]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp
MFC r234353:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / CodeGen / ItaniumCXXABI.cpp
1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ code generation targeting the Itanium C++ ABI.  The class
11 // in this file generates structures that follow the Itanium C++ ABI, which is
12 // documented at:
13 //  http://www.codesourcery.com/public/cxx-abi/abi.html
14 //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15 //
16 // It also supports the closely-related ARM ABI, documented at:
17 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "CGCXXABI.h"
22 #include "CGRecordLayout.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenModule.h"
25 #include <clang/AST/Mangle.h>
26 #include <clang/AST/Type.h>
27 #include <llvm/Intrinsics.h>
28 #include <llvm/Target/TargetData.h>
29 #include <llvm/Value.h>
30
31 using namespace clang;
32 using namespace CodeGen;
33
34 namespace {
35 class ItaniumCXXABI : public CodeGen::CGCXXABI {
36 private:
37   llvm::IntegerType *PtrDiffTy;
38 protected:
39   bool IsARM;
40
41   // It's a little silly for us to cache this.
42   llvm::IntegerType *getPtrDiffTy() {
43     if (!PtrDiffTy) {
44       QualType T = getContext().getPointerDiffType();
45       llvm::Type *Ty = CGM.getTypes().ConvertType(T);
46       PtrDiffTy = cast<llvm::IntegerType>(Ty);
47     }
48     return PtrDiffTy;
49   }
50
51   bool NeedsArrayCookie(const CXXNewExpr *expr);
52   bool NeedsArrayCookie(const CXXDeleteExpr *expr,
53                         QualType elementType);
54
55 public:
56   ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
57     CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
58
59   bool isZeroInitializable(const MemberPointerType *MPT);
60
61   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
62
63   llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
64                                                llvm::Value *&This,
65                                                llvm::Value *MemFnPtr,
66                                                const MemberPointerType *MPT);
67
68   llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
69                                             llvm::Value *Base,
70                                             llvm::Value *MemPtr,
71                                             const MemberPointerType *MPT);
72
73   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
74                                            const CastExpr *E,
75                                            llvm::Value *Src);
76   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
77                                               llvm::Constant *Src);
78
79   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
80
81   llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
82   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
83                                         CharUnits offset);
84   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
85   llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
86                                      CharUnits ThisAdjustment);
87
88   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
89                                            llvm::Value *L,
90                                            llvm::Value *R,
91                                            const MemberPointerType *MPT,
92                                            bool Inequality);
93
94   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
95                                           llvm::Value *Addr,
96                                           const MemberPointerType *MPT);
97
98   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
99                                  CXXCtorType T,
100                                  CanQualType &ResTy,
101                                  SmallVectorImpl<CanQualType> &ArgTys);
102
103   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
104                                 CXXDtorType T,
105                                 CanQualType &ResTy,
106                                 SmallVectorImpl<CanQualType> &ArgTys);
107
108   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
109                                    QualType &ResTy,
110                                    FunctionArgList &Params);
111
112   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
113
114   CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
115   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
116                                      llvm::Value *NewPtr,
117                                      llvm::Value *NumElements,
118                                      const CXXNewExpr *expr,
119                                      QualType ElementType);
120   void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
121                        const CXXDeleteExpr *expr,
122                        QualType ElementType, llvm::Value *&NumElements,
123                        llvm::Value *&AllocPtr, CharUnits &CookieSize);
124
125   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
126                        llvm::GlobalVariable *DeclPtr, bool PerformInit);
127 };
128
129 class ARMCXXABI : public ItaniumCXXABI {
130 public:
131   ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
132
133   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
134                                  CXXCtorType T,
135                                  CanQualType &ResTy,
136                                  SmallVectorImpl<CanQualType> &ArgTys);
137
138   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
139                                 CXXDtorType T,
140                                 CanQualType &ResTy,
141                                 SmallVectorImpl<CanQualType> &ArgTys);
142
143   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
144                                    QualType &ResTy,
145                                    FunctionArgList &Params);
146
147   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
148
149   void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
150
151   CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
152   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
153                                      llvm::Value *NewPtr,
154                                      llvm::Value *NumElements,
155                                      const CXXNewExpr *expr,
156                                      QualType ElementType);
157   void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
158                        const CXXDeleteExpr *expr,
159                        QualType ElementType, llvm::Value *&NumElements,
160                        llvm::Value *&AllocPtr, CharUnits &CookieSize);
161
162 private:
163   /// \brief Returns true if the given instance method is one of the
164   /// kinds that the ARM ABI says returns 'this'.
165   static bool HasThisReturn(GlobalDecl GD) {
166     const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
167     return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
168             (isa<CXXConstructorDecl>(MD)));
169   }
170 };
171 }
172
173 CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
174   return new ItaniumCXXABI(CGM);
175 }
176
177 CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
178   return new ARMCXXABI(CGM);
179 }
180
181 llvm::Type *
182 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
183   if (MPT->isMemberDataPointer())
184     return getPtrDiffTy();
185   return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL);
186 }
187
188 /// In the Itanium and ARM ABIs, method pointers have the form:
189 ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
190 ///
191 /// In the Itanium ABI:
192 ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
193 ///  - the this-adjustment is (memptr.adj)
194 ///  - the virtual offset is (memptr.ptr - 1)
195 ///
196 /// In the ARM ABI:
197 ///  - method pointers are virtual if (memptr.adj & 1) is nonzero
198 ///  - the this-adjustment is (memptr.adj >> 1)
199 ///  - the virtual offset is (memptr.ptr)
200 /// ARM uses 'adj' for the virtual flag because Thumb functions
201 /// may be only single-byte aligned.
202 ///
203 /// If the member is virtual, the adjusted 'this' pointer points
204 /// to a vtable pointer from which the virtual offset is applied.
205 ///
206 /// If the member is non-virtual, memptr.ptr is the address of
207 /// the function to call.
208 llvm::Value *
209 ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
210                                                llvm::Value *&This,
211                                                llvm::Value *MemFnPtr,
212                                                const MemberPointerType *MPT) {
213   CGBuilderTy &Builder = CGF.Builder;
214
215   const FunctionProtoType *FPT = 
216     MPT->getPointeeType()->getAs<FunctionProtoType>();
217   const CXXRecordDecl *RD = 
218     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
219
220   llvm::FunctionType *FTy = 
221     CGM.getTypes().GetFunctionType(
222       CGM.getTypes().arrangeCXXMethodType(RD, FPT));
223
224   llvm::IntegerType *ptrdiff = getPtrDiffTy();
225   llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
226
227   llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
228   llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
229   llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
230
231   // Extract memptr.adj, which is in the second field.
232   llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
233
234   // Compute the true adjustment.
235   llvm::Value *Adj = RawAdj;
236   if (IsARM)
237     Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
238
239   // Apply the adjustment and cast back to the original struct type
240   // for consistency.
241   llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
242   Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
243   This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
244   
245   // Load the function pointer.
246   llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
247   
248   // If the LSB in the function pointer is 1, the function pointer points to
249   // a virtual function.
250   llvm::Value *IsVirtual;
251   if (IsARM)
252     IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
253   else
254     IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
255   IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
256   Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
257
258   // In the virtual path, the adjustment left 'This' pointing to the
259   // vtable of the correct base subobject.  The "function pointer" is an
260   // offset within the vtable (+1 for the virtual flag on non-ARM).
261   CGF.EmitBlock(FnVirtual);
262
263   // Cast the adjusted this to a pointer to vtable pointer and load.
264   llvm::Type *VTableTy = Builder.getInt8PtrTy();
265   llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
266   VTable = Builder.CreateLoad(VTable, "memptr.vtable");
267
268   // Apply the offset.
269   llvm::Value *VTableOffset = FnAsInt;
270   if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
271   VTable = Builder.CreateGEP(VTable, VTableOffset);
272
273   // Load the virtual function to call.
274   VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
275   llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
276   CGF.EmitBranch(FnEnd);
277
278   // In the non-virtual path, the function pointer is actually a
279   // function pointer.
280   CGF.EmitBlock(FnNonVirtual);
281   llvm::Value *NonVirtualFn =
282     Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
283   
284   // We're done.
285   CGF.EmitBlock(FnEnd);
286   llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
287   Callee->addIncoming(VirtualFn, FnVirtual);
288   Callee->addIncoming(NonVirtualFn, FnNonVirtual);
289   return Callee;
290 }
291
292 /// Compute an l-value by applying the given pointer-to-member to a
293 /// base object.
294 llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
295                                                          llvm::Value *Base,
296                                                          llvm::Value *MemPtr,
297                                            const MemberPointerType *MPT) {
298   assert(MemPtr->getType() == getPtrDiffTy());
299
300   CGBuilderTy &Builder = CGF.Builder;
301
302   unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
303
304   // Cast to char*.
305   Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
306
307   // Apply the offset, which we assume is non-null.
308   llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
309
310   // Cast the address to the appropriate pointer type, adopting the
311   // address space of the base pointer.
312   llvm::Type *PType
313     = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
314   return Builder.CreateBitCast(Addr, PType);
315 }
316
317 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
318 /// conversion.
319 ///
320 /// Bitcast conversions are always a no-op under Itanium.
321 ///
322 /// Obligatory offset/adjustment diagram:
323 ///         <-- offset -->          <-- adjustment -->
324 ///   |--------------------------|----------------------|--------------------|
325 ///   ^Derived address point     ^Base address point    ^Member address point
326 ///
327 /// So when converting a base member pointer to a derived member pointer,
328 /// we add the offset to the adjustment because the address point has
329 /// decreased;  and conversely, when converting a derived MP to a base MP
330 /// we subtract the offset from the adjustment because the address point
331 /// has increased.
332 ///
333 /// The standard forbids (at compile time) conversion to and from
334 /// virtual bases, which is why we don't have to consider them here.
335 ///
336 /// The standard forbids (at run time) casting a derived MP to a base
337 /// MP when the derived MP does not point to a member of the base.
338 /// This is why -1 is a reasonable choice for null data member
339 /// pointers.
340 llvm::Value *
341 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
342                                            const CastExpr *E,
343                                            llvm::Value *src) {
344   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
345          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
346          E->getCastKind() == CK_ReinterpretMemberPointer);
347
348   // Under Itanium, reinterprets don't require any additional processing.
349   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
350
351   // Use constant emission if we can.
352   if (isa<llvm::Constant>(src))
353     return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
354
355   llvm::Constant *adj = getMemberPointerAdjustment(E);
356   if (!adj) return src;
357
358   CGBuilderTy &Builder = CGF.Builder;
359   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
360
361   const MemberPointerType *destTy =
362     E->getType()->castAs<MemberPointerType>();
363
364   // For member data pointers, this is just a matter of adding the
365   // offset if the source is non-null.
366   if (destTy->isMemberDataPointer()) {
367     llvm::Value *dst;
368     if (isDerivedToBase)
369       dst = Builder.CreateNSWSub(src, adj, "adj");
370     else
371       dst = Builder.CreateNSWAdd(src, adj, "adj");
372
373     // Null check.
374     llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
375     llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
376     return Builder.CreateSelect(isNull, src, dst);
377   }
378
379   // The this-adjustment is left-shifted by 1 on ARM.
380   if (IsARM) {
381     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
382     offset <<= 1;
383     adj = llvm::ConstantInt::get(adj->getType(), offset);
384   }
385
386   llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
387   llvm::Value *dstAdj;
388   if (isDerivedToBase)
389     dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
390   else
391     dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
392
393   return Builder.CreateInsertValue(src, dstAdj, 1);
394 }
395
396 llvm::Constant *
397 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
398                                            llvm::Constant *src) {
399   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
400          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
401          E->getCastKind() == CK_ReinterpretMemberPointer);
402
403   // Under Itanium, reinterprets don't require any additional processing.
404   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
405
406   // If the adjustment is trivial, we don't need to do anything.
407   llvm::Constant *adj = getMemberPointerAdjustment(E);
408   if (!adj) return src;
409
410   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
411
412   const MemberPointerType *destTy =
413     E->getType()->castAs<MemberPointerType>();
414
415   // For member data pointers, this is just a matter of adding the
416   // offset if the source is non-null.
417   if (destTy->isMemberDataPointer()) {
418     // null maps to null.
419     if (src->isAllOnesValue()) return src;
420
421     if (isDerivedToBase)
422       return llvm::ConstantExpr::getNSWSub(src, adj);
423     else
424       return llvm::ConstantExpr::getNSWAdd(src, adj);
425   }
426
427   // The this-adjustment is left-shifted by 1 on ARM.
428   if (IsARM) {
429     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
430     offset <<= 1;
431     adj = llvm::ConstantInt::get(adj->getType(), offset);
432   }
433
434   llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
435   llvm::Constant *dstAdj;
436   if (isDerivedToBase)
437     dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
438   else
439     dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
440
441   return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
442 }
443
444 llvm::Constant *
445 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
446   llvm::Type *ptrdiff_t = getPtrDiffTy();
447
448   // Itanium C++ ABI 2.3:
449   //   A NULL pointer is represented as -1.
450   if (MPT->isMemberDataPointer()) 
451     return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
452
453   llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
454   llvm::Constant *Values[2] = { Zero, Zero };
455   return llvm::ConstantStruct::getAnon(Values);
456 }
457
458 llvm::Constant *
459 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
460                                      CharUnits offset) {
461   // Itanium C++ ABI 2.3:
462   //   A pointer to data member is an offset from the base address of
463   //   the class object containing it, represented as a ptrdiff_t
464   return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
465 }
466
467 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
468   return BuildMemberPointer(MD, CharUnits::Zero());
469 }
470
471 llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
472                                                   CharUnits ThisAdjustment) {
473   assert(MD->isInstance() && "Member function must not be static!");
474   MD = MD->getCanonicalDecl();
475
476   CodeGenTypes &Types = CGM.getTypes();
477   llvm::Type *ptrdiff_t = getPtrDiffTy();
478
479   // Get the function pointer (or index if this is a virtual function).
480   llvm::Constant *MemPtr[2];
481   if (MD->isVirtual()) {
482     uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
483
484     const ASTContext &Context = getContext();
485     CharUnits PointerWidth =
486       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
487     uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
488
489     if (IsARM) {
490       // ARM C++ ABI 3.2.1:
491       //   This ABI specifies that adj contains twice the this
492       //   adjustment, plus 1 if the member function is virtual. The
493       //   least significant bit of adj then makes exactly the same
494       //   discrimination as the least significant bit of ptr does for
495       //   Itanium.
496       MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
497       MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
498                                          2 * ThisAdjustment.getQuantity() + 1);
499     } else {
500       // Itanium C++ ABI 2.3:
501       //   For a virtual function, [the pointer field] is 1 plus the
502       //   virtual table offset (in bytes) of the function,
503       //   represented as a ptrdiff_t.
504       MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
505       MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
506                                          ThisAdjustment.getQuantity());
507     }
508   } else {
509     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
510     llvm::Type *Ty;
511     // Check whether the function has a computable LLVM signature.
512     if (Types.isFuncTypeConvertible(FPT)) {
513       // The function has a computable LLVM signature; use the correct type.
514       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
515     } else {
516       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
517       // function type is incomplete.
518       Ty = ptrdiff_t;
519     }
520     llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
521
522     MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
523     MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, (IsARM ? 2 : 1) *
524                                        ThisAdjustment.getQuantity());
525   }
526   
527   return llvm::ConstantStruct::getAnon(MemPtr);
528 }
529
530 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
531                                                  QualType MPType) {
532   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
533   const ValueDecl *MPD = MP.getMemberPointerDecl();
534   if (!MPD)
535     return EmitNullMemberPointer(MPT);
536
537   // Compute the this-adjustment.
538   CharUnits ThisAdjustment = CharUnits::Zero();
539   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
540   bool DerivedMember = MP.isMemberPointerToDerivedMember();
541   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
542   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
543     const CXXRecordDecl *Base = RD;
544     const CXXRecordDecl *Derived = Path[I];
545     if (DerivedMember)
546       std::swap(Base, Derived);
547     ThisAdjustment +=
548       getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base);
549     RD = Path[I];
550   }
551   if (DerivedMember)
552     ThisAdjustment = -ThisAdjustment;
553
554   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
555     return BuildMemberPointer(MD, ThisAdjustment);
556
557   CharUnits FieldOffset =
558     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
559   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
560 }
561
562 /// The comparison algorithm is pretty easy: the member pointers are
563 /// the same if they're either bitwise identical *or* both null.
564 ///
565 /// ARM is different here only because null-ness is more complicated.
566 llvm::Value *
567 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
568                                            llvm::Value *L,
569                                            llvm::Value *R,
570                                            const MemberPointerType *MPT,
571                                            bool Inequality) {
572   CGBuilderTy &Builder = CGF.Builder;
573
574   llvm::ICmpInst::Predicate Eq;
575   llvm::Instruction::BinaryOps And, Or;
576   if (Inequality) {
577     Eq = llvm::ICmpInst::ICMP_NE;
578     And = llvm::Instruction::Or;
579     Or = llvm::Instruction::And;
580   } else {
581     Eq = llvm::ICmpInst::ICMP_EQ;
582     And = llvm::Instruction::And;
583     Or = llvm::Instruction::Or;
584   }
585
586   // Member data pointers are easy because there's a unique null
587   // value, so it just comes down to bitwise equality.
588   if (MPT->isMemberDataPointer())
589     return Builder.CreateICmp(Eq, L, R);
590
591   // For member function pointers, the tautologies are more complex.
592   // The Itanium tautology is:
593   //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
594   // The ARM tautology is:
595   //   (L == R) <==> (L.ptr == R.ptr &&
596   //                  (L.adj == R.adj ||
597   //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
598   // The inequality tautologies have exactly the same structure, except
599   // applying De Morgan's laws.
600   
601   llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
602   llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
603
604   // This condition tests whether L.ptr == R.ptr.  This must always be
605   // true for equality to hold.
606   llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
607
608   // This condition, together with the assumption that L.ptr == R.ptr,
609   // tests whether the pointers are both null.  ARM imposes an extra
610   // condition.
611   llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
612   llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
613
614   // This condition tests whether L.adj == R.adj.  If this isn't
615   // true, the pointers are unequal unless they're both null.
616   llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
617   llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
618   llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
619
620   // Null member function pointers on ARM clear the low bit of Adj,
621   // so the zero condition has to check that neither low bit is set.
622   if (IsARM) {
623     llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
624
625     // Compute (l.adj | r.adj) & 1 and test it against zero.
626     llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
627     llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
628     llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
629                                                       "cmp.or.adj");
630     EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
631   }
632
633   // Tie together all our conditions.
634   llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
635   Result = Builder.CreateBinOp(And, PtrEq, Result,
636                                Inequality ? "memptr.ne" : "memptr.eq");
637   return Result;
638 }
639
640 llvm::Value *
641 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
642                                           llvm::Value *MemPtr,
643                                           const MemberPointerType *MPT) {
644   CGBuilderTy &Builder = CGF.Builder;
645
646   /// For member data pointers, this is just a check against -1.
647   if (MPT->isMemberDataPointer()) {
648     assert(MemPtr->getType() == getPtrDiffTy());
649     llvm::Value *NegativeOne =
650       llvm::Constant::getAllOnesValue(MemPtr->getType());
651     return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
652   }
653   
654   // In Itanium, a member function pointer is not null if 'ptr' is not null.
655   llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
656
657   llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
658   llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
659
660   // On ARM, a member function pointer is also non-null if the low bit of 'adj'
661   // (the virtual bit) is set.
662   if (IsARM) {
663     llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
664     llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
665     llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
666     llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
667                                                   "memptr.isvirtual");
668     Result = Builder.CreateOr(Result, IsVirtual);
669   }
670
671   return Result;
672 }
673
674 /// The Itanium ABI requires non-zero initialization only for data
675 /// member pointers, for which '0' is a valid offset.
676 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
677   return MPT->getPointeeType()->isFunctionType();
678 }
679
680 /// The generic ABI passes 'this', plus a VTT if it's initializing a
681 /// base subobject.
682 void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
683                                               CXXCtorType Type,
684                                               CanQualType &ResTy,
685                                 SmallVectorImpl<CanQualType> &ArgTys) {
686   ASTContext &Context = getContext();
687
688   // 'this' is already there.
689
690   // Check if we need to add a VTT parameter (which has type void **).
691   if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
692     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
693 }
694
695 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
696 void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
697                                           CXXCtorType Type,
698                                           CanQualType &ResTy,
699                                 SmallVectorImpl<CanQualType> &ArgTys) {
700   ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
701   ResTy = ArgTys[0];
702 }
703
704 /// The generic ABI passes 'this', plus a VTT if it's destroying a
705 /// base subobject.
706 void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
707                                              CXXDtorType Type,
708                                              CanQualType &ResTy,
709                                 SmallVectorImpl<CanQualType> &ArgTys) {
710   ASTContext &Context = getContext();
711
712   // 'this' is already there.
713
714   // Check if we need to add a VTT parameter (which has type void **).
715   if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
716     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
717 }
718
719 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'
720 /// for non-deleting destructors.
721 void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
722                                          CXXDtorType Type,
723                                          CanQualType &ResTy,
724                                 SmallVectorImpl<CanQualType> &ArgTys) {
725   ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
726
727   if (Type != Dtor_Deleting)
728     ResTy = ArgTys[0];
729 }
730
731 void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
732                                                 QualType &ResTy,
733                                                 FunctionArgList &Params) {
734   /// Create the 'this' variable.
735   BuildThisParam(CGF, Params);
736
737   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
738   assert(MD->isInstance());
739
740   // Check if we need a VTT parameter as well.
741   if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
742     ASTContext &Context = getContext();
743
744     // FIXME: avoid the fake decl
745     QualType T = Context.getPointerType(Context.VoidPtrTy);
746     ImplicitParamDecl *VTTDecl
747       = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
748                                   &Context.Idents.get("vtt"), T);
749     Params.push_back(VTTDecl);
750     getVTTDecl(CGF) = VTTDecl;
751   }
752 }
753
754 void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
755                                             QualType &ResTy,
756                                             FunctionArgList &Params) {
757   ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
758
759   // Return 'this' from certain constructors and destructors.
760   if (HasThisReturn(CGF.CurGD))
761     ResTy = Params[0]->getType();
762 }
763
764 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
765   /// Initialize the 'this' slot.
766   EmitThisParam(CGF);
767
768   /// Initialize the 'vtt' slot if needed.
769   if (getVTTDecl(CGF)) {
770     getVTTValue(CGF)
771       = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
772                                "vtt");
773   }
774 }
775
776 void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
777   ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
778
779   /// Initialize the return slot to 'this' at the start of the
780   /// function.
781   if (HasThisReturn(CGF.CurGD))
782     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
783 }
784
785 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
786                                     RValue RV, QualType ResultType) {
787   if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
788     return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
789
790   // Destructor thunks in the ARM ABI have indeterminate results.
791   llvm::Type *T =
792     cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
793   RValue Undef = RValue::get(llvm::UndefValue::get(T));
794   return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
795 }
796
797 /************************** Array allocation cookies **************************/
798
799 bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
800   // If the class's usual deallocation function takes two arguments,
801   // it needs a cookie.
802   if (expr->doesUsualArrayDeleteWantSize())
803     return true;
804
805   // Automatic Reference Counting:
806   //   We need an array cookie for pointers with strong or weak lifetime.
807   QualType AllocatedType = expr->getAllocatedType();
808   if (getContext().getLangOpts().ObjCAutoRefCount &&
809       AllocatedType->isObjCLifetimeType()) {
810     switch (AllocatedType.getObjCLifetime()) {
811     case Qualifiers::OCL_None:
812     case Qualifiers::OCL_ExplicitNone:
813     case Qualifiers::OCL_Autoreleasing:
814       return false;
815       
816     case Qualifiers::OCL_Strong:
817     case Qualifiers::OCL_Weak:
818       return true;
819     }
820   }
821
822   // Otherwise, if the class has a non-trivial destructor, it always
823   // needs a cookie.
824   const CXXRecordDecl *record =
825     AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
826   return (record && !record->hasTrivialDestructor());
827 }
828
829 bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
830                                      QualType elementType) {
831   // If the class's usual deallocation function takes two arguments,
832   // it needs a cookie.
833   if (expr->doesUsualArrayDeleteWantSize())
834     return true;
835
836   return elementType.isDestructedType();
837 }
838
839 CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
840   if (!NeedsArrayCookie(expr))
841     return CharUnits::Zero();
842   
843   // Padding is the maximum of sizeof(size_t) and alignof(elementType)
844   ASTContext &Ctx = getContext();
845   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
846                   Ctx.getTypeAlignInChars(expr->getAllocatedType()));
847 }
848
849 llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
850                                                   llvm::Value *NewPtr,
851                                                   llvm::Value *NumElements,
852                                                   const CXXNewExpr *expr,
853                                                   QualType ElementType) {
854   assert(NeedsArrayCookie(expr));
855
856   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
857
858   ASTContext &Ctx = getContext();
859   QualType SizeTy = Ctx.getSizeType();
860   CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
861
862   // The size of the cookie.
863   CharUnits CookieSize =
864     std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
865
866   // Compute an offset to the cookie.
867   llvm::Value *CookiePtr = NewPtr;
868   CharUnits CookieOffset = CookieSize - SizeSize;
869   if (!CookieOffset.isZero())
870     CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
871                                                  CookieOffset.getQuantity());
872
873   // Write the number of elements into the appropriate slot.
874   llvm::Value *NumElementsPtr
875     = CGF.Builder.CreateBitCast(CookiePtr,
876                                 CGF.ConvertType(SizeTy)->getPointerTo(AS));
877   CGF.Builder.CreateStore(NumElements, NumElementsPtr);
878
879   // Finally, compute a pointer to the actual data buffer by skipping
880   // over the cookie completely.
881   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
882                                                 CookieSize.getQuantity());  
883 }
884
885 void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
886                                     llvm::Value *Ptr,
887                                     const CXXDeleteExpr *expr,
888                                     QualType ElementType,
889                                     llvm::Value *&NumElements,
890                                     llvm::Value *&AllocPtr,
891                                     CharUnits &CookieSize) {
892   // Derive a char* in the same address space as the pointer.
893   unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
894   llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
895
896   // If we don't need an array cookie, bail out early.
897   if (!NeedsArrayCookie(expr, ElementType)) {
898     AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
899     NumElements = 0;
900     CookieSize = CharUnits::Zero();
901     return;
902   }
903
904   QualType SizeTy = getContext().getSizeType();
905   CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
906   llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
907   
908   CookieSize
909     = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
910
911   CharUnits NumElementsOffset = CookieSize - SizeSize;
912
913   // Compute the allocated pointer.
914   AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
915   AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
916                                                     -CookieSize.getQuantity());
917
918   llvm::Value *NumElementsPtr = AllocPtr;
919   if (!NumElementsOffset.isZero())
920     NumElementsPtr =
921       CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
922                                              NumElementsOffset.getQuantity());
923   NumElementsPtr = 
924     CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
925   NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
926 }
927
928 CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
929   if (!NeedsArrayCookie(expr))
930     return CharUnits::Zero();
931
932   // On ARM, the cookie is always:
933   //   struct array_cookie {
934   //     std::size_t element_size; // element_size != 0
935   //     std::size_t element_count;
936   //   };
937   // TODO: what should we do if the allocated type actually wants
938   // greater alignment?
939   return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
940 }
941
942 llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
943                                               llvm::Value *NewPtr,
944                                               llvm::Value *NumElements,
945                                               const CXXNewExpr *expr,
946                                               QualType ElementType) {
947   assert(NeedsArrayCookie(expr));
948
949   // NewPtr is a char*.
950
951   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
952
953   ASTContext &Ctx = getContext();
954   CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
955   llvm::IntegerType *SizeTy =
956     cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
957
958   // The cookie is always at the start of the buffer.
959   llvm::Value *CookiePtr = NewPtr;
960
961   // The first element is the element size.
962   CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
963   llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
964                           Ctx.getTypeSizeInChars(ElementType).getQuantity());
965   CGF.Builder.CreateStore(ElementSize, CookiePtr);
966
967   // The second element is the element count.
968   CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
969   CGF.Builder.CreateStore(NumElements, CookiePtr);
970
971   // Finally, compute a pointer to the actual data buffer by skipping
972   // over the cookie completely.
973   CharUnits CookieSize = 2 * SizeSize;
974   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
975                                                 CookieSize.getQuantity());
976 }
977
978 void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
979                                 llvm::Value *Ptr,
980                                 const CXXDeleteExpr *expr,
981                                 QualType ElementType,
982                                 llvm::Value *&NumElements,
983                                 llvm::Value *&AllocPtr,
984                                 CharUnits &CookieSize) {
985   // Derive a char* in the same address space as the pointer.
986   unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
987   llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
988
989   // If we don't need an array cookie, bail out early.
990   if (!NeedsArrayCookie(expr, ElementType)) {
991     AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
992     NumElements = 0;
993     CookieSize = CharUnits::Zero();
994     return;
995   }
996
997   QualType SizeTy = getContext().getSizeType();
998   CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
999   llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
1000   
1001   // The cookie size is always 2 * sizeof(size_t).
1002   CookieSize = 2 * SizeSize;
1003
1004   // The allocated pointer is the input ptr, minus that amount.
1005   AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1006   AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1007                                                -CookieSize.getQuantity());
1008
1009   // The number of elements is at offset sizeof(size_t) relative to that.
1010   llvm::Value *NumElementsPtr
1011     = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1012                                              SizeSize.getQuantity());
1013   NumElementsPtr = 
1014     CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
1015   NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
1016 }
1017
1018 /*********************** Static local initialization **************************/
1019
1020 static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1021                                          llvm::PointerType *GuardPtrTy) {
1022   // int __cxa_guard_acquire(__guard *guard_object);
1023   llvm::FunctionType *FTy =
1024     llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1025                             GuardPtrTy, /*isVarArg=*/false);
1026   
1027   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
1028                                    llvm::Attribute::NoUnwind);
1029 }
1030
1031 static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1032                                          llvm::PointerType *GuardPtrTy) {
1033   // void __cxa_guard_release(__guard *guard_object);
1034   llvm::FunctionType *FTy =
1035     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1036   
1037   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
1038                                    llvm::Attribute::NoUnwind);
1039 }
1040
1041 static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1042                                        llvm::PointerType *GuardPtrTy) {
1043   // void __cxa_guard_abort(__guard *guard_object);
1044   llvm::FunctionType *FTy =
1045     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1046   
1047   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
1048                                    llvm::Attribute::NoUnwind);
1049 }
1050
1051 namespace {
1052   struct CallGuardAbort : EHScopeStack::Cleanup {
1053     llvm::GlobalVariable *Guard;
1054     CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1055
1056     void Emit(CodeGenFunction &CGF, Flags flags) {
1057       CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
1058         ->setDoesNotThrow();
1059     }
1060   };
1061 }
1062
1063 /// The ARM code here follows the Itanium code closely enough that we
1064 /// just special-case it at particular places.
1065 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1066                                     const VarDecl &D,
1067                                     llvm::GlobalVariable *var,
1068                                     bool shouldPerformInit) {
1069   CGBuilderTy &Builder = CGF.Builder;
1070
1071   // We only need to use thread-safe statics for local variables;
1072   // global initialization is always single-threaded.
1073   bool threadsafe =
1074     (getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl());
1075
1076   // If we have a global variable with internal linkage and thread-safe statics
1077   // are disabled, we can just let the guard variable be of type i8.
1078   bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
1079
1080   llvm::IntegerType *guardTy;
1081   if (useInt8GuardVariable) {
1082     guardTy = CGF.Int8Ty;
1083   } else {
1084     // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
1085     guardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty);
1086   }
1087   llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
1088
1089   // Create the guard variable if we don't already have it (as we
1090   // might if we're double-emitting this function body).
1091   llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
1092   if (!guard) {
1093     // Mangle the name for the guard.
1094     SmallString<256> guardName;
1095     {
1096       llvm::raw_svector_ostream out(guardName);
1097       getMangleContext().mangleItaniumGuardVariable(&D, out);
1098       out.flush();
1099     }
1100
1101     // Create the guard variable with a zero-initializer.
1102     // Just absorb linkage and visibility from the guarded variable.
1103     guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
1104                                      false, var->getLinkage(),
1105                                      llvm::ConstantInt::get(guardTy, 0),
1106                                      guardName.str());
1107     guard->setVisibility(var->getVisibility());
1108
1109     CGM.setStaticLocalDeclGuardAddress(&D, guard);
1110   }
1111
1112   // Test whether the variable has completed initialization.
1113   llvm::Value *isInitialized;
1114
1115   // ARM C++ ABI 3.2.3.1:
1116   //   To support the potential use of initialization guard variables
1117   //   as semaphores that are the target of ARM SWP and LDREX/STREX
1118   //   synchronizing instructions we define a static initialization
1119   //   guard variable to be a 4-byte aligned, 4- byte word with the
1120   //   following inline access protocol.
1121   //     #define INITIALIZED 1
1122   //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1123   //       if (__cxa_guard_acquire(&obj_guard))
1124   //         ...
1125   //     }
1126   if (IsARM && !useInt8GuardVariable) {
1127     llvm::Value *V = Builder.CreateLoad(guard);
1128     V = Builder.CreateAnd(V, Builder.getInt32(1));
1129     isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1130
1131   // Itanium C++ ABI 3.3.2:
1132   //   The following is pseudo-code showing how these functions can be used:
1133   //     if (obj_guard.first_byte == 0) {
1134   //       if ( __cxa_guard_acquire (&obj_guard) ) {
1135   //         try {
1136   //           ... initialize the object ...;
1137   //         } catch (...) {
1138   //            __cxa_guard_abort (&obj_guard);
1139   //            throw;
1140   //         }
1141   //         ... queue object destructor with __cxa_atexit() ...;
1142   //         __cxa_guard_release (&obj_guard);
1143   //       }
1144   //     }
1145   } else {
1146     // Load the first byte of the guard variable.
1147     llvm::LoadInst *LI = 
1148       Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
1149     LI->setAlignment(1);
1150
1151     // Itanium ABI:
1152     //   An implementation supporting thread-safety on multiprocessor
1153     //   systems must also guarantee that references to the initialized
1154     //   object do not occur before the load of the initialization flag.
1155     //
1156     // In LLVM, we do this by marking the load Acquire.
1157     if (threadsafe)
1158       LI->setAtomic(llvm::Acquire);
1159
1160     isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
1161   }
1162
1163   llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1164   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1165
1166   // Check if the first byte of the guard variable is zero.
1167   Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
1168
1169   CGF.EmitBlock(InitCheckBlock);
1170
1171   // Variables used when coping with thread-safe statics and exceptions.
1172   if (threadsafe) {    
1173     // Call __cxa_guard_acquire.
1174     llvm::Value *V
1175       = Builder.CreateCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
1176                
1177     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1178   
1179     Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1180                          InitBlock, EndBlock);
1181   
1182     // Call __cxa_guard_abort along the exceptional edge.
1183     CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
1184     
1185     CGF.EmitBlock(InitBlock);
1186   }
1187
1188   // Emit the initializer and add a global destructor if appropriate.
1189   CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
1190
1191   if (threadsafe) {
1192     // Pop the guard-abort cleanup if we pushed one.
1193     CGF.PopCleanupBlock();
1194
1195     // Call __cxa_guard_release.  This cannot throw.
1196     Builder.CreateCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
1197   } else {
1198     Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
1199   }
1200
1201   CGF.EmitBlock(EndBlock);
1202 }