicitlyInstantiable() const {
1887   // If the function is invalid, it can't be implicitly instantiated.
1888   if (isInvalidDecl())
1889     return false;
1890   
1891   switch (getTemplateSpecializationKind()) {
1892   case TSK_Undeclared:
1893   case TSK_ExplicitSpecialization:
1894   case TSK_ExplicitInstantiationDefinition:
1895     return false;
1896       
1897   case TSK_ImplicitInstantiation:
1898     return true;
1899
1900   case TSK_ExplicitInstantiationDeclaration:
1901     // Handled below.
1902     break;
1903   }
1904
1905   // Find the actual template from which we will instantiate.
1906   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
1907   bool HasPattern = false;
1908   if (PatternDecl)
1909     HasPattern = PatternDecl->hasBody(PatternDecl);
1910   
1911   // C++0x [temp.explicit]p9:
1912   //   Except for inline functions, other explicit instantiation declarations
1913   //   have the effect of suppressing the implicit instantiation of the entity
1914   //   to which they refer. 
1915   if (!HasPattern || !PatternDecl) 
1916     return true;
1917
1918   return PatternDecl->isInlined();
1919 }                      
1920    
1921 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
1922   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
1923     while (Primary->getInstantiatedFromMemberTemplate()) {
1924       // If we have hit a point where the user provided a specialization of
1925       // this template, we're done looking.
1926       if (Primary->isMemberSpecialization())
1927         break;
1928       
1929       Primary = Primary->getInstantiatedFromMemberTemplate();
1930     }
1931     
1932     return Primary->getTemplatedDecl();
1933   } 
1934     
1935   return getInstantiatedFromMemberFunction();
1936 }
1937
1938 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
1939   if (FunctionTemplateSpecializationInfo *Info
1940         = TemplateOrSpecialization
1941             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
1942     return Info->Template.getPointer();
1943   }
1944   return 0;
1945 }
1946
1947 const TemplateArgumentList *
1948 FunctionDecl::getTemplateSpecializationArgs() const {
1949   if (FunctionTemplateSpecializationInfo *Info
1950         = TemplateOrSpecialization
1951             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
1952     return Info->TemplateArguments;
1953   }
1954   return 0;
1955 }
1956
1957 const TemplateArgumentListInfo *
1958 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
1959   if (FunctionTemplateSpecializationInfo *Info
1960         = TemplateOrSpecialization
1961             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
1962     return Info->TemplateArgumentsAsWritten;
1963   }
1964   return 0;
1965 }
1966
1967 void
1968 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
1969                                                 FunctionTemplateDecl *Template,
1970                                      const TemplateArgumentList *TemplateArgs,
1971                                                 void *InsertPos,
1972                                                 TemplateSpecializationKind TSK,
1973                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
1974                                           SourceLocation PointOfInstantiation) {
1975   assert(TSK != TSK_Undeclared && 
1976          "Must specify the type of function template specialization");
1977   FunctionTemplateSpecializationInfo *Info
1978     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
1979   if (!Info)
1980     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
1981                                                       TemplateArgs,
1982                                                       TemplateArgsAsWritten,
1983                                                       PointOfInstantiation);
1984   TemplateOrSpecialization = Info;
1985
1986   // Insert this function template specialization into the set of known
1987   // function template specializations.
1988   if (InsertPos)
1989     Template->addSpecialization(Info, InsertPos);
1990   else {
1991     // Try to insert the new node. If there is an existing node, leave it, the
1992     // set will contain the canonical decls while
1993     // FunctionTemplateDecl::findSpecialization will return
1994     // the most recent redeclarations.
1995     FunctionTemplateSpecializationInfo *Existing
1996       = Template->getSpecializations().GetOrInsertNode(Info);
1997     (void)Existing;
1998     assert((!Existing || Existing->Function->isCanonicalDecl()) &&
1999            "Set is supposed to only contain canonical decls");
2000   }
2001 }
2002
2003 void
2004 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2005                                     const UnresolvedSetImpl &Templates,
2006                              const TemplateArgumentListInfo &TemplateArgs) {
2007   assert(TemplateOrSpecialization.isNull());
2008   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2009   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2010   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2011   void *Buffer = Context.Allocate(Size);
2012   DependentFunctionTemplateSpecializationInfo *Info =
2013     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2014                                                              TemplateArgs);
2015   TemplateOrSpecialization = Info;
2016 }
2017
2018 DependentFunctionTemplateSpecializationInfo::
2019 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2020                                       const TemplateArgumentListInfo &TArgs)
2021   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2022
2023   d.NumTemplates = Ts.size();
2024   d.NumArgs = TArgs.size();
2025
2026   FunctionTemplateDecl **TsArray =
2027     const_cast<FunctionTemplateDecl**>(getTemplates());
2028   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2029     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2030
2031   TemplateArgumentLoc *ArgsArray =
2032     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2033   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2034     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2035 }
2036
2037 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2038   // For a function template specialization, query the specialization
2039   // information object.
2040   FunctionTemplateSpecializationInfo *FTSInfo
2041     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2042   if (FTSInfo)
2043     return FTSInfo->getTemplateSpecializationKind();
2044
2045   MemberSpecializationInfo *MSInfo
2046     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2047   if (MSInfo)
2048     return MSInfo->getTemplateSpecializationKind();
2049   
2050   return TSK_Undeclared;
2051 }
2052
2053 void
2054 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2055                                           SourceLocation PointOfInstantiation) {
2056   if (FunctionTemplateSpecializationInfo *FTSInfo
2057         = TemplateOrSpecialization.dyn_cast<
2058                                     FunctionTemplateSpecializationInfo*>()) {
2059     FTSInfo->setTemplateSpecializationKind(TSK);
2060     if (TSK != TSK_ExplicitSpecialization &&
2061         PointOfInstantiation.isValid() &&
2062         FTSInfo->getPointOfInstantiation().isInvalid())
2063       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2064   } else if (MemberSpecializationInfo *MSInfo
2065              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2066     MSInfo->setTemplateSpecializationKind(TSK);
2067     if (TSK != TSK_ExplicitSpecialization &&
2068         PointOfInstantiation.isValid() &&
2069         MSInfo->getPointOfInstantiation().isInvalid())
2070       MSInfo->setPointOfInstantiation(PointOfInstantiation);
2071   } else
2072     assert(false && "Function cannot have a template specialization kind");
2073 }
2074
2075 SourceLocation FunctionDecl::getPointOfInstantiation() const {
2076   if (FunctionTemplateSpecializationInfo *FTSInfo
2077         = TemplateOrSpecialization.dyn_cast<
2078                                         FunctionTemplateSpecializationInfo*>())
2079     return FTSInfo->getPointOfInstantiation();
2080   else if (MemberSpecializationInfo *MSInfo
2081              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2082     return MSInfo->getPointOfInstantiation();
2083   
2084   return SourceLocation();
2085 }
2086
2087 bool FunctionDecl::isOutOfLine() const {
2088   if (Decl::isOutOfLine())
2089     return true;
2090   
2091   // If this function was instantiated from a member function of a 
2092   // class template, check whether that member function was defined out-of-line.
2093   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2094     const FunctionDecl *Definition;
2095     if (FD->hasBody(Definition))
2096       return Definition->isOutOfLine();
2097   }
2098   
2099   // If this function was instantiated from a function template,
2100   // check whether that function template was defined out-of-line.
2101   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2102     const FunctionDecl *Definition;
2103     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2104       return Definition->isOutOfLine();
2105   }
2106   
2107   return false;
2108 }
2109
2110 SourceRange FunctionDecl::getSourceRange() const {
2111   return SourceRange(getOuterLocStart(), EndRangeLoc);
2112 }
2113
2114 //===----------------------------------------------------------------------===//
2115 // FieldDecl Implementation
2116 //===----------------------------------------------------------------------===//
2117
2118 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
2119                              SourceLocation StartLoc, SourceLocation IdLoc,
2120                              IdentifierInfo *Id, QualType T,
2121                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2122                              bool HasInit) {
2123   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
2124                            BW, Mutable, HasInit);
2125 }
2126
2127 bool FieldDecl::isAnonymousStructOrUnion() const {
2128   if (!isImplicit() || getDeclName())
2129     return false;
2130
2131   if (const RecordType *Record = getType()->getAs<RecordType>())
2132     return Record->getDecl()->isAnonymousStructOrUnion();
2133
2134   return false;
2135 }
2136
2137 unsigned FieldDecl::getFieldIndex() const {
2138   if (CachedFieldIndex) return CachedFieldIndex - 1;
2139
2140   unsigned index = 0;
2141   const RecordDecl *RD = getParent();
2142   const FieldDecl *LastFD = 0;
2143   bool IsMsStruct = RD->hasAttr<MsStructAttr>();
2144   
2145   RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2146   while (true) {
2147     assert(i != e && "failed to find field in parent!");
2148     if (*i == this)
2149       break;
2150
2151     if (IsMsStruct) {
2152       // Zero-length bitfields following non-bitfield members are ignored.
2153       if (getASTContext().ZeroBitfieldFollowsNonBitfield((*i), LastFD)) {
2154         ++i;
2155         continue;
2156       }
2157       LastFD = (*i);
2158     }
2159     ++i;
2160     ++index;
2161   }
2162
2163   CachedFieldIndex = index + 1;
2164   return index;
2165 }
2166
2167 SourceRange FieldDecl::getSourceRange() const {
2168   if (isBitField())
2169     return SourceRange(getInnerLocStart(), getBitWidth()->getLocEnd());
2170   return DeclaratorDecl::getSourceRange();
2171 }
2172
2173 void FieldDecl::setInClassInitializer(Expr *Init) {
2174   assert(!InitializerOrBitWidth.getPointer() &&
2175          "bit width or initializer already set");
2176   InitializerOrBitWidth.setPointer(Init);
2177   InitializerOrBitWidth.setInt(0);
2178 }
2179
2180 //===----------------------------------------------------------------------===//
2181 // TagDecl Implementation
2182 //===----------------------------------------------------------------------===//
2183
2184 SourceLocation TagDecl::getOuterLocStart() const {
2185   return getTemplateOrInnerLocStart(this);
2186 }
2187
2188 SourceRange TagDecl::getSourceRange() const {
2189   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
2190   return SourceRange(getOuterLocStart(), E);
2191 }
2192
2193 TagDecl* TagDecl::getCanonicalDecl() {
2194   return getFirstDeclaration();
2195 }
2196
2197 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 
2198   TypedefNameDeclOrQualifier = TDD; 
2199   if (TypeForDecl)
2200     const_cast<Type*>(TypeForDecl)->ClearLinkageCache();
2201   ClearLinkageCache();
2202 }
2203
2204 void TagDecl::startDefinition() {
2205   IsBeingDefined = true;
2206
2207   if (isa<CXXRecordDecl>(this)) {
2208     CXXRecordDecl *D = cast<CXXRecordDecl>(this);
2209     struct CXXRecordDecl::DefinitionData *Data = 
2210       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
2211     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
2212       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
2213   }
2214 }
2215
2216 void TagDecl::completeDefinition() {
2217   assert((!isa<CXXRecordDecl>(this) ||
2218           cast<CXXRecordDecl>(this)->hasDefinition()) &&
2219          "definition completed but not started");
2220
2221   IsDefinition = true;
2222   IsBeingDefined = false;
2223
2224   if (ASTMutationListener *L = getASTMutationListener())
2225     L->CompletedTagDefinition(this);
2226 }
2227
2228 TagDecl* TagDecl::getDefinition() const {
2229   if (isDefinition())
2230     return const_cast<TagDecl *>(this);
2231   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
2232     return CXXRD->getDefinition();
2233
2234   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
2235        R != REnd; ++R)
2236     if (R->isDefinition())
2237       return *R;
2238
2239   return 0;
2240 }
2241
2242 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
2243   if (QualifierLoc) {
2244     // Make sure the extended qualifier info is allocated.
2245     if (!hasExtInfo())
2246       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2247     // Set qualifier info.
2248     getExtInfo()->QualifierLoc = QualifierLoc;
2249   }
2250   else {
2251     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2252     if (hasExtInfo()) {
2253       if (getExtInfo()->NumTemplParamLists == 0) {
2254         getASTContext().Deallocate(getExtInfo());
2255         TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
2256       }
2257       else
2258         getExtInfo()->QualifierLoc = QualifierLoc;
2259     }
2260   }
2261 }
2262
2263 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
2264                                             unsigned NumTPLists,
2265                                             TemplateParameterList **TPLists) {
2266   assert(NumTPLists > 0);
2267   // Make sure the extended decl info is allocated.
2268   if (!hasExtInfo())
2269     // Allocate external info struct.
2270     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2271   // Set the template parameter lists info.
2272   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2273 }
2274
2275 //===----------------------------------------------------------------------===//
2276 // EnumDecl Implementation
2277 //===----------------------------------------------------------------------===//
2278
2279 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
2280                            SourceLocation StartLoc, SourceLocation IdLoc,
2281                            IdentifierInfo *Id,
2282                            EnumDecl *PrevDecl, bool IsScoped,
2283                            bool IsScopedUsingClassTag, bool IsFixed) {
2284   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
2285                                     IsScoped, IsScopedUsingClassTag, IsFixed);
2286   C.getTypeDeclType(Enum, PrevDecl);
2287   return Enum;
2288 }
2289
2290 EnumDecl *EnumDecl::Create(ASTContext &C, EmptyShell Empty) {
2291   return new (C) EnumDecl(0, SourceLocation(), SourceLocation(), 0, 0,
2292                           false, false, false);
2293 }
2294
2295 void EnumDecl::completeDefinition(QualType NewType,
2296                                   QualType NewPromotionType,
2297                                   unsigned NumPositiveBits,
2298                                   unsigned NumNegativeBits) {
2299   assert(!isDefinition() && "Cannot redefine enums!");
2300   if (!IntegerType)
2301     IntegerType = NewType.getTypePtr();
2302   PromotionType = NewPromotionType;
2303   setNumPositiveBits(NumPositiveBits);
2304   setNumNegativeBits(NumNegativeBits);
2305   TagDecl::completeDefinition();
2306 }
2307
2308 //===----------------------------------------------------------------------===//
2309 // RecordDecl Implementation
2310 //===----------------------------------------------------------------------===//
2311
2312 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2313                        SourceLocation StartLoc, SourceLocation IdLoc,
2314                        IdentifierInfo *Id, RecordDecl *PrevDecl)
2315   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
2316   HasFlexibleArrayMember = false;
2317   AnonymousStructOrUnion = false;
2318   HasObjectMember = false;
2319   LoadedFieldsFromExternalStorage = false;
2320   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
2321 }
2322
2323 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
2324                                SourceLocation StartLoc, SourceLocation IdLoc,
2325                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
2326   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
2327                                      PrevDecl);
2328   C.getTypeDeclType(R, PrevDecl);
2329   return R;
2330 }
2331
2332 RecordDecl *RecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
2333   return new (C) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
2334                             SourceLocation(), 0, 0);
2335 }
2336
2337 bool RecordDecl::isInjectedClassName() const {
2338   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
2339     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
2340 }
2341
2342 RecordDecl::field_iterator RecordDecl::field_begin() const {
2343   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
2344     LoadFieldsFromExternalStorage();
2345
2346   return field_iterator(decl_iterator(FirstDecl));
2347 }
2348
2349 /// completeDefinition - Notes that the definition of this type is now
2350 /// complete.
2351 void RecordDecl::completeDefinition() {
2352   assert(!isDefinition() && "Cannot redefine record!");
2353   TagDecl::completeDefinition();
2354 }
2355
2356 void RecordDecl::LoadFieldsFromExternalStorage() const {
2357   ExternalASTSource *Source = getASTContext().getExternalSource();
2358   assert(hasExternalLexicalStorage() && Source && "No external storage?");
2359
2360   // Notify that we have a RecordDecl doing some initialization.
2361   ExternalASTSource::Deserializing TheFields(Source);
2362
2363   llvm::SmallVector<Decl*, 64> Decls;
2364   LoadedFieldsFromExternalStorage = true;  
2365   switch (Source->FindExternalLexicalDeclsBy<FieldDecl>(this, Decls)) {
2366   case ELR_Success:
2367     break;
2368     
2369   case ELR_AlreadyLoaded:
2370   case ELR_Failure:
2371     return;
2372   }
2373
2374 #ifndef NDEBUG
2375   // Check that all decls we got were FieldDecls.
2376   for (unsigned i=0, e=Decls.size(); i != e; ++i)
2377     assert(isa<FieldDecl>(Decls[i]));
2378 #endif
2379
2380   if (Decls.empty())
2381     return;
2382
2383   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls);
2384 }
2385
2386 //===----------------------------------------------------------------------===//
2387 // BlockDecl Implementation
2388 //===----------------------------------------------------------------------===//
2389
2390 void BlockDecl::setParams(ParmVarDecl **NewParamInfo,
2391                           unsigned NParms) {
2392   assert(ParamInfo == 0 && "Already has param info!");
2393
2394   // Zero params -> null pointer.
2395   if (NParms) {
2396     NumParams = NParms;
2397     void *Mem = getASTContext().Allocate(sizeof(ParmVarDecl*)*NumParams);
2398     ParamInfo = new (Mem) ParmVarDecl*[NumParams];
2399     memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
2400   }
2401 }
2402
2403 void BlockDecl::setCaptures(ASTContext &Context,
2404                             const Capture *begin,
2405                             const Capture *end,
2406                             bool capturesCXXThis) {
2407   CapturesCXXThis = capturesCXXThis;
2408
2409   if (begin == end) {
2410     NumCaptures = 0;
2411     Captures = 0;
2412     return;
2413   }
2414
2415   NumCaptures = end - begin;
2416
2417   // Avoid new Capture[] because we don't want to provide a default
2418   // constructor.
2419   size_t allocationSize = NumCaptures * sizeof(Capture);
2420   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
2421   memcpy(buffer, begin, allocationSize);
2422   Captures = static_cast<Capture*>(buffer);
2423 }
2424
2425 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
2426   for (capture_const_iterator
2427          i = capture_begin(), e = capture_end(); i != e; ++i)
2428     // Only auto vars can be captured, so no redeclaration worries.
2429     if (i->getVariable() == variable)
2430       return true;
2431
2432   return false;
2433 }
2434
2435 SourceRange BlockDecl::getSourceRange() const {
2436   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
2437 }
2438
2439 //===----------------------------------------------------------------------===//
2440 // Other Decl Allocation/Deallocation Method Implementations
2441 //===----------------------------------------------------------------------===//
2442
2443 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
2444   return new (C) TranslationUnitDecl(C);
2445 }
2446
2447 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
2448                              SourceLocation IdentL, IdentifierInfo *II) {
2449   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
2450 }
2451
2452 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
2453                              SourceLocation IdentL, IdentifierInfo *II,
2454                              SourceLocation GnuLabelL) {
2455   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
2456   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
2457 }
2458
2459
2460 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2461                                      SourceLocation StartLoc,
2462                                      SourceLocation IdLoc, IdentifierInfo *Id) {
2463   return new (C) NamespaceDecl(DC, StartLoc, IdLoc, Id);
2464 }
2465
2466 NamespaceDecl *NamespaceDecl::getNextNamespace() {
2467   return dyn_cast_or_null<NamespaceDecl>(
2468                        NextNamespace.get(getASTContext().getExternalSource()));
2469 }
2470
2471 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
2472                                              SourceLocation IdLoc,
2473                                              IdentifierInfo *Id,
2474                                              QualType Type) {
2475   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
2476 }
2477
2478 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
2479                                    SourceLocation StartLoc,
2480                                    const DeclarationNameInfo &NameInfo,
2481                                    QualType T, TypeSourceInfo *TInfo,
2482                                    StorageClass SC, StorageClass SCAsWritten,
2483                                    bool isInlineSpecified, 
2484                                    bool hasWrittenPrototype) {
2485   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
2486                                            T, TInfo, SC, SCAsWritten,
2487                                            isInlineSpecified);
2488   New->HasWrittenPrototype = hasWrittenPrototype;
2489   return New;
2490 }
2491
2492 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
2493   return new (C) BlockDecl(DC, L);
2494 }
2495
2496 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
2497                                            SourceLocation L,
2498                                            IdentifierInfo *Id, QualType T,
2499                                            Expr *E, const llvm::APSInt &V) {
2500   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
2501 }
2502
2503 IndirectFieldDecl *
2504 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
2505                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
2506                           unsigned CHS) {
2507   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
2508 }
2509
2510 SourceRange EnumConstantDecl::getSourceRange() const {
2511   SourceLocation End = getLocation();
2512   if (Init)
2513     End = Init->getLocEnd();
2514   return SourceRange(getLocation(), End);
2515 }
2516
2517 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
2518                                  SourceLocation StartLoc, SourceLocation IdLoc,
2519                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
2520   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
2521 }
2522
2523 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
2524                                      SourceLocation StartLoc,
2525                                      SourceLocation IdLoc, IdentifierInfo *Id,
2526                                      TypeSourceInfo *TInfo) {
2527   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
2528 }
2529
2530 SourceRange TypedefDecl::getSourceRange() const {
2531   SourceLocation RangeEnd = getLocation();
2532   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2533     if (typeIsPostfix(TInfo->getType()))
2534       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2535   }
2536   return SourceRange(getLocStart(), RangeEnd);
2537 }
2538
2539 SourceRange TypeAliasDecl::getSourceRange() const {
2540   SourceLocation RangeEnd = getLocStart();
2541   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
2542     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2543   return SourceRange(getLocStart(), RangeEnd);
2544 }
2545
2546 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
2547                                            StringLiteral *Str,
2548                                            SourceLocation AsmLoc,
2549                                            SourceLocation RParenLoc) {
2550   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
2551 }