]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprCXX.cpp
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGDebugInfo.h"
19 #include "llvm/Intrinsics.h"
20 #include "llvm/Support/CallSite.h"
21
22 using namespace clang;
23 using namespace CodeGen;
24
25 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
26                                           llvm::Value *Callee,
27                                           ReturnValueSlot ReturnValue,
28                                           llvm::Value *This,
29                                           llvm::Value *VTT,
30                                           CallExpr::const_arg_iterator ArgBeg,
31                                           CallExpr::const_arg_iterator ArgEnd) {
32   assert(MD->isInstance() &&
33          "Trying to emit a member call expr on a static method!");
34
35   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
36
37   CallArgList Args;
38
39   // Push the this ptr.
40   Args.add(RValue::get(This), MD->getThisType(getContext()));
41
42   // If there is a VTT parameter, emit it.
43   if (VTT) {
44     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
45     Args.add(RValue::get(VTT), T);
46   }
47   
48   // And the rest of the call args
49   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
50
51   QualType ResultType = FPT->getResultType();
52   return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
53                                                  FPT->getExtInfo()),
54                   Callee, ReturnValue, Args, MD);
55 }
56
57 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
58   const Expr *E = Base;
59   
60   while (true) {
61     E = E->IgnoreParens();
62     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
63       if (CE->getCastKind() == CK_DerivedToBase || 
64           CE->getCastKind() == CK_UncheckedDerivedToBase ||
65           CE->getCastKind() == CK_NoOp) {
66         E = CE->getSubExpr();
67         continue;
68       }
69     }
70
71     break;
72   }
73
74   QualType DerivedType = E->getType();
75   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
76     DerivedType = PTy->getPointeeType();
77
78   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
79 }
80
81 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
82 // quite what we want.
83 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
84   while (true) {
85     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
86       E = PE->getSubExpr();
87       continue;
88     }
89
90     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
91       if (CE->getCastKind() == CK_NoOp) {
92         E = CE->getSubExpr();
93         continue;
94       }
95     }
96     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
97       if (UO->getOpcode() == UO_Extension) {
98         E = UO->getSubExpr();
99         continue;
100       }
101     }
102     return E;
103   }
104 }
105
106 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
107 /// expr can be devirtualized.
108 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
109                                                const Expr *Base, 
110                                                const CXXMethodDecl *MD) {
111   
112   // When building with -fapple-kext, all calls must go through the vtable since
113   // the kernel linker can do runtime patching of vtables.
114   if (Context.getLangOptions().AppleKext)
115     return false;
116
117   // If the most derived class is marked final, we know that no subclass can
118   // override this member function and so we can devirtualize it. For example:
119   //
120   // struct A { virtual void f(); }
121   // struct B final : A { };
122   //
123   // void f(B *b) {
124   //   b->f();
125   // }
126   //
127   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
128   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
129     return true;
130
131   // If the member function is marked 'final', we know that it can't be
132   // overridden and can therefore devirtualize it.
133   if (MD->hasAttr<FinalAttr>())
134     return true;
135
136   // Similarly, if the class itself is marked 'final' it can't be overridden
137   // and we can therefore devirtualize the member function call.
138   if (MD->getParent()->hasAttr<FinalAttr>())
139     return true;
140
141   Base = skipNoOpCastsAndParens(Base);
142   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
143     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
144       // This is a record decl. We know the type and can devirtualize it.
145       return VD->getType()->isRecordType();
146     }
147     
148     return false;
149   }
150   
151   // We can always devirtualize calls on temporary object expressions.
152   if (isa<CXXConstructExpr>(Base))
153     return true;
154   
155   // And calls on bound temporaries.
156   if (isa<CXXBindTemporaryExpr>(Base))
157     return true;
158   
159   // Check if this is a call expr that returns a record type.
160   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
161     return CE->getCallReturnType()->isRecordType();
162
163   // We can't devirtualize the call.
164   return false;
165 }
166
167 // Note: This function also emit constructor calls to support a MSVC
168 // extensions allowing explicit constructor function call.
169 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
170                                               ReturnValueSlot ReturnValue) {
171   const Expr *callee = CE->getCallee()->IgnoreParens();
172
173   if (isa<BinaryOperator>(callee))
174     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
175
176   const MemberExpr *ME = cast<MemberExpr>(callee);
177   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
178
179   CGDebugInfo *DI = getDebugInfo();
180   if (DI && CGM.getCodeGenOpts().LimitDebugInfo
181       && !isa<CallExpr>(ME->getBase())) {
182     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
183     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
184       DI->getOrCreateRecordType(PTy->getPointeeType(), 
185                                 MD->getParent()->getLocation());
186     }
187   }
188
189   if (MD->isStatic()) {
190     // The method is static, emit it as we would a regular call.
191     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
192     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
193                     ReturnValue, CE->arg_begin(), CE->arg_end());
194   }
195
196   // Compute the object pointer.
197   llvm::Value *This;
198   if (ME->isArrow())
199     This = EmitScalarExpr(ME->getBase());
200   else
201     This = EmitLValue(ME->getBase()).getAddress();
202
203   if (MD->isTrivial()) {
204     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
205     if (isa<CXXConstructorDecl>(MD) && 
206         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
207       return RValue::get(0);
208
209     if (MD->isCopyAssignmentOperator()) {
210       // We don't like to generate the trivial copy assignment operator when
211       // it isn't necessary; just produce the proper effect here.
212       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
213       EmitAggregateCopy(This, RHS, CE->getType());
214       return RValue::get(This);
215     }
216     
217     if (isa<CXXConstructorDecl>(MD) && 
218         cast<CXXConstructorDecl>(MD)->isCopyConstructor()) {
219       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
220       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
221                                      CE->arg_begin(), CE->arg_end());
222       return RValue::get(This);
223     }
224     llvm_unreachable("unknown trivial member function");
225   }
226
227   // Compute the function type we're calling.
228   const CGFunctionInfo *FInfo = 0;
229   if (isa<CXXDestructorDecl>(MD))
230     FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
231                                            Dtor_Complete);
232   else if (isa<CXXConstructorDecl>(MD))
233     FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD),
234                                             Ctor_Complete);
235   else
236     FInfo = &CGM.getTypes().getFunctionInfo(MD);
237
238   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
239   const llvm::Type *Ty
240     = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic());
241
242   // C++ [class.virtual]p12:
243   //   Explicit qualification with the scope operator (5.1) suppresses the
244   //   virtual call mechanism.
245   //
246   // We also don't emit a virtual call if the base expression has a record type
247   // because then we know what the type is.
248   bool UseVirtualCall;
249   UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
250                    && !canDevirtualizeMemberFunctionCalls(getContext(),
251                                                           ME->getBase(), MD);
252   llvm::Value *Callee;
253   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
254     if (UseVirtualCall) {
255       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
256     } else {
257       if (getContext().getLangOptions().AppleKext &&
258           MD->isVirtual() &&
259           ME->hasQualifier())
260         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
261       else
262         Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
263     }
264   } else if (const CXXConstructorDecl *Ctor =
265                dyn_cast<CXXConstructorDecl>(MD)) {
266     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
267   } else if (UseVirtualCall) {
268       Callee = BuildVirtualCall(MD, This, Ty); 
269   } else {
270     if (getContext().getLangOptions().AppleKext &&
271         MD->isVirtual() &&
272         ME->hasQualifier())
273       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
274     else 
275       Callee = CGM.GetAddrOfFunction(MD, Ty);
276   }
277
278   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
279                            CE->arg_begin(), CE->arg_end());
280 }
281
282 RValue
283 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
284                                               ReturnValueSlot ReturnValue) {
285   const BinaryOperator *BO =
286       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
287   const Expr *BaseExpr = BO->getLHS();
288   const Expr *MemFnExpr = BO->getRHS();
289   
290   const MemberPointerType *MPT = 
291     MemFnExpr->getType()->castAs<MemberPointerType>();
292
293   const FunctionProtoType *FPT = 
294     MPT->getPointeeType()->castAs<FunctionProtoType>();
295   const CXXRecordDecl *RD = 
296     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
297
298   // Get the member function pointer.
299   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
300
301   // Emit the 'this' pointer.
302   llvm::Value *This;
303   
304   if (BO->getOpcode() == BO_PtrMemI)
305     This = EmitScalarExpr(BaseExpr);
306   else 
307     This = EmitLValue(BaseExpr).getAddress();
308
309   // Ask the ABI to load the callee.  Note that This is modified.
310   llvm::Value *Callee =
311     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
312   
313   CallArgList Args;
314
315   QualType ThisType = 
316     getContext().getPointerType(getContext().getTagDeclType(RD));
317
318   // Push the this ptr.
319   Args.add(RValue::get(This), ThisType);
320   
321   // And the rest of the call args
322   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
323   return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee, 
324                   ReturnValue, Args);
325 }
326
327 RValue
328 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
329                                                const CXXMethodDecl *MD,
330                                                ReturnValueSlot ReturnValue) {
331   assert(MD->isInstance() &&
332          "Trying to emit a member call expr on a static method!");
333   LValue LV = EmitLValue(E->getArg(0));
334   llvm::Value *This = LV.getAddress();
335
336   if (MD->isCopyAssignmentOperator()) {
337     const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
338     if (ClassDecl->hasTrivialCopyAssignment()) {
339       assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
340              "EmitCXXOperatorMemberCallExpr - user declared copy assignment");
341       llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
342       QualType Ty = E->getType();
343       EmitAggregateCopy(This, Src, Ty);
344       return RValue::get(This);
345     }
346   }
347
348   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
349   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
350                            E->arg_begin() + 1, E->arg_end());
351 }
352
353 void
354 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
355                                       AggValueSlot Dest) {
356   assert(!Dest.isIgnored() && "Must have a destination!");
357   const CXXConstructorDecl *CD = E->getConstructor();
358   
359   // If we require zero initialization before (or instead of) calling the
360   // constructor, as can be the case with a non-user-provided default
361   // constructor, emit the zero initialization now, unless destination is
362   // already zeroed.
363   if (E->requiresZeroInitialization() && !Dest.isZeroed())
364     EmitNullInitialization(Dest.getAddr(), E->getType());
365   
366   // If this is a call to a trivial default constructor, do nothing.
367   if (CD->isTrivial() && CD->isDefaultConstructor())
368     return;
369   
370   // Elide the constructor if we're constructing from a temporary.
371   // The temporary check is required because Sema sets this on NRVO
372   // returns.
373   if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
374     assert(getContext().hasSameUnqualifiedType(E->getType(),
375                                                E->getArg(0)->getType()));
376     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
377       EmitAggExpr(E->getArg(0), Dest);
378       return;
379     }
380   }
381   
382   if (const ConstantArrayType *arrayType 
383         = getContext().getAsConstantArrayType(E->getType())) {
384     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 
385                                E->arg_begin(), E->arg_end());
386   } else {
387     CXXCtorType Type = Ctor_Complete;
388     bool ForVirtualBase = false;
389
390     switch (E->getConstructionKind()) {
391      case CXXConstructExpr::CK_Delegating:
392       // We should be emitting a constructor; GlobalDecl will assert this
393       Type = CurGD.getCtorType();
394       break;
395
396      case CXXConstructExpr::CK_Complete:
397       Type = Ctor_Complete;
398       break;
399
400      case CXXConstructExpr::CK_VirtualBase:
401       ForVirtualBase = true;
402       // fall-through
403
404      case CXXConstructExpr::CK_NonVirtualBase:
405       Type = Ctor_Base;
406     }
407     
408     // Call the constructor.
409     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
410                            E->arg_begin(), E->arg_end());
411   }
412 }
413
414 void
415 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 
416                                             llvm::Value *Src,
417                                             const Expr *Exp) {
418   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
419     Exp = E->getSubExpr();
420   assert(isa<CXXConstructExpr>(Exp) && 
421          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
422   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
423   const CXXConstructorDecl *CD = E->getConstructor();
424   RunCleanupsScope Scope(*this);
425   
426   // If we require zero initialization before (or instead of) calling the
427   // constructor, as can be the case with a non-user-provided default
428   // constructor, emit the zero initialization now.
429   // FIXME. Do I still need this for a copy ctor synthesis?
430   if (E->requiresZeroInitialization())
431     EmitNullInitialization(Dest, E->getType());
432   
433   assert(!getContext().getAsConstantArrayType(E->getType())
434          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
435   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
436                                  E->arg_begin(), E->arg_end());
437 }
438
439 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
440                                         const CXXNewExpr *E) {
441   if (!E->isArray())
442     return CharUnits::Zero();
443
444   // No cookie is required if the operator new[] being used is the
445   // reserved placement operator new[].
446   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
447     return CharUnits::Zero();
448
449   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
450 }
451
452 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
453                                         const CXXNewExpr *e,
454                                         llvm::Value *&numElements,
455                                         llvm::Value *&sizeWithoutCookie) {
456   QualType type = e->getAllocatedType();
457
458   if (!e->isArray()) {
459     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
460     sizeWithoutCookie
461       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
462     return sizeWithoutCookie;
463   }
464
465   // The width of size_t.
466   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
467
468   // Figure out the cookie size.
469   llvm::APInt cookieSize(sizeWidth,
470                          CalculateCookiePadding(CGF, e).getQuantity());
471
472   // Emit the array size expression.
473   // We multiply the size of all dimensions for NumElements.
474   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
475   numElements = CGF.EmitScalarExpr(e->getArraySize());
476   assert(isa<llvm::IntegerType>(numElements->getType()));
477
478   // The number of elements can be have an arbitrary integer type;
479   // essentially, we need to multiply it by a constant factor, add a
480   // cookie size, and verify that the result is representable as a
481   // size_t.  That's just a gloss, though, and it's wrong in one
482   // important way: if the count is negative, it's an error even if
483   // the cookie size would bring the total size >= 0.
484   bool isSigned 
485     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
486   const llvm::IntegerType *numElementsType
487     = cast<llvm::IntegerType>(numElements->getType());
488   unsigned numElementsWidth = numElementsType->getBitWidth();
489
490   // Compute the constant factor.
491   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
492   while (const ConstantArrayType *CAT
493              = CGF.getContext().getAsConstantArrayType(type)) {
494     type = CAT->getElementType();
495     arraySizeMultiplier *= CAT->getSize();
496   }
497
498   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
499   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
500   typeSizeMultiplier *= arraySizeMultiplier;
501
502   // This will be a size_t.
503   llvm::Value *size;
504   
505   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
506   // Don't bloat the -O0 code.
507   if (llvm::ConstantInt *numElementsC =
508         dyn_cast<llvm::ConstantInt>(numElements)) {
509     const llvm::APInt &count = numElementsC->getValue();
510
511     bool hasAnyOverflow = false;
512
513     // If 'count' was a negative number, it's an overflow.
514     if (isSigned && count.isNegative())
515       hasAnyOverflow = true;
516
517     // We want to do all this arithmetic in size_t.  If numElements is
518     // wider than that, check whether it's already too big, and if so,
519     // overflow.
520     else if (numElementsWidth > sizeWidth &&
521              numElementsWidth - sizeWidth > count.countLeadingZeros())
522       hasAnyOverflow = true;
523
524     // Okay, compute a count at the right width.
525     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
526
527     // Scale numElements by that.  This might overflow, but we don't
528     // care because it only overflows if allocationSize does, too, and
529     // if that overflows then we shouldn't use this.
530     numElements = llvm::ConstantInt::get(CGF.SizeTy,
531                                          adjustedCount * arraySizeMultiplier);
532
533     // Compute the size before cookie, and track whether it overflowed.
534     bool overflow;
535     llvm::APInt allocationSize
536       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
537     hasAnyOverflow |= overflow;
538
539     // Add in the cookie, and check whether it's overflowed.
540     if (cookieSize != 0) {
541       // Save the current size without a cookie.  This shouldn't be
542       // used if there was overflow.
543       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
544
545       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
546       hasAnyOverflow |= overflow;
547     }
548
549     // On overflow, produce a -1 so operator new will fail.
550     if (hasAnyOverflow) {
551       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
552     } else {
553       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
554     }
555
556   // Otherwise, we might need to use the overflow intrinsics.
557   } else {
558     // There are up to four conditions we need to test for:
559     // 1) if isSigned, we need to check whether numElements is negative;
560     // 2) if numElementsWidth > sizeWidth, we need to check whether
561     //   numElements is larger than something representable in size_t;
562     // 3) we need to compute
563     //      sizeWithoutCookie := numElements * typeSizeMultiplier
564     //    and check whether it overflows; and
565     // 4) if we need a cookie, we need to compute
566     //      size := sizeWithoutCookie + cookieSize
567     //    and check whether it overflows.
568
569     llvm::Value *hasOverflow = 0;
570
571     // If numElementsWidth > sizeWidth, then one way or another, we're
572     // going to have to do a comparison for (2), and this happens to
573     // take care of (1), too.
574     if (numElementsWidth > sizeWidth) {
575       llvm::APInt threshold(numElementsWidth, 1);
576       threshold <<= sizeWidth;
577
578       llvm::Value *thresholdV
579         = llvm::ConstantInt::get(numElementsType, threshold);
580
581       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
582       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
583
584     // Otherwise, if we're signed, we want to sext up to size_t.
585     } else if (isSigned) {
586       if (numElementsWidth < sizeWidth)
587         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
588       
589       // If there's a non-1 type size multiplier, then we can do the
590       // signedness check at the same time as we do the multiply
591       // because a negative number times anything will cause an
592       // unsigned overflow.  Otherwise, we have to do it here.
593       if (typeSizeMultiplier == 1)
594         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
595                                       llvm::ConstantInt::get(CGF.SizeTy, 0));
596
597     // Otherwise, zext up to size_t if necessary.
598     } else if (numElementsWidth < sizeWidth) {
599       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
600     }
601
602     assert(numElements->getType() == CGF.SizeTy);
603
604     size = numElements;
605
606     // Multiply by the type size if necessary.  This multiplier
607     // includes all the factors for nested arrays.
608     //
609     // This step also causes numElements to be scaled up by the
610     // nested-array factor if necessary.  Overflow on this computation
611     // can be ignored because the result shouldn't be used if
612     // allocation fails.
613     if (typeSizeMultiplier != 1) {
614       llvm::Value *umul_with_overflow
615         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
616
617       llvm::Value *tsmV =
618         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
619       llvm::Value *result =
620         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
621
622       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
623       if (hasOverflow)
624         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
625       else
626         hasOverflow = overflowed;
627
628       size = CGF.Builder.CreateExtractValue(result, 0);
629
630       // Also scale up numElements by the array size multiplier.
631       if (arraySizeMultiplier != 1) {
632         // If the base element type size is 1, then we can re-use the
633         // multiply we just did.
634         if (typeSize.isOne()) {
635           assert(arraySizeMultiplier == typeSizeMultiplier);
636           numElements = size;
637
638         // Otherwise we need a separate multiply.
639         } else {
640           llvm::Value *asmV =
641             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
642           numElements = CGF.Builder.CreateMul(numElements, asmV);
643         }
644       }
645     } else {
646       // numElements doesn't need to be scaled.
647       assert(arraySizeMultiplier == 1);
648     }
649     
650     // Add in the cookie size if necessary.
651     if (cookieSize != 0) {
652       sizeWithoutCookie = size;
653
654       llvm::Value *uadd_with_overflow
655         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
656
657       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
658       llvm::Value *result =
659         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
660
661       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
662       if (hasOverflow)
663         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
664       else
665         hasOverflow = overflowed;
666
667       size = CGF.Builder.CreateExtractValue(result, 0);
668     }
669
670     // If we had any possibility of dynamic overflow, make a select to
671     // overwrite 'size' with an all-ones value, which should cause
672     // operator new to throw.
673     if (hasOverflow)
674       size = CGF.Builder.CreateSelect(hasOverflow,
675                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
676                                       size);
677   }
678
679   if (cookieSize == 0)
680     sizeWithoutCookie = size;
681   else
682     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
683
684   return size;
685 }
686
687 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
688                                     llvm::Value *NewPtr) {
689   
690   assert(E->getNumConstructorArgs() == 1 &&
691          "Can only have one argument to initializer of POD type.");
692   
693   const Expr *Init = E->getConstructorArg(0);
694   QualType AllocType = E->getAllocatedType();
695
696   unsigned Alignment =
697     CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
698   if (!CGF.hasAggregateLLVMType(AllocType))
699     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment),
700                        false);
701   else if (AllocType->isAnyComplexType())
702     CGF.EmitComplexExprIntoAddr(Init, NewPtr, 
703                                 AllocType.isVolatileQualified());
704   else {
705     AggValueSlot Slot
706       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), true);
707     CGF.EmitAggExpr(Init, Slot);
708   }
709 }
710
711 void
712 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 
713                                          llvm::Value *NewPtr,
714                                          llvm::Value *NumElements) {
715   // We have a POD type.
716   if (E->getNumConstructorArgs() == 0)
717     return;
718   
719   const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
720   
721   // Create a temporary for the loop index and initialize it with 0.
722   llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
723   llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
724   Builder.CreateStore(Zero, IndexPtr);
725   
726   // Start the loop with a block that tests the condition.
727   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
728   llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
729   
730   EmitBlock(CondBlock);
731   
732   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
733   
734   // Generate: if (loop-index < number-of-elements fall to the loop body,
735   // otherwise, go to the block after the for-loop.
736   llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
737   llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
738   // If the condition is true, execute the body.
739   Builder.CreateCondBr(IsLess, ForBody, AfterFor);
740   
741   EmitBlock(ForBody);
742   
743   llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
744   // Inside the loop body, emit the constructor call on the array element.
745   Counter = Builder.CreateLoad(IndexPtr);
746   llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter, 
747                                                    "arrayidx");
748   StoreAnyExprIntoOneUnit(*this, E, Address);
749   
750   EmitBlock(ContinueBlock);
751   
752   // Emit the increment of the loop counter.
753   llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
754   Counter = Builder.CreateLoad(IndexPtr);
755   NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
756   Builder.CreateStore(NextVal, IndexPtr);
757   
758   // Finally, branch back up to the condition for the next iteration.
759   EmitBranch(CondBlock);
760   
761   // Emit the fall-through block.
762   EmitBlock(AfterFor, true);
763 }
764
765 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
766                            llvm::Value *NewPtr, llvm::Value *Size) {
767   CGF.EmitCastToVoidPtr(NewPtr);
768   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
769   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
770                            Alignment.getQuantity(), false);
771 }
772                        
773 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
774                                llvm::Value *NewPtr,
775                                llvm::Value *NumElements,
776                                llvm::Value *AllocSizeWithoutCookie) {
777   if (E->isArray()) {
778     if (CXXConstructorDecl *Ctor = E->getConstructor()) {
779       bool RequiresZeroInitialization = false;
780       if (Ctor->getParent()->hasTrivialDefaultConstructor()) {
781         // If new expression did not specify value-initialization, then there
782         // is no initialization.
783         if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
784           return;
785       
786         if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
787           // Optimization: since zero initialization will just set the memory
788           // to all zeroes, generate a single memset to do it in one shot.
789           EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr, 
790                          AllocSizeWithoutCookie);
791           return;
792         }
793
794         RequiresZeroInitialization = true;
795       }
796
797       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 
798                                      E->constructor_arg_begin(), 
799                                      E->constructor_arg_end(),
800                                      RequiresZeroInitialization);
801       return;
802     } else if (E->getNumConstructorArgs() == 1 &&
803                isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
804       // Optimization: since zero initialization will just set the memory
805       // to all zeroes, generate a single memset to do it in one shot.
806       EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr, 
807                      AllocSizeWithoutCookie);
808       return;      
809     } else {
810       CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
811       return;
812     }
813   }
814
815   if (CXXConstructorDecl *Ctor = E->getConstructor()) {
816     // Per C++ [expr.new]p15, if we have an initializer, then we're performing
817     // direct initialization. C++ [dcl.init]p5 requires that we 
818     // zero-initialize storage if there are no user-declared constructors.
819     if (E->hasInitializer() && 
820         !Ctor->getParent()->hasUserDeclaredConstructor() &&
821         !Ctor->getParent()->isEmpty())
822       CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
823       
824     CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 
825                                NewPtr, E->constructor_arg_begin(),
826                                E->constructor_arg_end());
827
828     return;
829   }
830   // We have a POD type.
831   if (E->getNumConstructorArgs() == 0)
832     return;
833   
834   StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
835 }
836
837 namespace {
838   /// A cleanup to call the given 'operator delete' function upon
839   /// abnormal exit from a new expression.
840   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
841     size_t NumPlacementArgs;
842     const FunctionDecl *OperatorDelete;
843     llvm::Value *Ptr;
844     llvm::Value *AllocSize;
845
846     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
847
848   public:
849     static size_t getExtraSize(size_t NumPlacementArgs) {
850       return NumPlacementArgs * sizeof(RValue);
851     }
852
853     CallDeleteDuringNew(size_t NumPlacementArgs,
854                         const FunctionDecl *OperatorDelete,
855                         llvm::Value *Ptr,
856                         llvm::Value *AllocSize) 
857       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
858         Ptr(Ptr), AllocSize(AllocSize) {}
859
860     void setPlacementArg(unsigned I, RValue Arg) {
861       assert(I < NumPlacementArgs && "index out of range");
862       getPlacementArgs()[I] = Arg;
863     }
864
865     void Emit(CodeGenFunction &CGF, Flags flags) {
866       const FunctionProtoType *FPT
867         = OperatorDelete->getType()->getAs<FunctionProtoType>();
868       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
869              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
870
871       CallArgList DeleteArgs;
872
873       // The first argument is always a void*.
874       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
875       DeleteArgs.add(RValue::get(Ptr), *AI++);
876
877       // A member 'operator delete' can take an extra 'size_t' argument.
878       if (FPT->getNumArgs() == NumPlacementArgs + 2)
879         DeleteArgs.add(RValue::get(AllocSize), *AI++);
880
881       // Pass the rest of the arguments, which must match exactly.
882       for (unsigned I = 0; I != NumPlacementArgs; ++I)
883         DeleteArgs.add(getPlacementArgs()[I], *AI++);
884
885       // Call 'operator delete'.
886       CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
887                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
888                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
889     }
890   };
891
892   /// A cleanup to call the given 'operator delete' function upon
893   /// abnormal exit from a new expression when the new expression is
894   /// conditional.
895   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
896     size_t NumPlacementArgs;
897     const FunctionDecl *OperatorDelete;
898     DominatingValue<RValue>::saved_type Ptr;
899     DominatingValue<RValue>::saved_type AllocSize;
900
901     DominatingValue<RValue>::saved_type *getPlacementArgs() {
902       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
903     }
904
905   public:
906     static size_t getExtraSize(size_t NumPlacementArgs) {
907       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
908     }
909
910     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
911                                    const FunctionDecl *OperatorDelete,
912                                    DominatingValue<RValue>::saved_type Ptr,
913                               DominatingValue<RValue>::saved_type AllocSize)
914       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
915         Ptr(Ptr), AllocSize(AllocSize) {}
916
917     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
918       assert(I < NumPlacementArgs && "index out of range");
919       getPlacementArgs()[I] = Arg;
920     }
921
922     void Emit(CodeGenFunction &CGF, Flags flags) {
923       const FunctionProtoType *FPT
924         = OperatorDelete->getType()->getAs<FunctionProtoType>();
925       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
926              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
927
928       CallArgList DeleteArgs;
929
930       // The first argument is always a void*.
931       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
932       DeleteArgs.add(Ptr.restore(CGF), *AI++);
933
934       // A member 'operator delete' can take an extra 'size_t' argument.
935       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
936         RValue RV = AllocSize.restore(CGF);
937         DeleteArgs.add(RV, *AI++);
938       }
939
940       // Pass the rest of the arguments, which must match exactly.
941       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
942         RValue RV = getPlacementArgs()[I].restore(CGF);
943         DeleteArgs.add(RV, *AI++);
944       }
945
946       // Call 'operator delete'.
947       CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
948                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
949                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
950     }
951   };
952 }
953
954 /// Enter a cleanup to call 'operator delete' if the initializer in a
955 /// new-expression throws.
956 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
957                                   const CXXNewExpr *E,
958                                   llvm::Value *NewPtr,
959                                   llvm::Value *AllocSize,
960                                   const CallArgList &NewArgs) {
961   // If we're not inside a conditional branch, then the cleanup will
962   // dominate and we can do the easier (and more efficient) thing.
963   if (!CGF.isInConditionalBranch()) {
964     CallDeleteDuringNew *Cleanup = CGF.EHStack
965       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
966                                                  E->getNumPlacementArgs(),
967                                                  E->getOperatorDelete(),
968                                                  NewPtr, AllocSize);
969     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
970       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
971
972     return;
973   }
974
975   // Otherwise, we need to save all this stuff.
976   DominatingValue<RValue>::saved_type SavedNewPtr =
977     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
978   DominatingValue<RValue>::saved_type SavedAllocSize =
979     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
980
981   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
982     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
983                                                  E->getNumPlacementArgs(),
984                                                  E->getOperatorDelete(),
985                                                  SavedNewPtr,
986                                                  SavedAllocSize);
987   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
988     Cleanup->setPlacementArg(I,
989                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
990
991   CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
992 }
993
994 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
995   // The element type being allocated.
996   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
997
998   // 1. Build a call to the allocation function.
999   FunctionDecl *allocator = E->getOperatorNew();
1000   const FunctionProtoType *allocatorType =
1001     allocator->getType()->castAs<FunctionProtoType>();
1002
1003   CallArgList allocatorArgs;
1004
1005   // The allocation size is the first argument.
1006   QualType sizeType = getContext().getSizeType();
1007
1008   llvm::Value *numElements = 0;
1009   llvm::Value *allocSizeWithoutCookie = 0;
1010   llvm::Value *allocSize =
1011     EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie);
1012   
1013   allocatorArgs.add(RValue::get(allocSize), sizeType);
1014
1015   // Emit the rest of the arguments.
1016   // FIXME: Ideally, this should just use EmitCallArgs.
1017   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1018
1019   // First, use the types from the function type.
1020   // We start at 1 here because the first argument (the allocation size)
1021   // has already been emitted.
1022   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1023        ++i, ++placementArg) {
1024     QualType argType = allocatorType->getArgType(i);
1025
1026     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1027                                                placementArg->getType()) &&
1028            "type mismatch in call argument!");
1029
1030     EmitCallArg(allocatorArgs, *placementArg, argType);
1031   }
1032
1033   // Either we've emitted all the call args, or we have a call to a
1034   // variadic function.
1035   assert((placementArg == E->placement_arg_end() ||
1036           allocatorType->isVariadic()) &&
1037          "Extra arguments to non-variadic function!");
1038
1039   // If we still have any arguments, emit them using the type of the argument.
1040   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1041        placementArg != placementArgsEnd; ++placementArg) {
1042     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1043   }
1044
1045   // Emit the allocation call.  If the allocator is a global placement
1046   // operator, just "inline" it directly.
1047   RValue RV;
1048   if (allocator->isReservedGlobalPlacementOperator()) {
1049     assert(allocatorArgs.size() == 2);
1050     RV = allocatorArgs[1].RV;
1051     // TODO: kill any unnecessary computations done for the size
1052     // argument.
1053   } else {
1054     RV = EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType),
1055                   CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1056                   allocatorArgs, allocator);
1057   }
1058
1059   // Emit a null check on the allocation result if the allocation
1060   // function is allowed to return null (because it has a non-throwing
1061   // exception spec; for this part, we inline
1062   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1063   // interesting initializer.
1064   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1065     !(allocType.isPODType(getContext()) && !E->hasInitializer());
1066
1067   llvm::BasicBlock *nullCheckBB = 0;
1068   llvm::BasicBlock *contBB = 0;
1069
1070   llvm::Value *allocation = RV.getScalarVal();
1071   unsigned AS =
1072     cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
1073
1074   // The null-check means that the initializer is conditionally
1075   // evaluated.
1076   ConditionalEvaluation conditional(*this);
1077
1078   if (nullCheck) {
1079     conditional.begin(*this);
1080
1081     nullCheckBB = Builder.GetInsertBlock();
1082     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1083     contBB = createBasicBlock("new.cont");
1084
1085     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1086     Builder.CreateCondBr(isNull, contBB, notNullBB);
1087     EmitBlock(notNullBB);
1088   }
1089   
1090   assert((allocSize == allocSizeWithoutCookie) ==
1091          CalculateCookiePadding(*this, E).isZero());
1092   if (allocSize != allocSizeWithoutCookie) {
1093     assert(E->isArray());
1094     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1095                                                        numElements,
1096                                                        E, allocType);
1097   }
1098
1099   // If there's an operator delete, enter a cleanup to call it if an
1100   // exception is thrown.
1101   EHScopeStack::stable_iterator operatorDeleteCleanup;
1102   if (E->getOperatorDelete() &&
1103       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1104     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1105     operatorDeleteCleanup = EHStack.stable_begin();
1106   }
1107
1108   const llvm::Type *elementPtrTy
1109     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1110   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1111
1112   if (E->isArray()) {
1113     EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
1114
1115     // NewPtr is a pointer to the base element type.  If we're
1116     // allocating an array of arrays, we'll need to cast back to the
1117     // array pointer type.
1118     const llvm::Type *resultType = ConvertTypeForMem(E->getType());
1119     if (result->getType() != resultType)
1120       result = Builder.CreateBitCast(result, resultType);
1121   } else {
1122     EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
1123   }
1124
1125   // Deactivate the 'operator delete' cleanup if we finished
1126   // initialization.
1127   if (operatorDeleteCleanup.isValid())
1128     DeactivateCleanupBlock(operatorDeleteCleanup);
1129   
1130   if (nullCheck) {
1131     conditional.end(*this);
1132
1133     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1134     EmitBlock(contBB);
1135
1136     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1137     PHI->addIncoming(result, notNullBB);
1138     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1139                      nullCheckBB);
1140
1141     result = PHI;
1142   }
1143   
1144   return result;
1145 }
1146
1147 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1148                                      llvm::Value *Ptr,
1149                                      QualType DeleteTy) {
1150   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1151
1152   const FunctionProtoType *DeleteFTy =
1153     DeleteFD->getType()->getAs<FunctionProtoType>();
1154
1155   CallArgList DeleteArgs;
1156
1157   // Check if we need to pass the size to the delete operator.
1158   llvm::Value *Size = 0;
1159   QualType SizeTy;
1160   if (DeleteFTy->getNumArgs() == 2) {
1161     SizeTy = DeleteFTy->getArgType(1);
1162     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1163     Size = llvm::ConstantInt::get(ConvertType(SizeTy), 
1164                                   DeleteTypeSize.getQuantity());
1165   }
1166   
1167   QualType ArgTy = DeleteFTy->getArgType(0);
1168   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1169   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1170
1171   if (Size)
1172     DeleteArgs.add(RValue::get(Size), SizeTy);
1173
1174   // Emit the call to delete.
1175   EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
1176            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 
1177            DeleteArgs, DeleteFD);
1178 }
1179
1180 namespace {
1181   /// Calls the given 'operator delete' on a single object.
1182   struct CallObjectDelete : EHScopeStack::Cleanup {
1183     llvm::Value *Ptr;
1184     const FunctionDecl *OperatorDelete;
1185     QualType ElementType;
1186
1187     CallObjectDelete(llvm::Value *Ptr,
1188                      const FunctionDecl *OperatorDelete,
1189                      QualType ElementType)
1190       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1191
1192     void Emit(CodeGenFunction &CGF, Flags flags) {
1193       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1194     }
1195   };
1196 }
1197
1198 /// Emit the code for deleting a single object.
1199 static void EmitObjectDelete(CodeGenFunction &CGF,
1200                              const FunctionDecl *OperatorDelete,
1201                              llvm::Value *Ptr,
1202                              QualType ElementType,
1203                              bool UseGlobalDelete) {
1204   // Find the destructor for the type, if applicable.  If the
1205   // destructor is virtual, we'll just emit the vcall and return.
1206   const CXXDestructorDecl *Dtor = 0;
1207   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1208     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1209     if (!RD->hasTrivialDestructor()) {
1210       Dtor = RD->getDestructor();
1211
1212       if (Dtor->isVirtual()) {
1213         if (UseGlobalDelete) {
1214           // If we're supposed to call the global delete, make sure we do so
1215           // even if the destructor throws.
1216           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1217                                                     Ptr, OperatorDelete, 
1218                                                     ElementType);
1219         }
1220         
1221         const llvm::Type *Ty =
1222           CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
1223                                                                Dtor_Complete),
1224                                          /*isVariadic=*/false);
1225           
1226         llvm::Value *Callee
1227           = CGF.BuildVirtualCall(Dtor, 
1228                                  UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
1229                                  Ptr, Ty);
1230         CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1231                               0, 0);
1232
1233         if (UseGlobalDelete) {
1234           CGF.PopCleanupBlock();
1235         }
1236         
1237         return;
1238       }
1239     }
1240   }
1241
1242   // Make sure that we call delete even if the dtor throws.
1243   // This doesn't have to a conditional cleanup because we're going
1244   // to pop it off in a second.
1245   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1246                                             Ptr, OperatorDelete, ElementType);
1247
1248   if (Dtor)
1249     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1250                               /*ForVirtualBase=*/false, Ptr);
1251   else if (CGF.getLangOptions().ObjCAutoRefCount &&
1252            ElementType->isObjCLifetimeType()) {
1253     switch (ElementType.getObjCLifetime()) {
1254     case Qualifiers::OCL_None:
1255     case Qualifiers::OCL_ExplicitNone:
1256     case Qualifiers::OCL_Autoreleasing:
1257       break;
1258
1259     case Qualifiers::OCL_Strong: {
1260       // Load the pointer value.
1261       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 
1262                                              ElementType.isVolatileQualified());
1263         
1264       CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1265       break;
1266     }
1267         
1268     case Qualifiers::OCL_Weak:
1269       CGF.EmitARCDestroyWeak(Ptr);
1270       break;
1271     }
1272   }
1273            
1274   CGF.PopCleanupBlock();
1275 }
1276
1277 namespace {
1278   /// Calls the given 'operator delete' on an array of objects.
1279   struct CallArrayDelete : EHScopeStack::Cleanup {
1280     llvm::Value *Ptr;
1281     const FunctionDecl *OperatorDelete;
1282     llvm::Value *NumElements;
1283     QualType ElementType;
1284     CharUnits CookieSize;
1285
1286     CallArrayDelete(llvm::Value *Ptr,
1287                     const FunctionDecl *OperatorDelete,
1288                     llvm::Value *NumElements,
1289                     QualType ElementType,
1290                     CharUnits CookieSize)
1291       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1292         ElementType(ElementType), CookieSize(CookieSize) {}
1293
1294     void Emit(CodeGenFunction &CGF, Flags flags) {
1295       const FunctionProtoType *DeleteFTy =
1296         OperatorDelete->getType()->getAs<FunctionProtoType>();
1297       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1298
1299       CallArgList Args;
1300       
1301       // Pass the pointer as the first argument.
1302       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1303       llvm::Value *DeletePtr
1304         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1305       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1306
1307       // Pass the original requested size as the second argument.
1308       if (DeleteFTy->getNumArgs() == 2) {
1309         QualType size_t = DeleteFTy->getArgType(1);
1310         const llvm::IntegerType *SizeTy
1311           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1312         
1313         CharUnits ElementTypeSize =
1314           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1315
1316         // The size of an element, multiplied by the number of elements.
1317         llvm::Value *Size
1318           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1319         Size = CGF.Builder.CreateMul(Size, NumElements);
1320
1321         // Plus the size of the cookie if applicable.
1322         if (!CookieSize.isZero()) {
1323           llvm::Value *CookieSizeV
1324             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1325           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1326         }
1327
1328         Args.add(RValue::get(Size), size_t);
1329       }
1330
1331       // Emit the call to delete.
1332       CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
1333                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1334                    ReturnValueSlot(), Args, OperatorDelete);
1335     }
1336   };
1337 }
1338
1339 /// Emit the code for deleting an array of objects.
1340 static void EmitArrayDelete(CodeGenFunction &CGF,
1341                             const CXXDeleteExpr *E,
1342                             llvm::Value *deletedPtr,
1343                             QualType elementType) {
1344   llvm::Value *numElements = 0;
1345   llvm::Value *allocatedPtr = 0;
1346   CharUnits cookieSize;
1347   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1348                                       numElements, allocatedPtr, cookieSize);
1349
1350   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1351
1352   // Make sure that we call delete even if one of the dtors throws.
1353   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1354   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1355                                            allocatedPtr, operatorDelete,
1356                                            numElements, elementType,
1357                                            cookieSize);
1358
1359   // Destroy the elements.
1360   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1361     assert(numElements && "no element count for a type with a destructor!");
1362
1363     llvm::Value *arrayEnd =
1364       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1365
1366     // Note that it is legal to allocate a zero-length array, and we
1367     // can never fold the check away because the length should always
1368     // come from a cookie.
1369     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1370                          CGF.getDestroyer(dtorKind),
1371                          /*checkZeroLength*/ true,
1372                          CGF.needsEHCleanup(dtorKind));
1373   }
1374
1375   // Pop the cleanup block.
1376   CGF.PopCleanupBlock();
1377 }
1378
1379 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1380   
1381   // Get at the argument before we performed the implicit conversion
1382   // to void*.
1383   const Expr *Arg = E->getArgument();
1384   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
1385     if (ICE->getCastKind() != CK_UserDefinedConversion &&
1386         ICE->getType()->isVoidPointerType())
1387       Arg = ICE->getSubExpr();
1388     else
1389       break;
1390   }
1391
1392   llvm::Value *Ptr = EmitScalarExpr(Arg);
1393
1394   // Null check the pointer.
1395   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1396   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1397
1398   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1399
1400   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1401   EmitBlock(DeleteNotNull);
1402
1403   // We might be deleting a pointer to array.  If so, GEP down to the
1404   // first non-array element.
1405   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1406   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1407   if (DeleteTy->isConstantArrayType()) {
1408     llvm::Value *Zero = Builder.getInt32(0);
1409     llvm::SmallVector<llvm::Value*,8> GEP;
1410
1411     GEP.push_back(Zero); // point at the outermost array
1412
1413     // For each layer of array type we're pointing at:
1414     while (const ConstantArrayType *Arr
1415              = getContext().getAsConstantArrayType(DeleteTy)) {
1416       // 1. Unpeel the array type.
1417       DeleteTy = Arr->getElementType();
1418
1419       // 2. GEP to the first element of the array.
1420       GEP.push_back(Zero);
1421     }
1422
1423     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
1424   }
1425
1426   assert(ConvertTypeForMem(DeleteTy) ==
1427          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1428
1429   if (E->isArrayForm()) {
1430     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1431   } else {
1432     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1433                      E->isGlobalDelete());
1434   }
1435
1436   EmitBlock(DeleteEnd);
1437 }
1438
1439 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1440   // void __cxa_bad_typeid();
1441   
1442   const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
1443   const llvm::FunctionType *FTy =
1444   llvm::FunctionType::get(VoidTy, false);
1445   
1446   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1447 }
1448
1449 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1450   llvm::Value *Fn = getBadTypeidFn(CGF);
1451   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1452   CGF.Builder.CreateUnreachable();
1453 }
1454
1455 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1456                                          const Expr *E, 
1457                                          const llvm::Type *StdTypeInfoPtrTy) {
1458   // Get the vtable pointer.
1459   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1460
1461   // C++ [expr.typeid]p2:
1462   //   If the glvalue expression is obtained by applying the unary * operator to
1463   //   a pointer and the pointer is a null pointer value, the typeid expression
1464   //   throws the std::bad_typeid exception.
1465   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1466     if (UO->getOpcode() == UO_Deref) {
1467       llvm::BasicBlock *BadTypeidBlock = 
1468         CGF.createBasicBlock("typeid.bad_typeid");
1469       llvm::BasicBlock *EndBlock =
1470         CGF.createBasicBlock("typeid.end");
1471
1472       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1473       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1474
1475       CGF.EmitBlock(BadTypeidBlock);
1476       EmitBadTypeidCall(CGF);
1477       CGF.EmitBlock(EndBlock);
1478     }
1479   }
1480
1481   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 
1482                                         StdTypeInfoPtrTy->getPointerTo());
1483
1484   // Load the type info.
1485   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1486   return CGF.Builder.CreateLoad(Value);
1487 }
1488
1489 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1490   const llvm::Type *StdTypeInfoPtrTy = 
1491     ConvertType(E->getType())->getPointerTo();
1492   
1493   if (E->isTypeOperand()) {
1494     llvm::Constant *TypeInfo = 
1495       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1496     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1497   }
1498
1499   // C++ [expr.typeid]p2:
1500   //   When typeid is applied to a glvalue expression whose type is a
1501   //   polymorphic class type, the result refers to a std::type_info object
1502   //   representing the type of the most derived object (that is, the dynamic
1503   //   type) to which the glvalue refers.
1504   if (E->getExprOperand()->isGLValue()) {
1505     if (const RecordType *RT =
1506           E->getExprOperand()->getType()->getAs<RecordType>()) {
1507       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1508       if (RD->isPolymorphic())
1509         return EmitTypeidFromVTable(*this, E->getExprOperand(), 
1510                                     StdTypeInfoPtrTy);
1511     }
1512   }
1513
1514   QualType OperandTy = E->getExprOperand()->getType();
1515   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1516                                StdTypeInfoPtrTy);
1517 }
1518
1519 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1520   // void *__dynamic_cast(const void *sub,
1521   //                      const abi::__class_type_info *src,
1522   //                      const abi::__class_type_info *dst,
1523   //                      std::ptrdiff_t src2dst_offset);
1524   
1525   llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1526   llvm::Type *PtrDiffTy = 
1527     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1528
1529   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1530   
1531   const llvm::FunctionType *FTy =
1532     llvm::FunctionType::get(Int8PtrTy, Args, false);
1533   
1534   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
1535 }
1536
1537 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1538   // void __cxa_bad_cast();
1539   
1540   const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
1541   const llvm::FunctionType *FTy =
1542     llvm::FunctionType::get(VoidTy, false);
1543   
1544   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1545 }
1546
1547 static void EmitBadCastCall(CodeGenFunction &CGF) {
1548   llvm::Value *Fn = getBadCastFn(CGF);
1549   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1550   CGF.Builder.CreateUnreachable();
1551 }
1552
1553 static llvm::Value *
1554 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1555                     QualType SrcTy, QualType DestTy,
1556                     llvm::BasicBlock *CastEnd) {
1557   const llvm::Type *PtrDiffLTy = 
1558     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1559   const llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1560
1561   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1562     if (PTy->getPointeeType()->isVoidType()) {
1563       // C++ [expr.dynamic.cast]p7:
1564       //   If T is "pointer to cv void," then the result is a pointer to the
1565       //   most derived object pointed to by v.
1566
1567       // Get the vtable pointer.
1568       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1569
1570       // Get the offset-to-top from the vtable.
1571       llvm::Value *OffsetToTop = 
1572         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1573       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1574
1575       // Finally, add the offset to the pointer.
1576       Value = CGF.EmitCastToVoidPtr(Value);
1577       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1578
1579       return CGF.Builder.CreateBitCast(Value, DestLTy);
1580     }
1581   }
1582
1583   QualType SrcRecordTy;
1584   QualType DestRecordTy;
1585   
1586   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1587     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1588     DestRecordTy = DestPTy->getPointeeType();
1589   } else {
1590     SrcRecordTy = SrcTy;
1591     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1592   }
1593
1594   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1595   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1596
1597   llvm::Value *SrcRTTI =
1598     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1599   llvm::Value *DestRTTI =
1600     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1601
1602   // FIXME: Actually compute a hint here.
1603   llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
1604
1605   // Emit the call to __dynamic_cast.
1606   Value = CGF.EmitCastToVoidPtr(Value);
1607   Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1608                                   SrcRTTI, DestRTTI, OffsetHint);
1609   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1610
1611   /// C++ [expr.dynamic.cast]p9:
1612   ///   A failed cast to reference type throws std::bad_cast
1613   if (DestTy->isReferenceType()) {
1614     llvm::BasicBlock *BadCastBlock = 
1615       CGF.createBasicBlock("dynamic_cast.bad_cast");
1616
1617     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1618     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1619
1620     CGF.EmitBlock(BadCastBlock);
1621     EmitBadCastCall(CGF);
1622   }
1623
1624   return Value;
1625 }
1626
1627 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1628                                           QualType DestTy) {
1629   const llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1630   if (DestTy->isPointerType())
1631     return llvm::Constant::getNullValue(DestLTy);
1632
1633   /// C++ [expr.dynamic.cast]p9:
1634   ///   A failed cast to reference type throws std::bad_cast
1635   EmitBadCastCall(CGF);
1636
1637   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1638   return llvm::UndefValue::get(DestLTy);
1639 }
1640
1641 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1642                                               const CXXDynamicCastExpr *DCE) {
1643   QualType DestTy = DCE->getTypeAsWritten();
1644
1645   if (DCE->isAlwaysNull())
1646     return EmitDynamicCastToNull(*this, DestTy);
1647
1648   QualType SrcTy = DCE->getSubExpr()->getType();
1649
1650   // C++ [expr.dynamic.cast]p4: 
1651   //   If the value of v is a null pointer value in the pointer case, the result
1652   //   is the null pointer value of type T.
1653   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1654   
1655   llvm::BasicBlock *CastNull = 0;
1656   llvm::BasicBlock *CastNotNull = 0;
1657   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1658   
1659   if (ShouldNullCheckSrcValue) {
1660     CastNull = createBasicBlock("dynamic_cast.null");
1661     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1662
1663     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1664     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1665     EmitBlock(CastNotNull);
1666   }
1667
1668   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1669
1670   if (ShouldNullCheckSrcValue) {
1671     EmitBranch(CastEnd);
1672
1673     EmitBlock(CastNull);
1674     EmitBranch(CastEnd);
1675   }
1676
1677   EmitBlock(CastEnd);
1678
1679   if (ShouldNullCheckSrcValue) {
1680     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1681     PHI->addIncoming(Value, CastNotNull);
1682     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1683
1684     Value = PHI;
1685   }
1686
1687   return Value;
1688 }