]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaAccess.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Sema / SemaAccess.cpp
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DependentDiagnostic.h"
23 #include "clang/AST/ExprCXX.h"
24
25 using namespace clang;
26 using namespace sema;
27
28 /// A copy of Sema's enum without AR_delayed.
29 enum AccessResult {
30   AR_accessible,
31   AR_inaccessible,
32   AR_dependent
33 };
34
35 /// SetMemberAccessSpecifier - Set the access specifier of a member.
36 /// Returns true on error (when the previous member decl access specifier
37 /// is different from the new member decl access specifier).
38 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
39                                     NamedDecl *PrevMemberDecl,
40                                     AccessSpecifier LexicalAS) {
41   if (!PrevMemberDecl) {
42     // Use the lexical access specifier.
43     MemberDecl->setAccess(LexicalAS);
44     return false;
45   }
46
47   // C++ [class.access.spec]p3: When a member is redeclared its access
48   // specifier must be same as its initial declaration.
49   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
50     Diag(MemberDecl->getLocation(),
51          diag::err_class_redeclared_with_different_access)
52       << MemberDecl << LexicalAS;
53     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
54       << PrevMemberDecl << PrevMemberDecl->getAccess();
55
56     MemberDecl->setAccess(LexicalAS);
57     return true;
58   }
59
60   MemberDecl->setAccess(PrevMemberDecl->getAccess());
61   return false;
62 }
63
64 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
65   DeclContext *DC = D->getDeclContext();
66
67   // This can only happen at top: enum decls only "publish" their
68   // immediate members.
69   if (isa<EnumDecl>(DC))
70     DC = cast<EnumDecl>(DC)->getDeclContext();
71
72   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
73   while (DeclaringClass->isAnonymousStructOrUnion())
74     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
75   return DeclaringClass;
76 }
77
78 namespace {
79 struct EffectiveContext {
80   EffectiveContext() : Inner(0), Dependent(false) {}
81
82   explicit EffectiveContext(DeclContext *DC)
83     : Inner(DC),
84       Dependent(DC->isDependentContext()) {
85
86     // C++ [class.access.nest]p1:
87     //   A nested class is a member and as such has the same access
88     //   rights as any other member.
89     // C++ [class.access]p2:
90     //   A member of a class can also access all the names to which
91     //   the class has access.  A local class of a member function
92     //   may access the same names that the member function itself
93     //   may access.
94     // This almost implies that the privileges of nesting are transitive.
95     // Technically it says nothing about the local classes of non-member
96     // functions (which can gain privileges through friendship), but we
97     // take that as an oversight.
98     while (true) {
99       if (isa<CXXRecordDecl>(DC)) {
100         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
101         Records.push_back(Record);
102         DC = Record->getDeclContext();
103       } else if (isa<FunctionDecl>(DC)) {
104         FunctionDecl *Function = cast<FunctionDecl>(DC)->getCanonicalDecl();
105         Functions.push_back(Function);
106         DC = Function->getDeclContext();
107       } else if (DC->isFileContext()) {
108         break;
109       } else {
110         DC = DC->getParent();
111       }
112     }
113   }
114
115   bool isDependent() const { return Dependent; }
116
117   bool includesClass(const CXXRecordDecl *R) const {
118     R = R->getCanonicalDecl();
119     return std::find(Records.begin(), Records.end(), R)
120              != Records.end();
121   }
122
123   /// Retrieves the innermost "useful" context.  Can be null if we're
124   /// doing access-control without privileges.
125   DeclContext *getInnerContext() const {
126     return Inner;
127   }
128
129   typedef llvm::SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
130
131   DeclContext *Inner;
132   llvm::SmallVector<FunctionDecl*, 4> Functions;
133   llvm::SmallVector<CXXRecordDecl*, 4> Records;
134   bool Dependent;
135 };
136
137 /// Like sema::AccessedEntity, but kindly lets us scribble all over
138 /// it.
139 struct AccessTarget : public AccessedEntity {
140   AccessTarget(const AccessedEntity &Entity)
141     : AccessedEntity(Entity) {
142     initialize();
143   }
144     
145   AccessTarget(ASTContext &Context, 
146                MemberNonce _,
147                CXXRecordDecl *NamingClass,
148                DeclAccessPair FoundDecl,
149                QualType BaseObjectType,
150                bool IsUsingDecl = false)
151     : AccessedEntity(Context, Member, NamingClass, FoundDecl, BaseObjectType),
152       IsUsingDeclaration(IsUsingDecl) {
153     initialize();
154   }
155
156   AccessTarget(ASTContext &Context, 
157                BaseNonce _,
158                CXXRecordDecl *BaseClass,
159                CXXRecordDecl *DerivedClass,
160                AccessSpecifier Access)
161     : AccessedEntity(Context, Base, BaseClass, DerivedClass, Access) {
162     initialize();
163   }
164
165   bool hasInstanceContext() const {
166     return HasInstanceContext;
167   }
168
169   class SavedInstanceContext {
170   public:
171     ~SavedInstanceContext() {
172       Target.HasInstanceContext = Has;
173     }
174
175   private:
176     friend struct AccessTarget;
177     explicit SavedInstanceContext(AccessTarget &Target)
178       : Target(Target), Has(Target.HasInstanceContext) {}
179     AccessTarget &Target;
180     bool Has;
181   };
182
183   SavedInstanceContext saveInstanceContext() {
184     return SavedInstanceContext(*this);
185   }
186
187   void suppressInstanceContext() {
188     HasInstanceContext = false;
189   }
190
191   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
192     assert(HasInstanceContext);
193     if (CalculatedInstanceContext)
194       return InstanceContext;
195
196     CalculatedInstanceContext = true;
197     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
198     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
199     return InstanceContext;
200   }
201
202   const CXXRecordDecl *getDeclaringClass() const {
203     return DeclaringClass;
204   }
205
206 private:
207   void initialize() {
208     HasInstanceContext = (isMemberAccess() &&
209                           !getBaseObjectType().isNull() &&
210                           getTargetDecl()->isCXXInstanceMember());
211     CalculatedInstanceContext = false;
212     InstanceContext = 0;
213
214     if (isMemberAccess())
215       DeclaringClass = FindDeclaringClass(getTargetDecl());
216     else
217       DeclaringClass = getBaseClass();
218     DeclaringClass = DeclaringClass->getCanonicalDecl();
219   }
220
221   bool IsUsingDeclaration : 1;
222   bool HasInstanceContext : 1;
223   mutable bool CalculatedInstanceContext : 1;
224   mutable const CXXRecordDecl *InstanceContext;
225   const CXXRecordDecl *DeclaringClass;
226 };
227
228 }
229
230 /// Checks whether one class might instantiate to the other.
231 static bool MightInstantiateTo(const CXXRecordDecl *From,
232                                const CXXRecordDecl *To) {
233   // Declaration names are always preserved by instantiation.
234   if (From->getDeclName() != To->getDeclName())
235     return false;
236
237   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
238   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
239   if (FromDC == ToDC) return true;
240   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
241
242   // Be conservative.
243   return true;
244 }
245
246 /// Checks whether one class is derived from another, inclusively.
247 /// Properly indicates when it couldn't be determined due to
248 /// dependence.
249 ///
250 /// This should probably be donated to AST or at least Sema.
251 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
252                                            const CXXRecordDecl *Target) {
253   assert(Derived->getCanonicalDecl() == Derived);
254   assert(Target->getCanonicalDecl() == Target);
255
256   if (Derived == Target) return AR_accessible;
257
258   bool CheckDependent = Derived->isDependentContext();
259   if (CheckDependent && MightInstantiateTo(Derived, Target))
260     return AR_dependent;
261
262   AccessResult OnFailure = AR_inaccessible;
263   llvm::SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
264
265   while (true) {
266     for (CXXRecordDecl::base_class_const_iterator
267            I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
268
269       const CXXRecordDecl *RD;
270
271       QualType T = I->getType();
272       if (const RecordType *RT = T->getAs<RecordType>()) {
273         RD = cast<CXXRecordDecl>(RT->getDecl());
274       } else if (const InjectedClassNameType *IT
275                    = T->getAs<InjectedClassNameType>()) {
276         RD = IT->getDecl();
277       } else {
278         assert(T->isDependentType() && "non-dependent base wasn't a record?");
279         OnFailure = AR_dependent;
280         continue;
281       }
282
283       RD = RD->getCanonicalDecl();
284       if (RD == Target) return AR_accessible;
285       if (CheckDependent && MightInstantiateTo(RD, Target))
286         OnFailure = AR_dependent;
287
288       Queue.push_back(RD);
289     }
290
291     if (Queue.empty()) break;
292
293     Derived = Queue.back();
294     Queue.pop_back();
295   }
296
297   return OnFailure;
298 }
299
300
301 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
302                                DeclContext *Friend) {
303   if (Friend == Context)
304     return true;
305
306   assert(!Friend->isDependentContext() &&
307          "can't handle friends with dependent contexts here");
308
309   if (!Context->isDependentContext())
310     return false;
311
312   if (Friend->isFileContext())
313     return false;
314
315   // TODO: this is very conservative
316   return true;
317 }
318
319 // Asks whether the type in 'context' can ever instantiate to the type
320 // in 'friend'.
321 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
322   if (Friend == Context)
323     return true;
324
325   if (!Friend->isDependentType() && !Context->isDependentType())
326     return false;
327
328   // TODO: this is very conservative.
329   return true;
330 }
331
332 static bool MightInstantiateTo(Sema &S,
333                                FunctionDecl *Context,
334                                FunctionDecl *Friend) {
335   if (Context->getDeclName() != Friend->getDeclName())
336     return false;
337
338   if (!MightInstantiateTo(S,
339                           Context->getDeclContext(),
340                           Friend->getDeclContext()))
341     return false;
342
343   CanQual<FunctionProtoType> FriendTy
344     = S.Context.getCanonicalType(Friend->getType())
345          ->getAs<FunctionProtoType>();
346   CanQual<FunctionProtoType> ContextTy
347     = S.Context.getCanonicalType(Context->getType())
348          ->getAs<FunctionProtoType>();
349
350   // There isn't any way that I know of to add qualifiers
351   // during instantiation.
352   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
353     return false;
354
355   if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
356     return false;
357
358   if (!MightInstantiateTo(S,
359                           ContextTy->getResultType(),
360                           FriendTy->getResultType()))
361     return false;
362
363   for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
364     if (!MightInstantiateTo(S,
365                             ContextTy->getArgType(I),
366                             FriendTy->getArgType(I)))
367       return false;
368
369   return true;
370 }
371
372 static bool MightInstantiateTo(Sema &S,
373                                FunctionTemplateDecl *Context,
374                                FunctionTemplateDecl *Friend) {
375   return MightInstantiateTo(S,
376                             Context->getTemplatedDecl(),
377                             Friend->getTemplatedDecl());
378 }
379
380 static AccessResult MatchesFriend(Sema &S,
381                                   const EffectiveContext &EC,
382                                   const CXXRecordDecl *Friend) {
383   if (EC.includesClass(Friend))
384     return AR_accessible;
385
386   if (EC.isDependent()) {
387     CanQualType FriendTy
388       = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
389
390     for (EffectiveContext::record_iterator
391            I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
392       CanQualType ContextTy
393         = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
394       if (MightInstantiateTo(S, ContextTy, FriendTy))
395         return AR_dependent;
396     }
397   }
398
399   return AR_inaccessible;
400 }
401
402 static AccessResult MatchesFriend(Sema &S,
403                                   const EffectiveContext &EC,
404                                   CanQualType Friend) {
405   if (const RecordType *RT = Friend->getAs<RecordType>())
406     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
407
408   // TODO: we can do better than this
409   if (Friend->isDependentType())
410     return AR_dependent;
411
412   return AR_inaccessible;
413 }
414
415 /// Determines whether the given friend class template matches
416 /// anything in the effective context.
417 static AccessResult MatchesFriend(Sema &S,
418                                   const EffectiveContext &EC,
419                                   ClassTemplateDecl *Friend) {
420   AccessResult OnFailure = AR_inaccessible;
421
422   // Check whether the friend is the template of a class in the
423   // context chain.
424   for (llvm::SmallVectorImpl<CXXRecordDecl*>::const_iterator
425          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
426     CXXRecordDecl *Record = *I;
427
428     // Figure out whether the current class has a template:
429     ClassTemplateDecl *CTD;
430
431     // A specialization of the template...
432     if (isa<ClassTemplateSpecializationDecl>(Record)) {
433       CTD = cast<ClassTemplateSpecializationDecl>(Record)
434         ->getSpecializedTemplate();
435
436     // ... or the template pattern itself.
437     } else {
438       CTD = Record->getDescribedClassTemplate();
439       if (!CTD) continue;
440     }
441
442     // It's a match.
443     if (Friend == CTD->getCanonicalDecl())
444       return AR_accessible;
445
446     // If the context isn't dependent, it can't be a dependent match.
447     if (!EC.isDependent())
448       continue;
449
450     // If the template names don't match, it can't be a dependent
451     // match.
452     if (CTD->getDeclName() != Friend->getDeclName())
453       continue;
454
455     // If the class's context can't instantiate to the friend's
456     // context, it can't be a dependent match.
457     if (!MightInstantiateTo(S, CTD->getDeclContext(),
458                             Friend->getDeclContext()))
459       continue;
460
461     // Otherwise, it's a dependent match.
462     OnFailure = AR_dependent;
463   }
464
465   return OnFailure;
466 }
467
468 /// Determines whether the given friend function matches anything in
469 /// the effective context.
470 static AccessResult MatchesFriend(Sema &S,
471                                   const EffectiveContext &EC,
472                                   FunctionDecl *Friend) {
473   AccessResult OnFailure = AR_inaccessible;
474
475   for (llvm::SmallVectorImpl<FunctionDecl*>::const_iterator
476          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
477     if (Friend == *I)
478       return AR_accessible;
479
480     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
481       OnFailure = AR_dependent;
482   }
483
484   return OnFailure;
485 }
486
487 /// Determines whether the given friend function template matches
488 /// anything in the effective context.
489 static AccessResult MatchesFriend(Sema &S,
490                                   const EffectiveContext &EC,
491                                   FunctionTemplateDecl *Friend) {
492   if (EC.Functions.empty()) return AR_inaccessible;
493
494   AccessResult OnFailure = AR_inaccessible;
495
496   for (llvm::SmallVectorImpl<FunctionDecl*>::const_iterator
497          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
498
499     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
500     if (!FTD)
501       FTD = (*I)->getDescribedFunctionTemplate();
502     if (!FTD)
503       continue;
504
505     FTD = FTD->getCanonicalDecl();
506
507     if (Friend == FTD)
508       return AR_accessible;
509
510     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
511       OnFailure = AR_dependent;
512   }
513
514   return OnFailure;
515 }
516
517 /// Determines whether the given friend declaration matches anything
518 /// in the effective context.
519 static AccessResult MatchesFriend(Sema &S,
520                                   const EffectiveContext &EC,
521                                   FriendDecl *FriendD) {
522   // Whitelist accesses if there's an invalid or unsupported friend
523   // declaration.
524   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
525     return AR_accessible;
526
527   if (TypeSourceInfo *T = FriendD->getFriendType())
528     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
529
530   NamedDecl *Friend
531     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
532
533   // FIXME: declarations with dependent or templated scope.
534
535   if (isa<ClassTemplateDecl>(Friend))
536     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
537
538   if (isa<FunctionTemplateDecl>(Friend))
539     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
540
541   if (isa<CXXRecordDecl>(Friend))
542     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
543
544   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
545   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
546 }
547
548 static AccessResult GetFriendKind(Sema &S,
549                                   const EffectiveContext &EC,
550                                   const CXXRecordDecl *Class) {
551   AccessResult OnFailure = AR_inaccessible;
552
553   // Okay, check friends.
554   for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
555          E = Class->friend_end(); I != E; ++I) {
556     FriendDecl *Friend = *I;
557
558     switch (MatchesFriend(S, EC, Friend)) {
559     case AR_accessible:
560       return AR_accessible;
561
562     case AR_inaccessible:
563       continue;
564
565     case AR_dependent:
566       OnFailure = AR_dependent;
567       break;
568     }
569   }
570
571   // That's it, give up.
572   return OnFailure;
573 }
574
575 namespace {
576
577 /// A helper class for checking for a friend which will grant access
578 /// to a protected instance member.
579 struct ProtectedFriendContext {
580   Sema &S;
581   const EffectiveContext &EC;
582   const CXXRecordDecl *NamingClass;
583   bool CheckDependent;
584   bool EverDependent;
585
586   /// The path down to the current base class.
587   llvm::SmallVector<const CXXRecordDecl*, 20> CurPath;
588
589   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
590                          const CXXRecordDecl *InstanceContext,
591                          const CXXRecordDecl *NamingClass)
592     : S(S), EC(EC), NamingClass(NamingClass),
593       CheckDependent(InstanceContext->isDependentContext() ||
594                      NamingClass->isDependentContext()),
595       EverDependent(false) {}
596
597   /// Check classes in the current path for friendship, starting at
598   /// the given index.
599   bool checkFriendshipAlongPath(unsigned I) {
600     assert(I < CurPath.size());
601     for (unsigned E = CurPath.size(); I != E; ++I) {
602       switch (GetFriendKind(S, EC, CurPath[I])) {
603       case AR_accessible:   return true;
604       case AR_inaccessible: continue;
605       case AR_dependent:    EverDependent = true; continue;
606       }
607     }
608     return false;
609   }
610
611   /// Perform a search starting at the given class.
612   ///
613   /// PrivateDepth is the index of the last (least derived) class
614   /// along the current path such that a notional public member of
615   /// the final class in the path would have access in that class.
616   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
617     // If we ever reach the naming class, check the current path for
618     // friendship.  We can also stop recursing because we obviously
619     // won't find the naming class there again.
620     if (Cur == NamingClass)
621       return checkFriendshipAlongPath(PrivateDepth);
622
623     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
624       EverDependent = true;
625
626     // Recurse into the base classes.
627     for (CXXRecordDecl::base_class_const_iterator
628            I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
629
630       // If this is private inheritance, then a public member of the
631       // base will not have any access in classes derived from Cur.
632       unsigned BasePrivateDepth = PrivateDepth;
633       if (I->getAccessSpecifier() == AS_private)
634         BasePrivateDepth = CurPath.size() - 1;
635
636       const CXXRecordDecl *RD;
637
638       QualType T = I->getType();
639       if (const RecordType *RT = T->getAs<RecordType>()) {
640         RD = cast<CXXRecordDecl>(RT->getDecl());
641       } else if (const InjectedClassNameType *IT
642                    = T->getAs<InjectedClassNameType>()) {
643         RD = IT->getDecl();
644       } else {
645         assert(T->isDependentType() && "non-dependent base wasn't a record?");
646         EverDependent = true;
647         continue;
648       }
649
650       // Recurse.  We don't need to clean up if this returns true.
651       CurPath.push_back(RD);
652       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
653         return true;
654       CurPath.pop_back();
655     }
656
657     return false;
658   }
659
660   bool findFriendship(const CXXRecordDecl *Cur) {
661     assert(CurPath.empty());
662     CurPath.push_back(Cur);
663     return findFriendship(Cur, 0);
664   }
665 };
666 }
667
668 /// Search for a class P that EC is a friend of, under the constraint
669 ///   InstanceContext <= P <= NamingClass
670 /// and with the additional restriction that a protected member of
671 /// NamingClass would have some natural access in P.
672 ///
673 /// That second condition isn't actually quite right: the condition in
674 /// the standard is whether the target would have some natural access
675 /// in P.  The difference is that the target might be more accessible
676 /// along some path not passing through NamingClass.  Allowing that
677 /// introduces two problems:
678 ///   - It breaks encapsulation because you can suddenly access a
679 ///     forbidden base class's members by subclassing it elsewhere.
680 ///   - It makes access substantially harder to compute because it
681 ///     breaks the hill-climbing algorithm: knowing that the target is
682 ///     accessible in some base class would no longer let you change
683 ///     the question solely to whether the base class is accessible,
684 ///     because the original target might have been more accessible
685 ///     because of crazy subclassing.
686 /// So we don't implement that.
687 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
688                                            const CXXRecordDecl *InstanceContext,
689                                            const CXXRecordDecl *NamingClass) {
690   assert(InstanceContext->getCanonicalDecl() == InstanceContext);
691   assert(NamingClass->getCanonicalDecl() == NamingClass);
692
693   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
694   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
695   if (PRC.EverDependent) return AR_dependent;
696   return AR_inaccessible;
697 }
698
699 static AccessResult HasAccess(Sema &S,
700                               const EffectiveContext &EC,
701                               const CXXRecordDecl *NamingClass,
702                               AccessSpecifier Access,
703                               const AccessTarget &Target) {
704   assert(NamingClass->getCanonicalDecl() == NamingClass &&
705          "declaration should be canonicalized before being passed here");
706
707   if (Access == AS_public) return AR_accessible;
708   assert(Access == AS_private || Access == AS_protected);
709
710   AccessResult OnFailure = AR_inaccessible;
711
712   for (EffectiveContext::record_iterator
713          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
714     // All the declarations in EC have been canonicalized, so pointer
715     // equality from this point on will work fine.
716     const CXXRecordDecl *ECRecord = *I;
717
718     // [B2] and [M2]
719     if (Access == AS_private) {
720       if (ECRecord == NamingClass)
721         return AR_accessible;
722
723       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
724         OnFailure = AR_dependent;
725
726     // [B3] and [M3]
727     } else {
728       assert(Access == AS_protected);
729       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
730       case AR_accessible: break;
731       case AR_inaccessible: continue;
732       case AR_dependent: OnFailure = AR_dependent; continue;
733       }
734
735       if (!Target.hasInstanceContext())
736         return AR_accessible;
737
738       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
739       if (!InstanceContext) {
740         OnFailure = AR_dependent;
741         continue;
742       }
743
744       // C++ [class.protected]p1:
745       //   An additional access check beyond those described earlier in
746       //   [class.access] is applied when a non-static data member or
747       //   non-static member function is a protected member of its naming
748       //   class.  As described earlier, access to a protected member is
749       //   granted because the reference occurs in a friend or member of
750       //   some class C.  If the access is to form a pointer to member,
751       //   the nested-name-specifier shall name C or a class derived from
752       //   C. All other accesses involve a (possibly implicit) object
753       //   expression. In this case, the class of the object expression
754       //   shall be C or a class derived from C.
755       //
756       // We interpret this as a restriction on [M3].  Most of the
757       // conditions are encoded by not having any instance context.
758       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
759       case AR_accessible: return AR_accessible;
760       case AR_inaccessible: continue;
761       case AR_dependent: OnFailure = AR_dependent; continue;
762       }
763     }
764   }
765
766   // [M3] and [B3] say that, if the target is protected in N, we grant
767   // access if the access occurs in a friend or member of some class P
768   // that's a subclass of N and where the target has some natural
769   // access in P.  The 'member' aspect is easy to handle because P
770   // would necessarily be one of the effective-context records, and we
771   // address that above.  The 'friend' aspect is completely ridiculous
772   // to implement because there are no restrictions at all on P
773   // *unless* the [class.protected] restriction applies.  If it does,
774   // however, we should ignore whether the naming class is a friend,
775   // and instead rely on whether any potential P is a friend.
776   if (Access == AS_protected && Target.hasInstanceContext()) {
777     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
778     if (!InstanceContext) return AR_dependent;
779     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
780     case AR_accessible: return AR_accessible;
781     case AR_inaccessible: return OnFailure;
782     case AR_dependent: return AR_dependent;
783     }
784     llvm_unreachable("impossible friendship kind");
785   }
786
787   switch (GetFriendKind(S, EC, NamingClass)) {
788   case AR_accessible: return AR_accessible;
789   case AR_inaccessible: return OnFailure;
790   case AR_dependent: return AR_dependent;
791   }
792
793   // Silence bogus warnings
794   llvm_unreachable("impossible friendship kind");
795   return OnFailure;
796 }
797
798 /// Finds the best path from the naming class to the declaring class,
799 /// taking friend declarations into account.
800 ///
801 /// C++0x [class.access.base]p5:
802 ///   A member m is accessible at the point R when named in class N if
803 ///   [M1] m as a member of N is public, or
804 ///   [M2] m as a member of N is private, and R occurs in a member or
805 ///        friend of class N, or
806 ///   [M3] m as a member of N is protected, and R occurs in a member or
807 ///        friend of class N, or in a member or friend of a class P
808 ///        derived from N, where m as a member of P is public, private,
809 ///        or protected, or
810 ///   [M4] there exists a base class B of N that is accessible at R, and
811 ///        m is accessible at R when named in class B.
812 ///
813 /// C++0x [class.access.base]p4:
814 ///   A base class B of N is accessible at R, if
815 ///   [B1] an invented public member of B would be a public member of N, or
816 ///   [B2] R occurs in a member or friend of class N, and an invented public
817 ///        member of B would be a private or protected member of N, or
818 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
819 ///        invented public member of B would be a private or protected member
820 ///        of P, or
821 ///   [B4] there exists a class S such that B is a base class of S accessible
822 ///        at R and S is a base class of N accessible at R.
823 ///
824 /// Along a single inheritance path we can restate both of these
825 /// iteratively:
826 ///
827 /// First, we note that M1-4 are equivalent to B1-4 if the member is
828 /// treated as a notional base of its declaring class with inheritance
829 /// access equivalent to the member's access.  Therefore we need only
830 /// ask whether a class B is accessible from a class N in context R.
831 ///
832 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
833 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
834 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
835 /// closest accessible base in the path:
836 ///   Access(a, b) = (* access on the base specifier from a to b *)
837 ///   Merge(a, forbidden) = forbidden
838 ///   Merge(a, private) = forbidden
839 ///   Merge(a, b) = min(a,b)
840 ///   Accessible(c, forbidden) = false
841 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
842 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
843 ///   Accessible(c, public) = true
844 ///   ACAB(n) = public
845 ///   ACAB(i) =
846 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
847 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
848 ///
849 /// B is an accessible base of N at R iff ACAB(1) = public.
850 ///
851 /// \param FinalAccess the access of the "final step", or AS_public if
852 ///   there is no final step.
853 /// \return null if friendship is dependent
854 static CXXBasePath *FindBestPath(Sema &S,
855                                  const EffectiveContext &EC,
856                                  AccessTarget &Target,
857                                  AccessSpecifier FinalAccess,
858                                  CXXBasePaths &Paths) {
859   // Derive the paths to the desired base.
860   const CXXRecordDecl *Derived = Target.getNamingClass();
861   const CXXRecordDecl *Base = Target.getDeclaringClass();
862
863   // FIXME: fail correctly when there are dependent paths.
864   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
865                                           Paths);
866   assert(isDerived && "derived class not actually derived from base");
867   (void) isDerived;
868
869   CXXBasePath *BestPath = 0;
870
871   assert(FinalAccess != AS_none && "forbidden access after declaring class");
872
873   bool AnyDependent = false;
874
875   // Derive the friend-modified access along each path.
876   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
877          PI != PE; ++PI) {
878     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
879
880     // Walk through the path backwards.
881     AccessSpecifier PathAccess = FinalAccess;
882     CXXBasePath::iterator I = PI->end(), E = PI->begin();
883     while (I != E) {
884       --I;
885
886       assert(PathAccess != AS_none);
887
888       // If the declaration is a private member of a base class, there
889       // is no level of friendship in derived classes that can make it
890       // accessible.
891       if (PathAccess == AS_private) {
892         PathAccess = AS_none;
893         break;
894       }
895
896       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
897
898       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
899       PathAccess = std::max(PathAccess, BaseAccess);
900
901       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
902       case AR_inaccessible: break;
903       case AR_accessible:
904         PathAccess = AS_public;
905
906         // Future tests are not against members and so do not have
907         // instance context.
908         Target.suppressInstanceContext();
909         break;
910       case AR_dependent:
911         AnyDependent = true;
912         goto Next;
913       }
914     }
915
916     // Note that we modify the path's Access field to the
917     // friend-modified access.
918     if (BestPath == 0 || PathAccess < BestPath->Access) {
919       BestPath = &*PI;
920       BestPath->Access = PathAccess;
921
922       // Short-circuit if we found a public path.
923       if (BestPath->Access == AS_public)
924         return BestPath;
925     }
926
927   Next: ;
928   }
929
930   assert((!BestPath || BestPath->Access != AS_public) &&
931          "fell out of loop with public path");
932
933   // We didn't find a public path, but at least one path was subject
934   // to dependent friendship, so delay the check.
935   if (AnyDependent)
936     return 0;
937
938   return BestPath;
939 }
940
941 /// Given that an entity has protected natural access, check whether
942 /// access might be denied because of the protected member access
943 /// restriction.
944 ///
945 /// \return true if a note was emitted
946 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
947                                        AccessTarget &Target) {
948   // Only applies to instance accesses.
949   if (!Target.hasInstanceContext())
950     return false;
951   assert(Target.isMemberAccess());
952   NamedDecl *D = Target.getTargetDecl();
953
954   const CXXRecordDecl *DeclaringClass = Target.getDeclaringClass();
955   DeclaringClass = DeclaringClass->getCanonicalDecl();
956
957   for (EffectiveContext::record_iterator
958          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
959     const CXXRecordDecl *ECRecord = *I;
960     switch (IsDerivedFromInclusive(ECRecord, DeclaringClass)) {
961     case AR_accessible: break;
962     case AR_inaccessible: continue;
963     case AR_dependent: continue;
964     }
965
966     // The effective context is a subclass of the declaring class.
967     // If that class isn't a superclass of the instance context,
968     // then the [class.protected] restriction applies.
969
970     // To get this exactly right, this might need to be checked more
971     // holistically;  it's not necessarily the case that gaining
972     // access here would grant us access overall.
973
974     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
975     assert(InstanceContext && "diagnosing dependent access");
976
977     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
978     case AR_accessible: continue;
979     case AR_dependent: continue;
980     case AR_inaccessible:
981       S.Diag(D->getLocation(), diag::note_access_protected_restricted)
982         << (InstanceContext != Target.getNamingClass()->getCanonicalDecl())
983         << S.Context.getTypeDeclType(InstanceContext)
984         << S.Context.getTypeDeclType(ECRecord);
985       return true;
986     }
987   }
988
989   return false;
990 }
991
992 /// Diagnose the path which caused the given declaration or base class
993 /// to become inaccessible.
994 static void DiagnoseAccessPath(Sema &S,
995                                const EffectiveContext &EC,
996                                AccessTarget &Entity) {
997   AccessSpecifier Access = Entity.getAccess();
998   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
999   NamingClass = NamingClass->getCanonicalDecl();
1000
1001   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1002   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1003
1004   // Easy case: the decl's natural access determined its path access.
1005   // We have to check against AS_private here in case Access is AS_none,
1006   // indicating a non-public member of a private base class.
1007   if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) {
1008     switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) {
1009     case AR_inaccessible: {
1010       if (Access == AS_protected &&
1011           TryDiagnoseProtectedAccess(S, EC, Entity))
1012         return;
1013
1014       // Find an original declaration.
1015       while (D->isOutOfLine()) {
1016         NamedDecl *PrevDecl = 0;
1017         if (VarDecl *VD = dyn_cast<VarDecl>(D))
1018           PrevDecl = VD->getPreviousDeclaration();
1019         else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1020           PrevDecl = FD->getPreviousDeclaration();
1021         else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1022           PrevDecl = TND->getPreviousDeclaration();
1023         else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1024           if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1025             break;
1026           PrevDecl = TD->getPreviousDeclaration();
1027         }
1028         if (!PrevDecl) break;
1029         D = PrevDecl;
1030       }
1031
1032       CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1033       Decl *ImmediateChild;
1034       if (D->getDeclContext() == DeclaringClass)
1035         ImmediateChild = D;
1036       else {
1037         DeclContext *DC = D->getDeclContext();
1038         while (DC->getParent() != DeclaringClass)
1039           DC = DC->getParent();
1040         ImmediateChild = cast<Decl>(DC);
1041       }
1042       
1043       // Check whether there's an AccessSpecDecl preceding this in the
1044       // chain of the DeclContext.
1045       bool Implicit = true;
1046       for (CXXRecordDecl::decl_iterator
1047              I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1048            I != E; ++I) {
1049         if (*I == ImmediateChild) break;
1050         if (isa<AccessSpecDecl>(*I)) {
1051           Implicit = false;
1052           break;
1053         }
1054       }
1055
1056       S.Diag(D->getLocation(), diag::note_access_natural)
1057         << (unsigned) (Access == AS_protected)
1058         << Implicit;
1059       return;
1060     }
1061
1062     case AR_accessible: break;
1063
1064     case AR_dependent:
1065       llvm_unreachable("can't diagnose dependent access failures");
1066       return;
1067     }
1068   }
1069
1070   CXXBasePaths Paths;
1071   CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths);
1072
1073   CXXBasePath::iterator I = Path.end(), E = Path.begin();
1074   while (I != E) {
1075     --I;
1076
1077     const CXXBaseSpecifier *BS = I->Base;
1078     AccessSpecifier BaseAccess = BS->getAccessSpecifier();
1079
1080     // If this is public inheritance, or the derived class is a friend,
1081     // skip this step.
1082     if (BaseAccess == AS_public)
1083       continue;
1084
1085     switch (GetFriendKind(S, EC, I->Class)) {
1086     case AR_accessible: continue;
1087     case AR_inaccessible: break;
1088     case AR_dependent:
1089       llvm_unreachable("can't diagnose dependent access failures");
1090     }
1091
1092     // Check whether this base specifier is the tighest point
1093     // constraining access.  We have to check against AS_private for
1094     // the same reasons as above.
1095     if (BaseAccess == AS_private || BaseAccess >= Access) {
1096
1097       // We're constrained by inheritance, but we want to say
1098       // "declared private here" if we're diagnosing a hierarchy
1099       // conversion and this is the final step.
1100       unsigned diagnostic;
1101       if (D) diagnostic = diag::note_access_constrained_by_path;
1102       else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural;
1103       else diagnostic = diag::note_access_constrained_by_path;
1104
1105       S.Diag(BS->getSourceRange().getBegin(), diagnostic)
1106         << BS->getSourceRange()
1107         << (BaseAccess == AS_protected)
1108         << (BS->getAccessSpecifierAsWritten() == AS_none);
1109       
1110       if (D)
1111         S.Diag(D->getLocation(), diag::note_field_decl);
1112       
1113       return;
1114     }
1115   }
1116
1117   llvm_unreachable("access not apparently constrained by path");
1118 }
1119
1120 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1121                               const EffectiveContext &EC,
1122                               AccessTarget &Entity) {
1123   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1124   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1125   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1126
1127   S.Diag(Loc, Entity.getDiag())
1128     << (Entity.getAccess() == AS_protected)
1129     << (D ? D->getDeclName() : DeclarationName())
1130     << S.Context.getTypeDeclType(NamingClass)
1131     << S.Context.getTypeDeclType(DeclaringClass);
1132   DiagnoseAccessPath(S, EC, Entity);
1133 }
1134
1135 /// MSVC has a bug where if during an using declaration name lookup, 
1136 /// the declaration found is unaccessible (private) and that declaration 
1137 /// was bring into scope via another using declaration whose target
1138 /// declaration is accessible (public) then no error is generated.
1139 /// Example:
1140 ///   class A {
1141 ///   public:
1142 ///     int f();
1143 ///   };
1144 ///   class B : public A {
1145 ///   private:
1146 ///     using A::f;
1147 ///   };
1148 ///   class C : public B {
1149 ///   private:
1150 ///     using B::f;
1151 ///   };
1152 ///
1153 /// Here, B::f is private so this should fail in Standard C++, but 
1154 /// because B::f refers to A::f which is public MSVC accepts it.
1155 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S, 
1156                                                  SourceLocation AccessLoc,
1157                                                  AccessTarget &Entity) {
1158   if (UsingShadowDecl *Shadow =
1159                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1160     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1161     if (Entity.getTargetDecl()->getAccess() == AS_private && 
1162         (OrigDecl->getAccess() == AS_public ||
1163          OrigDecl->getAccess() == AS_protected)) {
1164       S.Diag(AccessLoc, diag::war_ms_using_declaration_inaccessible) 
1165         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1166         << OrigDecl->getQualifiedNameAsString();
1167       return true;
1168     }
1169   }
1170   return false;
1171 }
1172
1173 /// Determines whether the accessed entity is accessible.  Public members
1174 /// have been weeded out by this point.
1175 static AccessResult IsAccessible(Sema &S,
1176                                  const EffectiveContext &EC,
1177                                  AccessTarget &Entity) {
1178   // Determine the actual naming class.
1179   CXXRecordDecl *NamingClass = Entity.getNamingClass();
1180   while (NamingClass->isAnonymousStructOrUnion())
1181     NamingClass = cast<CXXRecordDecl>(NamingClass->getParent());
1182   NamingClass = NamingClass->getCanonicalDecl();
1183
1184   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1185   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1186
1187   // Before we try to recalculate access paths, try to white-list
1188   // accesses which just trade in on the final step, i.e. accesses
1189   // which don't require [M4] or [B4]. These are by far the most
1190   // common forms of privileged access.
1191   if (UnprivilegedAccess != AS_none) {
1192     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1193     case AR_dependent:
1194       // This is actually an interesting policy decision.  We don't
1195       // *have* to delay immediately here: we can do the full access
1196       // calculation in the hope that friendship on some intermediate
1197       // class will make the declaration accessible non-dependently.
1198       // But that's not cheap, and odds are very good (note: assertion
1199       // made without data) that the friend declaration will determine
1200       // access.
1201       return AR_dependent;
1202
1203     case AR_accessible: return AR_accessible;
1204     case AR_inaccessible: break;
1205     }
1206   }
1207
1208   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1209
1210   // We lower member accesses to base accesses by pretending that the
1211   // member is a base class of its declaring class.
1212   AccessSpecifier FinalAccess;
1213
1214   if (Entity.isMemberAccess()) {
1215     // Determine if the declaration is accessible from EC when named
1216     // in its declaring class.
1217     NamedDecl *Target = Entity.getTargetDecl();
1218     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1219
1220     FinalAccess = Target->getAccess();
1221     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1222     case AR_accessible:
1223       FinalAccess = AS_public;
1224       break;
1225     case AR_inaccessible: break;
1226     case AR_dependent: return AR_dependent; // see above
1227     }
1228
1229     if (DeclaringClass == NamingClass)
1230       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1231
1232     Entity.suppressInstanceContext();
1233   } else {
1234     FinalAccess = AS_public;
1235   }
1236
1237   assert(Entity.getDeclaringClass() != NamingClass);
1238
1239   // Append the declaration's access if applicable.
1240   CXXBasePaths Paths;
1241   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1242   if (!Path)
1243     return AR_dependent;
1244
1245   assert(Path->Access <= UnprivilegedAccess &&
1246          "access along best path worse than direct?");
1247   if (Path->Access == AS_public)
1248     return AR_accessible;
1249   return AR_inaccessible;
1250 }
1251
1252 static void DelayDependentAccess(Sema &S,
1253                                  const EffectiveContext &EC,
1254                                  SourceLocation Loc,
1255                                  const AccessTarget &Entity) {
1256   assert(EC.isDependent() && "delaying non-dependent access");
1257   DeclContext *DC = EC.getInnerContext();
1258   assert(DC->isDependentContext() && "delaying non-dependent access");
1259   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1260                               Loc,
1261                               Entity.isMemberAccess(),
1262                               Entity.getAccess(),
1263                               Entity.getTargetDecl(),
1264                               Entity.getNamingClass(),
1265                               Entity.getBaseObjectType(),
1266                               Entity.getDiag());
1267 }
1268
1269 /// Checks access to an entity from the given effective context.
1270 static AccessResult CheckEffectiveAccess(Sema &S,
1271                                          const EffectiveContext &EC,
1272                                          SourceLocation Loc,
1273                                          AccessTarget &Entity) {
1274   assert(Entity.getAccess() != AS_public && "called for public access!");
1275
1276   if (S.getLangOptions().Microsoft &&
1277       IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1278     return AR_accessible;
1279
1280   switch (IsAccessible(S, EC, Entity)) {
1281   case AR_dependent:
1282     DelayDependentAccess(S, EC, Loc, Entity);
1283     return AR_dependent;
1284
1285   case AR_inaccessible:
1286     if (!Entity.isQuiet())
1287       DiagnoseBadAccess(S, Loc, EC, Entity);
1288     return AR_inaccessible;
1289
1290   case AR_accessible:
1291     return AR_accessible;
1292   }
1293
1294   // silence unnecessary warning
1295   llvm_unreachable("invalid access result");
1296   return AR_accessible;
1297 }
1298
1299 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1300                                       AccessTarget &Entity) {
1301   // If the access path is public, it's accessible everywhere.
1302   if (Entity.getAccess() == AS_public)
1303     return Sema::AR_accessible;
1304
1305   if (S.SuppressAccessChecking)
1306     return Sema::AR_accessible;
1307
1308   // If we're currently parsing a declaration, we may need to delay
1309   // access control checking, because our effective context might be
1310   // different based on what the declaration comes out as.
1311   //
1312   // For example, we might be parsing a declaration with a scope
1313   // specifier, like this:
1314   //   A::private_type A::foo() { ... }
1315   //
1316   // Or we might be parsing something that will turn out to be a friend:
1317   //   void foo(A::private_type);
1318   //   void B::foo(A::private_type);
1319   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1320     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1321     return Sema::AR_delayed;
1322   }
1323
1324   EffectiveContext EC(S.CurContext);
1325   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1326   case AR_accessible: return Sema::AR_accessible;
1327   case AR_inaccessible: return Sema::AR_inaccessible;
1328   case AR_dependent: return Sema::AR_dependent;
1329   }
1330   llvm_unreachable("falling off end");
1331   return Sema::AR_accessible;
1332 }
1333
1334 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *decl) {
1335   // Access control for names used in the declarations of functions
1336   // and function templates should normally be evaluated in the context
1337   // of the declaration, just in case it's a friend of something.
1338   // However, this does not apply to local extern declarations.
1339
1340   DeclContext *DC = decl->getDeclContext();
1341   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
1342     if (!DC->isFunctionOrMethod()) DC = fn;
1343   } else if (FunctionTemplateDecl *fnt = dyn_cast<FunctionTemplateDecl>(decl)) {
1344     // Never a local declaration.
1345     DC = fnt->getTemplatedDecl();
1346   }
1347
1348   EffectiveContext EC(DC);
1349
1350   AccessTarget Target(DD.getAccessData());
1351
1352   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1353     DD.Triggered = true;
1354 }
1355
1356 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1357                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1358   SourceLocation Loc = DD.getAccessLoc();
1359   AccessSpecifier Access = DD.getAccess();
1360
1361   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1362                                        TemplateArgs);
1363   if (!NamingD) return;
1364   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1365                                        TemplateArgs);
1366   if (!TargetD) return;
1367
1368   if (DD.isAccessToMember()) {
1369     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1370     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1371     QualType BaseObjectType = DD.getAccessBaseObjectType();
1372     if (!BaseObjectType.isNull()) {
1373       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1374                                  DeclarationName());
1375       if (BaseObjectType.isNull()) return;
1376     }
1377
1378     AccessTarget Entity(Context,
1379                         AccessTarget::Member,
1380                         NamingClass,
1381                         DeclAccessPair::make(TargetDecl, Access),
1382                         BaseObjectType);
1383     Entity.setDiag(DD.getDiagnostic());
1384     CheckAccess(*this, Loc, Entity);
1385   } else {
1386     AccessTarget Entity(Context,
1387                         AccessTarget::Base,
1388                         cast<CXXRecordDecl>(TargetD),
1389                         cast<CXXRecordDecl>(NamingD),
1390                         Access);
1391     Entity.setDiag(DD.getDiagnostic());
1392     CheckAccess(*this, Loc, Entity);
1393   }
1394 }
1395
1396 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1397                                                      DeclAccessPair Found) {
1398   if (!getLangOptions().AccessControl ||
1399       !E->getNamingClass() ||
1400       Found.getAccess() == AS_public)
1401     return AR_accessible;
1402
1403   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), 
1404                       Found, QualType());
1405   Entity.setDiag(diag::err_access) << E->getSourceRange();
1406
1407   return CheckAccess(*this, E->getNameLoc(), Entity);
1408 }
1409
1410 /// Perform access-control checking on a previously-unresolved member
1411 /// access which has now been resolved to a member.
1412 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1413                                                      DeclAccessPair Found) {
1414   if (!getLangOptions().AccessControl ||
1415       Found.getAccess() == AS_public)
1416     return AR_accessible;
1417
1418   QualType BaseType = E->getBaseType();
1419   if (E->isArrow())
1420     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1421
1422   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1423                       Found, BaseType);
1424   Entity.setDiag(diag::err_access) << E->getSourceRange();
1425
1426   return CheckAccess(*this, E->getMemberLoc(), Entity);
1427 }
1428
1429 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1430                                                CXXDestructorDecl *Dtor,
1431                                                const PartialDiagnostic &PDiag) {
1432   if (!getLangOptions().AccessControl)
1433     return AR_accessible;
1434
1435   // There's never a path involved when checking implicit destructor access.
1436   AccessSpecifier Access = Dtor->getAccess();
1437   if (Access == AS_public)
1438     return AR_accessible;
1439
1440   CXXRecordDecl *NamingClass = Dtor->getParent();
1441   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1442                       DeclAccessPair::make(Dtor, Access),
1443                       QualType());
1444   Entity.setDiag(PDiag); // TODO: avoid copy
1445
1446   return CheckAccess(*this, Loc, Entity);
1447 }
1448
1449 /// Checks access to a constructor.
1450 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1451                                                 CXXConstructorDecl *Constructor,
1452                                                 const InitializedEntity &Entity,
1453                                                 AccessSpecifier Access,
1454                                                 bool IsCopyBindingRefToTemp) {
1455   if (!getLangOptions().AccessControl ||
1456       Access == AS_public)
1457     return AR_accessible;
1458
1459   CXXRecordDecl *NamingClass = Constructor->getParent();
1460   AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1461                             DeclAccessPair::make(Constructor, Access),
1462                             QualType());
1463   PartialDiagnostic PD(PDiag());
1464   switch (Entity.getKind()) {
1465   default:
1466     PD = PDiag(IsCopyBindingRefToTemp
1467                  ? diag::ext_rvalue_to_reference_access_ctor
1468                  : diag::err_access_ctor);
1469
1470     break;
1471
1472   case InitializedEntity::EK_Base:
1473     PD = PDiag(diag::err_access_base_ctor);
1474     PD << Entity.isInheritedVirtualBase()
1475        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1476     break;
1477
1478   case InitializedEntity::EK_Member: {
1479     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1480     PD = PDiag(diag::err_access_field_ctor);
1481     PD << Field->getType() << getSpecialMember(Constructor);
1482     break;
1483   }
1484
1485   }
1486
1487   return CheckConstructorAccess(UseLoc, Constructor, Access, PD);
1488 }
1489
1490 /// Checks access to a constructor.
1491 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1492                                                 CXXConstructorDecl *Constructor,
1493                                                 AccessSpecifier Access,
1494                                                 PartialDiagnostic PD) {
1495   if (!getLangOptions().AccessControl ||
1496       Access == AS_public)
1497     return AR_accessible;
1498
1499   CXXRecordDecl *NamingClass = Constructor->getParent();
1500   AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1501                             DeclAccessPair::make(Constructor, Access),
1502                             QualType());
1503   AccessEntity.setDiag(PD);
1504
1505   return CheckAccess(*this, UseLoc, AccessEntity);
1506 }
1507
1508 /// Checks direct (i.e. non-inherited) access to an arbitrary class
1509 /// member.
1510 Sema::AccessResult Sema::CheckDirectMemberAccess(SourceLocation UseLoc,
1511                                                  NamedDecl *Target,
1512                                            const PartialDiagnostic &Diag) {
1513   AccessSpecifier Access = Target->getAccess();
1514   if (!getLangOptions().AccessControl ||
1515       Access == AS_public)
1516     return AR_accessible;
1517
1518   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Target->getDeclContext());
1519   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1520                       DeclAccessPair::make(Target, Access),
1521                       QualType());
1522   Entity.setDiag(Diag);
1523   return CheckAccess(*this, UseLoc, Entity);
1524 }
1525                                            
1526
1527 /// Checks access to an overloaded operator new or delete.
1528 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1529                                                SourceRange PlacementRange,
1530                                                CXXRecordDecl *NamingClass,
1531                                                DeclAccessPair Found,
1532                                                bool Diagnose) {
1533   if (!getLangOptions().AccessControl ||
1534       !NamingClass ||
1535       Found.getAccess() == AS_public)
1536     return AR_accessible;
1537
1538   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1539                       QualType());
1540   if (Diagnose)
1541     Entity.setDiag(diag::err_access)
1542       << PlacementRange;
1543
1544   return CheckAccess(*this, OpLoc, Entity);
1545 }
1546
1547 /// Checks access to an overloaded member operator, including
1548 /// conversion operators.
1549 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1550                                                    Expr *ObjectExpr,
1551                                                    Expr *ArgExpr,
1552                                                    DeclAccessPair Found) {
1553   if (!getLangOptions().AccessControl ||
1554       Found.getAccess() == AS_public)
1555     return AR_accessible;
1556
1557   const RecordType *RT = ObjectExpr->getType()->getAs<RecordType>();
1558   assert(RT && "found member operator but object expr not of record type");
1559   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1560
1561   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1562                       ObjectExpr->getType());
1563   Entity.setDiag(diag::err_access)
1564     << ObjectExpr->getSourceRange()
1565     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1566
1567   return CheckAccess(*this, OpLoc, Entity);
1568 }
1569
1570 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1571                                                     DeclAccessPair Found) {
1572   if (!getLangOptions().AccessControl ||
1573       Found.getAccess() == AS_none ||
1574       Found.getAccess() == AS_public)
1575     return AR_accessible;
1576
1577   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1578   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1579
1580   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1581                       Context.getTypeDeclType(NamingClass));
1582   Entity.setDiag(diag::err_access)
1583     << Ovl->getSourceRange();
1584
1585   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1586 }
1587
1588 /// Checks access for a hierarchy conversion.
1589 ///
1590 /// \param IsBaseToDerived whether this is a base-to-derived conversion (true)
1591 ///     or a derived-to-base conversion (false)
1592 /// \param ForceCheck true if this check should be performed even if access
1593 ///     control is disabled;  some things rely on this for semantics
1594 /// \param ForceUnprivileged true if this check should proceed as if the
1595 ///     context had no special privileges
1596 /// \param ADK controls the kind of diagnostics that are used
1597 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1598                                               QualType Base,
1599                                               QualType Derived,
1600                                               const CXXBasePath &Path,
1601                                               unsigned DiagID,
1602                                               bool ForceCheck,
1603                                               bool ForceUnprivileged) {
1604   if (!ForceCheck && !getLangOptions().AccessControl)
1605     return AR_accessible;
1606
1607   if (Path.Access == AS_public)
1608     return AR_accessible;
1609
1610   CXXRecordDecl *BaseD, *DerivedD;
1611   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1612   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1613
1614   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD, 
1615                       Path.Access);
1616   if (DiagID)
1617     Entity.setDiag(DiagID) << Derived << Base;
1618
1619   if (ForceUnprivileged) {
1620     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1621                                  AccessLoc, Entity)) {
1622     case ::AR_accessible: return Sema::AR_accessible;
1623     case ::AR_inaccessible: return Sema::AR_inaccessible;
1624     case ::AR_dependent: return Sema::AR_dependent;
1625     }
1626     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1627   }
1628   return CheckAccess(*this, AccessLoc, Entity);
1629 }
1630
1631 /// Checks access to all the declarations in the given result set.
1632 void Sema::CheckLookupAccess(const LookupResult &R) {
1633   assert(getLangOptions().AccessControl
1634          && "performing access check without access control");
1635   assert(R.getNamingClass() && "performing access check without naming class");
1636
1637   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1638     if (I.getAccess() != AS_public) {
1639       AccessTarget Entity(Context, AccessedEntity::Member,
1640                           R.getNamingClass(), I.getPair(),
1641                           R.getBaseObjectType(), R.isUsingDeclaration());
1642       Entity.setDiag(diag::err_access);
1643       CheckAccess(*this, R.getNameLoc(), Entity);
1644     }
1645   }
1646 }
1647
1648 void Sema::ActOnStartSuppressingAccessChecks() {
1649   assert(!SuppressAccessChecking &&
1650          "Tried to start access check suppression when already started.");
1651   SuppressAccessChecking = true;
1652 }
1653
1654 void Sema::ActOnStopSuppressingAccessChecks() {
1655   assert(SuppressAccessChecking &&
1656          "Tried to stop access check suprression when already stopped.");
1657   SuppressAccessChecking = false;
1658 }