]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Parse/ParseDecl.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Parse / ParseDecl.cpp
1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/Parser.h"
15 #include "clang/Parse/ParseDiagnostic.h"
16 #include "clang/Basic/OpenCL.h"
17 #include "clang/Sema/Scope.h"
18 #include "clang/Sema/ParsedTemplate.h"
19 #include "clang/Sema/PrettyDeclStackTrace.h"
20 #include "RAIIObjectsForParser.h"
21 #include "llvm/ADT/SmallSet.h"
22 using namespace clang;
23
24 //===----------------------------------------------------------------------===//
25 // C99 6.7: Declarations.
26 //===----------------------------------------------------------------------===//
27
28 /// ParseTypeName
29 ///       type-name: [C99 6.7.6]
30 ///         specifier-qualifier-list abstract-declarator[opt]
31 ///
32 /// Called type-id in C++.
33 TypeResult Parser::ParseTypeName(SourceRange *Range,
34                                  Declarator::TheContext Context,
35                                  ObjCDeclSpec *objcQuals,
36                                  AccessSpecifier AS,
37                                  Decl **OwnedType) {
38   // Parse the common declaration-specifiers piece.
39   DeclSpec DS(AttrFactory);
40   DS.setObjCQualifiers(objcQuals);
41   ParseSpecifierQualifierList(DS, AS);
42   if (OwnedType)
43     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
44
45   // Parse the abstract-declarator, if present.
46   Declarator DeclaratorInfo(DS, Context);
47   ParseDeclarator(DeclaratorInfo);
48   if (Range)
49     *Range = DeclaratorInfo.getSourceRange();
50
51   if (DeclaratorInfo.isInvalidType())
52     return true;
53
54   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
55 }
56
57 /// ParseGNUAttributes - Parse a non-empty attributes list.
58 ///
59 /// [GNU] attributes:
60 ///         attribute
61 ///         attributes attribute
62 ///
63 /// [GNU]  attribute:
64 ///          '__attribute__' '(' '(' attribute-list ')' ')'
65 ///
66 /// [GNU]  attribute-list:
67 ///          attrib
68 ///          attribute_list ',' attrib
69 ///
70 /// [GNU]  attrib:
71 ///          empty
72 ///          attrib-name
73 ///          attrib-name '(' identifier ')'
74 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
75 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
76 ///
77 /// [GNU]  attrib-name:
78 ///          identifier
79 ///          typespec
80 ///          typequal
81 ///          storageclass
82 ///
83 /// FIXME: The GCC grammar/code for this construct implies we need two
84 /// token lookahead. Comment from gcc: "If they start with an identifier
85 /// which is followed by a comma or close parenthesis, then the arguments
86 /// start with that identifier; otherwise they are an expression list."
87 ///
88 /// At the moment, I am not doing 2 token lookahead. I am also unaware of
89 /// any attributes that don't work (based on my limited testing). Most
90 /// attributes are very simple in practice. Until we find a bug, I don't see
91 /// a pressing need to implement the 2 token lookahead.
92
93 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
94                                 SourceLocation *endLoc) {
95   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
96
97   while (Tok.is(tok::kw___attribute)) {
98     ConsumeToken();
99     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
100                          "attribute")) {
101       SkipUntil(tok::r_paren, true); // skip until ) or ;
102       return;
103     }
104     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
105       SkipUntil(tok::r_paren, true); // skip until ) or ;
106       return;
107     }
108     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
109     while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
110            Tok.is(tok::comma)) {
111
112       if (Tok.is(tok::comma)) {
113         // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
114         ConsumeToken();
115         continue;
116       }
117       // we have an identifier or declaration specifier (const, int, etc.)
118       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
119       SourceLocation AttrNameLoc = ConsumeToken();
120
121       // Availability attributes have their own grammar.
122       if (AttrName->isStr("availability"))
123         ParseAvailabilityAttribute(*AttrName, AttrNameLoc, attrs, endLoc);
124       // check if we have a "parameterized" attribute
125       else if (Tok.is(tok::l_paren)) {
126         ConsumeParen(); // ignore the left paren loc for now
127
128         if (Tok.is(tok::identifier)) {
129           IdentifierInfo *ParmName = Tok.getIdentifierInfo();
130           SourceLocation ParmLoc = ConsumeToken();
131
132           if (Tok.is(tok::r_paren)) {
133             // __attribute__(( mode(byte) ))
134             ConsumeParen(); // ignore the right paren loc for now
135             attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
136                          ParmName, ParmLoc, 0, 0);
137           } else if (Tok.is(tok::comma)) {
138             ConsumeToken();
139             // __attribute__(( format(printf, 1, 2) ))
140             ExprVector ArgExprs(Actions);
141             bool ArgExprsOk = true;
142
143             // now parse the non-empty comma separated list of expressions
144             while (1) {
145               ExprResult ArgExpr(ParseAssignmentExpression());
146               if (ArgExpr.isInvalid()) {
147                 ArgExprsOk = false;
148                 SkipUntil(tok::r_paren);
149                 break;
150               } else {
151                 ArgExprs.push_back(ArgExpr.release());
152               }
153               if (Tok.isNot(tok::comma))
154                 break;
155               ConsumeToken(); // Eat the comma, move to the next argument
156             }
157             if (ArgExprsOk && Tok.is(tok::r_paren)) {
158               ConsumeParen(); // ignore the right paren loc for now
159               attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
160                            ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
161             }
162           }
163         } else { // not an identifier
164           switch (Tok.getKind()) {
165           case tok::r_paren:
166           // parse a possibly empty comma separated list of expressions
167             // __attribute__(( nonnull() ))
168             ConsumeParen(); // ignore the right paren loc for now
169             attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
170                          0, SourceLocation(), 0, 0);
171             break;
172           case tok::kw_char:
173           case tok::kw_wchar_t:
174           case tok::kw_char16_t:
175           case tok::kw_char32_t:
176           case tok::kw_bool:
177           case tok::kw_short:
178           case tok::kw_int:
179           case tok::kw_long:
180           case tok::kw___int64:
181           case tok::kw_signed:
182           case tok::kw_unsigned:
183           case tok::kw_float:
184           case tok::kw_double:
185           case tok::kw_void:
186           case tok::kw_typeof: {
187             AttributeList *attr
188               = attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
189                              0, SourceLocation(), 0, 0);
190             if (attr->getKind() == AttributeList::AT_IBOutletCollection)
191               Diag(Tok, diag::err_iboutletcollection_builtintype);
192             // If it's a builtin type name, eat it and expect a rparen
193             // __attribute__(( vec_type_hint(char) ))
194             ConsumeToken();
195             if (Tok.is(tok::r_paren))
196               ConsumeParen();
197             break;
198           }
199           default:
200             // __attribute__(( aligned(16) ))
201             ExprVector ArgExprs(Actions);
202             bool ArgExprsOk = true;
203
204             // now parse the list of expressions
205             while (1) {
206               ExprResult ArgExpr(ParseAssignmentExpression());
207               if (ArgExpr.isInvalid()) {
208                 ArgExprsOk = false;
209                 SkipUntil(tok::r_paren);
210                 break;
211               } else {
212                 ArgExprs.push_back(ArgExpr.release());
213               }
214               if (Tok.isNot(tok::comma))
215                 break;
216               ConsumeToken(); // Eat the comma, move to the next argument
217             }
218             // Match the ')'.
219             if (ArgExprsOk && Tok.is(tok::r_paren)) {
220               ConsumeParen(); // ignore the right paren loc for now
221               attrs.addNew(AttrName, AttrNameLoc, 0,
222                            AttrNameLoc, 0, SourceLocation(),
223                            ArgExprs.take(), ArgExprs.size());
224             }
225             break;
226           }
227         }
228       } else {
229         attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
230                      0, SourceLocation(), 0, 0);
231       }
232     }
233     if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
234       SkipUntil(tok::r_paren, false);
235     SourceLocation Loc = Tok.getLocation();
236     if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
237       SkipUntil(tok::r_paren, false);
238     }
239     if (endLoc)
240       *endLoc = Loc;
241   }
242 }
243
244 /// ParseMicrosoftDeclSpec - Parse an __declspec construct
245 ///
246 /// [MS] decl-specifier:
247 ///             __declspec ( extended-decl-modifier-seq )
248 ///
249 /// [MS] extended-decl-modifier-seq:
250 ///             extended-decl-modifier[opt]
251 ///             extended-decl-modifier extended-decl-modifier-seq
252
253 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
254   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
255
256   ConsumeToken();
257   if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
258                        "declspec")) {
259     SkipUntil(tok::r_paren, true); // skip until ) or ;
260     return;
261   }
262
263   while (Tok.getIdentifierInfo()) {
264     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
265     SourceLocation AttrNameLoc = ConsumeToken();
266     
267     // FIXME: Remove this when we have proper __declspec(property()) support.
268     // Just skip everything inside property().
269     if (AttrName->getName() == "property") {
270       ConsumeParen();
271       SkipUntil(tok::r_paren);
272     }
273     if (Tok.is(tok::l_paren)) {
274       ConsumeParen();
275       // FIXME: This doesn't parse __declspec(property(get=get_func_name))
276       // correctly.
277       ExprResult ArgExpr(ParseAssignmentExpression());
278       if (!ArgExpr.isInvalid()) {
279         Expr *ExprList = ArgExpr.take();
280         attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
281                      SourceLocation(), &ExprList, 1, true);
282       }
283       if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
284         SkipUntil(tok::r_paren, false);
285     } else {
286       attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
287                    0, SourceLocation(), 0, 0, true);
288     }
289   }
290   if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
291     SkipUntil(tok::r_paren, false);
292   return;
293 }
294
295 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
296   // Treat these like attributes
297   // FIXME: Allow Sema to distinguish between these and real attributes!
298   while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
299          Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
300          Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
301     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
302     SourceLocation AttrNameLoc = ConsumeToken();
303     if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
304       // FIXME: Support these properly!
305       continue;
306     attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
307                  SourceLocation(), 0, 0, true);
308   }
309 }
310
311 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
312   // Treat these like attributes
313   while (Tok.is(tok::kw___pascal)) {
314     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
315     SourceLocation AttrNameLoc = ConsumeToken();
316     attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
317                  SourceLocation(), 0, 0, true);
318   }
319 }
320
321 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
322   // Treat these like attributes
323   while (Tok.is(tok::kw___kernel)) {
324     SourceLocation AttrNameLoc = ConsumeToken();
325     attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
326                  AttrNameLoc, 0, AttrNameLoc, 0,
327                  SourceLocation(), 0, 0, false);
328   }
329 }
330
331 void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
332   SourceLocation Loc = Tok.getLocation();
333   switch(Tok.getKind()) {
334     // OpenCL qualifiers:
335     case tok::kw___private:
336     case tok::kw_private: 
337       DS.getAttributes().addNewInteger(
338           Actions.getASTContext(), 
339           PP.getIdentifierInfo("address_space"), Loc, 0);
340       break;
341       
342     case tok::kw___global:
343       DS.getAttributes().addNewInteger(
344           Actions.getASTContext(),
345           PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
346       break;
347       
348     case tok::kw___local:
349       DS.getAttributes().addNewInteger(
350           Actions.getASTContext(),
351           PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
352       break;
353       
354     case tok::kw___constant:
355       DS.getAttributes().addNewInteger(
356           Actions.getASTContext(),
357           PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
358       break;
359       
360     case tok::kw___read_only:
361       DS.getAttributes().addNewInteger(
362           Actions.getASTContext(), 
363           PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
364       break;
365       
366     case tok::kw___write_only:
367       DS.getAttributes().addNewInteger(
368           Actions.getASTContext(), 
369           PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
370       break;
371       
372     case tok::kw___read_write:
373       DS.getAttributes().addNewInteger(
374           Actions.getASTContext(),
375           PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
376       break;
377     default: break;
378   }
379 }
380
381 /// \brief Parse a version number.
382 ///
383 /// version:
384 ///   simple-integer
385 ///   simple-integer ',' simple-integer
386 ///   simple-integer ',' simple-integer ',' simple-integer
387 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
388   Range = Tok.getLocation();
389
390   if (!Tok.is(tok::numeric_constant)) {
391     Diag(Tok, diag::err_expected_version);
392     SkipUntil(tok::comma, tok::r_paren, true, true, true);
393     return VersionTuple();
394   }
395
396   // Parse the major (and possibly minor and subminor) versions, which
397   // are stored in the numeric constant. We utilize a quirk of the
398   // lexer, which is that it handles something like 1.2.3 as a single
399   // numeric constant, rather than two separate tokens.
400   llvm::SmallString<512> Buffer;
401   Buffer.resize(Tok.getLength()+1);
402   const char *ThisTokBegin = &Buffer[0];
403
404   // Get the spelling of the token, which eliminates trigraphs, etc.
405   bool Invalid = false;
406   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
407   if (Invalid)
408     return VersionTuple();
409
410   // Parse the major version.
411   unsigned AfterMajor = 0;
412   unsigned Major = 0;
413   while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
414     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
415     ++AfterMajor;
416   }
417
418   if (AfterMajor == 0) {
419     Diag(Tok, diag::err_expected_version);
420     SkipUntil(tok::comma, tok::r_paren, true, true, true);
421     return VersionTuple();
422   }
423
424   if (AfterMajor == ActualLength) {
425     ConsumeToken();
426
427     // We only had a single version component.
428     if (Major == 0) {
429       Diag(Tok, diag::err_zero_version);
430       return VersionTuple();
431     }
432
433     return VersionTuple(Major);
434   }
435
436   if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
437     Diag(Tok, diag::err_expected_version);
438     SkipUntil(tok::comma, tok::r_paren, true, true, true);
439     return VersionTuple();
440   }
441
442   // Parse the minor version.
443   unsigned AfterMinor = AfterMajor + 1;
444   unsigned Minor = 0;
445   while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
446     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
447     ++AfterMinor;
448   }
449
450   if (AfterMinor == ActualLength) {
451     ConsumeToken();
452     
453     // We had major.minor.
454     if (Major == 0 && Minor == 0) {
455       Diag(Tok, diag::err_zero_version);
456       return VersionTuple();
457     }
458
459     return VersionTuple(Major, Minor);      
460   }
461
462   // If what follows is not a '.', we have a problem.
463   if (ThisTokBegin[AfterMinor] != '.') {
464     Diag(Tok, diag::err_expected_version);
465     SkipUntil(tok::comma, tok::r_paren, true, true, true);
466     return VersionTuple();    
467   }
468
469   // Parse the subminor version.
470   unsigned AfterSubminor = AfterMinor + 1;
471   unsigned Subminor = 0;
472   while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
473     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
474     ++AfterSubminor;
475   }
476
477   if (AfterSubminor != ActualLength) {
478     Diag(Tok, diag::err_expected_version);
479     SkipUntil(tok::comma, tok::r_paren, true, true, true);
480     return VersionTuple();
481   }
482   ConsumeToken();
483   return VersionTuple(Major, Minor, Subminor);
484 }
485
486 /// \brief Parse the contents of the "availability" attribute.
487 ///
488 /// availability-attribute:
489 ///   'availability' '(' platform ',' version-arg-list ')'
490 ///
491 /// platform:
492 ///   identifier
493 ///
494 /// version-arg-list:
495 ///   version-arg
496 ///   version-arg ',' version-arg-list
497 ///
498 /// version-arg:
499 ///   'introduced' '=' version
500 ///   'deprecated' '=' version
501 ///   'removed' = version
502 ///   'unavailable'
503 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
504                                         SourceLocation AvailabilityLoc,
505                                         ParsedAttributes &attrs,
506                                         SourceLocation *endLoc) {
507   SourceLocation PlatformLoc;
508   IdentifierInfo *Platform = 0;
509
510   enum { Introduced, Deprecated, Obsoleted, Unknown };
511   AvailabilityChange Changes[Unknown];
512
513   // Opening '('.
514   SourceLocation LParenLoc;
515   if (!Tok.is(tok::l_paren)) {
516     Diag(Tok, diag::err_expected_lparen);
517     return;
518   }
519   LParenLoc = ConsumeParen();
520
521   // Parse the platform name,
522   if (Tok.isNot(tok::identifier)) {
523     Diag(Tok, diag::err_availability_expected_platform);
524     SkipUntil(tok::r_paren);
525     return;
526   }
527   Platform = Tok.getIdentifierInfo();
528   PlatformLoc = ConsumeToken();
529
530   // Parse the ',' following the platform name.
531   if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
532     return;
533
534   // If we haven't grabbed the pointers for the identifiers
535   // "introduced", "deprecated", and "obsoleted", do so now.
536   if (!Ident_introduced) {
537     Ident_introduced = PP.getIdentifierInfo("introduced");
538     Ident_deprecated = PP.getIdentifierInfo("deprecated");
539     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
540     Ident_unavailable = PP.getIdentifierInfo("unavailable");
541   }
542
543   // Parse the set of introductions/deprecations/removals.
544   SourceLocation UnavailableLoc;
545   do {
546     if (Tok.isNot(tok::identifier)) {
547       Diag(Tok, diag::err_availability_expected_change);
548       SkipUntil(tok::r_paren);
549       return;
550     }
551     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
552     SourceLocation KeywordLoc = ConsumeToken();
553
554     if (Keyword == Ident_unavailable) {
555       if (UnavailableLoc.isValid()) {
556         Diag(KeywordLoc, diag::err_availability_redundant)
557           << Keyword << SourceRange(UnavailableLoc);
558       } 
559       UnavailableLoc = KeywordLoc;
560
561       if (Tok.isNot(tok::comma))
562         break;
563
564       ConsumeToken();
565       continue;
566     } 
567
568     if (Tok.isNot(tok::equal)) {
569       Diag(Tok, diag::err_expected_equal_after)
570         << Keyword;
571       SkipUntil(tok::r_paren);
572       return;
573     }
574     ConsumeToken();
575     
576     SourceRange VersionRange;
577     VersionTuple Version = ParseVersionTuple(VersionRange);
578     
579     if (Version.empty()) {
580       SkipUntil(tok::r_paren);
581       return;
582     }
583
584     unsigned Index;
585     if (Keyword == Ident_introduced)
586       Index = Introduced;
587     else if (Keyword == Ident_deprecated)
588       Index = Deprecated;
589     else if (Keyword == Ident_obsoleted)
590       Index = Obsoleted;
591     else 
592       Index = Unknown;
593
594     if (Index < Unknown) {
595       if (!Changes[Index].KeywordLoc.isInvalid()) {
596         Diag(KeywordLoc, diag::err_availability_redundant)
597           << Keyword 
598           << SourceRange(Changes[Index].KeywordLoc,
599                          Changes[Index].VersionRange.getEnd());
600       }
601
602       Changes[Index].KeywordLoc = KeywordLoc;
603       Changes[Index].Version = Version;
604       Changes[Index].VersionRange = VersionRange;
605     } else {
606       Diag(KeywordLoc, diag::err_availability_unknown_change)
607         << Keyword << VersionRange;
608     }
609
610     if (Tok.isNot(tok::comma))
611       break;
612
613     ConsumeToken();
614   } while (true);
615
616   // Closing ')'.
617   SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
618   if (RParenLoc.isInvalid())
619     return;
620
621   if (endLoc)
622     *endLoc = RParenLoc;
623
624   // The 'unavailable' availability cannot be combined with any other
625   // availability changes. Make sure that hasn't happened.
626   if (UnavailableLoc.isValid()) {
627     bool Complained = false;
628     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
629       if (Changes[Index].KeywordLoc.isValid()) {
630         if (!Complained) {
631           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
632             << SourceRange(Changes[Index].KeywordLoc,
633                            Changes[Index].VersionRange.getEnd());
634           Complained = true;
635         }
636
637         // Clear out the availability.
638         Changes[Index] = AvailabilityChange();
639       }
640     }
641   }
642
643   // Record this attribute
644   attrs.addNew(&Availability, AvailabilityLoc, 
645                0, SourceLocation(),
646                Platform, PlatformLoc,
647                Changes[Introduced],
648                Changes[Deprecated],
649                Changes[Obsoleted], 
650                UnavailableLoc, false, false);
651 }
652
653 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
654   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
655     << attrs.Range;
656 }
657
658 /// ParseDeclaration - Parse a full 'declaration', which consists of
659 /// declaration-specifiers, some number of declarators, and a semicolon.
660 /// 'Context' should be a Declarator::TheContext value.  This returns the
661 /// location of the semicolon in DeclEnd.
662 ///
663 ///       declaration: [C99 6.7]
664 ///         block-declaration ->
665 ///           simple-declaration
666 ///           others                   [FIXME]
667 /// [C++]   template-declaration
668 /// [C++]   namespace-definition
669 /// [C++]   using-directive
670 /// [C++]   using-declaration
671 /// [C++0x/C1X] static_assert-declaration
672 ///         others... [FIXME]
673 ///
674 Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
675                                                 unsigned Context,
676                                                 SourceLocation &DeclEnd,
677                                           ParsedAttributesWithRange &attrs) {
678   ParenBraceBracketBalancer BalancerRAIIObj(*this);
679   
680   Decl *SingleDecl = 0;
681   Decl *OwnedType = 0;
682   switch (Tok.getKind()) {
683   case tok::kw_template:
684   case tok::kw_export:
685     ProhibitAttributes(attrs);
686     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
687     break;
688   case tok::kw_inline:
689     // Could be the start of an inline namespace. Allowed as an ext in C++03.
690     if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
691       ProhibitAttributes(attrs);
692       SourceLocation InlineLoc = ConsumeToken();
693       SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
694       break;
695     }
696     return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, 
697                                   true);
698   case tok::kw_namespace:
699     ProhibitAttributes(attrs);
700     SingleDecl = ParseNamespace(Context, DeclEnd);
701     break;
702   case tok::kw_using:
703     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
704                                                   DeclEnd, attrs, &OwnedType);
705     break;
706   case tok::kw_static_assert:
707   case tok::kw__Static_assert:
708     ProhibitAttributes(attrs);
709     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
710     break;
711   default:
712     return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
713   }
714   
715   // This routine returns a DeclGroup, if the thing we parsed only contains a
716   // single decl, convert it now. Alias declarations can also declare a type;
717   // include that too if it is present.
718   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
719 }
720
721 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
722 ///         declaration-specifiers init-declarator-list[opt] ';'
723 ///[C90/C++]init-declarator-list ';'                             [TODO]
724 /// [OMP]   threadprivate-directive                              [TODO]
725 ///
726 ///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
727 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
728 ///
729 /// If RequireSemi is false, this does not check for a ';' at the end of the
730 /// declaration.  If it is true, it checks for and eats it.
731 ///
732 /// If FRI is non-null, we might be parsing a for-range-declaration instead
733 /// of a simple-declaration. If we find that we are, we also parse the
734 /// for-range-initializer, and place it here.
735 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts, 
736                                                       unsigned Context,
737                                                       SourceLocation &DeclEnd,
738                                                       ParsedAttributes &attrs,
739                                                       bool RequireSemi,
740                                                       ForRangeInit *FRI) {
741   // Parse the common declaration-specifiers piece.
742   ParsingDeclSpec DS(*this);
743   DS.takeAttributesFrom(attrs);
744
745   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
746                              getDeclSpecContextFromDeclaratorContext(Context));
747   StmtResult R = Actions.ActOnVlaStmt(DS);
748   if (R.isUsable())
749     Stmts.push_back(R.release());
750   
751   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
752   // declaration-specifiers init-declarator-list[opt] ';'
753   if (Tok.is(tok::semi)) {
754     if (RequireSemi) ConsumeToken();
755     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
756                                                        DS);
757     DS.complete(TheDecl);
758     return Actions.ConvertDeclToDeclGroup(TheDecl);
759   }
760   
761   return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);  
762 }
763
764 /// ParseDeclGroup - Having concluded that this is either a function
765 /// definition or a group of object declarations, actually parse the
766 /// result.
767 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
768                                               unsigned Context,
769                                               bool AllowFunctionDefinitions,
770                                               SourceLocation *DeclEnd,
771                                               ForRangeInit *FRI) {
772   // Parse the first declarator.
773   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
774   ParseDeclarator(D);
775
776   // Bail out if the first declarator didn't seem well-formed.
777   if (!D.hasName() && !D.mayOmitIdentifier()) {
778     // Skip until ; or }.
779     SkipUntil(tok::r_brace, true, true);
780     if (Tok.is(tok::semi))
781       ConsumeToken();
782     return DeclGroupPtrTy();
783   }
784
785   // Check to see if we have a function *definition* which must have a body.
786   if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
787       // Look at the next token to make sure that this isn't a function
788       // declaration.  We have to check this because __attribute__ might be the
789       // start of a function definition in GCC-extended K&R C.
790       !isDeclarationAfterDeclarator()) {
791     
792     if (isStartOfFunctionDefinition(D)) {
793       if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
794         Diag(Tok, diag::err_function_declared_typedef);
795
796         // Recover by treating the 'typedef' as spurious.
797         DS.ClearStorageClassSpecs();
798       }
799
800       Decl *TheDecl = ParseFunctionDefinition(D);
801       return Actions.ConvertDeclToDeclGroup(TheDecl);
802     }
803     
804     if (isDeclarationSpecifier()) {
805       // If there is an invalid declaration specifier right after the function
806       // prototype, then we must be in a missing semicolon case where this isn't
807       // actually a body.  Just fall through into the code that handles it as a
808       // prototype, and let the top-level code handle the erroneous declspec
809       // where it would otherwise expect a comma or semicolon.
810     } else {
811       Diag(Tok, diag::err_expected_fn_body);
812       SkipUntil(tok::semi);
813       return DeclGroupPtrTy();
814     }
815   }
816
817   if (ParseAttributesAfterDeclarator(D))
818     return DeclGroupPtrTy();
819
820   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
821   // must parse and analyze the for-range-initializer before the declaration is
822   // analyzed.
823   if (FRI && Tok.is(tok::colon)) {
824     FRI->ColonLoc = ConsumeToken();
825     if (Tok.is(tok::l_brace))
826       FRI->RangeExpr = ParseBraceInitializer();
827     else
828       FRI->RangeExpr = ParseExpression();
829     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
830     Actions.ActOnCXXForRangeDecl(ThisDecl);
831     Actions.FinalizeDeclaration(ThisDecl);
832     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
833   }
834
835   llvm::SmallVector<Decl *, 8> DeclsInGroup;
836   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
837   D.complete(FirstDecl);
838   if (FirstDecl)
839     DeclsInGroup.push_back(FirstDecl);
840
841   // If we don't have a comma, it is either the end of the list (a ';') or an
842   // error, bail out.
843   while (Tok.is(tok::comma)) {
844     // Consume the comma.
845     ConsumeToken();
846
847     // Parse the next declarator.
848     D.clear();
849
850     // Accept attributes in an init-declarator.  In the first declarator in a
851     // declaration, these would be part of the declspec.  In subsequent
852     // declarators, they become part of the declarator itself, so that they
853     // don't apply to declarators after *this* one.  Examples:
854     //    short __attribute__((common)) var;    -> declspec
855     //    short var __attribute__((common));    -> declarator
856     //    short x, __attribute__((common)) var;    -> declarator
857     MaybeParseGNUAttributes(D);
858
859     ParseDeclarator(D);
860
861     Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
862     D.complete(ThisDecl);
863     if (ThisDecl)
864       DeclsInGroup.push_back(ThisDecl);    
865   }
866
867   if (DeclEnd)
868     *DeclEnd = Tok.getLocation();
869
870   if (Context != Declarator::ForContext &&
871       ExpectAndConsume(tok::semi,
872                        Context == Declarator::FileContext
873                          ? diag::err_invalid_token_after_toplevel_declarator
874                          : diag::err_expected_semi_declaration)) {
875     // Okay, there was no semicolon and one was expected.  If we see a
876     // declaration specifier, just assume it was missing and continue parsing.
877     // Otherwise things are very confused and we skip to recover.
878     if (!isDeclarationSpecifier()) {
879       SkipUntil(tok::r_brace, true, true);
880       if (Tok.is(tok::semi))
881         ConsumeToken();
882     }
883   }
884
885   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
886                                          DeclsInGroup.data(),
887                                          DeclsInGroup.size());
888 }
889
890 /// Parse an optional simple-asm-expr and attributes, and attach them to a
891 /// declarator. Returns true on an error.
892 bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
893   // If a simple-asm-expr is present, parse it.
894   if (Tok.is(tok::kw_asm)) {
895     SourceLocation Loc;
896     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
897     if (AsmLabel.isInvalid()) {
898       SkipUntil(tok::semi, true, true);
899       return true;
900     }
901
902     D.setAsmLabel(AsmLabel.release());
903     D.SetRangeEnd(Loc);
904   }
905
906   MaybeParseGNUAttributes(D);
907   return false;
908 }
909
910 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
911 /// declarator'. This method parses the remainder of the declaration
912 /// (including any attributes or initializer, among other things) and
913 /// finalizes the declaration.
914 ///
915 ///       init-declarator: [C99 6.7]
916 ///         declarator
917 ///         declarator '=' initializer
918 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
919 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
920 /// [C++]   declarator initializer[opt]
921 ///
922 /// [C++] initializer:
923 /// [C++]   '=' initializer-clause
924 /// [C++]   '(' expression-list ')'
925 /// [C++0x] '=' 'default'                                                [TODO]
926 /// [C++0x] '=' 'delete'
927 /// [C++0x] braced-init-list
928 ///
929 /// According to the standard grammar, =default and =delete are function
930 /// definitions, but that definitely doesn't fit with the parser here.
931 ///
932 Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
933                                      const ParsedTemplateInfo &TemplateInfo) {
934   if (ParseAttributesAfterDeclarator(D))
935     return 0;
936
937   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
938 }
939
940 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
941                                      const ParsedTemplateInfo &TemplateInfo) {
942   // Inform the current actions module that we just parsed this declarator.
943   Decl *ThisDecl = 0;
944   switch (TemplateInfo.Kind) {
945   case ParsedTemplateInfo::NonTemplate:
946     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
947     break;
948       
949   case ParsedTemplateInfo::Template:
950   case ParsedTemplateInfo::ExplicitSpecialization:
951     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
952                              MultiTemplateParamsArg(Actions,
953                                           TemplateInfo.TemplateParams->data(),
954                                           TemplateInfo.TemplateParams->size()),
955                                                D);
956     break;
957       
958   case ParsedTemplateInfo::ExplicitInstantiation: {
959     DeclResult ThisRes 
960       = Actions.ActOnExplicitInstantiation(getCurScope(),
961                                            TemplateInfo.ExternLoc,
962                                            TemplateInfo.TemplateLoc,
963                                            D);
964     if (ThisRes.isInvalid()) {
965       SkipUntil(tok::semi, true, true);
966       return 0;
967     }
968     
969     ThisDecl = ThisRes.get();
970     break;
971     }
972   }
973
974   bool TypeContainsAuto =
975     D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
976
977   // Parse declarator '=' initializer.
978   if (isTokenEqualOrMistypedEqualEqual(
979                                diag::err_invalid_equalequal_after_declarator)) {
980     ConsumeToken();
981     if (Tok.is(tok::kw_delete)) {
982       if (D.isFunctionDeclarator())
983         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
984           << 1 /* delete */;
985       else
986         Diag(ConsumeToken(), diag::err_deleted_non_function);
987     } else if (Tok.is(tok::kw_default)) {
988       if (D.isFunctionDeclarator())
989         Diag(Tok, diag::err_default_delete_in_multiple_declaration)
990           << 1 /* delete */;
991       else
992         Diag(ConsumeToken(), diag::err_default_special_members);
993     } else {
994       if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
995         EnterScope(0);
996         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
997       }
998
999       if (Tok.is(tok::code_completion)) {
1000         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1001         ConsumeCodeCompletionToken();
1002         SkipUntil(tok::comma, true, true);
1003         return ThisDecl;
1004       }
1005       
1006       ExprResult Init(ParseInitializer());
1007
1008       if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1009         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1010         ExitScope();
1011       }
1012
1013       if (Init.isInvalid()) {
1014         SkipUntil(tok::comma, true, true);
1015         Actions.ActOnInitializerError(ThisDecl);
1016       } else
1017         Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1018                                      /*DirectInit=*/false, TypeContainsAuto);
1019     }
1020   } else if (Tok.is(tok::l_paren)) {
1021     // Parse C++ direct initializer: '(' expression-list ')'
1022     SourceLocation LParenLoc = ConsumeParen();
1023     ExprVector Exprs(Actions);
1024     CommaLocsTy CommaLocs;
1025
1026     if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1027       EnterScope(0);
1028       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1029     }
1030
1031     if (ParseExpressionList(Exprs, CommaLocs)) {
1032       SkipUntil(tok::r_paren);
1033
1034       if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1035         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1036         ExitScope();
1037       }
1038     } else {
1039       // Match the ')'.
1040       SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
1041
1042       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1043              "Unexpected number of commas!");
1044
1045       if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1046         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1047         ExitScope();
1048       }
1049
1050       Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
1051                                             move_arg(Exprs),
1052                                             RParenLoc,
1053                                             TypeContainsAuto);
1054     }
1055   } else if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
1056     // Parse C++0x braced-init-list.
1057     if (D.getCXXScopeSpec().isSet()) {
1058       EnterScope(0);
1059       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1060     }
1061
1062     ExprResult Init(ParseBraceInitializer());
1063
1064     if (D.getCXXScopeSpec().isSet()) {
1065       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1066       ExitScope();
1067     }
1068
1069     if (Init.isInvalid()) {
1070       Actions.ActOnInitializerError(ThisDecl);
1071     } else
1072       Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1073                                    /*DirectInit=*/true, TypeContainsAuto);
1074
1075   } else {
1076     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1077   }
1078
1079   Actions.FinalizeDeclaration(ThisDecl);
1080
1081   return ThisDecl;
1082 }
1083
1084 /// ParseSpecifierQualifierList
1085 ///        specifier-qualifier-list:
1086 ///          type-specifier specifier-qualifier-list[opt]
1087 ///          type-qualifier specifier-qualifier-list[opt]
1088 /// [GNU]    attributes     specifier-qualifier-list[opt]
1089 ///
1090 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS) {
1091   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1092   /// parse declaration-specifiers and complain about extra stuff.
1093   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
1094
1095   // Validate declspec for type-name.
1096   unsigned Specs = DS.getParsedSpecifiers();
1097   if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1098       !DS.hasAttributes())
1099     Diag(Tok, diag::err_typename_requires_specqual);
1100
1101   // Issue diagnostic and remove storage class if present.
1102   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1103     if (DS.getStorageClassSpecLoc().isValid())
1104       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1105     else
1106       Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1107     DS.ClearStorageClassSpecs();
1108   }
1109
1110   // Issue diagnostic and remove function specfier if present.
1111   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1112     if (DS.isInlineSpecified())
1113       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1114     if (DS.isVirtualSpecified())
1115       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1116     if (DS.isExplicitSpecified())
1117       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1118     DS.ClearFunctionSpecs();
1119   }
1120 }
1121
1122 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1123 /// specified token is valid after the identifier in a declarator which
1124 /// immediately follows the declspec.  For example, these things are valid:
1125 ///
1126 ///      int x   [             4];         // direct-declarator
1127 ///      int x   (             int y);     // direct-declarator
1128 ///  int(int x   )                         // direct-declarator
1129 ///      int x   ;                         // simple-declaration
1130 ///      int x   =             17;         // init-declarator-list
1131 ///      int x   ,             y;          // init-declarator-list
1132 ///      int x   __asm__       ("foo");    // init-declarator-list
1133 ///      int x   :             4;          // struct-declarator
1134 ///      int x   {             5};         // C++'0x unified initializers
1135 ///
1136 /// This is not, because 'x' does not immediately follow the declspec (though
1137 /// ')' happens to be valid anyway).
1138 ///    int (x)
1139 ///
1140 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1141   return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1142          T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1143          T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1144 }
1145
1146
1147 /// ParseImplicitInt - This method is called when we have an non-typename
1148 /// identifier in a declspec (which normally terminates the decl spec) when
1149 /// the declspec has no type specifier.  In this case, the declspec is either
1150 /// malformed or is "implicit int" (in K&R and C89).
1151 ///
1152 /// This method handles diagnosing this prettily and returns false if the
1153 /// declspec is done being processed.  If it recovers and thinks there may be
1154 /// other pieces of declspec after it, it returns true.
1155 ///
1156 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1157                               const ParsedTemplateInfo &TemplateInfo,
1158                               AccessSpecifier AS) {
1159   assert(Tok.is(tok::identifier) && "should have identifier");
1160
1161   SourceLocation Loc = Tok.getLocation();
1162   // If we see an identifier that is not a type name, we normally would
1163   // parse it as the identifer being declared.  However, when a typename
1164   // is typo'd or the definition is not included, this will incorrectly
1165   // parse the typename as the identifier name and fall over misparsing
1166   // later parts of the diagnostic.
1167   //
1168   // As such, we try to do some look-ahead in cases where this would
1169   // otherwise be an "implicit-int" case to see if this is invalid.  For
1170   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1171   // an identifier with implicit int, we'd get a parse error because the
1172   // next token is obviously invalid for a type.  Parse these as a case
1173   // with an invalid type specifier.
1174   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1175
1176   // Since we know that this either implicit int (which is rare) or an
1177   // error, we'd do lookahead to try to do better recovery.
1178   if (isValidAfterIdentifierInDeclarator(NextToken())) {
1179     // If this token is valid for implicit int, e.g. "static x = 4", then
1180     // we just avoid eating the identifier, so it will be parsed as the
1181     // identifier in the declarator.
1182     return false;
1183   }
1184
1185   // Otherwise, if we don't consume this token, we are going to emit an
1186   // error anyway.  Try to recover from various common problems.  Check
1187   // to see if this was a reference to a tag name without a tag specified.
1188   // This is a common problem in C (saying 'foo' instead of 'struct foo').
1189   //
1190   // C++ doesn't need this, and isTagName doesn't take SS.
1191   if (SS == 0) {
1192     const char *TagName = 0, *FixitTagName = 0;
1193     tok::TokenKind TagKind = tok::unknown;
1194
1195     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1196       default: break;
1197       case DeclSpec::TST_enum:
1198         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1199       case DeclSpec::TST_union:
1200         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1201       case DeclSpec::TST_struct:
1202         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1203       case DeclSpec::TST_class:
1204         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1205     }
1206
1207     if (TagName) {
1208       Diag(Loc, diag::err_use_of_tag_name_without_tag)
1209         << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1210         << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1211
1212       // Parse this as a tag as if the missing tag were present.
1213       if (TagKind == tok::kw_enum)
1214         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1215       else
1216         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1217       return true;
1218     }
1219   }
1220
1221   // This is almost certainly an invalid type name. Let the action emit a 
1222   // diagnostic and attempt to recover.
1223   ParsedType T;
1224   if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1225                                       getCurScope(), SS, T)) {
1226     // The action emitted a diagnostic, so we don't have to.
1227     if (T) {
1228       // The action has suggested that the type T could be used. Set that as
1229       // the type in the declaration specifiers, consume the would-be type
1230       // name token, and we're done.
1231       const char *PrevSpec;
1232       unsigned DiagID;
1233       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1234       DS.SetRangeEnd(Tok.getLocation());
1235       ConsumeToken();
1236       
1237       // There may be other declaration specifiers after this.
1238       return true;
1239     }
1240     
1241     // Fall through; the action had no suggestion for us.
1242   } else {
1243     // The action did not emit a diagnostic, so emit one now.
1244     SourceRange R;
1245     if (SS) R = SS->getRange();
1246     Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1247   }
1248
1249   // Mark this as an error.
1250   const char *PrevSpec;
1251   unsigned DiagID;
1252   DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1253   DS.SetRangeEnd(Tok.getLocation());
1254   ConsumeToken();
1255
1256   // TODO: Could inject an invalid typedef decl in an enclosing scope to
1257   // avoid rippling error messages on subsequent uses of the same type,
1258   // could be useful if #include was forgotten.
1259   return false;
1260 }
1261
1262 /// \brief Determine the declaration specifier context from the declarator
1263 /// context.
1264 ///
1265 /// \param Context the declarator context, which is one of the
1266 /// Declarator::TheContext enumerator values.
1267 Parser::DeclSpecContext 
1268 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1269   if (Context == Declarator::MemberContext)
1270     return DSC_class;
1271   if (Context == Declarator::FileContext)
1272     return DSC_top_level;
1273   return DSC_normal;
1274 }
1275
1276 /// ParseDeclarationSpecifiers
1277 ///       declaration-specifiers: [C99 6.7]
1278 ///         storage-class-specifier declaration-specifiers[opt]
1279 ///         type-specifier declaration-specifiers[opt]
1280 /// [C99]   function-specifier declaration-specifiers[opt]
1281 /// [GNU]   attributes declaration-specifiers[opt]
1282 ///
1283 ///       storage-class-specifier: [C99 6.7.1]
1284 ///         'typedef'
1285 ///         'extern'
1286 ///         'static'
1287 ///         'auto'
1288 ///         'register'
1289 /// [C++]   'mutable'
1290 /// [GNU]   '__thread'
1291 ///       function-specifier: [C99 6.7.4]
1292 /// [C99]   'inline'
1293 /// [C++]   'virtual'
1294 /// [C++]   'explicit'
1295 /// [OpenCL] '__kernel'
1296 ///       'friend': [C++ dcl.friend]
1297 ///       'constexpr': [C++0x dcl.constexpr]
1298
1299 ///
1300 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1301                                         const ParsedTemplateInfo &TemplateInfo,
1302                                         AccessSpecifier AS,
1303                                         DeclSpecContext DSContext) { 
1304   if (DS.getSourceRange().isInvalid()) {
1305     DS.SetRangeStart(Tok.getLocation());
1306     DS.SetRangeEnd(Tok.getLocation());
1307   }
1308   
1309   while (1) {
1310     bool isInvalid = false;
1311     const char *PrevSpec = 0;
1312     unsigned DiagID = 0;
1313
1314     SourceLocation Loc = Tok.getLocation();
1315
1316     switch (Tok.getKind()) {
1317     default:
1318     DoneWithDeclSpec:
1319       // If this is not a declaration specifier token, we're done reading decl
1320       // specifiers.  First verify that DeclSpec's are consistent.
1321       DS.Finish(Diags, PP);
1322       return;
1323
1324     case tok::code_completion: {
1325       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1326       if (DS.hasTypeSpecifier()) {
1327         bool AllowNonIdentifiers
1328           = (getCurScope()->getFlags() & (Scope::ControlScope |
1329                                           Scope::BlockScope |
1330                                           Scope::TemplateParamScope |
1331                                           Scope::FunctionPrototypeScope |
1332                                           Scope::AtCatchScope)) == 0;
1333         bool AllowNestedNameSpecifiers
1334           = DSContext == DSC_top_level || 
1335             (DSContext == DSC_class && DS.isFriendSpecified());
1336
1337         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1338                                      AllowNonIdentifiers, 
1339                                      AllowNestedNameSpecifiers);
1340         ConsumeCodeCompletionToken();
1341         return;
1342       } 
1343       
1344       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1345         CCC = Sema::PCC_LocalDeclarationSpecifiers;
1346       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1347         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate 
1348                                     : Sema::PCC_Template;
1349       else if (DSContext == DSC_class)
1350         CCC = Sema::PCC_Class;
1351       else if (ObjCImpDecl)
1352         CCC = Sema::PCC_ObjCImplementation;
1353       
1354       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1355       ConsumeCodeCompletionToken();
1356       return;
1357     }
1358
1359     case tok::coloncolon: // ::foo::bar
1360       // C++ scope specifier.  Annotate and loop, or bail out on error.
1361       if (TryAnnotateCXXScopeToken(true)) {
1362         if (!DS.hasTypeSpecifier())
1363           DS.SetTypeSpecError();
1364         goto DoneWithDeclSpec;
1365       }
1366       if (Tok.is(tok::coloncolon)) // ::new or ::delete
1367         goto DoneWithDeclSpec;
1368       continue;
1369
1370     case tok::annot_cxxscope: {
1371       if (DS.hasTypeSpecifier())
1372         goto DoneWithDeclSpec;
1373
1374       CXXScopeSpec SS;
1375       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1376                                                    Tok.getAnnotationRange(),
1377                                                    SS);
1378
1379       // We are looking for a qualified typename.
1380       Token Next = NextToken();
1381       if (Next.is(tok::annot_template_id) &&
1382           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1383             ->Kind == TNK_Type_template) {
1384         // We have a qualified template-id, e.g., N::A<int>
1385
1386         // C++ [class.qual]p2:
1387         //   In a lookup in which the constructor is an acceptable lookup
1388         //   result and the nested-name-specifier nominates a class C:
1389         //
1390         //     - if the name specified after the
1391         //       nested-name-specifier, when looked up in C, is the
1392         //       injected-class-name of C (Clause 9), or
1393         //
1394         //     - if the name specified after the nested-name-specifier
1395         //       is the same as the identifier or the
1396         //       simple-template-id's template-name in the last
1397         //       component of the nested-name-specifier,
1398         //
1399         //   the name is instead considered to name the constructor of
1400         //   class C.
1401         // 
1402         // Thus, if the template-name is actually the constructor
1403         // name, then the code is ill-formed; this interpretation is
1404         // reinforced by the NAD status of core issue 635. 
1405         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1406         if ((DSContext == DSC_top_level ||
1407              (DSContext == DSC_class && DS.isFriendSpecified())) &&
1408             TemplateId->Name &&
1409             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1410           if (isConstructorDeclarator()) {
1411             // The user meant this to be an out-of-line constructor
1412             // definition, but template arguments are not allowed
1413             // there.  Just allow this as a constructor; we'll
1414             // complain about it later.
1415             goto DoneWithDeclSpec;
1416           }
1417
1418           // The user meant this to name a type, but it actually names
1419           // a constructor with some extraneous template
1420           // arguments. Complain, then parse it as a type as the user
1421           // intended.
1422           Diag(TemplateId->TemplateNameLoc,
1423                diag::err_out_of_line_template_id_names_constructor)
1424             << TemplateId->Name;
1425         }
1426
1427         DS.getTypeSpecScope() = SS;
1428         ConsumeToken(); // The C++ scope.
1429         assert(Tok.is(tok::annot_template_id) &&
1430                "ParseOptionalCXXScopeSpecifier not working");
1431         AnnotateTemplateIdTokenAsType();
1432         continue;
1433       }
1434
1435       if (Next.is(tok::annot_typename)) {
1436         DS.getTypeSpecScope() = SS;
1437         ConsumeToken(); // The C++ scope.
1438         if (Tok.getAnnotationValue()) {
1439           ParsedType T = getTypeAnnotation(Tok);
1440           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1441                                          Tok.getAnnotationEndLoc(), 
1442                                          PrevSpec, DiagID, T);
1443         }
1444         else
1445           DS.SetTypeSpecError();
1446         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1447         ConsumeToken(); // The typename
1448       }
1449
1450       if (Next.isNot(tok::identifier))
1451         goto DoneWithDeclSpec;
1452
1453       // If we're in a context where the identifier could be a class name,
1454       // check whether this is a constructor declaration.
1455       if ((DSContext == DSC_top_level ||
1456            (DSContext == DSC_class && DS.isFriendSpecified())) &&
1457           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), 
1458                                      &SS)) {
1459         if (isConstructorDeclarator())
1460           goto DoneWithDeclSpec;
1461
1462         // As noted in C++ [class.qual]p2 (cited above), when the name
1463         // of the class is qualified in a context where it could name
1464         // a constructor, its a constructor name. However, we've
1465         // looked at the declarator, and the user probably meant this
1466         // to be a type. Complain that it isn't supposed to be treated
1467         // as a type, then proceed to parse it as a type.
1468         Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1469           << Next.getIdentifierInfo();
1470       }
1471
1472       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1473                                                Next.getLocation(),
1474                                                getCurScope(), &SS,
1475                                                false, false, ParsedType(),
1476                                                /*NonTrivialSourceInfo=*/true);
1477
1478       // If the referenced identifier is not a type, then this declspec is
1479       // erroneous: We already checked about that it has no type specifier, and
1480       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1481       // typename.
1482       if (TypeRep == 0) {
1483         ConsumeToken();   // Eat the scope spec so the identifier is current.
1484         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1485         goto DoneWithDeclSpec;
1486       }
1487
1488       DS.getTypeSpecScope() = SS;
1489       ConsumeToken(); // The C++ scope.
1490
1491       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1492                                      DiagID, TypeRep);
1493       if (isInvalid)
1494         break;
1495
1496       DS.SetRangeEnd(Tok.getLocation());
1497       ConsumeToken(); // The typename.
1498
1499       continue;
1500     }
1501
1502     case tok::annot_typename: {
1503       if (Tok.getAnnotationValue()) {
1504         ParsedType T = getTypeAnnotation(Tok);
1505         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1506                                        DiagID, T);
1507       } else
1508         DS.SetTypeSpecError();
1509       
1510       if (isInvalid)
1511         break;
1512
1513       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1514       ConsumeToken(); // The typename
1515
1516       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1517       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1518       // Objective-C interface. 
1519       if (Tok.is(tok::less) && getLang().ObjC1)
1520         ParseObjCProtocolQualifiers(DS);
1521       
1522       continue;
1523     }
1524
1525     case tok::kw___is_signed:
1526       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1527       // typically treats it as a trait. If we see __is_signed as it appears
1528       // in libstdc++, e.g.,
1529       //
1530       //   static const bool __is_signed;
1531       //
1532       // then treat __is_signed as an identifier rather than as a keyword.
1533       if (DS.getTypeSpecType() == TST_bool &&
1534           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1535           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1536         Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1537         Tok.setKind(tok::identifier);
1538       }
1539
1540       // We're done with the declaration-specifiers.
1541       goto DoneWithDeclSpec;
1542         
1543       // typedef-name
1544     case tok::identifier: {
1545       // In C++, check to see if this is a scope specifier like foo::bar::, if
1546       // so handle it as such.  This is important for ctor parsing.
1547       if (getLang().CPlusPlus) {
1548         if (TryAnnotateCXXScopeToken(true)) {
1549           if (!DS.hasTypeSpecifier())
1550             DS.SetTypeSpecError();
1551           goto DoneWithDeclSpec;
1552         }
1553         if (!Tok.is(tok::identifier))
1554           continue;
1555       }
1556
1557       // This identifier can only be a typedef name if we haven't already seen
1558       // a type-specifier.  Without this check we misparse:
1559       //  typedef int X; struct Y { short X; };  as 'short int'.
1560       if (DS.hasTypeSpecifier())
1561         goto DoneWithDeclSpec;
1562
1563       // Check for need to substitute AltiVec keyword tokens.
1564       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1565         break;
1566
1567       // It has to be available as a typedef too!
1568       ParsedType TypeRep =
1569         Actions.getTypeName(*Tok.getIdentifierInfo(),
1570                             Tok.getLocation(), getCurScope());
1571
1572       // If this is not a typedef name, don't parse it as part of the declspec,
1573       // it must be an implicit int or an error.
1574       if (!TypeRep) {
1575         if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1576         goto DoneWithDeclSpec;
1577       }
1578
1579       // If we're in a context where the identifier could be a class name,
1580       // check whether this is a constructor declaration.
1581       if (getLang().CPlusPlus && DSContext == DSC_class &&
1582           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1583           isConstructorDeclarator())
1584         goto DoneWithDeclSpec;
1585
1586       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1587                                      DiagID, TypeRep);
1588       if (isInvalid)
1589         break;
1590
1591       DS.SetRangeEnd(Tok.getLocation());
1592       ConsumeToken(); // The identifier
1593
1594       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1595       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1596       // Objective-C interface. 
1597       if (Tok.is(tok::less) && getLang().ObjC1)
1598         ParseObjCProtocolQualifiers(DS);
1599       
1600       // Need to support trailing type qualifiers (e.g. "id<p> const").
1601       // If a type specifier follows, it will be diagnosed elsewhere.
1602       continue;
1603     }
1604
1605       // type-name
1606     case tok::annot_template_id: {
1607       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1608       if (TemplateId->Kind != TNK_Type_template) {
1609         // This template-id does not refer to a type name, so we're
1610         // done with the type-specifiers.
1611         goto DoneWithDeclSpec;
1612       }
1613
1614       // If we're in a context where the template-id could be a
1615       // constructor name or specialization, check whether this is a
1616       // constructor declaration.
1617       if (getLang().CPlusPlus && DSContext == DSC_class &&
1618           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1619           isConstructorDeclarator())
1620         goto DoneWithDeclSpec;
1621
1622       // Turn the template-id annotation token into a type annotation
1623       // token, then try again to parse it as a type-specifier.
1624       AnnotateTemplateIdTokenAsType();
1625       continue;
1626     }
1627
1628     // GNU attributes support.
1629     case tok::kw___attribute:
1630       ParseGNUAttributes(DS.getAttributes());
1631       continue;
1632
1633     // Microsoft declspec support.
1634     case tok::kw___declspec:
1635       ParseMicrosoftDeclSpec(DS.getAttributes());
1636       continue;
1637
1638     // Microsoft single token adornments.
1639     case tok::kw___forceinline:
1640       // FIXME: Add handling here!
1641       break;
1642
1643     case tok::kw___ptr64:
1644     case tok::kw___w64:
1645     case tok::kw___cdecl:
1646     case tok::kw___stdcall:
1647     case tok::kw___fastcall:
1648     case tok::kw___thiscall:
1649       ParseMicrosoftTypeAttributes(DS.getAttributes());
1650       continue;
1651
1652     // Borland single token adornments.
1653     case tok::kw___pascal:
1654       ParseBorlandTypeAttributes(DS.getAttributes());
1655       continue;
1656
1657     // OpenCL single token adornments.
1658     case tok::kw___kernel:
1659       ParseOpenCLAttributes(DS.getAttributes());
1660       continue;
1661
1662     // storage-class-specifier
1663     case tok::kw_typedef:
1664       isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1665                                          DiagID, getLang());
1666       break;
1667     case tok::kw_extern:
1668       if (DS.isThreadSpecified())
1669         Diag(Tok, diag::ext_thread_before) << "extern";
1670       isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1671                                          DiagID, getLang());
1672       break;
1673     case tok::kw___private_extern__:
1674       isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1675                                          PrevSpec, DiagID, getLang());
1676       break;
1677     case tok::kw_static:
1678       if (DS.isThreadSpecified())
1679         Diag(Tok, diag::ext_thread_before) << "static";
1680       isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1681                                          DiagID, getLang());
1682       break;
1683     case tok::kw_auto:
1684       if (getLang().CPlusPlus0x) {
1685         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1686           isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1687                                            DiagID, getLang());
1688           if (!isInvalid)
1689             Diag(Tok, diag::auto_storage_class)
1690               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1691         }
1692         else
1693           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1694                                          DiagID);
1695       }
1696       else
1697         isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1698                                            DiagID, getLang());
1699       break;
1700     case tok::kw_register:
1701       isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1702                                          DiagID, getLang());
1703       break;
1704     case tok::kw_mutable:
1705       isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1706                                          DiagID, getLang());
1707       break;
1708     case tok::kw___thread:
1709       isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1710       break;
1711
1712     // function-specifier
1713     case tok::kw_inline:
1714       isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1715       break;
1716     case tok::kw_virtual:
1717       isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1718       break;
1719     case tok::kw_explicit:
1720       isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1721       break;
1722
1723     // friend
1724     case tok::kw_friend:
1725       if (DSContext == DSC_class)
1726         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1727       else {
1728         PrevSpec = ""; // not actually used by the diagnostic
1729         DiagID = diag::err_friend_invalid_in_context;
1730         isInvalid = true;
1731       }
1732       break;
1733
1734     // constexpr
1735     case tok::kw_constexpr:
1736       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1737       break;
1738
1739     // type-specifier
1740     case tok::kw_short:
1741       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1742                                       DiagID);
1743       break;
1744     case tok::kw_long:
1745       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1746         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1747                                         DiagID);
1748       else
1749         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1750                                         DiagID);
1751       break;
1752     case tok::kw___int64:
1753         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1754                                         DiagID);
1755       break;
1756     case tok::kw_signed:
1757       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1758                                      DiagID);
1759       break;
1760     case tok::kw_unsigned:
1761       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1762                                      DiagID);
1763       break;
1764     case tok::kw__Complex:
1765       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1766                                         DiagID);
1767       break;
1768     case tok::kw__Imaginary:
1769       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1770                                         DiagID);
1771       break;
1772     case tok::kw_void:
1773       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1774                                      DiagID);
1775       break;
1776     case tok::kw_char:
1777       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1778                                      DiagID);
1779       break;
1780     case tok::kw_int:
1781       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1782                                      DiagID);
1783       break;
1784     case tok::kw_float:
1785       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1786                                      DiagID);
1787       break;
1788     case tok::kw_double:
1789       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1790                                      DiagID);
1791       break;
1792     case tok::kw_wchar_t:
1793       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1794                                      DiagID);
1795       break;
1796     case tok::kw_char16_t:
1797       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1798                                      DiagID);
1799       break;
1800     case tok::kw_char32_t:
1801       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1802                                      DiagID);
1803       break;
1804     case tok::kw_bool:
1805     case tok::kw__Bool:
1806       if (Tok.is(tok::kw_bool) &&
1807           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
1808           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1809         PrevSpec = ""; // Not used by the diagnostic.
1810         DiagID = diag::err_bool_redeclaration;
1811         // For better error recovery.
1812         Tok.setKind(tok::identifier);
1813         isInvalid = true;
1814       } else {
1815         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1816                                        DiagID);
1817       }
1818       break;
1819     case tok::kw__Decimal32:
1820       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1821                                      DiagID);
1822       break;
1823     case tok::kw__Decimal64:
1824       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1825                                      DiagID);
1826       break;
1827     case tok::kw__Decimal128:
1828       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1829                                      DiagID);
1830       break;
1831     case tok::kw___vector:
1832       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1833       break;
1834     case tok::kw___pixel:
1835       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1836       break;
1837     case tok::kw___unknown_anytype:
1838       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
1839                                      PrevSpec, DiagID);
1840       break;
1841
1842     // class-specifier:
1843     case tok::kw_class:
1844     case tok::kw_struct:
1845     case tok::kw_union: {
1846       tok::TokenKind Kind = Tok.getKind();
1847       ConsumeToken();
1848       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1849       continue;
1850     }
1851
1852     // enum-specifier:
1853     case tok::kw_enum:
1854       ConsumeToken();
1855       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1856       continue;
1857
1858     // cv-qualifier:
1859     case tok::kw_const:
1860       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1861                                  getLang());
1862       break;
1863     case tok::kw_volatile:
1864       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1865                                  getLang());
1866       break;
1867     case tok::kw_restrict:
1868       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1869                                  getLang());
1870       break;
1871
1872     // C++ typename-specifier:
1873     case tok::kw_typename:
1874       if (TryAnnotateTypeOrScopeToken()) {
1875         DS.SetTypeSpecError();
1876         goto DoneWithDeclSpec;
1877       }
1878       if (!Tok.is(tok::kw_typename))
1879         continue;
1880       break;
1881
1882     // GNU typeof support.
1883     case tok::kw_typeof:
1884       ParseTypeofSpecifier(DS);
1885       continue;
1886
1887     case tok::kw_decltype:
1888       ParseDecltypeSpecifier(DS);
1889       continue;
1890
1891     case tok::kw___underlying_type:
1892       ParseUnderlyingTypeSpecifier(DS);
1893
1894     // OpenCL qualifiers:
1895     case tok::kw_private: 
1896       if (!getLang().OpenCL)
1897         goto DoneWithDeclSpec;
1898     case tok::kw___private:
1899     case tok::kw___global:
1900     case tok::kw___local:
1901     case tok::kw___constant:
1902     case tok::kw___read_only:
1903     case tok::kw___write_only:
1904     case tok::kw___read_write:
1905       ParseOpenCLQualifiers(DS);
1906       break;
1907       
1908     case tok::less:
1909       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1910       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1911       // but we support it.
1912       if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1913         goto DoneWithDeclSpec;
1914
1915       if (!ParseObjCProtocolQualifiers(DS))
1916         Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1917           << FixItHint::CreateInsertion(Loc, "id")
1918           << SourceRange(Loc, DS.getSourceRange().getEnd());
1919       
1920       // Need to support trailing type qualifiers (e.g. "id<p> const").
1921       // If a type specifier follows, it will be diagnosed elsewhere.
1922       continue;
1923     }
1924     // If the specifier wasn't legal, issue a diagnostic.
1925     if (isInvalid) {
1926       assert(PrevSpec && "Method did not return previous specifier!");
1927       assert(DiagID);
1928       
1929       if (DiagID == diag::ext_duplicate_declspec)
1930         Diag(Tok, DiagID)
1931           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
1932       else
1933         Diag(Tok, DiagID) << PrevSpec;
1934     }
1935
1936     DS.SetRangeEnd(Tok.getLocation());
1937     if (DiagID != diag::err_bool_redeclaration)
1938       ConsumeToken();
1939   }
1940 }
1941
1942 /// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1943 /// primarily follow the C++ grammar with additions for C99 and GNU,
1944 /// which together subsume the C grammar. Note that the C++
1945 /// type-specifier also includes the C type-qualifier (for const,
1946 /// volatile, and C99 restrict). Returns true if a type-specifier was
1947 /// found (and parsed), false otherwise.
1948 ///
1949 ///       type-specifier: [C++ 7.1.5]
1950 ///         simple-type-specifier
1951 ///         class-specifier
1952 ///         enum-specifier
1953 ///         elaborated-type-specifier  [TODO]
1954 ///         cv-qualifier
1955 ///
1956 ///       cv-qualifier: [C++ 7.1.5.1]
1957 ///         'const'
1958 ///         'volatile'
1959 /// [C99]   'restrict'
1960 ///
1961 ///       simple-type-specifier: [ C++ 7.1.5.2]
1962 ///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1963 ///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1964 ///         'char'
1965 ///         'wchar_t'
1966 ///         'bool'
1967 ///         'short'
1968 ///         'int'
1969 ///         'long'
1970 ///         'signed'
1971 ///         'unsigned'
1972 ///         'float'
1973 ///         'double'
1974 ///         'void'
1975 /// [C99]   '_Bool'
1976 /// [C99]   '_Complex'
1977 /// [C99]   '_Imaginary'  // Removed in TC2?
1978 /// [GNU]   '_Decimal32'
1979 /// [GNU]   '_Decimal64'
1980 /// [GNU]   '_Decimal128'
1981 /// [GNU]   typeof-specifier
1982 /// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1983 /// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1984 /// [C++0x] 'decltype' ( expression )
1985 /// [AltiVec] '__vector'
1986 bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1987                                         const char *&PrevSpec,
1988                                         unsigned &DiagID,
1989                                         const ParsedTemplateInfo &TemplateInfo,
1990                                         bool SuppressDeclarations) {
1991   SourceLocation Loc = Tok.getLocation();
1992
1993   switch (Tok.getKind()) {
1994   case tok::identifier:   // foo::bar
1995     // If we already have a type specifier, this identifier is not a type.
1996     if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1997         DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1998         DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1999       return false;
2000     // Check for need to substitute AltiVec keyword tokens.
2001     if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2002       break;
2003     // Fall through.
2004   case tok::kw_typename:  // typename foo::bar
2005     // Annotate typenames and C++ scope specifiers.  If we get one, just
2006     // recurse to handle whatever we get.
2007     if (TryAnnotateTypeOrScopeToken())
2008       return true;
2009     if (Tok.is(tok::identifier))
2010       return false;
2011     return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2012                                       TemplateInfo, SuppressDeclarations);
2013   case tok::coloncolon:   // ::foo::bar
2014     if (NextToken().is(tok::kw_new) ||    // ::new
2015         NextToken().is(tok::kw_delete))   // ::delete
2016       return false;
2017
2018     // Annotate typenames and C++ scope specifiers.  If we get one, just
2019     // recurse to handle whatever we get.
2020     if (TryAnnotateTypeOrScopeToken())
2021       return true;
2022     return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2023                                       TemplateInfo, SuppressDeclarations);
2024
2025   // simple-type-specifier:
2026   case tok::annot_typename: {
2027     if (ParsedType T = getTypeAnnotation(Tok)) {
2028       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2029                                      Tok.getAnnotationEndLoc(), PrevSpec,
2030                                      DiagID, T);
2031     } else
2032       DS.SetTypeSpecError();
2033     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2034     ConsumeToken(); // The typename
2035
2036     // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2037     // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2038     // Objective-C interface.  If we don't have Objective-C or a '<', this is
2039     // just a normal reference to a typedef name.
2040     if (Tok.is(tok::less) && getLang().ObjC1)
2041       ParseObjCProtocolQualifiers(DS);
2042     
2043     return true;
2044   }
2045
2046   case tok::kw_short:
2047     isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
2048     break;
2049   case tok::kw_long:
2050     if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2051       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2052                                       DiagID);
2053     else
2054       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2055                                       DiagID);
2056     break;
2057   case tok::kw___int64:
2058       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2059                                       DiagID);
2060     break;
2061   case tok::kw_signed:
2062     isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2063     break;
2064   case tok::kw_unsigned:
2065     isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2066                                    DiagID);
2067     break;
2068   case tok::kw__Complex:
2069     isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2070                                       DiagID);
2071     break;
2072   case tok::kw__Imaginary:
2073     isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2074                                       DiagID);
2075     break;
2076   case tok::kw_void:
2077     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2078     break;
2079   case tok::kw_char:
2080     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2081     break;
2082   case tok::kw_int:
2083     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2084     break;
2085   case tok::kw_float:
2086     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2087     break;
2088   case tok::kw_double:
2089     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2090     break;
2091   case tok::kw_wchar_t:
2092     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2093     break;
2094   case tok::kw_char16_t:
2095     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2096     break;
2097   case tok::kw_char32_t:
2098     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2099     break;
2100   case tok::kw_bool:
2101   case tok::kw__Bool:
2102     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2103     break;
2104   case tok::kw__Decimal32:
2105     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2106                                    DiagID);
2107     break;
2108   case tok::kw__Decimal64:
2109     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2110                                    DiagID);
2111     break;
2112   case tok::kw__Decimal128:
2113     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2114                                    DiagID);
2115     break;
2116   case tok::kw___vector:
2117     isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2118     break;
2119   case tok::kw___pixel:
2120     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2121     break;
2122   
2123   // class-specifier:
2124   case tok::kw_class:
2125   case tok::kw_struct:
2126   case tok::kw_union: {
2127     tok::TokenKind Kind = Tok.getKind();
2128     ConsumeToken();
2129     ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2130                         SuppressDeclarations);
2131     return true;
2132   }
2133
2134   // enum-specifier:
2135   case tok::kw_enum:
2136     ConsumeToken();
2137     ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2138     return true;
2139
2140   // cv-qualifier:
2141   case tok::kw_const:
2142     isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2143                                DiagID, getLang());
2144     break;
2145   case tok::kw_volatile:
2146     isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2147                                DiagID, getLang());
2148     break;
2149   case tok::kw_restrict:
2150     isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2151                                DiagID, getLang());
2152     break;
2153
2154   // GNU typeof support.
2155   case tok::kw_typeof:
2156     ParseTypeofSpecifier(DS);
2157     return true;
2158
2159   // C++0x decltype support.
2160   case tok::kw_decltype:
2161     ParseDecltypeSpecifier(DS);
2162     return true;
2163
2164   // C++0x type traits support.
2165   case tok::kw___underlying_type:
2166     ParseUnderlyingTypeSpecifier(DS);
2167     return true;
2168
2169   // OpenCL qualifiers:
2170   case tok::kw_private: 
2171     if (!getLang().OpenCL)
2172       return false;
2173   case tok::kw___private:
2174   case tok::kw___global:
2175   case tok::kw___local:
2176   case tok::kw___constant:
2177   case tok::kw___read_only:
2178   case tok::kw___write_only:
2179   case tok::kw___read_write:
2180     ParseOpenCLQualifiers(DS);
2181     break;
2182
2183   // C++0x auto support.
2184   case tok::kw_auto:
2185     if (!getLang().CPlusPlus0x)
2186       return false;
2187
2188     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2189     break;
2190
2191   case tok::kw___ptr64:
2192   case tok::kw___w64:
2193   case tok::kw___cdecl:
2194   case tok::kw___stdcall:
2195   case tok::kw___fastcall:
2196   case tok::kw___thiscall:
2197     ParseMicrosoftTypeAttributes(DS.getAttributes());
2198     return true;
2199
2200   case tok::kw___pascal:
2201     ParseBorlandTypeAttributes(DS.getAttributes());
2202     return true;
2203
2204   default:
2205     // Not a type-specifier; do nothing.
2206     return false;
2207   }
2208
2209   // If the specifier combination wasn't legal, issue a diagnostic.
2210   if (isInvalid) {
2211     assert(PrevSpec && "Method did not return previous specifier!");
2212     // Pick between error or extwarn.
2213     Diag(Tok, DiagID) << PrevSpec;
2214   }
2215   DS.SetRangeEnd(Tok.getLocation());
2216   ConsumeToken(); // whatever we parsed above.
2217   return true;
2218 }
2219
2220 /// ParseStructDeclaration - Parse a struct declaration without the terminating
2221 /// semicolon.
2222 ///
2223 ///       struct-declaration:
2224 ///         specifier-qualifier-list struct-declarator-list
2225 /// [GNU]   __extension__ struct-declaration
2226 /// [GNU]   specifier-qualifier-list
2227 ///       struct-declarator-list:
2228 ///         struct-declarator
2229 ///         struct-declarator-list ',' struct-declarator
2230 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2231 ///       struct-declarator:
2232 ///         declarator
2233 /// [GNU]   declarator attributes[opt]
2234 ///         declarator[opt] ':' constant-expression
2235 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2236 ///
2237 void Parser::
2238 ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2239   if (Tok.is(tok::kw___extension__)) {
2240     // __extension__ silences extension warnings in the subexpression.
2241     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2242     ConsumeToken();
2243     return ParseStructDeclaration(DS, Fields);
2244   }
2245
2246   // Parse the common specifier-qualifiers-list piece.
2247   ParseSpecifierQualifierList(DS);
2248
2249   // If there are no declarators, this is a free-standing declaration
2250   // specifier. Let the actions module cope with it.
2251   if (Tok.is(tok::semi)) {
2252     Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2253     return;
2254   }
2255
2256   // Read struct-declarators until we find the semicolon.
2257   bool FirstDeclarator = true;
2258   while (1) {
2259     ParsingDeclRAIIObject PD(*this);
2260     FieldDeclarator DeclaratorInfo(DS);
2261
2262     // Attributes are only allowed here on successive declarators.
2263     if (!FirstDeclarator)
2264       MaybeParseGNUAttributes(DeclaratorInfo.D);
2265
2266     /// struct-declarator: declarator
2267     /// struct-declarator: declarator[opt] ':' constant-expression
2268     if (Tok.isNot(tok::colon)) {
2269       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2270       ColonProtectionRAIIObject X(*this);
2271       ParseDeclarator(DeclaratorInfo.D);
2272     }
2273
2274     if (Tok.is(tok::colon)) {
2275       ConsumeToken();
2276       ExprResult Res(ParseConstantExpression());
2277       if (Res.isInvalid())
2278         SkipUntil(tok::semi, true, true);
2279       else
2280         DeclaratorInfo.BitfieldSize = Res.release();
2281     }
2282
2283     // If attributes exist after the declarator, parse them.
2284     MaybeParseGNUAttributes(DeclaratorInfo.D);
2285
2286     // We're done with this declarator;  invoke the callback.
2287     Decl *D = Fields.invoke(DeclaratorInfo);
2288     PD.complete(D);
2289
2290     // If we don't have a comma, it is either the end of the list (a ';')
2291     // or an error, bail out.
2292     if (Tok.isNot(tok::comma))
2293       return;
2294
2295     // Consume the comma.
2296     ConsumeToken();
2297
2298     FirstDeclarator = false;
2299   }
2300 }
2301
2302 /// ParseStructUnionBody
2303 ///       struct-contents:
2304 ///         struct-declaration-list
2305 /// [EXT]   empty
2306 /// [GNU]   "struct-declaration-list" without terminatoring ';'
2307 ///       struct-declaration-list:
2308 ///         struct-declaration
2309 ///         struct-declaration-list struct-declaration
2310 /// [OBC]   '@' 'defs' '(' class-name ')'
2311 ///
2312 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2313                                   unsigned TagType, Decl *TagDecl) {
2314   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2315                                       "parsing struct/union body");
2316
2317   SourceLocation LBraceLoc = ConsumeBrace();
2318
2319   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2320   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2321
2322   // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2323   // C++.
2324   if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2325     Diag(Tok, diag::ext_empty_struct_union)
2326       << (TagType == TST_union);
2327
2328   llvm::SmallVector<Decl *, 32> FieldDecls;
2329
2330   // While we still have something to read, read the declarations in the struct.
2331   while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2332     // Each iteration of this loop reads one struct-declaration.
2333
2334     // Check for extraneous top-level semicolon.
2335     if (Tok.is(tok::semi)) {
2336       Diag(Tok, diag::ext_extra_struct_semi)
2337         << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2338         << FixItHint::CreateRemoval(Tok.getLocation());
2339       ConsumeToken();
2340       continue;
2341     }
2342
2343     // Parse all the comma separated declarators.
2344     DeclSpec DS(AttrFactory);
2345
2346     if (!Tok.is(tok::at)) {
2347       struct CFieldCallback : FieldCallback {
2348         Parser &P;
2349         Decl *TagDecl;
2350         llvm::SmallVectorImpl<Decl *> &FieldDecls;
2351
2352         CFieldCallback(Parser &P, Decl *TagDecl,
2353                        llvm::SmallVectorImpl<Decl *> &FieldDecls) :
2354           P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2355
2356         virtual Decl *invoke(FieldDeclarator &FD) {
2357           // Install the declarator into the current TagDecl.
2358           Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2359                               FD.D.getDeclSpec().getSourceRange().getBegin(),
2360                                                  FD.D, FD.BitfieldSize);
2361           FieldDecls.push_back(Field);
2362           return Field;
2363         }
2364       } Callback(*this, TagDecl, FieldDecls);
2365
2366       ParseStructDeclaration(DS, Callback);
2367     } else { // Handle @defs
2368       ConsumeToken();
2369       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2370         Diag(Tok, diag::err_unexpected_at);
2371         SkipUntil(tok::semi, true);
2372         continue;
2373       }
2374       ConsumeToken();
2375       ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2376       if (!Tok.is(tok::identifier)) {
2377         Diag(Tok, diag::err_expected_ident);
2378         SkipUntil(tok::semi, true);
2379         continue;
2380       }
2381       llvm::SmallVector<Decl *, 16> Fields;
2382       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2383                         Tok.getIdentifierInfo(), Fields);
2384       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2385       ConsumeToken();
2386       ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2387     }
2388
2389     if (Tok.is(tok::semi)) {
2390       ConsumeToken();
2391     } else if (Tok.is(tok::r_brace)) {
2392       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2393       break;
2394     } else {
2395       ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2396       // Skip to end of block or statement to avoid ext-warning on extra ';'.
2397       SkipUntil(tok::r_brace, true, true);
2398       // If we stopped at a ';', eat it.
2399       if (Tok.is(tok::semi)) ConsumeToken();
2400     }
2401   }
2402
2403   SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2404
2405   ParsedAttributes attrs(AttrFactory);
2406   // If attributes exist after struct contents, parse them.
2407   MaybeParseGNUAttributes(attrs);
2408
2409   Actions.ActOnFields(getCurScope(),
2410                       RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
2411                       LBraceLoc, RBraceLoc,
2412                       attrs.getList());
2413   StructScope.Exit();
2414   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
2415 }
2416
2417 /// ParseEnumSpecifier
2418 ///       enum-specifier: [C99 6.7.2.2]
2419 ///         'enum' identifier[opt] '{' enumerator-list '}'
2420 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2421 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2422 ///                                                 '}' attributes[opt]
2423 ///         'enum' identifier
2424 /// [GNU]   'enum' attributes[opt] identifier
2425 ///
2426 /// [C++0x] enum-head '{' enumerator-list[opt] '}'
2427 /// [C++0x] enum-head '{' enumerator-list ','  '}'
2428 ///
2429 ///       enum-head: [C++0x]
2430 ///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2431 ///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2432 ///
2433 ///       enum-key: [C++0x]
2434 ///         'enum'
2435 ///         'enum' 'class'
2436 ///         'enum' 'struct'
2437 ///
2438 ///       enum-base: [C++0x]
2439 ///         ':' type-specifier-seq
2440 ///
2441 /// [C++] elaborated-type-specifier:
2442 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2443 ///
2444 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2445                                 const ParsedTemplateInfo &TemplateInfo,
2446                                 AccessSpecifier AS) {
2447   // Parse the tag portion of this.
2448   if (Tok.is(tok::code_completion)) {
2449     // Code completion for an enum name.
2450     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2451     ConsumeCodeCompletionToken();
2452   }
2453
2454   bool IsScopedEnum = false;
2455   bool IsScopedUsingClassTag = false;
2456
2457   if (getLang().CPlusPlus0x &&
2458       (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2459     IsScopedEnum = true;
2460     IsScopedUsingClassTag = Tok.is(tok::kw_class);
2461     ConsumeToken();
2462   }
2463   
2464   // If attributes exist after tag, parse them.
2465   ParsedAttributes attrs(AttrFactory);
2466   MaybeParseGNUAttributes(attrs);
2467
2468   bool AllowFixedUnderlyingType = getLang().CPlusPlus0x || getLang().Microsoft;
2469
2470   CXXScopeSpec &SS = DS.getTypeSpecScope();
2471   if (getLang().CPlusPlus) {
2472     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2473     // if a fixed underlying type is allowed.
2474     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2475     
2476     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
2477       return;
2478
2479     if (SS.isSet() && Tok.isNot(tok::identifier)) {
2480       Diag(Tok, diag::err_expected_ident);
2481       if (Tok.isNot(tok::l_brace)) {
2482         // Has no name and is not a definition.
2483         // Skip the rest of this declarator, up until the comma or semicolon.
2484         SkipUntil(tok::comma, true);
2485         return;
2486       }
2487     }
2488   }
2489
2490   // Must have either 'enum name' or 'enum {...}'.
2491   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2492       (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2493     Diag(Tok, diag::err_expected_ident_lbrace);
2494
2495     // Skip the rest of this declarator, up until the comma or semicolon.
2496     SkipUntil(tok::comma, true);
2497     return;
2498   }
2499
2500   // If an identifier is present, consume and remember it.
2501   IdentifierInfo *Name = 0;
2502   SourceLocation NameLoc;
2503   if (Tok.is(tok::identifier)) {
2504     Name = Tok.getIdentifierInfo();
2505     NameLoc = ConsumeToken();
2506   }
2507
2508   if (!Name && IsScopedEnum) {
2509     // C++0x 7.2p2: The optional identifier shall not be omitted in the
2510     // declaration of a scoped enumeration.
2511     Diag(Tok, diag::err_scoped_enum_missing_identifier);
2512     IsScopedEnum = false;
2513     IsScopedUsingClassTag = false;
2514   }
2515
2516   TypeResult BaseType;
2517
2518   // Parse the fixed underlying type.
2519   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2520     bool PossibleBitfield = false;
2521     if (getCurScope()->getFlags() & Scope::ClassScope) {
2522       // If we're in class scope, this can either be an enum declaration with
2523       // an underlying type, or a declaration of a bitfield member. We try to
2524       // use a simple disambiguation scheme first to catch the common cases
2525       // (integer literal, sizeof); if it's still ambiguous, we then consider 
2526       // anything that's a simple-type-specifier followed by '(' as an 
2527       // expression. This suffices because function types are not valid 
2528       // underlying types anyway.
2529       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2530       // If the next token starts an expression, we know we're parsing a 
2531       // bit-field. This is the common case.
2532       if (TPR == TPResult::True())
2533         PossibleBitfield = true;
2534       // If the next token starts a type-specifier-seq, it may be either a
2535       // a fixed underlying type or the start of a function-style cast in C++;
2536       // lookahead one more token to see if it's obvious that we have a 
2537       // fixed underlying type.
2538       else if (TPR == TPResult::False() && 
2539                GetLookAheadToken(2).getKind() == tok::semi) {
2540         // Consume the ':'.
2541         ConsumeToken();
2542       } else {
2543         // We have the start of a type-specifier-seq, so we have to perform
2544         // tentative parsing to determine whether we have an expression or a
2545         // type.
2546         TentativeParsingAction TPA(*this);
2547
2548         // Consume the ':'.
2549         ConsumeToken();
2550       
2551         if ((getLang().CPlusPlus && 
2552              isCXXDeclarationSpecifier() != TPResult::True()) ||
2553             (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2554           // We'll parse this as a bitfield later.
2555           PossibleBitfield = true;
2556           TPA.Revert();
2557         } else {
2558           // We have a type-specifier-seq.
2559           TPA.Commit();
2560         }
2561       }
2562     } else {
2563       // Consume the ':'.
2564       ConsumeToken();
2565     }
2566
2567     if (!PossibleBitfield) {
2568       SourceRange Range;
2569       BaseType = ParseTypeName(&Range);
2570       
2571       if (!getLang().CPlusPlus0x)
2572         Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2573           << Range;
2574     }
2575   }
2576
2577   // There are three options here.  If we have 'enum foo;', then this is a
2578   // forward declaration.  If we have 'enum foo {...' then this is a
2579   // definition. Otherwise we have something like 'enum foo xyz', a reference.
2580   //
2581   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2582   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2583   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2584   //
2585   Sema::TagUseKind TUK;
2586   if (Tok.is(tok::l_brace))
2587     TUK = Sema::TUK_Definition;
2588   else if (Tok.is(tok::semi))
2589     TUK = Sema::TUK_Declaration;
2590   else
2591     TUK = Sema::TUK_Reference;
2592   
2593   // enums cannot be templates, although they can be referenced from a 
2594   // template.
2595   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2596       TUK != Sema::TUK_Reference) {
2597     Diag(Tok, diag::err_enum_template);
2598     
2599     // Skip the rest of this declarator, up until the comma or semicolon.
2600     SkipUntil(tok::comma, true);
2601     return;      
2602   }
2603   
2604   if (!Name && TUK != Sema::TUK_Definition) {
2605     Diag(Tok, diag::err_enumerator_unnamed_no_def);
2606     
2607     // Skip the rest of this declarator, up until the comma or semicolon.
2608     SkipUntil(tok::comma, true);
2609     return;
2610   }
2611       
2612   bool Owned = false;
2613   bool IsDependent = false;
2614   const char *PrevSpec = 0;
2615   unsigned DiagID;
2616   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2617                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
2618                                    AS,
2619                                    MultiTemplateParamsArg(Actions),
2620                                    Owned, IsDependent, IsScopedEnum,
2621                                    IsScopedUsingClassTag, BaseType);
2622
2623   if (IsDependent) {
2624     // This enum has a dependent nested-name-specifier. Handle it as a 
2625     // dependent tag.
2626     if (!Name) {
2627       DS.SetTypeSpecError();
2628       Diag(Tok, diag::err_expected_type_name_after_typename);
2629       return;
2630     }
2631     
2632     TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2633                                                 TUK, SS, Name, StartLoc, 
2634                                                 NameLoc);
2635     if (Type.isInvalid()) {
2636       DS.SetTypeSpecError();
2637       return;
2638     }
2639     
2640     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2641                            NameLoc.isValid() ? NameLoc : StartLoc,
2642                            PrevSpec, DiagID, Type.get()))
2643       Diag(StartLoc, DiagID) << PrevSpec;
2644     
2645     return;
2646   }
2647
2648   if (!TagDecl) {
2649     // The action failed to produce an enumeration tag. If this is a 
2650     // definition, consume the entire definition.
2651     if (Tok.is(tok::l_brace)) {
2652       ConsumeBrace();
2653       SkipUntil(tok::r_brace);
2654     }
2655     
2656     DS.SetTypeSpecError();
2657     return;
2658   }
2659   
2660   if (Tok.is(tok::l_brace))
2661     ParseEnumBody(StartLoc, TagDecl);
2662
2663   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2664                          NameLoc.isValid() ? NameLoc : StartLoc,
2665                          PrevSpec, DiagID, TagDecl, Owned))
2666     Diag(StartLoc, DiagID) << PrevSpec;
2667 }
2668
2669 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
2670 ///       enumerator-list:
2671 ///         enumerator
2672 ///         enumerator-list ',' enumerator
2673 ///       enumerator:
2674 ///         enumeration-constant
2675 ///         enumeration-constant '=' constant-expression
2676 ///       enumeration-constant:
2677 ///         identifier
2678 ///
2679 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2680   // Enter the scope of the enum body and start the definition.
2681   ParseScope EnumScope(this, Scope::DeclScope);
2682   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2683
2684   SourceLocation LBraceLoc = ConsumeBrace();
2685
2686   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2687   if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2688     Diag(Tok, diag::error_empty_enum);
2689
2690   llvm::SmallVector<Decl *, 32> EnumConstantDecls;
2691
2692   Decl *LastEnumConstDecl = 0;
2693
2694   // Parse the enumerator-list.
2695   while (Tok.is(tok::identifier)) {
2696     IdentifierInfo *Ident = Tok.getIdentifierInfo();
2697     SourceLocation IdentLoc = ConsumeToken();
2698
2699     // If attributes exist after the enumerator, parse them.
2700     ParsedAttributes attrs(AttrFactory);
2701     MaybeParseGNUAttributes(attrs);
2702
2703     SourceLocation EqualLoc;
2704     ExprResult AssignedVal;
2705     if (Tok.is(tok::equal)) {
2706       EqualLoc = ConsumeToken();
2707       AssignedVal = ParseConstantExpression();
2708       if (AssignedVal.isInvalid())
2709         SkipUntil(tok::comma, tok::r_brace, true, true);
2710     }
2711
2712     // Install the enumerator constant into EnumDecl.
2713     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2714                                                     LastEnumConstDecl,
2715                                                     IdentLoc, Ident,
2716                                                     attrs.getList(), EqualLoc,
2717                                                     AssignedVal.release());
2718     EnumConstantDecls.push_back(EnumConstDecl);
2719     LastEnumConstDecl = EnumConstDecl;
2720
2721     if (Tok.is(tok::identifier)) {
2722       // We're missing a comma between enumerators.
2723       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2724       Diag(Loc, diag::err_enumerator_list_missing_comma)      
2725         << FixItHint::CreateInsertion(Loc, ", ");
2726       continue;
2727     }
2728     
2729     if (Tok.isNot(tok::comma))
2730       break;
2731     SourceLocation CommaLoc = ConsumeToken();
2732
2733     if (Tok.isNot(tok::identifier) &&
2734         !(getLang().C99 || getLang().CPlusPlus0x))
2735       Diag(CommaLoc, diag::ext_enumerator_list_comma)
2736         << getLang().CPlusPlus
2737         << FixItHint::CreateRemoval(CommaLoc);
2738   }
2739
2740   // Eat the }.
2741   SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2742
2743   // If attributes exist after the identifier list, parse them.
2744   ParsedAttributes attrs(AttrFactory);
2745   MaybeParseGNUAttributes(attrs);
2746
2747   Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2748                         EnumConstantDecls.data(), EnumConstantDecls.size(),
2749                         getCurScope(), attrs.getList());
2750
2751   EnumScope.Exit();
2752   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2753 }
2754
2755 /// isTypeSpecifierQualifier - Return true if the current token could be the
2756 /// start of a type-qualifier-list.
2757 bool Parser::isTypeQualifier() const {
2758   switch (Tok.getKind()) {
2759   default: return false;
2760
2761     // type-qualifier only in OpenCL
2762   case tok::kw_private:
2763     return getLang().OpenCL;
2764
2765     // type-qualifier
2766   case tok::kw_const:
2767   case tok::kw_volatile:
2768   case tok::kw_restrict:
2769   case tok::kw___private:
2770   case tok::kw___local:
2771   case tok::kw___global:
2772   case tok::kw___constant:
2773   case tok::kw___read_only:
2774   case tok::kw___read_write:
2775   case tok::kw___write_only:
2776     return true;
2777   }
2778 }
2779
2780 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2781 /// is definitely a type-specifier.  Return false if it isn't part of a type
2782 /// specifier or if we're not sure.
2783 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2784   switch (Tok.getKind()) {
2785   default: return false;
2786     // type-specifiers
2787   case tok::kw_short:
2788   case tok::kw_long:
2789   case tok::kw___int64:
2790   case tok::kw_signed:
2791   case tok::kw_unsigned:
2792   case tok::kw__Complex:
2793   case tok::kw__Imaginary:
2794   case tok::kw_void:
2795   case tok::kw_char:
2796   case tok::kw_wchar_t:
2797   case tok::kw_char16_t:
2798   case tok::kw_char32_t:
2799   case tok::kw_int:
2800   case tok::kw_float:
2801   case tok::kw_double:
2802   case tok::kw_bool:
2803   case tok::kw__Bool:
2804   case tok::kw__Decimal32:
2805   case tok::kw__Decimal64:
2806   case tok::kw__Decimal128:
2807   case tok::kw___vector:
2808     
2809     // struct-or-union-specifier (C99) or class-specifier (C++)
2810   case tok::kw_class:
2811   case tok::kw_struct:
2812   case tok::kw_union:
2813     // enum-specifier
2814   case tok::kw_enum:
2815     
2816     // typedef-name
2817   case tok::annot_typename:
2818     return true;
2819   }
2820 }
2821
2822 /// isTypeSpecifierQualifier - Return true if the current token could be the
2823 /// start of a specifier-qualifier-list.
2824 bool Parser::isTypeSpecifierQualifier() {
2825   switch (Tok.getKind()) {
2826   default: return false;
2827
2828   case tok::identifier:   // foo::bar
2829     if (TryAltiVecVectorToken())
2830       return true;
2831     // Fall through.
2832   case tok::kw_typename:  // typename T::type
2833     // Annotate typenames and C++ scope specifiers.  If we get one, just
2834     // recurse to handle whatever we get.
2835     if (TryAnnotateTypeOrScopeToken())
2836       return true;
2837     if (Tok.is(tok::identifier))
2838       return false;
2839     return isTypeSpecifierQualifier();
2840
2841   case tok::coloncolon:   // ::foo::bar
2842     if (NextToken().is(tok::kw_new) ||    // ::new
2843         NextToken().is(tok::kw_delete))   // ::delete
2844       return false;
2845
2846     if (TryAnnotateTypeOrScopeToken())
2847       return true;
2848     return isTypeSpecifierQualifier();
2849
2850     // GNU attributes support.
2851   case tok::kw___attribute:
2852     // GNU typeof support.
2853   case tok::kw_typeof:
2854
2855     // type-specifiers
2856   case tok::kw_short:
2857   case tok::kw_long:
2858   case tok::kw___int64:
2859   case tok::kw_signed:
2860   case tok::kw_unsigned:
2861   case tok::kw__Complex:
2862   case tok::kw__Imaginary:
2863   case tok::kw_void:
2864   case tok::kw_char:
2865   case tok::kw_wchar_t:
2866   case tok::kw_char16_t:
2867   case tok::kw_char32_t:
2868   case tok::kw_int:
2869   case tok::kw_float:
2870   case tok::kw_double:
2871   case tok::kw_bool:
2872   case tok::kw__Bool:
2873   case tok::kw__Decimal32:
2874   case tok::kw__Decimal64:
2875   case tok::kw__Decimal128:
2876   case tok::kw___vector:
2877
2878     // struct-or-union-specifier (C99) or class-specifier (C++)
2879   case tok::kw_class:
2880   case tok::kw_struct:
2881   case tok::kw_union:
2882     // enum-specifier
2883   case tok::kw_enum:
2884
2885     // type-qualifier
2886   case tok::kw_const:
2887   case tok::kw_volatile:
2888   case tok::kw_restrict:
2889
2890     // typedef-name
2891   case tok::annot_typename:
2892     return true;
2893
2894     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2895   case tok::less:
2896     return getLang().ObjC1;
2897
2898   case tok::kw___cdecl:
2899   case tok::kw___stdcall:
2900   case tok::kw___fastcall:
2901   case tok::kw___thiscall:
2902   case tok::kw___w64:
2903   case tok::kw___ptr64:
2904   case tok::kw___pascal:
2905
2906   case tok::kw___private:
2907   case tok::kw___local:
2908   case tok::kw___global:
2909   case tok::kw___constant:
2910   case tok::kw___read_only:
2911   case tok::kw___read_write:
2912   case tok::kw___write_only:
2913
2914     return true;
2915
2916   case tok::kw_private:
2917     return getLang().OpenCL;
2918   }
2919 }
2920
2921 /// isDeclarationSpecifier() - Return true if the current token is part of a
2922 /// declaration specifier.
2923 ///
2924 /// \param DisambiguatingWithExpression True to indicate that the purpose of
2925 /// this check is to disambiguate between an expression and a declaration.
2926 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
2927   switch (Tok.getKind()) {
2928   default: return false;
2929
2930   case tok::kw_private:
2931     return getLang().OpenCL;
2932
2933   case tok::identifier:   // foo::bar
2934     // Unfortunate hack to support "Class.factoryMethod" notation.
2935     if (getLang().ObjC1 && NextToken().is(tok::period))
2936       return false;
2937     if (TryAltiVecVectorToken())
2938       return true;
2939     // Fall through.
2940   case tok::kw_typename: // typename T::type
2941     // Annotate typenames and C++ scope specifiers.  If we get one, just
2942     // recurse to handle whatever we get.
2943     if (TryAnnotateTypeOrScopeToken())
2944       return true;
2945     if (Tok.is(tok::identifier))
2946       return false;
2947       
2948     // If we're in Objective-C and we have an Objective-C class type followed
2949     // by an identifier and then either ':' or ']', in a place where an 
2950     // expression is permitted, then this is probably a class message send
2951     // missing the initial '['. In this case, we won't consider this to be
2952     // the start of a declaration.
2953     if (DisambiguatingWithExpression && 
2954         isStartOfObjCClassMessageMissingOpenBracket())
2955       return false;
2956       
2957     return isDeclarationSpecifier();
2958
2959   case tok::coloncolon:   // ::foo::bar
2960     if (NextToken().is(tok::kw_new) ||    // ::new
2961         NextToken().is(tok::kw_delete))   // ::delete
2962       return false;
2963
2964     // Annotate typenames and C++ scope specifiers.  If we get one, just
2965     // recurse to handle whatever we get.
2966     if (TryAnnotateTypeOrScopeToken())
2967       return true;
2968     return isDeclarationSpecifier();
2969
2970     // storage-class-specifier
2971   case tok::kw_typedef:
2972   case tok::kw_extern:
2973   case tok::kw___private_extern__:
2974   case tok::kw_static:
2975   case tok::kw_auto:
2976   case tok::kw_register:
2977   case tok::kw___thread:
2978
2979     // type-specifiers
2980   case tok::kw_short:
2981   case tok::kw_long:
2982   case tok::kw___int64:
2983   case tok::kw_signed:
2984   case tok::kw_unsigned:
2985   case tok::kw__Complex:
2986   case tok::kw__Imaginary:
2987   case tok::kw_void:
2988   case tok::kw_char:
2989   case tok::kw_wchar_t:
2990   case tok::kw_char16_t:
2991   case tok::kw_char32_t:
2992
2993   case tok::kw_int:
2994   case tok::kw_float:
2995   case tok::kw_double:
2996   case tok::kw_bool:
2997   case tok::kw__Bool:
2998   case tok::kw__Decimal32:
2999   case tok::kw__Decimal64:
3000   case tok::kw__Decimal128:
3001   case tok::kw___vector:
3002
3003     // struct-or-union-specifier (C99) or class-specifier (C++)
3004   case tok::kw_class:
3005   case tok::kw_struct:
3006   case tok::kw_union:
3007     // enum-specifier
3008   case tok::kw_enum:
3009
3010     // type-qualifier
3011   case tok::kw_const:
3012   case tok::kw_volatile:
3013   case tok::kw_restrict:
3014
3015     // function-specifier
3016   case tok::kw_inline:
3017   case tok::kw_virtual:
3018   case tok::kw_explicit:
3019
3020     // static_assert-declaration
3021   case tok::kw__Static_assert:
3022
3023     // GNU typeof support.
3024   case tok::kw_typeof:
3025
3026     // GNU attributes.
3027   case tok::kw___attribute:
3028     return true;
3029
3030     // C++0x decltype.
3031   case tok::kw_decltype:
3032     return true;
3033
3034     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3035   case tok::less:
3036     return getLang().ObjC1;
3037
3038     // typedef-name
3039   case tok::annot_typename:
3040     return !DisambiguatingWithExpression ||
3041            !isStartOfObjCClassMessageMissingOpenBracket();
3042       
3043   case tok::kw___declspec:
3044   case tok::kw___cdecl:
3045   case tok::kw___stdcall:
3046   case tok::kw___fastcall:
3047   case tok::kw___thiscall:
3048   case tok::kw___w64:
3049   case tok::kw___ptr64:
3050   case tok::kw___forceinline:
3051   case tok::kw___pascal:
3052
3053   case tok::kw___private:
3054   case tok::kw___local:
3055   case tok::kw___global:
3056   case tok::kw___constant:
3057   case tok::kw___read_only:
3058   case tok::kw___read_write:
3059   case tok::kw___write_only:
3060
3061     return true;
3062   }
3063 }
3064
3065 bool Parser::isConstructorDeclarator() {
3066   TentativeParsingAction TPA(*this);
3067
3068   // Parse the C++ scope specifier.
3069   CXXScopeSpec SS;
3070   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
3071     TPA.Revert();
3072     return false;
3073   }
3074
3075   // Parse the constructor name.
3076   if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3077     // We already know that we have a constructor name; just consume
3078     // the token.
3079     ConsumeToken();
3080   } else {
3081     TPA.Revert();
3082     return false;
3083   }
3084
3085   // Current class name must be followed by a left parentheses.
3086   if (Tok.isNot(tok::l_paren)) {
3087     TPA.Revert();
3088     return false;
3089   }
3090   ConsumeParen();
3091
3092   // A right parentheses or ellipsis signals that we have a constructor.
3093   if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3094     TPA.Revert();
3095     return true;
3096   }
3097
3098   // If we need to, enter the specified scope.
3099   DeclaratorScopeObj DeclScopeObj(*this, SS);
3100   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3101     DeclScopeObj.EnterDeclaratorScope();
3102
3103   // Optionally skip Microsoft attributes.
3104   ParsedAttributes Attrs(AttrFactory);
3105   MaybeParseMicrosoftAttributes(Attrs);
3106
3107   // Check whether the next token(s) are part of a declaration
3108   // specifier, in which case we have the start of a parameter and,
3109   // therefore, we know that this is a constructor.
3110   bool IsConstructor = isDeclarationSpecifier();
3111   TPA.Revert();
3112   return IsConstructor;
3113 }
3114
3115 /// ParseTypeQualifierListOpt
3116 ///          type-qualifier-list: [C99 6.7.5]
3117 ///            type-qualifier
3118 /// [vendor]   attributes                        
3119 ///              [ only if VendorAttributesAllowed=true ]
3120 ///            type-qualifier-list type-qualifier
3121 /// [vendor]   type-qualifier-list attributes    
3122 ///              [ only if VendorAttributesAllowed=true ]
3123 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3124 ///              [ only if CXX0XAttributesAllowed=true ]
3125 /// Note: vendor can be GNU, MS, etc.
3126 ///
3127 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3128                                        bool VendorAttributesAllowed,
3129                                        bool CXX0XAttributesAllowed) {
3130   if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3131     SourceLocation Loc = Tok.getLocation();
3132     ParsedAttributesWithRange attrs(AttrFactory);
3133     ParseCXX0XAttributes(attrs);
3134     if (CXX0XAttributesAllowed)
3135       DS.takeAttributesFrom(attrs);
3136     else
3137       Diag(Loc, diag::err_attributes_not_allowed);
3138   }
3139
3140   SourceLocation EndLoc;
3141
3142   while (1) {
3143     bool isInvalid = false;
3144     const char *PrevSpec = 0;
3145     unsigned DiagID = 0;
3146     SourceLocation Loc = Tok.getLocation();
3147
3148     switch (Tok.getKind()) {
3149     case tok::code_completion:
3150       Actions.CodeCompleteTypeQualifiers(DS);
3151       ConsumeCodeCompletionToken();
3152       break;
3153         
3154     case tok::kw_const:
3155       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3156                                  getLang());
3157       break;
3158     case tok::kw_volatile:
3159       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3160                                  getLang());
3161       break;
3162     case tok::kw_restrict:
3163       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3164                                  getLang());
3165       break;
3166
3167     // OpenCL qualifiers:
3168     case tok::kw_private: 
3169       if (!getLang().OpenCL)
3170         goto DoneWithTypeQuals;
3171     case tok::kw___private:
3172     case tok::kw___global:
3173     case tok::kw___local:
3174     case tok::kw___constant:
3175     case tok::kw___read_only:
3176     case tok::kw___write_only:
3177     case tok::kw___read_write:
3178       ParseOpenCLQualifiers(DS);
3179       break;
3180
3181     case tok::kw___w64:
3182     case tok::kw___ptr64:
3183     case tok::kw___cdecl:
3184     case tok::kw___stdcall:
3185     case tok::kw___fastcall:
3186     case tok::kw___thiscall:
3187       if (VendorAttributesAllowed) {
3188         ParseMicrosoftTypeAttributes(DS.getAttributes());
3189         continue;
3190       }
3191       goto DoneWithTypeQuals;
3192     case tok::kw___pascal:
3193       if (VendorAttributesAllowed) {
3194         ParseBorlandTypeAttributes(DS.getAttributes());
3195         continue;
3196       }
3197       goto DoneWithTypeQuals;
3198     case tok::kw___attribute:
3199       if (VendorAttributesAllowed) {
3200         ParseGNUAttributes(DS.getAttributes());
3201         continue; // do *not* consume the next token!
3202       }
3203       // otherwise, FALL THROUGH!
3204     default:
3205       DoneWithTypeQuals:
3206       // If this is not a type-qualifier token, we're done reading type
3207       // qualifiers.  First verify that DeclSpec's are consistent.
3208       DS.Finish(Diags, PP);
3209       if (EndLoc.isValid())
3210         DS.SetRangeEnd(EndLoc);
3211       return;
3212     }
3213
3214     // If the specifier combination wasn't legal, issue a diagnostic.
3215     if (isInvalid) {
3216       assert(PrevSpec && "Method did not return previous specifier!");
3217       Diag(Tok, DiagID) << PrevSpec;
3218     }
3219     EndLoc = ConsumeToken();
3220   }
3221 }
3222
3223
3224 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
3225 ///
3226 void Parser::ParseDeclarator(Declarator &D) {
3227   /// This implements the 'declarator' production in the C grammar, then checks
3228   /// for well-formedness and issues diagnostics.
3229   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3230 }
3231
3232 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3233 /// is parsed by the function passed to it. Pass null, and the direct-declarator
3234 /// isn't parsed at all, making this function effectively parse the C++
3235 /// ptr-operator production.
3236 ///
3237 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3238 /// [C]     pointer[opt] direct-declarator
3239 /// [C++]   direct-declarator
3240 /// [C++]   ptr-operator declarator
3241 ///
3242 ///       pointer: [C99 6.7.5]
3243 ///         '*' type-qualifier-list[opt]
3244 ///         '*' type-qualifier-list[opt] pointer
3245 ///
3246 ///       ptr-operator:
3247 ///         '*' cv-qualifier-seq[opt]
3248 ///         '&'
3249 /// [C++0x] '&&'
3250 /// [GNU]   '&' restrict[opt] attributes[opt]
3251 /// [GNU?]  '&&' restrict[opt] attributes[opt]
3252 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3253 void Parser::ParseDeclaratorInternal(Declarator &D,
3254                                      DirectDeclParseFunction DirectDeclParser) {
3255   if (Diags.hasAllExtensionsSilenced())
3256     D.setExtension();
3257   
3258   // C++ member pointers start with a '::' or a nested-name.
3259   // Member pointers get special handling, since there's no place for the
3260   // scope spec in the generic path below.
3261   if (getLang().CPlusPlus &&
3262       (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3263        Tok.is(tok::annot_cxxscope))) {
3264     CXXScopeSpec SS;
3265     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
3266
3267     if (SS.isNotEmpty()) {
3268       if (Tok.isNot(tok::star)) {
3269         // The scope spec really belongs to the direct-declarator.
3270         D.getCXXScopeSpec() = SS;
3271         if (DirectDeclParser)
3272           (this->*DirectDeclParser)(D);
3273         return;
3274       }
3275
3276       SourceLocation Loc = ConsumeToken();
3277       D.SetRangeEnd(Loc);
3278       DeclSpec DS(AttrFactory);
3279       ParseTypeQualifierListOpt(DS);
3280       D.ExtendWithDeclSpec(DS);
3281
3282       // Recurse to parse whatever is left.
3283       ParseDeclaratorInternal(D, DirectDeclParser);
3284
3285       // Sema will have to catch (syntactically invalid) pointers into global
3286       // scope. It has to catch pointers into namespace scope anyway.
3287       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3288                                                       Loc),
3289                     DS.getAttributes(),
3290                     /* Don't replace range end. */SourceLocation());
3291       return;
3292     }
3293   }
3294
3295   tok::TokenKind Kind = Tok.getKind();
3296   // Not a pointer, C++ reference, or block.
3297   if (Kind != tok::star && Kind != tok::caret &&
3298       (Kind != tok::amp || !getLang().CPlusPlus) &&
3299       // We parse rvalue refs in C++03, because otherwise the errors are scary.
3300       (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3301     if (DirectDeclParser)
3302       (this->*DirectDeclParser)(D);
3303     return;
3304   }
3305
3306   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3307   // '&&' -> rvalue reference
3308   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3309   D.SetRangeEnd(Loc);
3310
3311   if (Kind == tok::star || Kind == tok::caret) {
3312     // Is a pointer.
3313     DeclSpec DS(AttrFactory);
3314
3315     ParseTypeQualifierListOpt(DS);
3316     D.ExtendWithDeclSpec(DS);
3317
3318     // Recursively parse the declarator.
3319     ParseDeclaratorInternal(D, DirectDeclParser);
3320     if (Kind == tok::star)
3321       // Remember that we parsed a pointer type, and remember the type-quals.
3322       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3323                                                 DS.getConstSpecLoc(),
3324                                                 DS.getVolatileSpecLoc(),
3325                                                 DS.getRestrictSpecLoc()),
3326                     DS.getAttributes(),
3327                     SourceLocation());
3328     else
3329       // Remember that we parsed a Block type, and remember the type-quals.
3330       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3331                                                      Loc),
3332                     DS.getAttributes(),
3333                     SourceLocation());
3334   } else {
3335     // Is a reference
3336     DeclSpec DS(AttrFactory);
3337
3338     // Complain about rvalue references in C++03, but then go on and build
3339     // the declarator.
3340     if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
3341       Diag(Loc, diag::ext_rvalue_reference);
3342
3343     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3344     // cv-qualifiers are introduced through the use of a typedef or of a
3345     // template type argument, in which case the cv-qualifiers are ignored.
3346     //
3347     // [GNU] Retricted references are allowed.
3348     // [GNU] Attributes on references are allowed.
3349     // [C++0x] Attributes on references are not allowed.
3350     ParseTypeQualifierListOpt(DS, true, false);
3351     D.ExtendWithDeclSpec(DS);
3352
3353     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3354       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3355         Diag(DS.getConstSpecLoc(),
3356              diag::err_invalid_reference_qualifier_application) << "const";
3357       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3358         Diag(DS.getVolatileSpecLoc(),
3359              diag::err_invalid_reference_qualifier_application) << "volatile";
3360     }
3361
3362     // Recursively parse the declarator.
3363     ParseDeclaratorInternal(D, DirectDeclParser);
3364
3365     if (D.getNumTypeObjects() > 0) {
3366       // C++ [dcl.ref]p4: There shall be no references to references.
3367       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3368       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3369         if (const IdentifierInfo *II = D.getIdentifier())
3370           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3371            << II;
3372         else
3373           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3374             << "type name";
3375
3376         // Once we've complained about the reference-to-reference, we
3377         // can go ahead and build the (technically ill-formed)
3378         // declarator: reference collapsing will take care of it.
3379       }
3380     }
3381
3382     // Remember that we parsed a reference type. It doesn't have type-quals.
3383     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3384                                                 Kind == tok::amp),
3385                   DS.getAttributes(),
3386                   SourceLocation());
3387   }
3388 }
3389
3390 /// ParseDirectDeclarator
3391 ///       direct-declarator: [C99 6.7.5]
3392 /// [C99]   identifier
3393 ///         '(' declarator ')'
3394 /// [GNU]   '(' attributes declarator ')'
3395 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
3396 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3397 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3398 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3399 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3400 ///         direct-declarator '(' parameter-type-list ')'
3401 ///         direct-declarator '(' identifier-list[opt] ')'
3402 /// [GNU]   direct-declarator '(' parameter-forward-declarations
3403 ///                    parameter-type-list[opt] ')'
3404 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3405 ///                    cv-qualifier-seq[opt] exception-specification[opt]
3406 /// [C++]   declarator-id
3407 ///
3408 ///       declarator-id: [C++ 8]
3409 ///         '...'[opt] id-expression
3410 ///         '::'[opt] nested-name-specifier[opt] type-name
3411 ///
3412 ///       id-expression: [C++ 5.1]
3413 ///         unqualified-id
3414 ///         qualified-id
3415 ///
3416 ///       unqualified-id: [C++ 5.1]
3417 ///         identifier
3418 ///         operator-function-id
3419 ///         conversion-function-id
3420 ///          '~' class-name
3421 ///         template-id
3422 ///
3423 void Parser::ParseDirectDeclarator(Declarator &D) {
3424   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3425
3426   if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3427     // ParseDeclaratorInternal might already have parsed the scope.
3428     if (D.getCXXScopeSpec().isEmpty()) {
3429       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
3430     }
3431
3432     if (D.getCXXScopeSpec().isValid()) {
3433       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3434         // Change the declaration context for name lookup, until this function
3435         // is exited (and the declarator has been parsed).
3436         DeclScopeObj.EnterDeclaratorScope();
3437     }
3438
3439     // C++0x [dcl.fct]p14:
3440     //   There is a syntactic ambiguity when an ellipsis occurs at the end
3441     //   of a parameter-declaration-clause without a preceding comma. In 
3442     //   this case, the ellipsis is parsed as part of the 
3443     //   abstract-declarator if the type of the parameter names a template 
3444     //   parameter pack that has not been expanded; otherwise, it is parsed
3445     //   as part of the parameter-declaration-clause.
3446     if (Tok.is(tok::ellipsis) &&
3447         !((D.getContext() == Declarator::PrototypeContext ||
3448            D.getContext() == Declarator::BlockLiteralContext) &&
3449           NextToken().is(tok::r_paren) &&
3450           !Actions.containsUnexpandedParameterPacks(D)))
3451       D.setEllipsisLoc(ConsumeToken());
3452     
3453     if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3454         Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3455       // We found something that indicates the start of an unqualified-id.
3456       // Parse that unqualified-id.
3457       bool AllowConstructorName;
3458       if (D.getDeclSpec().hasTypeSpecifier())
3459         AllowConstructorName = false;
3460       else if (D.getCXXScopeSpec().isSet())
3461         AllowConstructorName =
3462           (D.getContext() == Declarator::FileContext ||
3463            (D.getContext() == Declarator::MemberContext &&
3464             D.getDeclSpec().isFriendSpecified()));
3465       else
3466         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3467
3468       if (ParseUnqualifiedId(D.getCXXScopeSpec(), 
3469                              /*EnteringContext=*/true, 
3470                              /*AllowDestructorName=*/true, 
3471                              AllowConstructorName,
3472                              ParsedType(),
3473                              D.getName()) ||
3474           // Once we're past the identifier, if the scope was bad, mark the
3475           // whole declarator bad.
3476           D.getCXXScopeSpec().isInvalid()) {
3477         D.SetIdentifier(0, Tok.getLocation());
3478         D.setInvalidType(true);
3479       } else {
3480         // Parsed the unqualified-id; update range information and move along.
3481         if (D.getSourceRange().getBegin().isInvalid())
3482           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3483         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3484       }
3485       goto PastIdentifier;
3486     }
3487   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3488     assert(!getLang().CPlusPlus &&
3489            "There's a C++-specific check for tok::identifier above");
3490     assert(Tok.getIdentifierInfo() && "Not an identifier?");
3491     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3492     ConsumeToken();
3493     goto PastIdentifier;
3494   }
3495     
3496   if (Tok.is(tok::l_paren)) {
3497     // direct-declarator: '(' declarator ')'
3498     // direct-declarator: '(' attributes declarator ')'
3499     // Example: 'char (*X)'   or 'int (*XX)(void)'
3500     ParseParenDeclarator(D);
3501
3502     // If the declarator was parenthesized, we entered the declarator
3503     // scope when parsing the parenthesized declarator, then exited
3504     // the scope already. Re-enter the scope, if we need to.
3505     if (D.getCXXScopeSpec().isSet()) {
3506       // If there was an error parsing parenthesized declarator, declarator
3507       // scope may have been enterred before. Don't do it again.
3508       if (!D.isInvalidType() &&
3509           Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3510         // Change the declaration context for name lookup, until this function
3511         // is exited (and the declarator has been parsed).
3512         DeclScopeObj.EnterDeclaratorScope();
3513     }
3514   } else if (D.mayOmitIdentifier()) {
3515     // This could be something simple like "int" (in which case the declarator
3516     // portion is empty), if an abstract-declarator is allowed.
3517     D.SetIdentifier(0, Tok.getLocation());
3518   } else {
3519     if (D.getContext() == Declarator::MemberContext)
3520       Diag(Tok, diag::err_expected_member_name_or_semi)
3521         << D.getDeclSpec().getSourceRange();
3522     else if (getLang().CPlusPlus)
3523       Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
3524     else
3525       Diag(Tok, diag::err_expected_ident_lparen);
3526     D.SetIdentifier(0, Tok.getLocation());
3527     D.setInvalidType(true);
3528   }
3529
3530  PastIdentifier:
3531   assert(D.isPastIdentifier() &&
3532          "Haven't past the location of the identifier yet?");
3533
3534   // Don't parse attributes unless we have an identifier.
3535   if (D.getIdentifier())
3536     MaybeParseCXX0XAttributes(D);
3537
3538   while (1) {
3539     if (Tok.is(tok::l_paren)) {
3540       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3541       // In such a case, check if we actually have a function declarator; if it
3542       // is not, the declarator has been fully parsed.
3543       if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3544         // When not in file scope, warn for ambiguous function declarators, just
3545         // in case the author intended it as a variable definition.
3546         bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3547         if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3548           break;
3549       }
3550       ParsedAttributes attrs(AttrFactory);
3551       ParseFunctionDeclarator(ConsumeParen(), D, attrs);
3552     } else if (Tok.is(tok::l_square)) {
3553       ParseBracketDeclarator(D);
3554     } else {
3555       break;
3556     }
3557   }
3558 }
3559
3560 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3561 /// only called before the identifier, so these are most likely just grouping
3562 /// parens for precedence.  If we find that these are actually function
3563 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3564 ///
3565 ///       direct-declarator:
3566 ///         '(' declarator ')'
3567 /// [GNU]   '(' attributes declarator ')'
3568 ///         direct-declarator '(' parameter-type-list ')'
3569 ///         direct-declarator '(' identifier-list[opt] ')'
3570 /// [GNU]   direct-declarator '(' parameter-forward-declarations
3571 ///                    parameter-type-list[opt] ')'
3572 ///
3573 void Parser::ParseParenDeclarator(Declarator &D) {
3574   SourceLocation StartLoc = ConsumeParen();
3575   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3576
3577   // Eat any attributes before we look at whether this is a grouping or function
3578   // declarator paren.  If this is a grouping paren, the attribute applies to
3579   // the type being built up, for example:
3580   //     int (__attribute__(()) *x)(long y)
3581   // If this ends up not being a grouping paren, the attribute applies to the
3582   // first argument, for example:
3583   //     int (__attribute__(()) int x)
3584   // In either case, we need to eat any attributes to be able to determine what
3585   // sort of paren this is.
3586   //
3587   ParsedAttributes attrs(AttrFactory);
3588   bool RequiresArg = false;
3589   if (Tok.is(tok::kw___attribute)) {
3590     ParseGNUAttributes(attrs);
3591
3592     // We require that the argument list (if this is a non-grouping paren) be
3593     // present even if the attribute list was empty.
3594     RequiresArg = true;
3595   }
3596   // Eat any Microsoft extensions.
3597   if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3598        Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3599        Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
3600     ParseMicrosoftTypeAttributes(attrs);
3601   }
3602   // Eat any Borland extensions.
3603   if  (Tok.is(tok::kw___pascal))
3604     ParseBorlandTypeAttributes(attrs);
3605
3606   // If we haven't past the identifier yet (or where the identifier would be
3607   // stored, if this is an abstract declarator), then this is probably just
3608   // grouping parens. However, if this could be an abstract-declarator, then
3609   // this could also be the start of function arguments (consider 'void()').
3610   bool isGrouping;
3611
3612   if (!D.mayOmitIdentifier()) {
3613     // If this can't be an abstract-declarator, this *must* be a grouping
3614     // paren, because we haven't seen the identifier yet.
3615     isGrouping = true;
3616   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3617              (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3618              isDeclarationSpecifier()) {       // 'int(int)' is a function.
3619     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3620     // considered to be a type, not a K&R identifier-list.
3621     isGrouping = false;
3622   } else {
3623     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3624     isGrouping = true;
3625   }
3626
3627   // If this is a grouping paren, handle:
3628   // direct-declarator: '(' declarator ')'
3629   // direct-declarator: '(' attributes declarator ')'
3630   if (isGrouping) {
3631     bool hadGroupingParens = D.hasGroupingParens();
3632     D.setGroupingParens(true);
3633
3634     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3635     // Match the ')'.
3636     SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, StartLoc);
3637     D.AddTypeInfo(DeclaratorChunk::getParen(StartLoc, EndLoc),
3638                   attrs, EndLoc);
3639
3640     D.setGroupingParens(hadGroupingParens);
3641     return;
3642   }
3643
3644   // Okay, if this wasn't a grouping paren, it must be the start of a function
3645   // argument list.  Recognize that this declarator will never have an
3646   // identifier (and remember where it would have been), then call into
3647   // ParseFunctionDeclarator to handle of argument list.
3648   D.SetIdentifier(0, Tok.getLocation());
3649
3650   ParseFunctionDeclarator(StartLoc, D, attrs, RequiresArg);
3651 }
3652
3653 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
3654 /// declarator D up to a paren, which indicates that we are parsing function
3655 /// arguments.
3656 ///
3657 /// If attrs is non-null, then the caller parsed those arguments immediately
3658 /// after the open paren - they should be considered to be the first argument of
3659 /// a parameter.  If RequiresArg is true, then the first argument of the
3660 /// function is required to be present and required to not be an identifier
3661 /// list.
3662 ///
3663 /// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
3664 /// (C++0x) ref-qualifier[opt], exception-specification[opt], and
3665 /// (C++0x) trailing-return-type[opt].
3666 ///
3667 /// [C++0x] exception-specification:
3668 ///           dynamic-exception-specification
3669 ///           noexcept-specification
3670 ///
3671 void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
3672                                      ParsedAttributes &attrs,
3673                                      bool RequiresArg) {
3674   // lparen is already consumed!
3675   assert(D.isPastIdentifier() && "Should not call before identifier!");
3676
3677   // This should be true when the function has typed arguments.
3678   // Otherwise, it is treated as a K&R-style function.
3679   bool HasProto = false;
3680   // Build up an array of information about the parsed arguments.
3681   llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3682   // Remember where we see an ellipsis, if any.
3683   SourceLocation EllipsisLoc;
3684
3685   DeclSpec DS(AttrFactory);
3686   bool RefQualifierIsLValueRef = true;
3687   SourceLocation RefQualifierLoc;
3688   ExceptionSpecificationType ESpecType = EST_None;
3689   SourceRange ESpecRange;
3690   llvm::SmallVector<ParsedType, 2> DynamicExceptions;
3691   llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
3692   ExprResult NoexceptExpr;
3693   ParsedType TrailingReturnType;
3694   
3695   SourceLocation EndLoc;
3696
3697   if (isFunctionDeclaratorIdentifierList()) {
3698     if (RequiresArg)
3699       Diag(Tok, diag::err_argument_required_after_attribute);
3700
3701     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
3702
3703     EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3704   } else {
3705     // Enter function-declaration scope, limiting any declarators to the
3706     // function prototype scope, including parameter declarators.
3707     ParseScope PrototypeScope(this,
3708                               Scope::FunctionPrototypeScope|Scope::DeclScope);
3709
3710     if (Tok.isNot(tok::r_paren))
3711       ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
3712     else if (RequiresArg)
3713       Diag(Tok, diag::err_argument_required_after_attribute);
3714
3715     HasProto = ParamInfo.size() || getLang().CPlusPlus;
3716
3717     // If we have the closing ')', eat it.
3718     EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3719
3720     if (getLang().CPlusPlus) {
3721       MaybeParseCXX0XAttributes(attrs);
3722
3723       // Parse cv-qualifier-seq[opt].
3724       ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3725         if (!DS.getSourceRange().getEnd().isInvalid())
3726           EndLoc = DS.getSourceRange().getEnd();
3727
3728       // Parse ref-qualifier[opt].
3729       if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3730         if (!getLang().CPlusPlus0x)
3731           Diag(Tok, diag::ext_ref_qualifier);
3732         
3733         RefQualifierIsLValueRef = Tok.is(tok::amp);
3734         RefQualifierLoc = ConsumeToken();
3735         EndLoc = RefQualifierLoc;
3736       }
3737
3738       // Parse exception-specification[opt].
3739       ESpecType = MaybeParseExceptionSpecification(ESpecRange,
3740                                                    DynamicExceptions,
3741                                                    DynamicExceptionRanges,
3742                                                    NoexceptExpr);
3743       if (ESpecType != EST_None)
3744         EndLoc = ESpecRange.getEnd();
3745
3746       // Parse trailing-return-type[opt].
3747       if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3748         TrailingReturnType = ParseTrailingReturnType().get();
3749       }
3750     }
3751
3752     // Leave prototype scope.
3753     PrototypeScope.Exit();
3754   }
3755
3756   // Remember that we parsed a function type, and remember the attributes.
3757   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
3758                                              /*isVariadic=*/EllipsisLoc.isValid(),
3759                                              EllipsisLoc,
3760                                              ParamInfo.data(), ParamInfo.size(),
3761                                              DS.getTypeQualifiers(),
3762                                              RefQualifierIsLValueRef,
3763                                              RefQualifierLoc,
3764                                              /*MutableLoc=*/SourceLocation(),
3765                                              ESpecType, ESpecRange.getBegin(),
3766                                              DynamicExceptions.data(),
3767                                              DynamicExceptionRanges.data(),
3768                                              DynamicExceptions.size(),
3769                                              NoexceptExpr.isUsable() ?
3770                                                NoexceptExpr.get() : 0,
3771                                              LParenLoc, EndLoc, D,
3772                                              TrailingReturnType),
3773                 attrs, EndLoc);
3774 }
3775
3776 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
3777 /// identifier list form for a K&R-style function:  void foo(a,b,c)
3778 ///
3779 /// Note that identifier-lists are only allowed for normal declarators, not for
3780 /// abstract-declarators.
3781 bool Parser::isFunctionDeclaratorIdentifierList() {
3782   return !getLang().CPlusPlus
3783          && Tok.is(tok::identifier)
3784          && !TryAltiVecVectorToken()
3785          // K&R identifier lists can't have typedefs as identifiers, per C99
3786          // 6.7.5.3p11.
3787          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
3788          // Identifier lists follow a really simple grammar: the identifiers can
3789          // be followed *only* by a ", identifier" or ")".  However, K&R
3790          // identifier lists are really rare in the brave new modern world, and
3791          // it is very common for someone to typo a type in a non-K&R style
3792          // list.  If we are presented with something like: "void foo(intptr x,
3793          // float y)", we don't want to start parsing the function declarator as
3794          // though it is a K&R style declarator just because intptr is an
3795          // invalid type.
3796          //
3797          // To handle this, we check to see if the token after the first
3798          // identifier is a "," or ")".  Only then do we parse it as an
3799          // identifier list.
3800          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
3801 }
3802
3803 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3804 /// we found a K&R-style identifier list instead of a typed parameter list.
3805 ///
3806 /// After returning, ParamInfo will hold the parsed parameters.
3807 ///
3808 ///       identifier-list: [C99 6.7.5]
3809 ///         identifier
3810 ///         identifier-list ',' identifier
3811 ///
3812 void Parser::ParseFunctionDeclaratorIdentifierList(
3813        Declarator &D,
3814        llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
3815   // If there was no identifier specified for the declarator, either we are in
3816   // an abstract-declarator, or we are in a parameter declarator which was found
3817   // to be abstract.  In abstract-declarators, identifier lists are not valid:
3818   // diagnose this.
3819   if (!D.getIdentifier())
3820     Diag(Tok, diag::ext_ident_list_in_param);
3821
3822   // Maintain an efficient lookup of params we have seen so far.
3823   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3824
3825   while (1) {
3826     // If this isn't an identifier, report the error and skip until ')'.
3827     if (Tok.isNot(tok::identifier)) {
3828       Diag(Tok, diag::err_expected_ident);
3829       SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
3830       // Forget we parsed anything.
3831       ParamInfo.clear();
3832       return;
3833     }
3834
3835     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3836
3837     // Reject 'typedef int y; int test(x, y)', but continue parsing.
3838     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3839       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3840
3841     // Verify that the argument identifier has not already been mentioned.
3842     if (!ParamsSoFar.insert(ParmII)) {
3843       Diag(Tok, diag::err_param_redefinition) << ParmII;
3844     } else {
3845       // Remember this identifier in ParamInfo.
3846       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3847                                                      Tok.getLocation(),
3848                                                      0));
3849     }
3850
3851     // Eat the identifier.
3852     ConsumeToken();
3853
3854     // The list continues if we see a comma.
3855     if (Tok.isNot(tok::comma))
3856       break;
3857     ConsumeToken();
3858   }
3859 }
3860
3861 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
3862 /// after the opening parenthesis. This function will not parse a K&R-style
3863 /// identifier list.
3864 ///
3865 /// D is the declarator being parsed.  If attrs is non-null, then the caller
3866 /// parsed those arguments immediately after the open paren - they should be
3867 /// considered to be the first argument of a parameter.
3868 ///
3869 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
3870 /// be the location of the ellipsis, if any was parsed.
3871 ///
3872 ///       parameter-type-list: [C99 6.7.5]
3873 ///         parameter-list
3874 ///         parameter-list ',' '...'
3875 /// [C++]   parameter-list '...'
3876 ///
3877 ///       parameter-list: [C99 6.7.5]
3878 ///         parameter-declaration
3879 ///         parameter-list ',' parameter-declaration
3880 ///
3881 ///       parameter-declaration: [C99 6.7.5]
3882 ///         declaration-specifiers declarator
3883 /// [C++]   declaration-specifiers declarator '=' assignment-expression
3884 /// [GNU]   declaration-specifiers declarator attributes
3885 ///         declaration-specifiers abstract-declarator[opt]
3886 /// [C++]   declaration-specifiers abstract-declarator[opt]
3887 ///           '=' assignment-expression
3888 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
3889 ///
3890 void Parser::ParseParameterDeclarationClause(
3891        Declarator &D,
3892        ParsedAttributes &attrs,
3893        llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
3894        SourceLocation &EllipsisLoc) {
3895
3896   while (1) {
3897     if (Tok.is(tok::ellipsis)) {
3898       EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3899       break;
3900     }
3901
3902     // Parse the declaration-specifiers.
3903     // Just use the ParsingDeclaration "scope" of the declarator.
3904     DeclSpec DS(AttrFactory);
3905         
3906     // Skip any Microsoft attributes before a param.
3907     if (getLang().Microsoft && Tok.is(tok::l_square))
3908       ParseMicrosoftAttributes(DS.getAttributes());
3909
3910     SourceLocation DSStart = Tok.getLocation();
3911
3912     // If the caller parsed attributes for the first argument, add them now.
3913     // Take them so that we only apply the attributes to the first parameter.
3914     // FIXME: If we saw an ellipsis first, this code is not reached. Are the
3915     // attributes lost? Should they even be allowed?
3916     // FIXME: If we can leave the attributes in the token stream somehow, we can
3917     // get rid of a parameter (attrs) and this statement. It might be too much
3918     // hassle.
3919     DS.takeAttributesFrom(attrs);
3920
3921     ParseDeclarationSpecifiers(DS);
3922
3923     // Parse the declarator.  This is "PrototypeContext", because we must
3924     // accept either 'declarator' or 'abstract-declarator' here.
3925     Declarator ParmDecl(DS, Declarator::PrototypeContext);
3926     ParseDeclarator(ParmDecl);
3927
3928     // Parse GNU attributes, if present.
3929     MaybeParseGNUAttributes(ParmDecl);
3930
3931     // Remember this parsed parameter in ParamInfo.
3932     IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3933
3934     // DefArgToks is used when the parsing of default arguments needs
3935     // to be delayed.
3936     CachedTokens *DefArgToks = 0;
3937
3938     // If no parameter was specified, verify that *something* was specified,
3939     // otherwise we have a missing type and identifier.
3940     if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3941         ParmDecl.getNumTypeObjects() == 0) {
3942       // Completely missing, emit error.
3943       Diag(DSStart, diag::err_missing_param);
3944     } else {
3945       // Otherwise, we have something.  Add it and let semantic analysis try
3946       // to grok it and add the result to the ParamInfo we are building.
3947
3948       // Inform the actions module about the parameter declarator, so it gets
3949       // added to the current scope.
3950       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3951
3952       // Parse the default argument, if any. We parse the default
3953       // arguments in all dialects; the semantic analysis in
3954       // ActOnParamDefaultArgument will reject the default argument in
3955       // C.
3956       if (Tok.is(tok::equal)) {
3957         SourceLocation EqualLoc = Tok.getLocation();
3958
3959         // Parse the default argument
3960         if (D.getContext() == Declarator::MemberContext) {
3961           // If we're inside a class definition, cache the tokens
3962           // corresponding to the default argument. We'll actually parse
3963           // them when we see the end of the class definition.
3964           // FIXME: Templates will require something similar.
3965           // FIXME: Can we use a smart pointer for Toks?
3966           DefArgToks = new CachedTokens;
3967
3968           if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3969                                     /*StopAtSemi=*/true,
3970                                     /*ConsumeFinalToken=*/false)) {
3971             delete DefArgToks;
3972             DefArgToks = 0;
3973             Actions.ActOnParamDefaultArgumentError(Param);
3974           } else {
3975             // Mark the end of the default argument so that we know when to
3976             // stop when we parse it later on.
3977             Token DefArgEnd;
3978             DefArgEnd.startToken();
3979             DefArgEnd.setKind(tok::cxx_defaultarg_end);
3980             DefArgEnd.setLocation(Tok.getLocation());
3981             DefArgToks->push_back(DefArgEnd);
3982             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3983                                                 (*DefArgToks)[1].getLocation());
3984           }
3985         } else {
3986           // Consume the '='.
3987           ConsumeToken();
3988
3989           // The argument isn't actually potentially evaluated unless it is 
3990           // used.
3991           EnterExpressionEvaluationContext Eval(Actions,
3992                                               Sema::PotentiallyEvaluatedIfUsed);
3993
3994           ExprResult DefArgResult(ParseAssignmentExpression());
3995           if (DefArgResult.isInvalid()) {
3996             Actions.ActOnParamDefaultArgumentError(Param);
3997             SkipUntil(tok::comma, tok::r_paren, true, true);
3998           } else {
3999             // Inform the actions module about the default argument
4000             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4001                                               DefArgResult.take());
4002           }
4003         }
4004       }
4005
4006       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4007                                           ParmDecl.getIdentifierLoc(), Param,
4008                                           DefArgToks));
4009     }
4010
4011     // If the next token is a comma, consume it and keep reading arguments.
4012     if (Tok.isNot(tok::comma)) {
4013       if (Tok.is(tok::ellipsis)) {
4014         EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4015         
4016         if (!getLang().CPlusPlus) {
4017           // We have ellipsis without a preceding ',', which is ill-formed
4018           // in C. Complain and provide the fix.
4019           Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4020             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4021         }
4022       }
4023       
4024       break;
4025     }
4026
4027     // Consume the comma.
4028     ConsumeToken();
4029   }
4030
4031 }
4032
4033 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
4034 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4035 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4036 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4037 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4038 void Parser::ParseBracketDeclarator(Declarator &D) {
4039   SourceLocation StartLoc = ConsumeBracket();
4040
4041   // C array syntax has many features, but by-far the most common is [] and [4].
4042   // This code does a fast path to handle some of the most obvious cases.
4043   if (Tok.getKind() == tok::r_square) {
4044     SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
4045     ParsedAttributes attrs(AttrFactory);
4046     MaybeParseCXX0XAttributes(attrs);
4047     
4048     // Remember that we parsed the empty array type.
4049     ExprResult NumElements;
4050     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4051                                             StartLoc, EndLoc),
4052                   attrs, EndLoc);
4053     return;
4054   } else if (Tok.getKind() == tok::numeric_constant &&
4055              GetLookAheadToken(1).is(tok::r_square)) {
4056     // [4] is very common.  Parse the numeric constant expression.
4057     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4058     ConsumeToken();
4059
4060     SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
4061     ParsedAttributes attrs(AttrFactory);
4062     MaybeParseCXX0XAttributes(attrs);
4063
4064     // Remember that we parsed a array type, and remember its features.
4065     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4066                                             ExprRes.release(),
4067                                             StartLoc, EndLoc),
4068                   attrs, EndLoc);
4069     return;
4070   }
4071
4072   // If valid, this location is the position where we read the 'static' keyword.
4073   SourceLocation StaticLoc;
4074   if (Tok.is(tok::kw_static))
4075     StaticLoc = ConsumeToken();
4076
4077   // If there is a type-qualifier-list, read it now.
4078   // Type qualifiers in an array subscript are a C99 feature.
4079   DeclSpec DS(AttrFactory);
4080   ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4081
4082   // If we haven't already read 'static', check to see if there is one after the
4083   // type-qualifier-list.
4084   if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4085     StaticLoc = ConsumeToken();
4086
4087   // Handle "direct-declarator [ type-qual-list[opt] * ]".
4088   bool isStar = false;
4089   ExprResult NumElements;
4090
4091   // Handle the case where we have '[*]' as the array size.  However, a leading
4092   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4093   // the the token after the star is a ']'.  Since stars in arrays are
4094   // infrequent, use of lookahead is not costly here.
4095   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4096     ConsumeToken();  // Eat the '*'.
4097
4098     if (StaticLoc.isValid()) {
4099       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4100       StaticLoc = SourceLocation();  // Drop the static.
4101     }
4102     isStar = true;
4103   } else if (Tok.isNot(tok::r_square)) {
4104     // Note, in C89, this production uses the constant-expr production instead
4105     // of assignment-expr.  The only difference is that assignment-expr allows
4106     // things like '=' and '*='.  Sema rejects these in C89 mode because they
4107     // are not i-c-e's, so we don't need to distinguish between the two here.
4108
4109     // Parse the constant-expression or assignment-expression now (depending
4110     // on dialect).
4111     if (getLang().CPlusPlus)
4112       NumElements = ParseConstantExpression();
4113     else
4114       NumElements = ParseAssignmentExpression();
4115   }
4116
4117   // If there was an error parsing the assignment-expression, recover.
4118   if (NumElements.isInvalid()) {
4119     D.setInvalidType(true);
4120     // If the expression was invalid, skip it.
4121     SkipUntil(tok::r_square);
4122     return;
4123   }
4124
4125   SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
4126
4127   ParsedAttributes attrs(AttrFactory);
4128   MaybeParseCXX0XAttributes(attrs);
4129
4130   // Remember that we parsed a array type, and remember its features.
4131   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4132                                           StaticLoc.isValid(), isStar,
4133                                           NumElements.release(),
4134                                           StartLoc, EndLoc),
4135                 attrs, EndLoc);
4136 }
4137
4138 /// [GNU]   typeof-specifier:
4139 ///           typeof ( expressions )
4140 ///           typeof ( type-name )
4141 /// [GNU/C++] typeof unary-expression
4142 ///
4143 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4144   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4145   Token OpTok = Tok;
4146   SourceLocation StartLoc = ConsumeToken();
4147
4148   const bool hasParens = Tok.is(tok::l_paren);
4149
4150   bool isCastExpr;
4151   ParsedType CastTy;
4152   SourceRange CastRange;
4153   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4154                                                           CastTy, CastRange);
4155   if (hasParens)
4156     DS.setTypeofParensRange(CastRange);
4157
4158   if (CastRange.getEnd().isInvalid())
4159     // FIXME: Not accurate, the range gets one token more than it should.
4160     DS.SetRangeEnd(Tok.getLocation());
4161   else
4162     DS.SetRangeEnd(CastRange.getEnd());
4163
4164   if (isCastExpr) {
4165     if (!CastTy) {
4166       DS.SetTypeSpecError();
4167       return;
4168     }
4169
4170     const char *PrevSpec = 0;
4171     unsigned DiagID;
4172     // Check for duplicate type specifiers (e.g. "int typeof(int)").
4173     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4174                            DiagID, CastTy))
4175       Diag(StartLoc, DiagID) << PrevSpec;
4176     return;
4177   }
4178
4179   // If we get here, the operand to the typeof was an expresion.
4180   if (Operand.isInvalid()) {
4181     DS.SetTypeSpecError();
4182     return;
4183   }
4184
4185   const char *PrevSpec = 0;
4186   unsigned DiagID;
4187   // Check for duplicate type specifiers (e.g. "int typeof(int)").
4188   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4189                          DiagID, Operand.get()))
4190     Diag(StartLoc, DiagID) << PrevSpec;
4191 }
4192
4193
4194 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4195 /// from TryAltiVecVectorToken.
4196 bool Parser::TryAltiVecVectorTokenOutOfLine() {
4197   Token Next = NextToken();
4198   switch (Next.getKind()) {
4199   default: return false;
4200   case tok::kw_short:
4201   case tok::kw_long:
4202   case tok::kw_signed:
4203   case tok::kw_unsigned:
4204   case tok::kw_void:
4205   case tok::kw_char:
4206   case tok::kw_int:
4207   case tok::kw_float:
4208   case tok::kw_double:
4209   case tok::kw_bool:
4210   case tok::kw___pixel:
4211     Tok.setKind(tok::kw___vector);
4212     return true;
4213   case tok::identifier:
4214     if (Next.getIdentifierInfo() == Ident_pixel) {
4215       Tok.setKind(tok::kw___vector);
4216       return true;
4217     }
4218     return false;
4219   }
4220 }
4221
4222 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4223                                       const char *&PrevSpec, unsigned &DiagID,
4224                                       bool &isInvalid) {
4225   if (Tok.getIdentifierInfo() == Ident_vector) {
4226     Token Next = NextToken();
4227     switch (Next.getKind()) {
4228     case tok::kw_short:
4229     case tok::kw_long:
4230     case tok::kw_signed:
4231     case tok::kw_unsigned:
4232     case tok::kw_void:
4233     case tok::kw_char:
4234     case tok::kw_int:
4235     case tok::kw_float:
4236     case tok::kw_double:
4237     case tok::kw_bool:
4238     case tok::kw___pixel:
4239       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4240       return true;
4241     case tok::identifier:
4242       if (Next.getIdentifierInfo() == Ident_pixel) {
4243         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4244         return true;
4245       }
4246       break;
4247     default:
4248       break;
4249     }
4250   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4251              DS.isTypeAltiVecVector()) {
4252     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4253     return true;
4254   }
4255   return false;
4256 }