]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp
MFC r234353:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenModule.cpp
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50
51 static const char AnnotationSection[] = "llvm.metadata";
52
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62
63
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)), 
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80       
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104
105   // Enable TBAA unless it's suppressed.
106   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
107     TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(),
108                            ABI.getMangleContext());
109
110   // If debug info or coverage generation is enabled, create the CGDebugInfo
111   // object.
112   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
113       CodeGenOpts.EmitGcovNotes)
114     DebugInfo = new CGDebugInfo(*this);
115
116   Block.GlobalUniqueCount = 0;
117
118   if (C.getLangOpts().ObjCAutoRefCount)
119     ARCData = new ARCEntrypoints();
120   RRData = new RREntrypoints();
121 }
122
123 CodeGenModule::~CodeGenModule() {
124   delete ObjCRuntime;
125   delete OpenCLRuntime;
126   delete CUDARuntime;
127   delete TheTargetCodeGenInfo;
128   delete &ABI;
129   delete TBAA;
130   delete DebugInfo;
131   delete ARCData;
132   delete RRData;
133 }
134
135 void CodeGenModule::createObjCRuntime() {
136   if (!LangOpts.NeXTRuntime)
137     ObjCRuntime = CreateGNUObjCRuntime(*this);
138   else
139     ObjCRuntime = CreateMacObjCRuntime(*this);
140 }
141
142 void CodeGenModule::createOpenCLRuntime() {
143   OpenCLRuntime = new CGOpenCLRuntime(*this);
144 }
145
146 void CodeGenModule::createCUDARuntime() {
147   CUDARuntime = CreateNVCUDARuntime(*this);
148 }
149
150 void CodeGenModule::Release() {
151   EmitDeferred();
152   EmitCXXGlobalInitFunc();
153   EmitCXXGlobalDtorFunc();
154   if (ObjCRuntime)
155     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
156       AddGlobalCtor(ObjCInitFunction);
157   EmitCtorList(GlobalCtors, "llvm.global_ctors");
158   EmitCtorList(GlobalDtors, "llvm.global_dtors");
159   EmitGlobalAnnotations();
160   EmitLLVMUsed();
161
162   SimplifyPersonality();
163
164   if (getCodeGenOpts().EmitDeclMetadata)
165     EmitDeclMetadata();
166
167   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
168     EmitCoverageFile();
169
170   if (DebugInfo)
171     DebugInfo->finalize();
172 }
173
174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
175   // Make sure that this type is translated.
176   Types.UpdateCompletedType(TD);
177 }
178
179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
180   if (!TBAA)
181     return 0;
182   return TBAA->getTBAAInfo(QTy);
183 }
184
185 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
186   if (!TBAA)
187     return 0;
188   return TBAA->getTBAAInfoForVTablePtr();
189 }
190
191 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
192                                         llvm::MDNode *TBAAInfo) {
193   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
194 }
195
196 bool CodeGenModule::isTargetDarwin() const {
197   return getContext().getTargetInfo().getTriple().isOSDarwin();
198 }
199
200 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
201   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
202   getDiags().Report(Context.getFullLoc(loc), diagID);
203 }
204
205 /// ErrorUnsupported - Print out an error that codegen doesn't support the
206 /// specified stmt yet.
207 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
208                                      bool OmitOnError) {
209   if (OmitOnError && getDiags().hasErrorOccurred())
210     return;
211   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
212                                                "cannot compile this %0 yet");
213   std::string Msg = Type;
214   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
215     << Msg << S->getSourceRange();
216 }
217
218 /// ErrorUnsupported - Print out an error that codegen doesn't support the
219 /// specified decl yet.
220 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
221                                      bool OmitOnError) {
222   if (OmitOnError && getDiags().hasErrorOccurred())
223     return;
224   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
225                                                "cannot compile this %0 yet");
226   std::string Msg = Type;
227   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
228 }
229
230 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
231   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
232 }
233
234 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
235                                         const NamedDecl *D) const {
236   // Internal definitions always have default visibility.
237   if (GV->hasLocalLinkage()) {
238     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
239     return;
240   }
241
242   // Set visibility for definitions.
243   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
244   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
245     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
246 }
247
248 /// Set the symbol visibility of type information (vtable and RTTI)
249 /// associated with the given type.
250 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
251                                       const CXXRecordDecl *RD,
252                                       TypeVisibilityKind TVK) const {
253   setGlobalVisibility(GV, RD);
254
255   if (!CodeGenOpts.HiddenWeakVTables)
256     return;
257
258   // We never want to drop the visibility for RTTI names.
259   if (TVK == TVK_ForRTTIName)
260     return;
261
262   // We want to drop the visibility to hidden for weak type symbols.
263   // This isn't possible if there might be unresolved references
264   // elsewhere that rely on this symbol being visible.
265
266   // This should be kept roughly in sync with setThunkVisibility
267   // in CGVTables.cpp.
268
269   // Preconditions.
270   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
271       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
272     return;
273
274   // Don't override an explicit visibility attribute.
275   if (RD->getExplicitVisibility())
276     return;
277
278   switch (RD->getTemplateSpecializationKind()) {
279   // We have to disable the optimization if this is an EI definition
280   // because there might be EI declarations in other shared objects.
281   case TSK_ExplicitInstantiationDefinition:
282   case TSK_ExplicitInstantiationDeclaration:
283     return;
284
285   // Every use of a non-template class's type information has to emit it.
286   case TSK_Undeclared:
287     break;
288
289   // In theory, implicit instantiations can ignore the possibility of
290   // an explicit instantiation declaration because there necessarily
291   // must be an EI definition somewhere with default visibility.  In
292   // practice, it's possible to have an explicit instantiation for
293   // an arbitrary template class, and linkers aren't necessarily able
294   // to deal with mixed-visibility symbols.
295   case TSK_ExplicitSpecialization:
296   case TSK_ImplicitInstantiation:
297     if (!CodeGenOpts.HiddenWeakTemplateVTables)
298       return;
299     break;
300   }
301
302   // If there's a key function, there may be translation units
303   // that don't have the key function's definition.  But ignore
304   // this if we're emitting RTTI under -fno-rtti.
305   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
306     if (Context.getKeyFunction(RD))
307       return;
308   }
309
310   // Otherwise, drop the visibility to hidden.
311   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
312   GV->setUnnamedAddr(true);
313 }
314
315 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
316   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
317
318   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
319   if (!Str.empty())
320     return Str;
321
322   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
323     IdentifierInfo *II = ND->getIdentifier();
324     assert(II && "Attempt to mangle unnamed decl.");
325
326     Str = II->getName();
327     return Str;
328   }
329   
330   SmallString<256> Buffer;
331   llvm::raw_svector_ostream Out(Buffer);
332   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
333     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
334   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
335     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
336   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
337     getCXXABI().getMangleContext().mangleBlock(BD, Out);
338   else
339     getCXXABI().getMangleContext().mangleName(ND, Out);
340
341   // Allocate space for the mangled name.
342   Out.flush();
343   size_t Length = Buffer.size();
344   char *Name = MangledNamesAllocator.Allocate<char>(Length);
345   std::copy(Buffer.begin(), Buffer.end(), Name);
346   
347   Str = StringRef(Name, Length);
348   
349   return Str;
350 }
351
352 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
353                                         const BlockDecl *BD) {
354   MangleContext &MangleCtx = getCXXABI().getMangleContext();
355   const Decl *D = GD.getDecl();
356   llvm::raw_svector_ostream Out(Buffer.getBuffer());
357   if (D == 0)
358     MangleCtx.mangleGlobalBlock(BD, Out);
359   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
360     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
361   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
362     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
363   else
364     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
365 }
366
367 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
368   return getModule().getNamedValue(Name);
369 }
370
371 /// AddGlobalCtor - Add a function to the list that will be called before
372 /// main() runs.
373 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
374   // FIXME: Type coercion of void()* types.
375   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
376 }
377
378 /// AddGlobalDtor - Add a function to the list that will be called
379 /// when the module is unloaded.
380 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
381   // FIXME: Type coercion of void()* types.
382   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
383 }
384
385 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
386   // Ctor function type is void()*.
387   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
388   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
389
390   // Get the type of a ctor entry, { i32, void ()* }.
391   llvm::StructType *CtorStructTy =
392     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
393
394   // Construct the constructor and destructor arrays.
395   SmallVector<llvm::Constant*, 8> Ctors;
396   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
397     llvm::Constant *S[] = {
398       llvm::ConstantInt::get(Int32Ty, I->second, false),
399       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
400     };
401     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
402   }
403
404   if (!Ctors.empty()) {
405     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
406     new llvm::GlobalVariable(TheModule, AT, false,
407                              llvm::GlobalValue::AppendingLinkage,
408                              llvm::ConstantArray::get(AT, Ctors),
409                              GlobalName);
410   }
411 }
412
413 llvm::GlobalValue::LinkageTypes
414 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
415   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
416
417   if (Linkage == GVA_Internal)
418     return llvm::Function::InternalLinkage;
419   
420   if (D->hasAttr<DLLExportAttr>())
421     return llvm::Function::DLLExportLinkage;
422   
423   if (D->hasAttr<WeakAttr>())
424     return llvm::Function::WeakAnyLinkage;
425   
426   // In C99 mode, 'inline' functions are guaranteed to have a strong
427   // definition somewhere else, so we can use available_externally linkage.
428   if (Linkage == GVA_C99Inline)
429     return llvm::Function::AvailableExternallyLinkage;
430
431   // Note that Apple's kernel linker doesn't support symbol
432   // coalescing, so we need to avoid linkonce and weak linkages there.
433   // Normally, this means we just map to internal, but for explicit
434   // instantiations we'll map to external.
435
436   // In C++, the compiler has to emit a definition in every translation unit
437   // that references the function.  We should use linkonce_odr because
438   // a) if all references in this translation unit are optimized away, we
439   // don't need to codegen it.  b) if the function persists, it needs to be
440   // merged with other definitions. c) C++ has the ODR, so we know the
441   // definition is dependable.
442   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
443     return !Context.getLangOpts().AppleKext 
444              ? llvm::Function::LinkOnceODRLinkage 
445              : llvm::Function::InternalLinkage;
446   
447   // An explicit instantiation of a template has weak linkage, since
448   // explicit instantiations can occur in multiple translation units
449   // and must all be equivalent. However, we are not allowed to
450   // throw away these explicit instantiations.
451   if (Linkage == GVA_ExplicitTemplateInstantiation)
452     return !Context.getLangOpts().AppleKext
453              ? llvm::Function::WeakODRLinkage
454              : llvm::Function::ExternalLinkage;
455   
456   // Otherwise, we have strong external linkage.
457   assert(Linkage == GVA_StrongExternal);
458   return llvm::Function::ExternalLinkage;
459 }
460
461
462 /// SetFunctionDefinitionAttributes - Set attributes for a global.
463 ///
464 /// FIXME: This is currently only done for aliases and functions, but not for
465 /// variables (these details are set in EmitGlobalVarDefinition for variables).
466 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
467                                                     llvm::GlobalValue *GV) {
468   SetCommonAttributes(D, GV);
469 }
470
471 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
472                                               const CGFunctionInfo &Info,
473                                               llvm::Function *F) {
474   unsigned CallingConv;
475   AttributeListType AttributeList;
476   ConstructAttributeList(Info, D, AttributeList, CallingConv);
477   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
478                                           AttributeList.size()));
479   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
480 }
481
482 /// Determines whether the language options require us to model
483 /// unwind exceptions.  We treat -fexceptions as mandating this
484 /// except under the fragile ObjC ABI with only ObjC exceptions
485 /// enabled.  This means, for example, that C with -fexceptions
486 /// enables this.
487 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
488   // If exceptions are completely disabled, obviously this is false.
489   if (!LangOpts.Exceptions) return false;
490
491   // If C++ exceptions are enabled, this is true.
492   if (LangOpts.CXXExceptions) return true;
493
494   // If ObjC exceptions are enabled, this depends on the ABI.
495   if (LangOpts.ObjCExceptions) {
496     if (!LangOpts.ObjCNonFragileABI) return false;
497   }
498
499   return true;
500 }
501
502 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
503                                                            llvm::Function *F) {
504   if (CodeGenOpts.UnwindTables)
505     F->setHasUWTable();
506
507   if (!hasUnwindExceptions(LangOpts))
508     F->addFnAttr(llvm::Attribute::NoUnwind);
509
510   if (D->hasAttr<NakedAttr>()) {
511     // Naked implies noinline: we should not be inlining such functions.
512     F->addFnAttr(llvm::Attribute::Naked);
513     F->addFnAttr(llvm::Attribute::NoInline);
514   }
515
516   if (D->hasAttr<NoInlineAttr>())
517     F->addFnAttr(llvm::Attribute::NoInline);
518
519   // (noinline wins over always_inline, and we can't specify both in IR)
520   if (D->hasAttr<AlwaysInlineAttr>() &&
521       !F->hasFnAttr(llvm::Attribute::NoInline))
522     F->addFnAttr(llvm::Attribute::AlwaysInline);
523
524   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
525     F->setUnnamedAddr(true);
526
527   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
528     F->addFnAttr(llvm::Attribute::StackProtect);
529   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
530     F->addFnAttr(llvm::Attribute::StackProtectReq);
531   
532   if (LangOpts.AddressSanitizer) {
533     // When AddressSanitizer is enabled, set AddressSafety attribute
534     // unless __attribute__((no_address_safety_analysis)) is used.
535     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
536       F->addFnAttr(llvm::Attribute::AddressSafety);
537   }
538
539   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
540   if (alignment)
541     F->setAlignment(alignment);
542
543   // C++ ABI requires 2-byte alignment for member functions.
544   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
545     F->setAlignment(2);
546 }
547
548 void CodeGenModule::SetCommonAttributes(const Decl *D,
549                                         llvm::GlobalValue *GV) {
550   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
551     setGlobalVisibility(GV, ND);
552   else
553     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
554
555   if (D->hasAttr<UsedAttr>())
556     AddUsedGlobal(GV);
557
558   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
559     GV->setSection(SA->getName());
560
561   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
562 }
563
564 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
565                                                   llvm::Function *F,
566                                                   const CGFunctionInfo &FI) {
567   SetLLVMFunctionAttributes(D, FI, F);
568   SetLLVMFunctionAttributesForDefinition(D, F);
569
570   F->setLinkage(llvm::Function::InternalLinkage);
571
572   SetCommonAttributes(D, F);
573 }
574
575 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
576                                           llvm::Function *F,
577                                           bool IsIncompleteFunction) {
578   if (unsigned IID = F->getIntrinsicID()) {
579     // If this is an intrinsic function, set the function's attributes
580     // to the intrinsic's attributes.
581     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
582     return;
583   }
584
585   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
586
587   if (!IsIncompleteFunction)
588     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
589
590   // Only a few attributes are set on declarations; these may later be
591   // overridden by a definition.
592
593   if (FD->hasAttr<DLLImportAttr>()) {
594     F->setLinkage(llvm::Function::DLLImportLinkage);
595   } else if (FD->hasAttr<WeakAttr>() ||
596              FD->isWeakImported()) {
597     // "extern_weak" is overloaded in LLVM; we probably should have
598     // separate linkage types for this.
599     F->setLinkage(llvm::Function::ExternalWeakLinkage);
600   } else {
601     F->setLinkage(llvm::Function::ExternalLinkage);
602
603     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
604     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
605       F->setVisibility(GetLLVMVisibility(LV.visibility()));
606     }
607   }
608
609   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
610     F->setSection(SA->getName());
611 }
612
613 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
614   assert(!GV->isDeclaration() &&
615          "Only globals with definition can force usage.");
616   LLVMUsed.push_back(GV);
617 }
618
619 void CodeGenModule::EmitLLVMUsed() {
620   // Don't create llvm.used if there is no need.
621   if (LLVMUsed.empty())
622     return;
623
624   // Convert LLVMUsed to what ConstantArray needs.
625   SmallVector<llvm::Constant*, 8> UsedArray;
626   UsedArray.resize(LLVMUsed.size());
627   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
628     UsedArray[i] =
629      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
630                                     Int8PtrTy);
631   }
632
633   if (UsedArray.empty())
634     return;
635   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
636
637   llvm::GlobalVariable *GV =
638     new llvm::GlobalVariable(getModule(), ATy, false,
639                              llvm::GlobalValue::AppendingLinkage,
640                              llvm::ConstantArray::get(ATy, UsedArray),
641                              "llvm.used");
642
643   GV->setSection("llvm.metadata");
644 }
645
646 void CodeGenModule::EmitDeferred() {
647   // Emit code for any potentially referenced deferred decls.  Since a
648   // previously unused static decl may become used during the generation of code
649   // for a static function, iterate until no changes are made.
650
651   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
652     if (!DeferredVTables.empty()) {
653       const CXXRecordDecl *RD = DeferredVTables.back();
654       DeferredVTables.pop_back();
655       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
656       continue;
657     }
658
659     GlobalDecl D = DeferredDeclsToEmit.back();
660     DeferredDeclsToEmit.pop_back();
661
662     // Check to see if we've already emitted this.  This is necessary
663     // for a couple of reasons: first, decls can end up in the
664     // deferred-decls queue multiple times, and second, decls can end
665     // up with definitions in unusual ways (e.g. by an extern inline
666     // function acquiring a strong function redefinition).  Just
667     // ignore these cases.
668     //
669     // TODO: That said, looking this up multiple times is very wasteful.
670     StringRef Name = getMangledName(D);
671     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
672     assert(CGRef && "Deferred decl wasn't referenced?");
673
674     if (!CGRef->isDeclaration())
675       continue;
676
677     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
678     // purposes an alias counts as a definition.
679     if (isa<llvm::GlobalAlias>(CGRef))
680       continue;
681
682     // Otherwise, emit the definition and move on to the next one.
683     EmitGlobalDefinition(D);
684   }
685 }
686
687 void CodeGenModule::EmitGlobalAnnotations() {
688   if (Annotations.empty())
689     return;
690
691   // Create a new global variable for the ConstantStruct in the Module.
692   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
693     Annotations[0]->getType(), Annotations.size()), Annotations);
694   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
695     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
696     "llvm.global.annotations");
697   gv->setSection(AnnotationSection);
698 }
699
700 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
701   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
702   if (i != AnnotationStrings.end())
703     return i->second;
704
705   // Not found yet, create a new global.
706   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
707   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
708     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
709   gv->setSection(AnnotationSection);
710   gv->setUnnamedAddr(true);
711   AnnotationStrings[Str] = gv;
712   return gv;
713 }
714
715 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
716   SourceManager &SM = getContext().getSourceManager();
717   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
718   if (PLoc.isValid())
719     return EmitAnnotationString(PLoc.getFilename());
720   return EmitAnnotationString(SM.getBufferName(Loc));
721 }
722
723 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
724   SourceManager &SM = getContext().getSourceManager();
725   PresumedLoc PLoc = SM.getPresumedLoc(L);
726   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
727     SM.getExpansionLineNumber(L);
728   return llvm::ConstantInt::get(Int32Ty, LineNo);
729 }
730
731 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
732                                                 const AnnotateAttr *AA,
733                                                 SourceLocation L) {
734   // Get the globals for file name, annotation, and the line number.
735   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
736                  *UnitGV = EmitAnnotationUnit(L),
737                  *LineNoCst = EmitAnnotationLineNo(L);
738
739   // Create the ConstantStruct for the global annotation.
740   llvm::Constant *Fields[4] = {
741     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
742     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
743     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
744     LineNoCst
745   };
746   return llvm::ConstantStruct::getAnon(Fields);
747 }
748
749 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
750                                          llvm::GlobalValue *GV) {
751   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
752   // Get the struct elements for these annotations.
753   for (specific_attr_iterator<AnnotateAttr>
754        ai = D->specific_attr_begin<AnnotateAttr>(),
755        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
756     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
757 }
758
759 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
760   // Never defer when EmitAllDecls is specified.
761   if (LangOpts.EmitAllDecls)
762     return false;
763
764   return !getContext().DeclMustBeEmitted(Global);
765 }
766
767 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
768   const AliasAttr *AA = VD->getAttr<AliasAttr>();
769   assert(AA && "No alias?");
770
771   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
772
773   // See if there is already something with the target's name in the module.
774   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
775
776   llvm::Constant *Aliasee;
777   if (isa<llvm::FunctionType>(DeclTy))
778     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
779                                       /*ForVTable=*/false);
780   else
781     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
782                                     llvm::PointerType::getUnqual(DeclTy), 0);
783   if (!Entry) {
784     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
785     F->setLinkage(llvm::Function::ExternalWeakLinkage);    
786     WeakRefReferences.insert(F);
787   }
788
789   return Aliasee;
790 }
791
792 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
793   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
794
795   // Weak references don't produce any output by themselves.
796   if (Global->hasAttr<WeakRefAttr>())
797     return;
798
799   // If this is an alias definition (which otherwise looks like a declaration)
800   // emit it now.
801   if (Global->hasAttr<AliasAttr>())
802     return EmitAliasDefinition(GD);
803
804   // If this is CUDA, be selective about which declarations we emit.
805   if (LangOpts.CUDA) {
806     if (CodeGenOpts.CUDAIsDevice) {
807       if (!Global->hasAttr<CUDADeviceAttr>() &&
808           !Global->hasAttr<CUDAGlobalAttr>() &&
809           !Global->hasAttr<CUDAConstantAttr>() &&
810           !Global->hasAttr<CUDASharedAttr>())
811         return;
812     } else {
813       if (!Global->hasAttr<CUDAHostAttr>() && (
814             Global->hasAttr<CUDADeviceAttr>() ||
815             Global->hasAttr<CUDAConstantAttr>() ||
816             Global->hasAttr<CUDASharedAttr>()))
817         return;
818     }
819   }
820
821   // Ignore declarations, they will be emitted on their first use.
822   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
823     // Forward declarations are emitted lazily on first use.
824     if (!FD->doesThisDeclarationHaveABody()) {
825       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
826         return;
827
828       const FunctionDecl *InlineDefinition = 0;
829       FD->getBody(InlineDefinition);
830
831       StringRef MangledName = getMangledName(GD);
832       DeferredDecls.erase(MangledName);
833       EmitGlobalDefinition(InlineDefinition);
834       return;
835     }
836   } else {
837     const VarDecl *VD = cast<VarDecl>(Global);
838     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
839
840     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
841       return;
842   }
843
844   // Defer code generation when possible if this is a static definition, inline
845   // function etc.  These we only want to emit if they are used.
846   if (!MayDeferGeneration(Global)) {
847     // Emit the definition if it can't be deferred.
848     EmitGlobalDefinition(GD);
849     return;
850   }
851
852   // If we're deferring emission of a C++ variable with an
853   // initializer, remember the order in which it appeared in the file.
854   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
855       cast<VarDecl>(Global)->hasInit()) {
856     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
857     CXXGlobalInits.push_back(0);
858   }
859   
860   // If the value has already been used, add it directly to the
861   // DeferredDeclsToEmit list.
862   StringRef MangledName = getMangledName(GD);
863   if (GetGlobalValue(MangledName))
864     DeferredDeclsToEmit.push_back(GD);
865   else {
866     // Otherwise, remember that we saw a deferred decl with this name.  The
867     // first use of the mangled name will cause it to move into
868     // DeferredDeclsToEmit.
869     DeferredDecls[MangledName] = GD;
870   }
871 }
872
873 namespace {
874   struct FunctionIsDirectlyRecursive :
875     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
876     const StringRef Name;
877     const Builtin::Context &BI;
878     bool Result;
879     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
880       Name(N), BI(C), Result(false) {
881     }
882     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
883
884     bool TraverseCallExpr(CallExpr *E) {
885       const FunctionDecl *FD = E->getDirectCallee();
886       if (!FD)
887         return true;
888       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
889       if (Attr && Name == Attr->getLabel()) {
890         Result = true;
891         return false;
892       }
893       unsigned BuiltinID = FD->getBuiltinID();
894       if (!BuiltinID)
895         return true;
896       StringRef BuiltinName = BI.GetName(BuiltinID);
897       if (BuiltinName.startswith("__builtin_") &&
898           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
899         Result = true;
900         return false;
901       }
902       return true;
903     }
904   };
905 }
906
907 // isTriviallyRecursive - Check if this function calls another
908 // decl that, because of the asm attribute or the other decl being a builtin,
909 // ends up pointing to itself.
910 bool
911 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
912   StringRef Name;
913   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
914     // asm labels are a special kind of mangling we have to support.
915     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
916     if (!Attr)
917       return false;
918     Name = Attr->getLabel();
919   } else {
920     Name = FD->getName();
921   }
922
923   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
924   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
925   return Walker.Result;
926 }
927
928 bool
929 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
930   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
931     return true;
932   if (CodeGenOpts.OptimizationLevel == 0 &&
933       !F->hasAttr<AlwaysInlineAttr>())
934     return false;
935   // PR9614. Avoid cases where the source code is lying to us. An available
936   // externally function should have an equivalent function somewhere else,
937   // but a function that calls itself is clearly not equivalent to the real
938   // implementation.
939   // This happens in glibc's btowc and in some configure checks.
940   return !isTriviallyRecursive(F);
941 }
942
943 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
944   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
945
946   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 
947                                  Context.getSourceManager(),
948                                  "Generating code for declaration");
949   
950   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
951     // At -O0, don't generate IR for functions with available_externally 
952     // linkage.
953     if (!shouldEmitFunction(Function))
954       return;
955
956     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
957       // Make sure to emit the definition(s) before we emit the thunks.
958       // This is necessary for the generation of certain thunks.
959       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
960         EmitCXXConstructor(CD, GD.getCtorType());
961       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
962         EmitCXXDestructor(DD, GD.getDtorType());
963       else
964         EmitGlobalFunctionDefinition(GD);
965
966       if (Method->isVirtual())
967         getVTables().EmitThunks(GD);
968
969       return;
970     }
971
972     return EmitGlobalFunctionDefinition(GD);
973   }
974   
975   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
976     return EmitGlobalVarDefinition(VD);
977   
978   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
979 }
980
981 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
982 /// module, create and return an llvm Function with the specified type. If there
983 /// is something in the module with the specified name, return it potentially
984 /// bitcasted to the right type.
985 ///
986 /// If D is non-null, it specifies a decl that correspond to this.  This is used
987 /// to set the attributes on the function when it is first created.
988 llvm::Constant *
989 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
990                                        llvm::Type *Ty,
991                                        GlobalDecl D, bool ForVTable,
992                                        llvm::Attributes ExtraAttrs) {
993   // Lookup the entry, lazily creating it if necessary.
994   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
995   if (Entry) {
996     if (WeakRefReferences.count(Entry)) {
997       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
998       if (FD && !FD->hasAttr<WeakAttr>())
999         Entry->setLinkage(llvm::Function::ExternalLinkage);
1000
1001       WeakRefReferences.erase(Entry);
1002     }
1003
1004     if (Entry->getType()->getElementType() == Ty)
1005       return Entry;
1006
1007     // Make sure the result is of the correct type.
1008     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1009   }
1010
1011   // This function doesn't have a complete type (for example, the return
1012   // type is an incomplete struct). Use a fake type instead, and make
1013   // sure not to try to set attributes.
1014   bool IsIncompleteFunction = false;
1015
1016   llvm::FunctionType *FTy;
1017   if (isa<llvm::FunctionType>(Ty)) {
1018     FTy = cast<llvm::FunctionType>(Ty);
1019   } else {
1020     FTy = llvm::FunctionType::get(VoidTy, false);
1021     IsIncompleteFunction = true;
1022   }
1023   
1024   llvm::Function *F = llvm::Function::Create(FTy,
1025                                              llvm::Function::ExternalLinkage,
1026                                              MangledName, &getModule());
1027   assert(F->getName() == MangledName && "name was uniqued!");
1028   if (D.getDecl())
1029     SetFunctionAttributes(D, F, IsIncompleteFunction);
1030   if (ExtraAttrs != llvm::Attribute::None)
1031     F->addFnAttr(ExtraAttrs);
1032
1033   // This is the first use or definition of a mangled name.  If there is a
1034   // deferred decl with this name, remember that we need to emit it at the end
1035   // of the file.
1036   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1037   if (DDI != DeferredDecls.end()) {
1038     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1039     // list, and remove it from DeferredDecls (since we don't need it anymore).
1040     DeferredDeclsToEmit.push_back(DDI->second);
1041     DeferredDecls.erase(DDI);
1042
1043   // Otherwise, there are cases we have to worry about where we're
1044   // using a declaration for which we must emit a definition but where
1045   // we might not find a top-level definition:
1046   //   - member functions defined inline in their classes
1047   //   - friend functions defined inline in some class
1048   //   - special member functions with implicit definitions
1049   // If we ever change our AST traversal to walk into class methods,
1050   // this will be unnecessary.
1051   //
1052   // We also don't emit a definition for a function if it's going to be an entry
1053   // in a vtable, unless it's already marked as used.
1054   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1055     // Look for a declaration that's lexically in a record.
1056     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1057     do {
1058       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1059         if (FD->isImplicit() && !ForVTable) {
1060           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1061           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1062           break;
1063         } else if (FD->doesThisDeclarationHaveABody()) {
1064           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1065           break;
1066         }
1067       }
1068       FD = FD->getPreviousDecl();
1069     } while (FD);
1070   }
1071
1072   // Make sure the result is of the requested type.
1073   if (!IsIncompleteFunction) {
1074     assert(F->getType()->getElementType() == Ty);
1075     return F;
1076   }
1077
1078   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1079   return llvm::ConstantExpr::getBitCast(F, PTy);
1080 }
1081
1082 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1083 /// non-null, then this function will use the specified type if it has to
1084 /// create it (this occurs when we see a definition of the function).
1085 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1086                                                  llvm::Type *Ty,
1087                                                  bool ForVTable) {
1088   // If there was no specific requested type, just convert it now.
1089   if (!Ty)
1090     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1091   
1092   StringRef MangledName = getMangledName(GD);
1093   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1094 }
1095
1096 /// CreateRuntimeFunction - Create a new runtime function with the specified
1097 /// type and name.
1098 llvm::Constant *
1099 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1100                                      StringRef Name,
1101                                      llvm::Attributes ExtraAttrs) {
1102   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1103                                  ExtraAttrs);
1104 }
1105
1106 /// isTypeConstant - Determine whether an object of this type can be emitted
1107 /// as a constant.
1108 ///
1109 /// If ExcludeCtor is true, the duration when the object's constructor runs
1110 /// will not be considered. The caller will need to verify that the object is
1111 /// not written to during its construction.
1112 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1113   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1114     return false;
1115
1116   if (Context.getLangOpts().CPlusPlus) {
1117     if (const CXXRecordDecl *Record
1118           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1119       return ExcludeCtor && !Record->hasMutableFields() &&
1120              Record->hasTrivialDestructor();
1121   }
1122
1123   return true;
1124 }
1125
1126 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1127 /// create and return an llvm GlobalVariable with the specified type.  If there
1128 /// is something in the module with the specified name, return it potentially
1129 /// bitcasted to the right type.
1130 ///
1131 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1132 /// to set the attributes on the global when it is first created.
1133 llvm::Constant *
1134 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1135                                      llvm::PointerType *Ty,
1136                                      const VarDecl *D,
1137                                      bool UnnamedAddr) {
1138   // Lookup the entry, lazily creating it if necessary.
1139   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1140   if (Entry) {
1141     if (WeakRefReferences.count(Entry)) {
1142       if (D && !D->hasAttr<WeakAttr>())
1143         Entry->setLinkage(llvm::Function::ExternalLinkage);
1144
1145       WeakRefReferences.erase(Entry);
1146     }
1147
1148     if (UnnamedAddr)
1149       Entry->setUnnamedAddr(true);
1150
1151     if (Entry->getType() == Ty)
1152       return Entry;
1153
1154     // Make sure the result is of the correct type.
1155     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1156   }
1157
1158   // This is the first use or definition of a mangled name.  If there is a
1159   // deferred decl with this name, remember that we need to emit it at the end
1160   // of the file.
1161   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1162   if (DDI != DeferredDecls.end()) {
1163     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1164     // list, and remove it from DeferredDecls (since we don't need it anymore).
1165     DeferredDeclsToEmit.push_back(DDI->second);
1166     DeferredDecls.erase(DDI);
1167   }
1168
1169   llvm::GlobalVariable *GV =
1170     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1171                              llvm::GlobalValue::ExternalLinkage,
1172                              0, MangledName, 0,
1173                              false, Ty->getAddressSpace());
1174
1175   // Handle things which are present even on external declarations.
1176   if (D) {
1177     // FIXME: This code is overly simple and should be merged with other global
1178     // handling.
1179     GV->setConstant(isTypeConstant(D->getType(), false));
1180
1181     // Set linkage and visibility in case we never see a definition.
1182     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1183     if (LV.linkage() != ExternalLinkage) {
1184       // Don't set internal linkage on declarations.
1185     } else {
1186       if (D->hasAttr<DLLImportAttr>())
1187         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1188       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1189         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1190
1191       // Set visibility on a declaration only if it's explicit.
1192       if (LV.visibilityExplicit())
1193         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1194     }
1195
1196     GV->setThreadLocal(D->isThreadSpecified());
1197   }
1198
1199   return GV;
1200 }
1201
1202
1203 llvm::GlobalVariable *
1204 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 
1205                                       llvm::Type *Ty,
1206                                       llvm::GlobalValue::LinkageTypes Linkage) {
1207   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1208   llvm::GlobalVariable *OldGV = 0;
1209
1210   
1211   if (GV) {
1212     // Check if the variable has the right type.
1213     if (GV->getType()->getElementType() == Ty)
1214       return GV;
1215
1216     // Because C++ name mangling, the only way we can end up with an already
1217     // existing global with the same name is if it has been declared extern "C".
1218       assert(GV->isDeclaration() && "Declaration has wrong type!");
1219     OldGV = GV;
1220   }
1221   
1222   // Create a new variable.
1223   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1224                                 Linkage, 0, Name);
1225   
1226   if (OldGV) {
1227     // Replace occurrences of the old variable if needed.
1228     GV->takeName(OldGV);
1229     
1230     if (!OldGV->use_empty()) {
1231       llvm::Constant *NewPtrForOldDecl =
1232       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1233       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1234     }
1235     
1236     OldGV->eraseFromParent();
1237   }
1238   
1239   return GV;
1240 }
1241
1242 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1243 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1244 /// then it will be created with the specified type instead of whatever the
1245 /// normal requested type would be.
1246 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1247                                                   llvm::Type *Ty) {
1248   assert(D->hasGlobalStorage() && "Not a global variable");
1249   QualType ASTTy = D->getType();
1250   if (Ty == 0)
1251     Ty = getTypes().ConvertTypeForMem(ASTTy);
1252
1253   llvm::PointerType *PTy =
1254     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1255
1256   StringRef MangledName = getMangledName(D);
1257   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1258 }
1259
1260 /// CreateRuntimeVariable - Create a new runtime global variable with the
1261 /// specified type and name.
1262 llvm::Constant *
1263 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1264                                      StringRef Name) {
1265   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1266                                true);
1267 }
1268
1269 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1270   assert(!D->getInit() && "Cannot emit definite definitions here!");
1271
1272   if (MayDeferGeneration(D)) {
1273     // If we have not seen a reference to this variable yet, place it
1274     // into the deferred declarations table to be emitted if needed
1275     // later.
1276     StringRef MangledName = getMangledName(D);
1277     if (!GetGlobalValue(MangledName)) {
1278       DeferredDecls[MangledName] = D;
1279       return;
1280     }
1281   }
1282
1283   // The tentative definition is the only definition.
1284   EmitGlobalVarDefinition(D);
1285 }
1286
1287 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1288   if (DefinitionRequired)
1289     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1290 }
1291
1292 llvm::GlobalVariable::LinkageTypes 
1293 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1294   if (RD->getLinkage() != ExternalLinkage)
1295     return llvm::GlobalVariable::InternalLinkage;
1296
1297   if (const CXXMethodDecl *KeyFunction
1298                                     = RD->getASTContext().getKeyFunction(RD)) {
1299     // If this class has a key function, use that to determine the linkage of
1300     // the vtable.
1301     const FunctionDecl *Def = 0;
1302     if (KeyFunction->hasBody(Def))
1303       KeyFunction = cast<CXXMethodDecl>(Def);
1304     
1305     switch (KeyFunction->getTemplateSpecializationKind()) {
1306       case TSK_Undeclared:
1307       case TSK_ExplicitSpecialization:
1308         // When compiling with optimizations turned on, we emit all vtables,
1309         // even if the key function is not defined in the current translation
1310         // unit. If this is the case, use available_externally linkage.
1311         if (!Def && CodeGenOpts.OptimizationLevel)
1312           return llvm::GlobalVariable::AvailableExternallyLinkage;
1313
1314         if (KeyFunction->isInlined())
1315           return !Context.getLangOpts().AppleKext ?
1316                    llvm::GlobalVariable::LinkOnceODRLinkage :
1317                    llvm::Function::InternalLinkage;
1318         
1319         return llvm::GlobalVariable::ExternalLinkage;
1320         
1321       case TSK_ImplicitInstantiation:
1322         return !Context.getLangOpts().AppleKext ?
1323                  llvm::GlobalVariable::LinkOnceODRLinkage :
1324                  llvm::Function::InternalLinkage;
1325
1326       case TSK_ExplicitInstantiationDefinition:
1327         return !Context.getLangOpts().AppleKext ?
1328                  llvm::GlobalVariable::WeakODRLinkage :
1329                  llvm::Function::InternalLinkage;
1330   
1331       case TSK_ExplicitInstantiationDeclaration:
1332         // FIXME: Use available_externally linkage. However, this currently
1333         // breaks LLVM's build due to undefined symbols.
1334         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1335         return !Context.getLangOpts().AppleKext ?
1336                  llvm::GlobalVariable::LinkOnceODRLinkage :
1337                  llvm::Function::InternalLinkage;
1338     }
1339   }
1340   
1341   if (Context.getLangOpts().AppleKext)
1342     return llvm::Function::InternalLinkage;
1343   
1344   switch (RD->getTemplateSpecializationKind()) {
1345   case TSK_Undeclared:
1346   case TSK_ExplicitSpecialization:
1347   case TSK_ImplicitInstantiation:
1348     // FIXME: Use available_externally linkage. However, this currently
1349     // breaks LLVM's build due to undefined symbols.
1350     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1351   case TSK_ExplicitInstantiationDeclaration:
1352     return llvm::GlobalVariable::LinkOnceODRLinkage;
1353
1354   case TSK_ExplicitInstantiationDefinition:
1355       return llvm::GlobalVariable::WeakODRLinkage;
1356   }
1357
1358   llvm_unreachable("Invalid TemplateSpecializationKind!");
1359 }
1360
1361 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1362     return Context.toCharUnitsFromBits(
1363       TheTargetData.getTypeStoreSizeInBits(Ty));
1364 }
1365
1366 llvm::Constant *
1367 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1368                                                        const Expr *rawInit) {
1369   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1370   if (const ExprWithCleanups *withCleanups =
1371           dyn_cast<ExprWithCleanups>(rawInit)) {
1372     cleanups = withCleanups->getObjects();
1373     rawInit = withCleanups->getSubExpr();
1374   }
1375
1376   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1377   if (!init || !init->initializesStdInitializerList() ||
1378       init->getNumInits() == 0)
1379     return 0;
1380
1381   ASTContext &ctx = getContext();
1382   unsigned numInits = init->getNumInits();
1383   // FIXME: This check is here because we would otherwise silently miscompile
1384   // nested global std::initializer_lists. Better would be to have a real
1385   // implementation.
1386   for (unsigned i = 0; i < numInits; ++i) {
1387     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1388     if (inner && inner->initializesStdInitializerList()) {
1389       ErrorUnsupported(inner, "nested global std::initializer_list");
1390       return 0;
1391     }
1392   }
1393
1394   // Synthesize a fake VarDecl for the array and initialize that.
1395   QualType elementType = init->getInit(0)->getType();
1396   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1397   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1398                                                 ArrayType::Normal, 0);
1399
1400   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1401   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1402                                               arrayType, D->getLocation());
1403   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1404                                                           D->getDeclContext()),
1405                                           D->getLocStart(), D->getLocation(),
1406                                           name, arrayType, sourceInfo,
1407                                           SC_Static, SC_Static);
1408
1409   // Now clone the InitListExpr to initialize the array instead.
1410   // Incredible hack: we want to use the existing InitListExpr here, so we need
1411   // to tell it that it no longer initializes a std::initializer_list.
1412   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1413                                     const_cast<InitListExpr*>(init)->getInits(),
1414                                                    init->getNumInits(),
1415                                                    init->getRBraceLoc());
1416   arrayInit->setType(arrayType);
1417
1418   if (!cleanups.empty())
1419     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1420
1421   backingArray->setInit(arrayInit);
1422
1423   // Emit the definition of the array.
1424   EmitGlobalVarDefinition(backingArray);
1425
1426   // Inspect the initializer list to validate it and determine its type.
1427   // FIXME: doing this every time is probably inefficient; caching would be nice
1428   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1429   RecordDecl::field_iterator field = record->field_begin();
1430   if (field == record->field_end()) {
1431     ErrorUnsupported(D, "weird std::initializer_list");
1432     return 0;
1433   }
1434   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1435   // Start pointer.
1436   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1437     ErrorUnsupported(D, "weird std::initializer_list");
1438     return 0;
1439   }
1440   ++field;
1441   if (field == record->field_end()) {
1442     ErrorUnsupported(D, "weird std::initializer_list");
1443     return 0;
1444   }
1445   bool isStartEnd = false;
1446   if (ctx.hasSameType(field->getType(), elementPtr)) {
1447     // End pointer.
1448     isStartEnd = true;
1449   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1450     ErrorUnsupported(D, "weird std::initializer_list");
1451     return 0;
1452   }
1453
1454   // Now build an APValue representing the std::initializer_list.
1455   APValue initListValue(APValue::UninitStruct(), 0, 2);
1456   APValue &startField = initListValue.getStructField(0);
1457   APValue::LValuePathEntry startOffsetPathEntry;
1458   startOffsetPathEntry.ArrayIndex = 0;
1459   startField = APValue(APValue::LValueBase(backingArray),
1460                        CharUnits::fromQuantity(0),
1461                        llvm::makeArrayRef(startOffsetPathEntry),
1462                        /*IsOnePastTheEnd=*/false, 0);
1463
1464   if (isStartEnd) {
1465     APValue &endField = initListValue.getStructField(1);
1466     APValue::LValuePathEntry endOffsetPathEntry;
1467     endOffsetPathEntry.ArrayIndex = numInits;
1468     endField = APValue(APValue::LValueBase(backingArray),
1469                        ctx.getTypeSizeInChars(elementType) * numInits,
1470                        llvm::makeArrayRef(endOffsetPathEntry),
1471                        /*IsOnePastTheEnd=*/true, 0);
1472   } else {
1473     APValue &sizeField = initListValue.getStructField(1);
1474     sizeField = APValue(llvm::APSInt(numElements));
1475   }
1476
1477   // Emit the constant for the initializer_list.
1478   llvm::Constant *llvmInit =
1479       EmitConstantValueForMemory(initListValue, D->getType());
1480   assert(llvmInit && "failed to initialize as constant");
1481   return llvmInit;
1482 }
1483
1484 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1485   llvm::Constant *Init = 0;
1486   QualType ASTTy = D->getType();
1487   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1488   bool NeedsGlobalCtor = false;
1489   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1490
1491   const VarDecl *InitDecl;
1492   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1493
1494   if (!InitExpr) {
1495     // This is a tentative definition; tentative definitions are
1496     // implicitly initialized with { 0 }.
1497     //
1498     // Note that tentative definitions are only emitted at the end of
1499     // a translation unit, so they should never have incomplete
1500     // type. In addition, EmitTentativeDefinition makes sure that we
1501     // never attempt to emit a tentative definition if a real one
1502     // exists. A use may still exists, however, so we still may need
1503     // to do a RAUW.
1504     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1505     Init = EmitNullConstant(D->getType());
1506   } else {
1507     // If this is a std::initializer_list, emit the special initializer.
1508     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1509     // An empty init list will perform zero-initialization, which happens
1510     // to be exactly what we want.
1511     // FIXME: It does so in a global constructor, which is *not* what we
1512     // want.
1513
1514     if (!Init)
1515       Init = EmitConstantInit(*InitDecl);
1516     if (!Init) {
1517       QualType T = InitExpr->getType();
1518       if (D->getType()->isReferenceType())
1519         T = D->getType();
1520
1521       if (getLangOpts().CPlusPlus) {
1522         Init = EmitNullConstant(T);
1523         NeedsGlobalCtor = true;
1524       } else {
1525         ErrorUnsupported(D, "static initializer");
1526         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1527       }
1528     } else {
1529       // We don't need an initializer, so remove the entry for the delayed
1530       // initializer position (just in case this entry was delayed) if we
1531       // also don't need to register a destructor.
1532       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1533         DelayedCXXInitPosition.erase(D);
1534     }
1535   }
1536
1537   llvm::Type* InitType = Init->getType();
1538   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1539
1540   // Strip off a bitcast if we got one back.
1541   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1542     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1543            // all zero index gep.
1544            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1545     Entry = CE->getOperand(0);
1546   }
1547
1548   // Entry is now either a Function or GlobalVariable.
1549   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1550
1551   // We have a definition after a declaration with the wrong type.
1552   // We must make a new GlobalVariable* and update everything that used OldGV
1553   // (a declaration or tentative definition) with the new GlobalVariable*
1554   // (which will be a definition).
1555   //
1556   // This happens if there is a prototype for a global (e.g.
1557   // "extern int x[];") and then a definition of a different type (e.g.
1558   // "int x[10];"). This also happens when an initializer has a different type
1559   // from the type of the global (this happens with unions).
1560   if (GV == 0 ||
1561       GV->getType()->getElementType() != InitType ||
1562       GV->getType()->getAddressSpace() !=
1563         getContext().getTargetAddressSpace(ASTTy)) {
1564
1565     // Move the old entry aside so that we'll create a new one.
1566     Entry->setName(StringRef());
1567
1568     // Make a new global with the correct type, this is now guaranteed to work.
1569     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1570
1571     // Replace all uses of the old global with the new global
1572     llvm::Constant *NewPtrForOldDecl =
1573         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1574     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1575
1576     // Erase the old global, since it is no longer used.
1577     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1578   }
1579
1580   if (D->hasAttr<AnnotateAttr>())
1581     AddGlobalAnnotations(D, GV);
1582
1583   GV->setInitializer(Init);
1584
1585   // If it is safe to mark the global 'constant', do so now.
1586   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1587                   isTypeConstant(D->getType(), true));
1588
1589   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1590
1591   // Set the llvm linkage type as appropriate.
1592   llvm::GlobalValue::LinkageTypes Linkage = 
1593     GetLLVMLinkageVarDefinition(D, GV);
1594   GV->setLinkage(Linkage);
1595   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1596     // common vars aren't constant even if declared const.
1597     GV->setConstant(false);
1598
1599   SetCommonAttributes(D, GV);
1600
1601   // Emit the initializer function if necessary.
1602   if (NeedsGlobalCtor || NeedsGlobalDtor)
1603     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1604
1605   // Emit global variable debug information.
1606   if (CGDebugInfo *DI = getModuleDebugInfo())
1607     DI->EmitGlobalVariable(GV, D);
1608 }
1609
1610 llvm::GlobalValue::LinkageTypes
1611 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1612                                            llvm::GlobalVariable *GV) {
1613   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1614   if (Linkage == GVA_Internal)
1615     return llvm::Function::InternalLinkage;
1616   else if (D->hasAttr<DLLImportAttr>())
1617     return llvm::Function::DLLImportLinkage;
1618   else if (D->hasAttr<DLLExportAttr>())
1619     return llvm::Function::DLLExportLinkage;
1620   else if (D->hasAttr<WeakAttr>()) {
1621     if (GV->isConstant())
1622       return llvm::GlobalVariable::WeakODRLinkage;
1623     else
1624       return llvm::GlobalVariable::WeakAnyLinkage;
1625   } else if (Linkage == GVA_TemplateInstantiation ||
1626              Linkage == GVA_ExplicitTemplateInstantiation)
1627     return llvm::GlobalVariable::WeakODRLinkage;
1628   else if (!getLangOpts().CPlusPlus && 
1629            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1630              D->getAttr<CommonAttr>()) &&
1631            !D->hasExternalStorage() && !D->getInit() &&
1632            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1633            !D->getAttr<WeakImportAttr>()) {
1634     // Thread local vars aren't considered common linkage.
1635     return llvm::GlobalVariable::CommonLinkage;
1636   }
1637   return llvm::GlobalVariable::ExternalLinkage;
1638 }
1639
1640 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1641 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1642 /// existing call uses of the old function in the module, this adjusts them to
1643 /// call the new function directly.
1644 ///
1645 /// This is not just a cleanup: the always_inline pass requires direct calls to
1646 /// functions to be able to inline them.  If there is a bitcast in the way, it
1647 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1648 /// run at -O0.
1649 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1650                                                       llvm::Function *NewFn) {
1651   // If we're redefining a global as a function, don't transform it.
1652   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1653   if (OldFn == 0) return;
1654
1655   llvm::Type *NewRetTy = NewFn->getReturnType();
1656   SmallVector<llvm::Value*, 4> ArgList;
1657
1658   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1659        UI != E; ) {
1660     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1661     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1662     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1663     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1664     llvm::CallSite CS(CI);
1665     if (!CI || !CS.isCallee(I)) continue;
1666
1667     // If the return types don't match exactly, and if the call isn't dead, then
1668     // we can't transform this call.
1669     if (CI->getType() != NewRetTy && !CI->use_empty())
1670       continue;
1671
1672     // Get the attribute list.
1673     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1674     llvm::AttrListPtr AttrList = CI->getAttributes();
1675
1676     // Get any return attributes.
1677     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1678
1679     // Add the return attributes.
1680     if (RAttrs)
1681       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1682
1683     // If the function was passed too few arguments, don't transform.  If extra
1684     // arguments were passed, we silently drop them.  If any of the types
1685     // mismatch, we don't transform.
1686     unsigned ArgNo = 0;
1687     bool DontTransform = false;
1688     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1689          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1690       if (CS.arg_size() == ArgNo ||
1691           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1692         DontTransform = true;
1693         break;
1694       }
1695
1696       // Add any parameter attributes.
1697       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1698         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1699     }
1700     if (DontTransform)
1701       continue;
1702
1703     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1704       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1705
1706     // Okay, we can transform this.  Create the new call instruction and copy
1707     // over the required information.
1708     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1709     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1710     ArgList.clear();
1711     if (!NewCall->getType()->isVoidTy())
1712       NewCall->takeName(CI);
1713     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1714                                                   AttrVec.end()));
1715     NewCall->setCallingConv(CI->getCallingConv());
1716
1717     // Finally, remove the old call, replacing any uses with the new one.
1718     if (!CI->use_empty())
1719       CI->replaceAllUsesWith(NewCall);
1720
1721     // Copy debug location attached to CI.
1722     if (!CI->getDebugLoc().isUnknown())
1723       NewCall->setDebugLoc(CI->getDebugLoc());
1724     CI->eraseFromParent();
1725   }
1726 }
1727
1728 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1729   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1730   // If we have a definition, this might be a deferred decl. If the
1731   // instantiation is explicit, make sure we emit it at the end.
1732   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1733     GetAddrOfGlobalVar(VD);
1734 }
1735
1736 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1737   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1738
1739   // Compute the function info and LLVM type.
1740   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1741   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1742
1743   // Get or create the prototype for the function.
1744   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1745
1746   // Strip off a bitcast if we got one back.
1747   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1748     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1749     Entry = CE->getOperand(0);
1750   }
1751
1752
1753   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1754     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1755
1756     // If the types mismatch then we have to rewrite the definition.
1757     assert(OldFn->isDeclaration() &&
1758            "Shouldn't replace non-declaration");
1759
1760     // F is the Function* for the one with the wrong type, we must make a new
1761     // Function* and update everything that used F (a declaration) with the new
1762     // Function* (which will be a definition).
1763     //
1764     // This happens if there is a prototype for a function
1765     // (e.g. "int f()") and then a definition of a different type
1766     // (e.g. "int f(int x)").  Move the old function aside so that it
1767     // doesn't interfere with GetAddrOfFunction.
1768     OldFn->setName(StringRef());
1769     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1770
1771     // If this is an implementation of a function without a prototype, try to
1772     // replace any existing uses of the function (which may be calls) with uses
1773     // of the new function
1774     if (D->getType()->isFunctionNoProtoType()) {
1775       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1776       OldFn->removeDeadConstantUsers();
1777     }
1778
1779     // Replace uses of F with the Function we will endow with a body.
1780     if (!Entry->use_empty()) {
1781       llvm::Constant *NewPtrForOldDecl =
1782         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1783       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1784     }
1785
1786     // Ok, delete the old function now, which is dead.
1787     OldFn->eraseFromParent();
1788
1789     Entry = NewFn;
1790   }
1791
1792   // We need to set linkage and visibility on the function before
1793   // generating code for it because various parts of IR generation
1794   // want to propagate this information down (e.g. to local static
1795   // declarations).
1796   llvm::Function *Fn = cast<llvm::Function>(Entry);
1797   setFunctionLinkage(D, Fn);
1798
1799   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1800   setGlobalVisibility(Fn, D);
1801
1802   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1803
1804   SetFunctionDefinitionAttributes(D, Fn);
1805   SetLLVMFunctionAttributesForDefinition(D, Fn);
1806
1807   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1808     AddGlobalCtor(Fn, CA->getPriority());
1809   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1810     AddGlobalDtor(Fn, DA->getPriority());
1811   if (D->hasAttr<AnnotateAttr>())
1812     AddGlobalAnnotations(D, Fn);
1813 }
1814
1815 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1816   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1817   const AliasAttr *AA = D->getAttr<AliasAttr>();
1818   assert(AA && "Not an alias?");
1819
1820   StringRef MangledName = getMangledName(GD);
1821
1822   // If there is a definition in the module, then it wins over the alias.
1823   // This is dubious, but allow it to be safe.  Just ignore the alias.
1824   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1825   if (Entry && !Entry->isDeclaration())
1826     return;
1827
1828   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1829
1830   // Create a reference to the named value.  This ensures that it is emitted
1831   // if a deferred decl.
1832   llvm::Constant *Aliasee;
1833   if (isa<llvm::FunctionType>(DeclTy))
1834     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1835                                       /*ForVTable=*/false);
1836   else
1837     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1838                                     llvm::PointerType::getUnqual(DeclTy), 0);
1839
1840   // Create the new alias itself, but don't set a name yet.
1841   llvm::GlobalValue *GA =
1842     new llvm::GlobalAlias(Aliasee->getType(),
1843                           llvm::Function::ExternalLinkage,
1844                           "", Aliasee, &getModule());
1845
1846   if (Entry) {
1847     assert(Entry->isDeclaration());
1848
1849     // If there is a declaration in the module, then we had an extern followed
1850     // by the alias, as in:
1851     //   extern int test6();
1852     //   ...
1853     //   int test6() __attribute__((alias("test7")));
1854     //
1855     // Remove it and replace uses of it with the alias.
1856     GA->takeName(Entry);
1857
1858     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1859                                                           Entry->getType()));
1860     Entry->eraseFromParent();
1861   } else {
1862     GA->setName(MangledName);
1863   }
1864
1865   // Set attributes which are particular to an alias; this is a
1866   // specialization of the attributes which may be set on a global
1867   // variable/function.
1868   if (D->hasAttr<DLLExportAttr>()) {
1869     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1870       // The dllexport attribute is ignored for undefined symbols.
1871       if (FD->hasBody())
1872         GA->setLinkage(llvm::Function::DLLExportLinkage);
1873     } else {
1874       GA->setLinkage(llvm::Function::DLLExportLinkage);
1875     }
1876   } else if (D->hasAttr<WeakAttr>() ||
1877              D->hasAttr<WeakRefAttr>() ||
1878              D->isWeakImported()) {
1879     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1880   }
1881
1882   SetCommonAttributes(D, GA);
1883 }
1884
1885 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1886                                             ArrayRef<llvm::Type*> Tys) {
1887   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1888                                          Tys);
1889 }
1890
1891 static llvm::StringMapEntry<llvm::Constant*> &
1892 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1893                          const StringLiteral *Literal,
1894                          bool TargetIsLSB,
1895                          bool &IsUTF16,
1896                          unsigned &StringLength) {
1897   StringRef String = Literal->getString();
1898   unsigned NumBytes = String.size();
1899
1900   // Check for simple case.
1901   if (!Literal->containsNonAsciiOrNull()) {
1902     StringLength = NumBytes;
1903     return Map.GetOrCreateValue(String);
1904   }
1905
1906   // Otherwise, convert the UTF8 literals into a string of shorts.
1907   IsUTF16 = true;
1908
1909   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
1910   const UTF8 *FromPtr = (UTF8 *)String.data();
1911   UTF16 *ToPtr = &ToBuf[0];
1912
1913   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1914                            &ToPtr, ToPtr + NumBytes,
1915                            strictConversion);
1916
1917   // ConvertUTF8toUTF16 returns the length in ToPtr.
1918   StringLength = ToPtr - &ToBuf[0];
1919
1920   // Add an explicit null.
1921   *ToPtr = 0;
1922   return Map.
1923     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
1924                                (StringLength + 1) * 2));
1925 }
1926
1927 static llvm::StringMapEntry<llvm::Constant*> &
1928 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1929                        const StringLiteral *Literal,
1930                        unsigned &StringLength) {
1931   StringRef String = Literal->getString();
1932   StringLength = String.size();
1933   return Map.GetOrCreateValue(String);
1934 }
1935
1936 llvm::Constant *
1937 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1938   unsigned StringLength = 0;
1939   bool isUTF16 = false;
1940   llvm::StringMapEntry<llvm::Constant*> &Entry =
1941     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1942                              getTargetData().isLittleEndian(),
1943                              isUTF16, StringLength);
1944
1945   if (llvm::Constant *C = Entry.getValue())
1946     return C;
1947
1948   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1949   llvm::Constant *Zeros[] = { Zero, Zero };
1950
1951   // If we don't already have it, get __CFConstantStringClassReference.
1952   if (!CFConstantStringClassRef) {
1953     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1954     Ty = llvm::ArrayType::get(Ty, 0);
1955     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1956                                            "__CFConstantStringClassReference");
1957     // Decay array -> ptr
1958     CFConstantStringClassRef =
1959       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1960   }
1961
1962   QualType CFTy = getContext().getCFConstantStringType();
1963
1964   llvm::StructType *STy =
1965     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1966
1967   llvm::Constant *Fields[4];
1968
1969   // Class pointer.
1970   Fields[0] = CFConstantStringClassRef;
1971
1972   // Flags.
1973   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1974   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1975     llvm::ConstantInt::get(Ty, 0x07C8);
1976
1977   // String pointer.
1978   llvm::Constant *C = 0;
1979   if (isUTF16) {
1980     ArrayRef<uint16_t> Arr =
1981       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
1982                                    Entry.getKey().size() / 2);
1983     C = llvm::ConstantDataArray::get(VMContext, Arr);
1984   } else {
1985     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1986   }
1987
1988   llvm::GlobalValue::LinkageTypes Linkage;
1989   if (isUTF16)
1990     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1991     Linkage = llvm::GlobalValue::InternalLinkage;
1992   else
1993     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1994     // when using private linkage. It is not clear if this is a bug in ld
1995     // or a reasonable new restriction.
1996     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1997   
1998   // Note: -fwritable-strings doesn't make the backing store strings of
1999   // CFStrings writable. (See <rdar://problem/10657500>)
2000   llvm::GlobalVariable *GV =
2001     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2002                              Linkage, C, ".str");
2003   GV->setUnnamedAddr(true);
2004   if (isUTF16) {
2005     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2006     GV->setAlignment(Align.getQuantity());
2007   } else {
2008     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2009     GV->setAlignment(Align.getQuantity());
2010   }
2011
2012   // String.
2013   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2014
2015   if (isUTF16)
2016     // Cast the UTF16 string to the correct type.
2017     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2018
2019   // String length.
2020   Ty = getTypes().ConvertType(getContext().LongTy);
2021   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2022
2023   // The struct.
2024   C = llvm::ConstantStruct::get(STy, Fields);
2025   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2026                                 llvm::GlobalVariable::PrivateLinkage, C,
2027                                 "_unnamed_cfstring_");
2028   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2029     GV->setSection(Sect);
2030   Entry.setValue(GV);
2031
2032   return GV;
2033 }
2034
2035 static RecordDecl *
2036 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2037                  DeclContext *DC, IdentifierInfo *Id) {
2038   SourceLocation Loc;
2039   if (Ctx.getLangOpts().CPlusPlus)
2040     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2041   else
2042     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2043 }
2044
2045 llvm::Constant *
2046 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2047   unsigned StringLength = 0;
2048   llvm::StringMapEntry<llvm::Constant*> &Entry =
2049     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2050   
2051   if (llvm::Constant *C = Entry.getValue())
2052     return C;
2053   
2054   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2055   llvm::Constant *Zeros[] = { Zero, Zero };
2056   
2057   // If we don't already have it, get _NSConstantStringClassReference.
2058   if (!ConstantStringClassRef) {
2059     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2060     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2061     llvm::Constant *GV;
2062     if (LangOpts.ObjCNonFragileABI) {
2063       std::string str = 
2064         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 
2065                             : "OBJC_CLASS_$_" + StringClass;
2066       GV = getObjCRuntime().GetClassGlobal(str);
2067       // Make sure the result is of the correct type.
2068       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2069       ConstantStringClassRef =
2070         llvm::ConstantExpr::getBitCast(GV, PTy);
2071     } else {
2072       std::string str =
2073         StringClass.empty() ? "_NSConstantStringClassReference"
2074                             : "_" + StringClass + "ClassReference";
2075       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2076       GV = CreateRuntimeVariable(PTy, str);
2077       // Decay array -> ptr
2078       ConstantStringClassRef = 
2079         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2080     }
2081   }
2082
2083   if (!NSConstantStringType) {
2084     // Construct the type for a constant NSString.
2085     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 
2086                                      Context.getTranslationUnitDecl(),
2087                                    &Context.Idents.get("__builtin_NSString"));
2088     D->startDefinition();
2089       
2090     QualType FieldTypes[3];
2091     
2092     // const int *isa;
2093     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2094     // const char *str;
2095     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2096     // unsigned int length;
2097     FieldTypes[2] = Context.UnsignedIntTy;
2098     
2099     // Create fields
2100     for (unsigned i = 0; i < 3; ++i) {
2101       FieldDecl *Field = FieldDecl::Create(Context, D,
2102                                            SourceLocation(),
2103                                            SourceLocation(), 0,
2104                                            FieldTypes[i], /*TInfo=*/0,
2105                                            /*BitWidth=*/0,
2106                                            /*Mutable=*/false,
2107                                            /*HasInit=*/false);
2108       Field->setAccess(AS_public);
2109       D->addDecl(Field);
2110     }
2111     
2112     D->completeDefinition();
2113     QualType NSTy = Context.getTagDeclType(D);
2114     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2115   }
2116   
2117   llvm::Constant *Fields[3];
2118   
2119   // Class pointer.
2120   Fields[0] = ConstantStringClassRef;
2121   
2122   // String pointer.
2123   llvm::Constant *C =
2124     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2125   
2126   llvm::GlobalValue::LinkageTypes Linkage;
2127   bool isConstant;
2128   Linkage = llvm::GlobalValue::PrivateLinkage;
2129   isConstant = !LangOpts.WritableStrings;
2130   
2131   llvm::GlobalVariable *GV =
2132   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2133                            ".str");
2134   GV->setUnnamedAddr(true);
2135   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2136   GV->setAlignment(Align.getQuantity());
2137   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2138   
2139   // String length.
2140   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2141   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2142   
2143   // The struct.
2144   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2145   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2146                                 llvm::GlobalVariable::PrivateLinkage, C,
2147                                 "_unnamed_nsstring_");
2148   // FIXME. Fix section.
2149   if (const char *Sect = 
2150         LangOpts.ObjCNonFragileABI 
2151           ? getContext().getTargetInfo().getNSStringNonFragileABISection() 
2152           : getContext().getTargetInfo().getNSStringSection())
2153     GV->setSection(Sect);
2154   Entry.setValue(GV);
2155   
2156   return GV;
2157 }
2158
2159 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2160   if (ObjCFastEnumerationStateType.isNull()) {
2161     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 
2162                                      Context.getTranslationUnitDecl(),
2163                       &Context.Idents.get("__objcFastEnumerationState"));
2164     D->startDefinition();
2165     
2166     QualType FieldTypes[] = {
2167       Context.UnsignedLongTy,
2168       Context.getPointerType(Context.getObjCIdType()),
2169       Context.getPointerType(Context.UnsignedLongTy),
2170       Context.getConstantArrayType(Context.UnsignedLongTy,
2171                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2172     };
2173     
2174     for (size_t i = 0; i < 4; ++i) {
2175       FieldDecl *Field = FieldDecl::Create(Context,
2176                                            D,
2177                                            SourceLocation(),
2178                                            SourceLocation(), 0,
2179                                            FieldTypes[i], /*TInfo=*/0,
2180                                            /*BitWidth=*/0,
2181                                            /*Mutable=*/false,
2182                                            /*HasInit=*/false);
2183       Field->setAccess(AS_public);
2184       D->addDecl(Field);
2185     }
2186     
2187     D->completeDefinition();
2188     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2189   }
2190   
2191   return ObjCFastEnumerationStateType;
2192 }
2193
2194 llvm::Constant *
2195 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2196   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2197   
2198   // Don't emit it as the address of the string, emit the string data itself
2199   // as an inline array.
2200   if (E->getCharByteWidth() == 1) {
2201     SmallString<64> Str(E->getString());
2202
2203     // Resize the string to the right size, which is indicated by its type.
2204     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2205     Str.resize(CAT->getSize().getZExtValue());
2206     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2207   }
2208   
2209   llvm::ArrayType *AType =
2210     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2211   llvm::Type *ElemTy = AType->getElementType();
2212   unsigned NumElements = AType->getNumElements();
2213
2214   // Wide strings have either 2-byte or 4-byte elements.
2215   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2216     SmallVector<uint16_t, 32> Elements;
2217     Elements.reserve(NumElements);
2218
2219     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2220       Elements.push_back(E->getCodeUnit(i));
2221     Elements.resize(NumElements);
2222     return llvm::ConstantDataArray::get(VMContext, Elements);
2223   }
2224   
2225   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2226   SmallVector<uint32_t, 32> Elements;
2227   Elements.reserve(NumElements);
2228   
2229   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2230     Elements.push_back(E->getCodeUnit(i));
2231   Elements.resize(NumElements);
2232   return llvm::ConstantDataArray::get(VMContext, Elements);
2233 }
2234
2235 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2236 /// constant array for the given string literal.
2237 llvm::Constant *
2238 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2239   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2240   if (S->isAscii() || S->isUTF8()) {
2241     SmallString<64> Str(S->getString());
2242     
2243     // Resize the string to the right size, which is indicated by its type.
2244     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2245     Str.resize(CAT->getSize().getZExtValue());
2246     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2247   }
2248
2249   // FIXME: the following does not memoize wide strings.
2250   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2251   llvm::GlobalVariable *GV =
2252     new llvm::GlobalVariable(getModule(),C->getType(),
2253                              !LangOpts.WritableStrings,
2254                              llvm::GlobalValue::PrivateLinkage,
2255                              C,".str");
2256
2257   GV->setAlignment(Align.getQuantity());
2258   GV->setUnnamedAddr(true);
2259   return GV;
2260 }
2261
2262 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2263 /// array for the given ObjCEncodeExpr node.
2264 llvm::Constant *
2265 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2266   std::string Str;
2267   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2268
2269   return GetAddrOfConstantCString(Str);
2270 }
2271
2272
2273 /// GenerateWritableString -- Creates storage for a string literal.
2274 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2275                                              bool constant,
2276                                              CodeGenModule &CGM,
2277                                              const char *GlobalName,
2278                                              unsigned Alignment) {
2279   // Create Constant for this string literal. Don't add a '\0'.
2280   llvm::Constant *C =
2281       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2282
2283   // Create a global variable for this string
2284   llvm::GlobalVariable *GV =
2285     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2286                              llvm::GlobalValue::PrivateLinkage,
2287                              C, GlobalName);
2288   GV->setAlignment(Alignment);
2289   GV->setUnnamedAddr(true);
2290   return GV;
2291 }
2292
2293 /// GetAddrOfConstantString - Returns a pointer to a character array
2294 /// containing the literal. This contents are exactly that of the
2295 /// given string, i.e. it will not be null terminated automatically;
2296 /// see GetAddrOfConstantCString. Note that whether the result is
2297 /// actually a pointer to an LLVM constant depends on
2298 /// Feature.WriteableStrings.
2299 ///
2300 /// The result has pointer to array type.
2301 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2302                                                        const char *GlobalName,
2303                                                        unsigned Alignment) {
2304   // Get the default prefix if a name wasn't specified.
2305   if (!GlobalName)
2306     GlobalName = ".str";
2307
2308   // Don't share any string literals if strings aren't constant.
2309   if (LangOpts.WritableStrings)
2310     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2311
2312   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2313     ConstantStringMap.GetOrCreateValue(Str);
2314
2315   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2316     if (Alignment > GV->getAlignment()) {
2317       GV->setAlignment(Alignment);
2318     }
2319     return GV;
2320   }
2321
2322   // Create a global variable for this.
2323   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2324                                                    Alignment);
2325   Entry.setValue(GV);
2326   return GV;
2327 }
2328
2329 /// GetAddrOfConstantCString - Returns a pointer to a character
2330 /// array containing the literal and a terminating '\0'
2331 /// character. The result has pointer to array type.
2332 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2333                                                         const char *GlobalName,
2334                                                         unsigned Alignment) {
2335   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2336   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2337 }
2338
2339 /// EmitObjCPropertyImplementations - Emit information for synthesized
2340 /// properties for an implementation.
2341 void CodeGenModule::EmitObjCPropertyImplementations(const
2342                                                     ObjCImplementationDecl *D) {
2343   for (ObjCImplementationDecl::propimpl_iterator
2344          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2345     ObjCPropertyImplDecl *PID = *i;
2346
2347     // Dynamic is just for type-checking.
2348     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2349       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2350
2351       // Determine which methods need to be implemented, some may have
2352       // been overridden. Note that ::isSynthesized is not the method
2353       // we want, that just indicates if the decl came from a
2354       // property. What we want to know is if the method is defined in
2355       // this implementation.
2356       if (!D->getInstanceMethod(PD->getGetterName()))
2357         CodeGenFunction(*this).GenerateObjCGetter(
2358                                  const_cast<ObjCImplementationDecl *>(D), PID);
2359       if (!PD->isReadOnly() &&
2360           !D->getInstanceMethod(PD->getSetterName()))
2361         CodeGenFunction(*this).GenerateObjCSetter(
2362                                  const_cast<ObjCImplementationDecl *>(D), PID);
2363     }
2364   }
2365 }
2366
2367 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2368   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2369   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2370        ivar; ivar = ivar->getNextIvar())
2371     if (ivar->getType().isDestructedType())
2372       return true;
2373
2374   return false;
2375 }
2376
2377 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2378 /// for an implementation.
2379 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2380   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2381   if (needsDestructMethod(D)) {
2382     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2383     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2384     ObjCMethodDecl *DTORMethod =
2385       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2386                              cxxSelector, getContext().VoidTy, 0, D,
2387                              /*isInstance=*/true, /*isVariadic=*/false,
2388                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2389                              /*isDefined=*/false, ObjCMethodDecl::Required);
2390     D->addInstanceMethod(DTORMethod);
2391     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2392     D->setHasCXXStructors(true);
2393   }
2394
2395   // If the implementation doesn't have any ivar initializers, we don't need
2396   // a .cxx_construct.
2397   if (D->getNumIvarInitializers() == 0)
2398     return;
2399   
2400   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2401   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2402   // The constructor returns 'self'.
2403   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 
2404                                                 D->getLocation(),
2405                                                 D->getLocation(),
2406                                                 cxxSelector,
2407                                                 getContext().getObjCIdType(), 0, 
2408                                                 D, /*isInstance=*/true,
2409                                                 /*isVariadic=*/false,
2410                                                 /*isSynthesized=*/true,
2411                                                 /*isImplicitlyDeclared=*/true,
2412                                                 /*isDefined=*/false,
2413                                                 ObjCMethodDecl::Required);
2414   D->addInstanceMethod(CTORMethod);
2415   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2416   D->setHasCXXStructors(true);
2417 }
2418
2419 /// EmitNamespace - Emit all declarations in a namespace.
2420 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2421   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2422        I != E; ++I)
2423     EmitTopLevelDecl(*I);
2424 }
2425
2426 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2427 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2428   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2429       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2430     ErrorUnsupported(LSD, "linkage spec");
2431     return;
2432   }
2433
2434   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2435        I != E; ++I)
2436     EmitTopLevelDecl(*I);
2437 }
2438
2439 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2440 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2441   // If an error has occurred, stop code generation, but continue
2442   // parsing and semantic analysis (to ensure all warnings and errors
2443   // are emitted).
2444   if (Diags.hasErrorOccurred())
2445     return;
2446
2447   // Ignore dependent declarations.
2448   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2449     return;
2450
2451   switch (D->getKind()) {
2452   case Decl::CXXConversion:
2453   case Decl::CXXMethod:
2454   case Decl::Function:
2455     // Skip function templates
2456     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2457         cast<FunctionDecl>(D)->isLateTemplateParsed())
2458       return;
2459
2460     EmitGlobal(cast<FunctionDecl>(D));
2461     break;
2462       
2463   case Decl::Var:
2464     EmitGlobal(cast<VarDecl>(D));
2465     break;
2466
2467   // Indirect fields from global anonymous structs and unions can be
2468   // ignored; only the actual variable requires IR gen support.
2469   case Decl::IndirectField:
2470     break;
2471
2472   // C++ Decls
2473   case Decl::Namespace:
2474     EmitNamespace(cast<NamespaceDecl>(D));
2475     break;
2476     // No code generation needed.
2477   case Decl::UsingShadow:
2478   case Decl::Using:
2479   case Decl::UsingDirective:
2480   case Decl::ClassTemplate:
2481   case Decl::FunctionTemplate:
2482   case Decl::TypeAliasTemplate:
2483   case Decl::NamespaceAlias:
2484   case Decl::Block:
2485   case Decl::Import:
2486     break;
2487   case Decl::CXXConstructor:
2488     // Skip function templates
2489     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2490         cast<FunctionDecl>(D)->isLateTemplateParsed())
2491       return;
2492       
2493     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2494     break;
2495   case Decl::CXXDestructor:
2496     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2497       return;
2498     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2499     break;
2500
2501   case Decl::StaticAssert:
2502     // Nothing to do.
2503     break;
2504
2505   // Objective-C Decls
2506
2507   // Forward declarations, no (immediate) code generation.
2508   case Decl::ObjCInterface:
2509     break;
2510   
2511   case Decl::ObjCCategory: {
2512     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2513     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2514       Context.ResetObjCLayout(CD->getClassInterface());
2515     break;
2516   }
2517
2518   case Decl::ObjCProtocol: {
2519     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2520     if (Proto->isThisDeclarationADefinition())
2521       ObjCRuntime->GenerateProtocol(Proto);
2522     break;
2523   }
2524       
2525   case Decl::ObjCCategoryImpl:
2526     // Categories have properties but don't support synthesize so we
2527     // can ignore them here.
2528     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2529     break;
2530
2531   case Decl::ObjCImplementation: {
2532     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2533     if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2534       Context.ResetObjCLayout(OMD->getClassInterface());
2535     EmitObjCPropertyImplementations(OMD);
2536     EmitObjCIvarInitializations(OMD);
2537     ObjCRuntime->GenerateClass(OMD);
2538     // Emit global variable debug information.
2539     if (CGDebugInfo *DI = getModuleDebugInfo())
2540       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2541                                    OMD->getLocation());
2542     
2543     break;
2544   }
2545   case Decl::ObjCMethod: {
2546     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2547     // If this is not a prototype, emit the body.
2548     if (OMD->getBody())
2549       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2550     break;
2551   }
2552   case Decl::ObjCCompatibleAlias:
2553     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2554     break;
2555
2556   case Decl::LinkageSpec:
2557     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2558     break;
2559
2560   case Decl::FileScopeAsm: {
2561     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2562     StringRef AsmString = AD->getAsmString()->getString();
2563
2564     const std::string &S = getModule().getModuleInlineAsm();
2565     if (S.empty())
2566       getModule().setModuleInlineAsm(AsmString);
2567     else if (*--S.end() == '\n')
2568       getModule().setModuleInlineAsm(S + AsmString.str());
2569     else
2570       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2571     break;
2572   }
2573
2574   default:
2575     // Make sure we handled everything we should, every other kind is a
2576     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2577     // function. Need to recode Decl::Kind to do that easily.
2578     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2579   }
2580 }
2581
2582 /// Turns the given pointer into a constant.
2583 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2584                                           const void *Ptr) {
2585   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2586   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2587   return llvm::ConstantInt::get(i64, PtrInt);
2588 }
2589
2590 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2591                                    llvm::NamedMDNode *&GlobalMetadata,
2592                                    GlobalDecl D,
2593                                    llvm::GlobalValue *Addr) {
2594   if (!GlobalMetadata)
2595     GlobalMetadata =
2596       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2597
2598   // TODO: should we report variant information for ctors/dtors?
2599   llvm::Value *Ops[] = {
2600     Addr,
2601     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2602   };
2603   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2604 }
2605
2606 /// Emits metadata nodes associating all the global values in the
2607 /// current module with the Decls they came from.  This is useful for
2608 /// projects using IR gen as a subroutine.
2609 ///
2610 /// Since there's currently no way to associate an MDNode directly
2611 /// with an llvm::GlobalValue, we create a global named metadata
2612 /// with the name 'clang.global.decl.ptrs'.
2613 void CodeGenModule::EmitDeclMetadata() {
2614   llvm::NamedMDNode *GlobalMetadata = 0;
2615
2616   // StaticLocalDeclMap
2617   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2618          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2619        I != E; ++I) {
2620     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2621     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2622   }
2623 }
2624
2625 /// Emits metadata nodes for all the local variables in the current
2626 /// function.
2627 void CodeGenFunction::EmitDeclMetadata() {
2628   if (LocalDeclMap.empty()) return;
2629
2630   llvm::LLVMContext &Context = getLLVMContext();
2631
2632   // Find the unique metadata ID for this name.
2633   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2634
2635   llvm::NamedMDNode *GlobalMetadata = 0;
2636
2637   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2638          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2639     const Decl *D = I->first;
2640     llvm::Value *Addr = I->second;
2641
2642     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2643       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2644       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2645     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2646       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2647       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2648     }
2649   }
2650 }
2651
2652 void CodeGenModule::EmitCoverageFile() {
2653   if (!getCodeGenOpts().CoverageFile.empty()) {
2654     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2655       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2656       llvm::LLVMContext &Ctx = TheModule.getContext();
2657       llvm::MDString *CoverageFile =
2658           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2659       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2660         llvm::MDNode *CU = CUNode->getOperand(i);
2661         llvm::Value *node[] = { CoverageFile, CU };
2662         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2663         GCov->addOperand(N);
2664       }
2665     }
2666   }
2667 }