]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
MFC r234353:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Sema / SemaCXXScopeSpec.cpp
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/Template.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/NestedNameSpecifier.h"
21 #include "clang/Basic/PartialDiagnostic.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "TypeLocBuilder.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T, 
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return 0;
33
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!T->isDependentType())
38       return Record;
39
40     // This may be a member of a class template or class template partial
41     // specialization. If it's part of the current semantic context, then it's
42     // an injected-class-name;
43     for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
44       if (CurContext->Equals(Record))
45         return Record;
46     
47     return 0;
48   } else if (isa<InjectedClassNameType>(Ty))
49     return cast<InjectedClassNameType>(Ty)->getDecl();
50   else
51     return 0;
52 }
53
54 /// \brief Compute the DeclContext that is associated with the given type.
55 ///
56 /// \param T the type for which we are attempting to find a DeclContext.
57 ///
58 /// \returns the declaration context represented by the type T,
59 /// or NULL if the declaration context cannot be computed (e.g., because it is
60 /// dependent and not the current instantiation).
61 DeclContext *Sema::computeDeclContext(QualType T) {
62   if (!T->isDependentType())
63     if (const TagType *Tag = T->getAs<TagType>())
64       return Tag->getDecl();
65
66   return ::getCurrentInstantiationOf(T, CurContext);
67 }
68
69 /// \brief Compute the DeclContext that is associated with the given
70 /// scope specifier.
71 ///
72 /// \param SS the C++ scope specifier as it appears in the source
73 ///
74 /// \param EnteringContext when true, we will be entering the context of
75 /// this scope specifier, so we can retrieve the declaration context of a
76 /// class template or class template partial specialization even if it is
77 /// not the current instantiation.
78 ///
79 /// \returns the declaration context represented by the scope specifier @p SS,
80 /// or NULL if the declaration context cannot be computed (e.g., because it is
81 /// dependent and not the current instantiation).
82 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
83                                       bool EnteringContext) {
84   if (!SS.isSet() || SS.isInvalid())
85     return 0;
86
87   NestedNameSpecifier *NNS
88     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
89   if (NNS->isDependent()) {
90     // If this nested-name-specifier refers to the current
91     // instantiation, return its DeclContext.
92     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
93       return Record;
94
95     if (EnteringContext) {
96       const Type *NNSType = NNS->getAsType();
97       if (!NNSType) {
98         return 0;
99       }
100
101       // Look through type alias templates, per C++0x [temp.dep.type]p1.
102       NNSType = Context.getCanonicalType(NNSType);
103       if (const TemplateSpecializationType *SpecType
104             = NNSType->getAs<TemplateSpecializationType>()) {
105         // We are entering the context of the nested name specifier, so try to
106         // match the nested name specifier to either a primary class template
107         // or a class template partial specialization.
108         if (ClassTemplateDecl *ClassTemplate
109               = dyn_cast_or_null<ClassTemplateDecl>(
110                             SpecType->getTemplateName().getAsTemplateDecl())) {
111           QualType ContextType
112             = Context.getCanonicalType(QualType(SpecType, 0));
113
114           // If the type of the nested name specifier is the same as the
115           // injected class name of the named class template, we're entering
116           // into that class template definition.
117           QualType Injected
118             = ClassTemplate->getInjectedClassNameSpecialization();
119           if (Context.hasSameType(Injected, ContextType))
120             return ClassTemplate->getTemplatedDecl();
121
122           // If the type of the nested name specifier is the same as the
123           // type of one of the class template's class template partial
124           // specializations, we're entering into the definition of that
125           // class template partial specialization.
126           if (ClassTemplatePartialSpecializationDecl *PartialSpec
127                 = ClassTemplate->findPartialSpecialization(ContextType))
128             return PartialSpec;
129         }
130       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
131         // The nested name specifier refers to a member of a class template.
132         return RecordT->getDecl();
133       }
134     }
135
136     return 0;
137   }
138
139   switch (NNS->getKind()) {
140   case NestedNameSpecifier::Identifier:
141     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
142
143   case NestedNameSpecifier::Namespace:
144     return NNS->getAsNamespace();
145
146   case NestedNameSpecifier::NamespaceAlias:
147     return NNS->getAsNamespaceAlias()->getNamespace();
148
149   case NestedNameSpecifier::TypeSpec:
150   case NestedNameSpecifier::TypeSpecWithTemplate: {
151     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152     assert(Tag && "Non-tag type in nested-name-specifier");
153     return Tag->getDecl();
154   }
155
156   case NestedNameSpecifier::Global:
157     return Context.getTranslationUnitDecl();
158   }
159
160   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
161 }
162
163 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
164   if (!SS.isSet() || SS.isInvalid())
165     return false;
166
167   NestedNameSpecifier *NNS
168     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
169   return NNS->isDependent();
170 }
171
172 // \brief Determine whether this C++ scope specifier refers to an
173 // unknown specialization, i.e., a dependent type that is not the
174 // current instantiation.
175 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
176   if (!isDependentScopeSpecifier(SS))
177     return false;
178
179   NestedNameSpecifier *NNS
180     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
181   return getCurrentInstantiationOf(NNS) == 0;
182 }
183
184 /// \brief If the given nested name specifier refers to the current
185 /// instantiation, return the declaration that corresponds to that
186 /// current instantiation (C++0x [temp.dep.type]p1).
187 ///
188 /// \param NNS a dependent nested name specifier.
189 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
190   assert(getLangOpts().CPlusPlus && "Only callable in C++");
191   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
192
193   if (!NNS->getAsType())
194     return 0;
195
196   QualType T = QualType(NNS->getAsType(), 0);
197   return ::getCurrentInstantiationOf(T, CurContext);
198 }
199
200 /// \brief Require that the context specified by SS be complete.
201 ///
202 /// If SS refers to a type, this routine checks whether the type is
203 /// complete enough (or can be made complete enough) for name lookup
204 /// into the DeclContext. A type that is not yet completed can be
205 /// considered "complete enough" if it is a class/struct/union/enum
206 /// that is currently being defined. Or, if we have a type that names
207 /// a class template specialization that is not a complete type, we
208 /// will attempt to instantiate that class template.
209 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
210                                       DeclContext *DC) {
211   assert(DC != 0 && "given null context");
212
213   TagDecl *tag = dyn_cast<TagDecl>(DC);
214
215   // If this is a dependent type, then we consider it complete.
216   if (!tag || tag->isDependentContext())
217     return false;
218
219   // If we're currently defining this type, then lookup into the
220   // type is okay: don't complain that it isn't complete yet.
221   QualType type = Context.getTypeDeclType(tag);
222   const TagType *tagType = type->getAs<TagType>();
223   if (tagType && tagType->isBeingDefined())
224     return false;
225
226   SourceLocation loc = SS.getLastQualifierNameLoc();
227   if (loc.isInvalid()) loc = SS.getRange().getBegin();
228
229   // The type must be complete.
230   if (RequireCompleteType(loc, type,
231                           PDiag(diag::err_incomplete_nested_name_spec)
232                             << SS.getRange())) {
233     SS.SetInvalid(SS.getRange());
234     return true;
235   }
236
237   // Fixed enum types are complete, but they aren't valid as scopes
238   // until we see a definition, so awkwardly pull out this special
239   // case.
240   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
241   if (!enumType || enumType->getDecl()->isCompleteDefinition())
242     return false;
243
244   // Try to instantiate the definition, if this is a specialization of an
245   // enumeration temploid.
246   EnumDecl *ED = enumType->getDecl();
247   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
248     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
249     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
250       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
251                           TSK_ImplicitInstantiation)) {
252         SS.SetInvalid(SS.getRange());
253         return true;
254       }
255       return false;
256     }
257   }
258
259   Diag(loc, diag::err_incomplete_nested_name_spec)
260     << type << SS.getRange();
261   SS.SetInvalid(SS.getRange());
262   return true;
263 }
264
265 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
266                                         CXXScopeSpec &SS) {
267   SS.MakeGlobal(Context, CCLoc);
268   return false;
269 }
270
271 /// \brief Determines whether the given declaration is an valid acceptable
272 /// result for name lookup of a nested-name-specifier.
273 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
274   if (!SD)
275     return false;
276
277   // Namespace and namespace aliases are fine.
278   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
279     return true;
280
281   if (!isa<TypeDecl>(SD))
282     return false;
283
284   // Determine whether we have a class (or, in C++11, an enum) or
285   // a typedef thereof. If so, build the nested-name-specifier.
286   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
287   if (T->isDependentType())
288     return true;
289   else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
290     if (TD->getUnderlyingType()->isRecordType() ||
291         (Context.getLangOpts().CPlusPlus0x &&
292          TD->getUnderlyingType()->isEnumeralType()))
293       return true;
294   } else if (isa<RecordDecl>(SD) ||
295              (Context.getLangOpts().CPlusPlus0x && isa<EnumDecl>(SD)))
296     return true;
297
298   return false;
299 }
300
301 /// \brief If the given nested-name-specifier begins with a bare identifier
302 /// (e.g., Base::), perform name lookup for that identifier as a
303 /// nested-name-specifier within the given scope, and return the result of that
304 /// name lookup.
305 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
306   if (!S || !NNS)
307     return 0;
308
309   while (NNS->getPrefix())
310     NNS = NNS->getPrefix();
311
312   if (NNS->getKind() != NestedNameSpecifier::Identifier)
313     return 0;
314
315   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
316                      LookupNestedNameSpecifierName);
317   LookupName(Found, S);
318   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
319
320   if (!Found.isSingleResult())
321     return 0;
322
323   NamedDecl *Result = Found.getFoundDecl();
324   if (isAcceptableNestedNameSpecifier(Result))
325     return Result;
326
327   return 0;
328 }
329
330 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
331                                         SourceLocation IdLoc,
332                                         IdentifierInfo &II,
333                                         ParsedType ObjectTypePtr) {
334   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
335   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
336   
337   // Determine where to perform name lookup
338   DeclContext *LookupCtx = 0;
339   bool isDependent = false;
340   if (!ObjectType.isNull()) {
341     // This nested-name-specifier occurs in a member access expression, e.g.,
342     // x->B::f, and we are looking into the type of the object.
343     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
344     LookupCtx = computeDeclContext(ObjectType);
345     isDependent = ObjectType->isDependentType();
346   } else if (SS.isSet()) {
347     // This nested-name-specifier occurs after another nested-name-specifier,
348     // so long into the context associated with the prior nested-name-specifier.
349     LookupCtx = computeDeclContext(SS, false);
350     isDependent = isDependentScopeSpecifier(SS);
351     Found.setContextRange(SS.getRange());
352   }
353   
354   if (LookupCtx) {
355     // Perform "qualified" name lookup into the declaration context we
356     // computed, which is either the type of the base of a member access
357     // expression or the declaration context associated with a prior
358     // nested-name-specifier.
359     
360     // The declaration context must be complete.
361     if (!LookupCtx->isDependentContext() &&
362         RequireCompleteDeclContext(SS, LookupCtx))
363       return false;
364     
365     LookupQualifiedName(Found, LookupCtx);
366   } else if (isDependent) {
367     return false;
368   } else {
369     LookupName(Found, S);
370   }
371   Found.suppressDiagnostics();
372   
373   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
374     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
375   
376   return false;
377 }
378
379 namespace {
380
381 // Callback to only accept typo corrections that can be a valid C++ member
382 // intializer: either a non-static field member or a base class.
383 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
384  public:
385   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
386       : SRef(SRef) {}
387
388   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
389     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
390   }
391
392  private:
393   Sema &SRef;
394 };
395
396 }
397
398 /// \brief Build a new nested-name-specifier for "identifier::", as described
399 /// by ActOnCXXNestedNameSpecifier.
400 ///
401 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
402 /// that it contains an extra parameter \p ScopeLookupResult, which provides
403 /// the result of name lookup within the scope of the nested-name-specifier
404 /// that was computed at template definition time.
405 ///
406 /// If ErrorRecoveryLookup is true, then this call is used to improve error
407 /// recovery.  This means that it should not emit diagnostics, it should
408 /// just return true on failure.  It also means it should only return a valid
409 /// scope if it *knows* that the result is correct.  It should not return in a
410 /// dependent context, for example. Nor will it extend \p SS with the scope
411 /// specifier.
412 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
413                                        IdentifierInfo &Identifier,
414                                        SourceLocation IdentifierLoc,
415                                        SourceLocation CCLoc,
416                                        QualType ObjectType,
417                                        bool EnteringContext,
418                                        CXXScopeSpec &SS,
419                                        NamedDecl *ScopeLookupResult,
420                                        bool ErrorRecoveryLookup) {
421   LookupResult Found(*this, &Identifier, IdentifierLoc, 
422                      LookupNestedNameSpecifierName);
423
424   // Determine where to perform name lookup
425   DeclContext *LookupCtx = 0;
426   bool isDependent = false;
427   if (!ObjectType.isNull()) {
428     // This nested-name-specifier occurs in a member access expression, e.g.,
429     // x->B::f, and we are looking into the type of the object.
430     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
431     LookupCtx = computeDeclContext(ObjectType);
432     isDependent = ObjectType->isDependentType();
433   } else if (SS.isSet()) {
434     // This nested-name-specifier occurs after another nested-name-specifier,
435     // so look into the context associated with the prior nested-name-specifier.
436     LookupCtx = computeDeclContext(SS, EnteringContext);
437     isDependent = isDependentScopeSpecifier(SS);
438     Found.setContextRange(SS.getRange());
439   }
440
441
442   bool ObjectTypeSearchedInScope = false;
443   if (LookupCtx) {
444     // Perform "qualified" name lookup into the declaration context we
445     // computed, which is either the type of the base of a member access
446     // expression or the declaration context associated with a prior
447     // nested-name-specifier.
448
449     // The declaration context must be complete.
450     if (!LookupCtx->isDependentContext() &&
451         RequireCompleteDeclContext(SS, LookupCtx))
452       return true;
453
454     LookupQualifiedName(Found, LookupCtx);
455
456     if (!ObjectType.isNull() && Found.empty()) {
457       // C++ [basic.lookup.classref]p4:
458       //   If the id-expression in a class member access is a qualified-id of
459       //   the form
460       //
461       //        class-name-or-namespace-name::...
462       //
463       //   the class-name-or-namespace-name following the . or -> operator is
464       //   looked up both in the context of the entire postfix-expression and in
465       //   the scope of the class of the object expression. If the name is found
466       //   only in the scope of the class of the object expression, the name
467       //   shall refer to a class-name. If the name is found only in the
468       //   context of the entire postfix-expression, the name shall refer to a
469       //   class-name or namespace-name. [...]
470       //
471       // Qualified name lookup into a class will not find a namespace-name,
472       // so we do not need to diagnose that case specifically. However,
473       // this qualified name lookup may find nothing. In that case, perform
474       // unqualified name lookup in the given scope (if available) or
475       // reconstruct the result from when name lookup was performed at template
476       // definition time.
477       if (S)
478         LookupName(Found, S);
479       else if (ScopeLookupResult)
480         Found.addDecl(ScopeLookupResult);
481
482       ObjectTypeSearchedInScope = true;
483     }
484   } else if (!isDependent) {
485     // Perform unqualified name lookup in the current scope.
486     LookupName(Found, S);
487   }
488
489   // If we performed lookup into a dependent context and did not find anything,
490   // that's fine: just build a dependent nested-name-specifier.
491   if (Found.empty() && isDependent &&
492       !(LookupCtx && LookupCtx->isRecord() &&
493         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
494          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
495     // Don't speculate if we're just trying to improve error recovery.
496     if (ErrorRecoveryLookup)
497       return true;
498     
499     // We were not able to compute the declaration context for a dependent
500     // base object type or prior nested-name-specifier, so this
501     // nested-name-specifier refers to an unknown specialization. Just build
502     // a dependent nested-name-specifier.
503     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
504     return false;
505   } 
506   
507   // FIXME: Deal with ambiguities cleanly.
508
509   if (Found.empty() && !ErrorRecoveryLookup) {
510     // We haven't found anything, and we're not recovering from a
511     // different kind of error, so look for typos.
512     DeclarationName Name = Found.getLookupName();
513     NestedNameSpecifierValidatorCCC Validator(*this);
514     TypoCorrection Corrected;
515     Found.clear();
516     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
517                                  Found.getLookupKind(), S, &SS, Validator,
518                                  LookupCtx, EnteringContext))) {
519       std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
520       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
521       if (LookupCtx)
522         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
523           << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
524           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
525       else
526         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
527           << Name << CorrectedQuotedStr
528           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
529       
530       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
531         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
532         Found.addDecl(ND);
533       }
534       Found.setLookupName(Corrected.getCorrection());
535     } else {
536       Found.setLookupName(&Identifier);
537     }
538   }
539
540   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
541   if (isAcceptableNestedNameSpecifier(SD)) {
542     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
543       // C++ [basic.lookup.classref]p4:
544       //   [...] If the name is found in both contexts, the
545       //   class-name-or-namespace-name shall refer to the same entity.
546       //
547       // We already found the name in the scope of the object. Now, look
548       // into the current scope (the scope of the postfix-expression) to
549       // see if we can find the same name there. As above, if there is no
550       // scope, reconstruct the result from the template instantiation itself.
551       NamedDecl *OuterDecl;
552       if (S) {
553         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 
554                                 LookupNestedNameSpecifierName);
555         LookupName(FoundOuter, S);
556         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
557       } else
558         OuterDecl = ScopeLookupResult;
559
560       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
561           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
562           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
563            !Context.hasSameType(
564                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
565                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
566          if (ErrorRecoveryLookup)
567            return true;
568
569          Diag(IdentifierLoc, 
570               diag::err_nested_name_member_ref_lookup_ambiguous)
571            << &Identifier;
572          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
573            << ObjectType;
574          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
575
576          // Fall through so that we'll pick the name we found in the object
577          // type, since that's probably what the user wanted anyway.
578        }
579     }
580
581     // If we're just performing this lookup for error-recovery purposes, 
582     // don't extend the nested-name-specifier. Just return now.
583     if (ErrorRecoveryLookup)
584       return false;
585     
586     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
587       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
588       return false;
589     }
590
591     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
592       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
593       return false;
594     }
595
596     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
597     TypeLocBuilder TLB;
598     if (isa<InjectedClassNameType>(T)) {
599       InjectedClassNameTypeLoc InjectedTL
600         = TLB.push<InjectedClassNameTypeLoc>(T);
601       InjectedTL.setNameLoc(IdentifierLoc);
602     } else if (isa<RecordType>(T)) {
603       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
604       RecordTL.setNameLoc(IdentifierLoc);
605     } else if (isa<TypedefType>(T)) {
606       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
607       TypedefTL.setNameLoc(IdentifierLoc);
608     } else if (isa<EnumType>(T)) {
609       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
610       EnumTL.setNameLoc(IdentifierLoc);
611     } else if (isa<TemplateTypeParmType>(T)) {
612       TemplateTypeParmTypeLoc TemplateTypeTL
613         = TLB.push<TemplateTypeParmTypeLoc>(T);
614       TemplateTypeTL.setNameLoc(IdentifierLoc);
615     } else if (isa<UnresolvedUsingType>(T)) {
616       UnresolvedUsingTypeLoc UnresolvedTL
617         = TLB.push<UnresolvedUsingTypeLoc>(T);
618       UnresolvedTL.setNameLoc(IdentifierLoc);
619     } else if (isa<SubstTemplateTypeParmType>(T)) {
620       SubstTemplateTypeParmTypeLoc TL 
621         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
622       TL.setNameLoc(IdentifierLoc);
623     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
624       SubstTemplateTypeParmPackTypeLoc TL
625         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
626       TL.setNameLoc(IdentifierLoc);
627     } else {
628       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
629     }
630
631     if (T->isEnumeralType())
632       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
633
634     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
635               CCLoc);
636     return false;
637   }
638
639   // Otherwise, we have an error case.  If we don't want diagnostics, just
640   // return an error now.
641   if (ErrorRecoveryLookup)
642     return true;
643
644   // If we didn't find anything during our lookup, try again with
645   // ordinary name lookup, which can help us produce better error
646   // messages.
647   if (Found.empty()) {
648     Found.clear(LookupOrdinaryName);
649     LookupName(Found, S);
650   }
651
652   // In Microsoft mode, if we are within a templated function and we can't
653   // resolve Identifier, then extend the SS with Identifier. This will have 
654   // the effect of resolving Identifier during template instantiation. 
655   // The goal is to be able to resolve a function call whose
656   // nested-name-specifier is located inside a dependent base class.
657   // Example: 
658   //
659   // class C {
660   // public:
661   //    static void foo2() {  }
662   // };
663   // template <class T> class A { public: typedef C D; };
664   //
665   // template <class T> class B : public A<T> {
666   // public:
667   //   void foo() { D::foo2(); }
668   // };
669   if (getLangOpts().MicrosoftExt) {
670     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
671     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
672       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
673       return false;
674     }
675   }
676
677   unsigned DiagID;
678   if (!Found.empty())
679     DiagID = diag::err_expected_class_or_namespace;
680   else if (SS.isSet()) {
681     Diag(IdentifierLoc, diag::err_no_member) 
682       << &Identifier << LookupCtx << SS.getRange();
683     return true;
684   } else
685     DiagID = diag::err_undeclared_var_use;
686
687   if (SS.isSet())
688     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
689   else
690     Diag(IdentifierLoc, DiagID) << &Identifier;
691
692   return true;
693 }
694
695 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
696                                        IdentifierInfo &Identifier,
697                                        SourceLocation IdentifierLoc,
698                                        SourceLocation CCLoc,
699                                        ParsedType ObjectType,
700                                        bool EnteringContext,
701                                        CXXScopeSpec &SS) {
702   if (SS.isInvalid())
703     return true;
704   
705   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
706                                      GetTypeFromParser(ObjectType),
707                                      EnteringContext, SS, 
708                                      /*ScopeLookupResult=*/0, false);
709 }
710
711 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
712                                                const DeclSpec &DS,
713                                                SourceLocation ColonColonLoc) {
714   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
715     return true;
716
717   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
718
719   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
720   if (!T->isDependentType() && !T->getAs<TagType>()) {
721     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class) 
722       << T << getLangOpts().CPlusPlus;
723     return true;
724   }
725
726   TypeLocBuilder TLB;
727   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
728   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
729   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
730             ColonColonLoc);
731   return false;
732 }
733
734 /// IsInvalidUnlessNestedName - This method is used for error recovery
735 /// purposes to determine whether the specified identifier is only valid as
736 /// a nested name specifier, for example a namespace name.  It is
737 /// conservatively correct to always return false from this method.
738 ///
739 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
740 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
741                                      IdentifierInfo &Identifier, 
742                                      SourceLocation IdentifierLoc,
743                                      SourceLocation ColonLoc,
744                                      ParsedType ObjectType,
745                                      bool EnteringContext) {
746   if (SS.isInvalid())
747     return false;
748   
749   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
750                                       GetTypeFromParser(ObjectType),
751                                       EnteringContext, SS, 
752                                       /*ScopeLookupResult=*/0, true);
753 }
754
755 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
756                                        CXXScopeSpec &SS,
757                                        SourceLocation TemplateKWLoc,
758                                        TemplateTy Template,
759                                        SourceLocation TemplateNameLoc,
760                                        SourceLocation LAngleLoc,
761                                        ASTTemplateArgsPtr TemplateArgsIn,
762                                        SourceLocation RAngleLoc,
763                                        SourceLocation CCLoc,
764                                        bool EnteringContext) {
765   if (SS.isInvalid())
766     return true;
767   
768   // Translate the parser's template argument list in our AST format.
769   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
770   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
771
772   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
773     // Handle a dependent template specialization for which we cannot resolve
774     // the template name.
775     assert(DTN->getQualifier()
776              == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
777     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
778                                                           DTN->getQualifier(),
779                                                           DTN->getIdentifier(),
780                                                                 TemplateArgs);
781     
782     // Create source-location information for this type.
783     TypeLocBuilder Builder;
784     DependentTemplateSpecializationTypeLoc SpecTL
785       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
786     SpecTL.setElaboratedKeywordLoc(SourceLocation());
787     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
788     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
789     SpecTL.setTemplateNameLoc(TemplateNameLoc);
790     SpecTL.setLAngleLoc(LAngleLoc);
791     SpecTL.setRAngleLoc(RAngleLoc);
792     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
793       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
794     
795     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
796               CCLoc);
797     return false;
798   }
799   
800   
801   if (Template.get().getAsOverloadedTemplate() ||
802       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
803     SourceRange R(TemplateNameLoc, RAngleLoc);
804     if (SS.getRange().isValid())
805       R.setBegin(SS.getRange().getBegin());
806       
807     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
808       << Template.get() << R;
809     NoteAllFoundTemplates(Template.get());
810     return true;
811   }
812                                 
813   // We were able to resolve the template name to an actual template. 
814   // Build an appropriate nested-name-specifier.
815   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 
816                                    TemplateArgs);
817   if (T.isNull())
818     return true;
819
820   // Alias template specializations can produce types which are not valid
821   // nested name specifiers.
822   if (!T->isDependentType() && !T->getAs<TagType>()) {
823     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
824     NoteAllFoundTemplates(Template.get());
825     return true;
826   }
827
828   // Provide source-location information for the template specialization type.
829   TypeLocBuilder Builder;
830   TemplateSpecializationTypeLoc SpecTL
831     = Builder.push<TemplateSpecializationTypeLoc>(T);
832   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
833   SpecTL.setTemplateNameLoc(TemplateNameLoc);
834   SpecTL.setLAngleLoc(LAngleLoc);
835   SpecTL.setRAngleLoc(RAngleLoc);
836   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
837     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
838
839
840   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
841             CCLoc);
842   return false;
843 }
844
845 namespace {
846   /// \brief A structure that stores a nested-name-specifier annotation,
847   /// including both the nested-name-specifier 
848   struct NestedNameSpecifierAnnotation {
849     NestedNameSpecifier *NNS;
850   };
851 }
852
853 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
854   if (SS.isEmpty() || SS.isInvalid())
855     return 0;
856   
857   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
858                                                         SS.location_size()),
859                                llvm::alignOf<NestedNameSpecifierAnnotation>());
860   NestedNameSpecifierAnnotation *Annotation
861     = new (Mem) NestedNameSpecifierAnnotation;
862   Annotation->NNS = SS.getScopeRep();
863   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
864   return Annotation;
865 }
866
867 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 
868                                                 SourceRange AnnotationRange,
869                                                 CXXScopeSpec &SS) {
870   if (!AnnotationPtr) {
871     SS.SetInvalid(AnnotationRange);
872     return;
873   }
874   
875   NestedNameSpecifierAnnotation *Annotation
876     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
877   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
878 }
879
880 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
881   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
882
883   NestedNameSpecifier *Qualifier =
884     static_cast<NestedNameSpecifier*>(SS.getScopeRep());
885
886   // There are only two places a well-formed program may qualify a
887   // declarator: first, when defining a namespace or class member
888   // out-of-line, and second, when naming an explicitly-qualified
889   // friend function.  The latter case is governed by
890   // C++03 [basic.lookup.unqual]p10:
891   //   In a friend declaration naming a member function, a name used
892   //   in the function declarator and not part of a template-argument
893   //   in a template-id is first looked up in the scope of the member
894   //   function's class. If it is not found, or if the name is part of
895   //   a template-argument in a template-id, the look up is as
896   //   described for unqualified names in the definition of the class
897   //   granting friendship.
898   // i.e. we don't push a scope unless it's a class member.
899
900   switch (Qualifier->getKind()) {
901   case NestedNameSpecifier::Global:
902   case NestedNameSpecifier::Namespace:
903   case NestedNameSpecifier::NamespaceAlias:
904     // These are always namespace scopes.  We never want to enter a
905     // namespace scope from anything but a file context.
906     return CurContext->getRedeclContext()->isFileContext();
907
908   case NestedNameSpecifier::Identifier:
909   case NestedNameSpecifier::TypeSpec:
910   case NestedNameSpecifier::TypeSpecWithTemplate:
911     // These are never namespace scopes.
912     return true;
913   }
914
915   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
916 }
917
918 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
919 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
920 /// After this method is called, according to [C++ 3.4.3p3], names should be
921 /// looked up in the declarator-id's scope, until the declarator is parsed and
922 /// ActOnCXXExitDeclaratorScope is called.
923 /// The 'SS' should be a non-empty valid CXXScopeSpec.
924 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
925   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
926
927   if (SS.isInvalid()) return true;
928
929   DeclContext *DC = computeDeclContext(SS, true);
930   if (!DC) return true;
931
932   // Before we enter a declarator's context, we need to make sure that
933   // it is a complete declaration context.
934   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
935     return true;
936     
937   EnterDeclaratorContext(S, DC);
938
939   // Rebuild the nested name specifier for the new scope.
940   if (DC->isDependentContext())
941     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
942
943   return false;
944 }
945
946 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
947 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
948 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
949 /// Used to indicate that names should revert to being looked up in the
950 /// defining scope.
951 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
952   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
953   if (SS.isInvalid())
954     return;
955   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
956          "exiting declarator scope we never really entered");
957   ExitDeclaratorContext(S);
958 }