]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Sema / SemaCXXScopeSpec.cpp
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "TypeLocBuilder.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace clang;
26
27 /// \brief Find the current instantiation that associated with the given type.
28 static CXXRecordDecl *getCurrentInstantiationOf(QualType T, 
29                                                 DeclContext *CurContext) {
30   if (T.isNull())
31     return 0;
32
33   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
34   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
35     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
36     if (!T->isDependentType())
37       return Record;
38
39     // This may be a member of a class template or class template partial
40     // specialization. If it's part of the current semantic context, then it's
41     // an injected-class-name;
42     for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
43       if (CurContext->Equals(Record))
44         return Record;
45     
46     return 0;
47   } else if (isa<InjectedClassNameType>(Ty))
48     return cast<InjectedClassNameType>(Ty)->getDecl();
49   else
50     return 0;
51 }
52
53 /// \brief Compute the DeclContext that is associated with the given type.
54 ///
55 /// \param T the type for which we are attempting to find a DeclContext.
56 ///
57 /// \returns the declaration context represented by the type T,
58 /// or NULL if the declaration context cannot be computed (e.g., because it is
59 /// dependent and not the current instantiation).
60 DeclContext *Sema::computeDeclContext(QualType T) {
61   if (!T->isDependentType())
62     if (const TagType *Tag = T->getAs<TagType>())
63       return Tag->getDecl();
64
65   return ::getCurrentInstantiationOf(T, CurContext);
66 }
67
68 /// \brief Compute the DeclContext that is associated with the given
69 /// scope specifier.
70 ///
71 /// \param SS the C++ scope specifier as it appears in the source
72 ///
73 /// \param EnteringContext when true, we will be entering the context of
74 /// this scope specifier, so we can retrieve the declaration context of a
75 /// class template or class template partial specialization even if it is
76 /// not the current instantiation.
77 ///
78 /// \returns the declaration context represented by the scope specifier @p SS,
79 /// or NULL if the declaration context cannot be computed (e.g., because it is
80 /// dependent and not the current instantiation).
81 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
82                                       bool EnteringContext) {
83   if (!SS.isSet() || SS.isInvalid())
84     return 0;
85
86   NestedNameSpecifier *NNS
87     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
88   if (NNS->isDependent()) {
89     // If this nested-name-specifier refers to the current
90     // instantiation, return its DeclContext.
91     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
92       return Record;
93
94     if (EnteringContext) {
95       const Type *NNSType = NNS->getAsType();
96       if (!NNSType) {
97         return 0;
98       }
99
100       // Look through type alias templates, per C++0x [temp.dep.type]p1.
101       NNSType = Context.getCanonicalType(NNSType);
102       if (const TemplateSpecializationType *SpecType
103             = NNSType->getAs<TemplateSpecializationType>()) {
104         // We are entering the context of the nested name specifier, so try to
105         // match the nested name specifier to either a primary class template
106         // or a class template partial specialization.
107         if (ClassTemplateDecl *ClassTemplate
108               = dyn_cast_or_null<ClassTemplateDecl>(
109                             SpecType->getTemplateName().getAsTemplateDecl())) {
110           QualType ContextType
111             = Context.getCanonicalType(QualType(SpecType, 0));
112
113           // If the type of the nested name specifier is the same as the
114           // injected class name of the named class template, we're entering
115           // into that class template definition.
116           QualType Injected
117             = ClassTemplate->getInjectedClassNameSpecialization();
118           if (Context.hasSameType(Injected, ContextType))
119             return ClassTemplate->getTemplatedDecl();
120
121           // If the type of the nested name specifier is the same as the
122           // type of one of the class template's class template partial
123           // specializations, we're entering into the definition of that
124           // class template partial specialization.
125           if (ClassTemplatePartialSpecializationDecl *PartialSpec
126                 = ClassTemplate->findPartialSpecialization(ContextType))
127             return PartialSpec;
128         }
129       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
130         // The nested name specifier refers to a member of a class template.
131         return RecordT->getDecl();
132       }
133     }
134
135     return 0;
136   }
137
138   switch (NNS->getKind()) {
139   case NestedNameSpecifier::Identifier:
140     assert(false && "Dependent nested-name-specifier has no DeclContext");
141     break;
142
143   case NestedNameSpecifier::Namespace:
144     return NNS->getAsNamespace();
145
146   case NestedNameSpecifier::NamespaceAlias:
147     return NNS->getAsNamespaceAlias()->getNamespace();
148
149   case NestedNameSpecifier::TypeSpec:
150   case NestedNameSpecifier::TypeSpecWithTemplate: {
151     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152     assert(Tag && "Non-tag type in nested-name-specifier");
153     return Tag->getDecl();
154   } break;
155
156   case NestedNameSpecifier::Global:
157     return Context.getTranslationUnitDecl();
158   }
159
160   // Required to silence a GCC warning.
161   return 0;
162 }
163
164 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
165   if (!SS.isSet() || SS.isInvalid())
166     return false;
167
168   NestedNameSpecifier *NNS
169     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
170   return NNS->isDependent();
171 }
172
173 // \brief Determine whether this C++ scope specifier refers to an
174 // unknown specialization, i.e., a dependent type that is not the
175 // current instantiation.
176 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
177   if (!isDependentScopeSpecifier(SS))
178     return false;
179
180   NestedNameSpecifier *NNS
181     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182   return getCurrentInstantiationOf(NNS) == 0;
183 }
184
185 /// \brief If the given nested name specifier refers to the current
186 /// instantiation, return the declaration that corresponds to that
187 /// current instantiation (C++0x [temp.dep.type]p1).
188 ///
189 /// \param NNS a dependent nested name specifier.
190 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
191   assert(getLangOptions().CPlusPlus && "Only callable in C++");
192   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
193
194   if (!NNS->getAsType())
195     return 0;
196
197   QualType T = QualType(NNS->getAsType(), 0);
198   return ::getCurrentInstantiationOf(T, CurContext);
199 }
200
201 /// \brief Require that the context specified by SS be complete.
202 ///
203 /// If SS refers to a type, this routine checks whether the type is
204 /// complete enough (or can be made complete enough) for name lookup
205 /// into the DeclContext. A type that is not yet completed can be
206 /// considered "complete enough" if it is a class/struct/union/enum
207 /// that is currently being defined. Or, if we have a type that names
208 /// a class template specialization that is not a complete type, we
209 /// will attempt to instantiate that class template.
210 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
211                                       DeclContext *DC) {
212   assert(DC != 0 && "given null context");
213
214   if (TagDecl *tag = dyn_cast<TagDecl>(DC)) {
215     // If this is a dependent type, then we consider it complete.
216     if (tag->isDependentContext())
217       return false;
218
219     // If we're currently defining this type, then lookup into the
220     // type is okay: don't complain that it isn't complete yet.
221     QualType type = Context.getTypeDeclType(tag);
222     const TagType *tagType = type->getAs<TagType>();
223     if (tagType && tagType->isBeingDefined())
224       return false;
225
226     SourceLocation loc = SS.getLastQualifierNameLoc();
227     if (loc.isInvalid()) loc = SS.getRange().getBegin();
228
229     // The type must be complete.
230     if (RequireCompleteType(loc, type,
231                             PDiag(diag::err_incomplete_nested_name_spec)
232                               << SS.getRange())) {
233       SS.SetInvalid(SS.getRange());
234       return true;
235     }
236
237     // Fixed enum types are complete, but they aren't valid as scopes
238     // until we see a definition, so awkwardly pull out this special
239     // case.
240     if (const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType)) {
241       if (!enumType->getDecl()->isDefinition()) {
242         Diag(loc, diag::err_incomplete_nested_name_spec)
243           << type << SS.getRange();
244         SS.SetInvalid(SS.getRange());
245         return true;
246       }
247     }
248   }
249
250   return false;
251 }
252
253 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
254                                         CXXScopeSpec &SS) {
255   SS.MakeGlobal(Context, CCLoc);
256   return false;
257 }
258
259 /// \brief Determines whether the given declaration is an valid acceptable
260 /// result for name lookup of a nested-name-specifier.
261 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
262   if (!SD)
263     return false;
264
265   // Namespace and namespace aliases are fine.
266   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
267     return true;
268
269   if (!isa<TypeDecl>(SD))
270     return false;
271
272   // Determine whether we have a class (or, in C++0x, an enum) or
273   // a typedef thereof. If so, build the nested-name-specifier.
274   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
275   if (T->isDependentType())
276     return true;
277   else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
278     if (TD->getUnderlyingType()->isRecordType() ||
279         (Context.getLangOptions().CPlusPlus0x &&
280          TD->getUnderlyingType()->isEnumeralType()))
281       return true;
282   } else if (isa<RecordDecl>(SD) ||
283              (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
284     return true;
285
286   return false;
287 }
288
289 /// \brief If the given nested-name-specifier begins with a bare identifier
290 /// (e.g., Base::), perform name lookup for that identifier as a
291 /// nested-name-specifier within the given scope, and return the result of that
292 /// name lookup.
293 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
294   if (!S || !NNS)
295     return 0;
296
297   while (NNS->getPrefix())
298     NNS = NNS->getPrefix();
299
300   if (NNS->getKind() != NestedNameSpecifier::Identifier)
301     return 0;
302
303   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
304                      LookupNestedNameSpecifierName);
305   LookupName(Found, S);
306   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
307
308   if (!Found.isSingleResult())
309     return 0;
310
311   NamedDecl *Result = Found.getFoundDecl();
312   if (isAcceptableNestedNameSpecifier(Result))
313     return Result;
314
315   return 0;
316 }
317
318 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
319                                         SourceLocation IdLoc,
320                                         IdentifierInfo &II,
321                                         ParsedType ObjectTypePtr) {
322   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
323   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
324   
325   // Determine where to perform name lookup
326   DeclContext *LookupCtx = 0;
327   bool isDependent = false;
328   if (!ObjectType.isNull()) {
329     // This nested-name-specifier occurs in a member access expression, e.g.,
330     // x->B::f, and we are looking into the type of the object.
331     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
332     LookupCtx = computeDeclContext(ObjectType);
333     isDependent = ObjectType->isDependentType();
334   } else if (SS.isSet()) {
335     // This nested-name-specifier occurs after another nested-name-specifier,
336     // so long into the context associated with the prior nested-name-specifier.
337     LookupCtx = computeDeclContext(SS, false);
338     isDependent = isDependentScopeSpecifier(SS);
339     Found.setContextRange(SS.getRange());
340   }
341   
342   if (LookupCtx) {
343     // Perform "qualified" name lookup into the declaration context we
344     // computed, which is either the type of the base of a member access
345     // expression or the declaration context associated with a prior
346     // nested-name-specifier.
347     
348     // The declaration context must be complete.
349     if (!LookupCtx->isDependentContext() &&
350         RequireCompleteDeclContext(SS, LookupCtx))
351       return false;
352     
353     LookupQualifiedName(Found, LookupCtx);
354   } else if (isDependent) {
355     return false;
356   } else {
357     LookupName(Found, S);
358   }
359   Found.suppressDiagnostics();
360   
361   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
362     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
363   
364   return false;
365 }
366
367 /// \brief Build a new nested-name-specifier for "identifier::", as described
368 /// by ActOnCXXNestedNameSpecifier.
369 ///
370 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
371 /// that it contains an extra parameter \p ScopeLookupResult, which provides
372 /// the result of name lookup within the scope of the nested-name-specifier
373 /// that was computed at template definition time.
374 ///
375 /// If ErrorRecoveryLookup is true, then this call is used to improve error
376 /// recovery.  This means that it should not emit diagnostics, it should
377 /// just return true on failure.  It also means it should only return a valid
378 /// scope if it *knows* that the result is correct.  It should not return in a
379 /// dependent context, for example. Nor will it extend \p SS with the scope
380 /// specifier.
381 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
382                                        IdentifierInfo &Identifier,
383                                        SourceLocation IdentifierLoc,
384                                        SourceLocation CCLoc,
385                                        QualType ObjectType,
386                                        bool EnteringContext,
387                                        CXXScopeSpec &SS,
388                                        NamedDecl *ScopeLookupResult,
389                                        bool ErrorRecoveryLookup) {
390   LookupResult Found(*this, &Identifier, IdentifierLoc, 
391                      LookupNestedNameSpecifierName);
392
393   // Determine where to perform name lookup
394   DeclContext *LookupCtx = 0;
395   bool isDependent = false;
396   if (!ObjectType.isNull()) {
397     // This nested-name-specifier occurs in a member access expression, e.g.,
398     // x->B::f, and we are looking into the type of the object.
399     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
400     LookupCtx = computeDeclContext(ObjectType);
401     isDependent = ObjectType->isDependentType();
402   } else if (SS.isSet()) {
403     // This nested-name-specifier occurs after another nested-name-specifier,
404     // so look into the context associated with the prior nested-name-specifier.
405     LookupCtx = computeDeclContext(SS, EnteringContext);
406     isDependent = isDependentScopeSpecifier(SS);
407     Found.setContextRange(SS.getRange());
408   }
409
410
411   bool ObjectTypeSearchedInScope = false;
412   if (LookupCtx) {
413     // Perform "qualified" name lookup into the declaration context we
414     // computed, which is either the type of the base of a member access
415     // expression or the declaration context associated with a prior
416     // nested-name-specifier.
417
418     // The declaration context must be complete.
419     if (!LookupCtx->isDependentContext() &&
420         RequireCompleteDeclContext(SS, LookupCtx))
421       return true;
422
423     LookupQualifiedName(Found, LookupCtx);
424
425     if (!ObjectType.isNull() && Found.empty()) {
426       // C++ [basic.lookup.classref]p4:
427       //   If the id-expression in a class member access is a qualified-id of
428       //   the form
429       //
430       //        class-name-or-namespace-name::...
431       //
432       //   the class-name-or-namespace-name following the . or -> operator is
433       //   looked up both in the context of the entire postfix-expression and in
434       //   the scope of the class of the object expression. If the name is found
435       //   only in the scope of the class of the object expression, the name
436       //   shall refer to a class-name. If the name is found only in the
437       //   context of the entire postfix-expression, the name shall refer to a
438       //   class-name or namespace-name. [...]
439       //
440       // Qualified name lookup into a class will not find a namespace-name,
441       // so we do not need to diagnose that case specifically. However,
442       // this qualified name lookup may find nothing. In that case, perform
443       // unqualified name lookup in the given scope (if available) or
444       // reconstruct the result from when name lookup was performed at template
445       // definition time.
446       if (S)
447         LookupName(Found, S);
448       else if (ScopeLookupResult)
449         Found.addDecl(ScopeLookupResult);
450
451       ObjectTypeSearchedInScope = true;
452     }
453   } else if (!isDependent) {
454     // Perform unqualified name lookup in the current scope.
455     LookupName(Found, S);
456   }
457
458   // If we performed lookup into a dependent context and did not find anything,
459   // that's fine: just build a dependent nested-name-specifier.
460   if (Found.empty() && isDependent &&
461       !(LookupCtx && LookupCtx->isRecord() &&
462         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
463          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
464     // Don't speculate if we're just trying to improve error recovery.
465     if (ErrorRecoveryLookup)
466       return true;
467     
468     // We were not able to compute the declaration context for a dependent
469     // base object type or prior nested-name-specifier, so this
470     // nested-name-specifier refers to an unknown specialization. Just build
471     // a dependent nested-name-specifier.
472     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
473     return false;
474   } 
475   
476   // FIXME: Deal with ambiguities cleanly.
477
478   if (Found.empty() && !ErrorRecoveryLookup) {
479     // We haven't found anything, and we're not recovering from a
480     // different kind of error, so look for typos.
481     DeclarationName Name = Found.getLookupName();
482     TypoCorrection Corrected;
483     Found.clear();
484     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
485                                  Found.getLookupKind(), S, &SS, LookupCtx,
486                                  EnteringContext, CTC_NoKeywords)) &&
487         isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) {
488       std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
489       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
490       if (LookupCtx)
491         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
492           << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
493           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
494       else
495         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
496           << Name << CorrectedQuotedStr
497           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
498       
499       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
500         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
501         Found.addDecl(ND);
502       }
503       Found.setLookupName(Corrected.getCorrection());
504     } else {
505       Found.setLookupName(&Identifier);
506     }
507   }
508
509   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
510   if (isAcceptableNestedNameSpecifier(SD)) {
511     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
512       // C++ [basic.lookup.classref]p4:
513       //   [...] If the name is found in both contexts, the
514       //   class-name-or-namespace-name shall refer to the same entity.
515       //
516       // We already found the name in the scope of the object. Now, look
517       // into the current scope (the scope of the postfix-expression) to
518       // see if we can find the same name there. As above, if there is no
519       // scope, reconstruct the result from the template instantiation itself.
520       NamedDecl *OuterDecl;
521       if (S) {
522         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 
523                                 LookupNestedNameSpecifierName);
524         LookupName(FoundOuter, S);
525         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
526       } else
527         OuterDecl = ScopeLookupResult;
528
529       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
530           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
531           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
532            !Context.hasSameType(
533                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
534                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
535          if (ErrorRecoveryLookup)
536            return true;
537
538          Diag(IdentifierLoc, 
539               diag::err_nested_name_member_ref_lookup_ambiguous)
540            << &Identifier;
541          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
542            << ObjectType;
543          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
544
545          // Fall through so that we'll pick the name we found in the object
546          // type, since that's probably what the user wanted anyway.
547        }
548     }
549
550     // If we're just performing this lookup for error-recovery purposes, 
551     // don't extend the nested-name-specifier. Just return now.
552     if (ErrorRecoveryLookup)
553       return false;
554     
555     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
556       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
557       return false;
558     }
559
560     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
561       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
562       return false;
563     }
564
565     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
566     TypeLocBuilder TLB;
567     if (isa<InjectedClassNameType>(T)) {
568       InjectedClassNameTypeLoc InjectedTL
569         = TLB.push<InjectedClassNameTypeLoc>(T);
570       InjectedTL.setNameLoc(IdentifierLoc);
571     } else if (isa<RecordType>(T)) {
572       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
573       RecordTL.setNameLoc(IdentifierLoc);
574     } else if (isa<TypedefType>(T)) {
575       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
576       TypedefTL.setNameLoc(IdentifierLoc);
577     } else if (isa<EnumType>(T)) {
578       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
579       EnumTL.setNameLoc(IdentifierLoc);
580     } else if (isa<TemplateTypeParmType>(T)) {
581       TemplateTypeParmTypeLoc TemplateTypeTL
582         = TLB.push<TemplateTypeParmTypeLoc>(T);
583       TemplateTypeTL.setNameLoc(IdentifierLoc);
584     } else if (isa<UnresolvedUsingType>(T)) {
585       UnresolvedUsingTypeLoc UnresolvedTL
586         = TLB.push<UnresolvedUsingTypeLoc>(T);
587       UnresolvedTL.setNameLoc(IdentifierLoc);
588     } else if (isa<SubstTemplateTypeParmType>(T)) {
589       SubstTemplateTypeParmTypeLoc TL 
590         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
591       TL.setNameLoc(IdentifierLoc);
592     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
593       SubstTemplateTypeParmPackTypeLoc TL
594         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
595       TL.setNameLoc(IdentifierLoc);
596     } else {
597       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
598     }
599
600     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
601               CCLoc);
602     return false;
603   }
604
605   // Otherwise, we have an error case.  If we don't want diagnostics, just
606   // return an error now.
607   if (ErrorRecoveryLookup)
608     return true;
609
610   // If we didn't find anything during our lookup, try again with
611   // ordinary name lookup, which can help us produce better error
612   // messages.
613   if (Found.empty()) {
614     Found.clear(LookupOrdinaryName);
615     LookupName(Found, S);
616   }
617
618   unsigned DiagID;
619   if (!Found.empty())
620     DiagID = diag::err_expected_class_or_namespace;
621   else if (SS.isSet()) {
622     Diag(IdentifierLoc, diag::err_no_member) 
623       << &Identifier << LookupCtx << SS.getRange();
624     return true;
625   } else
626     DiagID = diag::err_undeclared_var_use;
627
628   if (SS.isSet())
629     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
630   else
631     Diag(IdentifierLoc, DiagID) << &Identifier;
632
633   return true;
634 }
635
636 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
637                                        IdentifierInfo &Identifier,
638                                        SourceLocation IdentifierLoc,
639                                        SourceLocation CCLoc,
640                                        ParsedType ObjectType,
641                                        bool EnteringContext,
642                                        CXXScopeSpec &SS) {
643   if (SS.isInvalid())
644     return true;
645   
646   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
647                                      GetTypeFromParser(ObjectType),
648                                      EnteringContext, SS, 
649                                      /*ScopeLookupResult=*/0, false);
650 }
651
652 /// IsInvalidUnlessNestedName - This method is used for error recovery
653 /// purposes to determine whether the specified identifier is only valid as
654 /// a nested name specifier, for example a namespace name.  It is
655 /// conservatively correct to always return false from this method.
656 ///
657 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
658 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
659                                      IdentifierInfo &Identifier, 
660                                      SourceLocation IdentifierLoc,
661                                      SourceLocation ColonLoc,
662                                      ParsedType ObjectType,
663                                      bool EnteringContext) {
664   if (SS.isInvalid())
665     return false;
666   
667   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
668                                       GetTypeFromParser(ObjectType),
669                                       EnteringContext, SS, 
670                                       /*ScopeLookupResult=*/0, true);
671 }
672
673 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
674                                        SourceLocation TemplateLoc, 
675                                        CXXScopeSpec &SS, 
676                                        TemplateTy Template,
677                                        SourceLocation TemplateNameLoc,
678                                        SourceLocation LAngleLoc,
679                                        ASTTemplateArgsPtr TemplateArgsIn,
680                                        SourceLocation RAngleLoc,
681                                        SourceLocation CCLoc,
682                                        bool EnteringContext) {
683   if (SS.isInvalid())
684     return true;
685   
686   // Translate the parser's template argument list in our AST format.
687   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
688   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
689
690   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
691     // Handle a dependent template specialization for which we cannot resolve
692     // the template name.
693     assert(DTN->getQualifier()
694              == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
695     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
696                                                           DTN->getQualifier(),
697                                                           DTN->getIdentifier(),
698                                                                 TemplateArgs);
699     
700     // Create source-location information for this type.
701     TypeLocBuilder Builder;
702     DependentTemplateSpecializationTypeLoc SpecTL 
703       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
704     SpecTL.setLAngleLoc(LAngleLoc);
705     SpecTL.setRAngleLoc(RAngleLoc);
706     SpecTL.setKeywordLoc(SourceLocation());
707     SpecTL.setNameLoc(TemplateNameLoc);
708     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
709     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
710       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
711     
712     SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T), 
713               CCLoc);
714     return false;
715   }
716   
717   
718   if (Template.get().getAsOverloadedTemplate() ||
719       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
720     SourceRange R(TemplateNameLoc, RAngleLoc);
721     if (SS.getRange().isValid())
722       R.setBegin(SS.getRange().getBegin());
723       
724     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
725       << Template.get() << R;
726     NoteAllFoundTemplates(Template.get());
727     return true;
728   }
729                                 
730   // We were able to resolve the template name to an actual template. 
731   // Build an appropriate nested-name-specifier.
732   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 
733                                    TemplateArgs);
734   if (T.isNull())
735     return true;
736
737   // Alias template specializations can produce types which are not valid
738   // nested name specifiers.
739   if (!T->isDependentType() && !T->getAs<TagType>()) {
740     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
741     NoteAllFoundTemplates(Template.get());
742     return true;
743   }
744
745   // Provide source-location information for the template specialization 
746   // type.
747   TypeLocBuilder Builder;
748   TemplateSpecializationTypeLoc SpecTL 
749     = Builder.push<TemplateSpecializationTypeLoc>(T);
750   
751   SpecTL.setLAngleLoc(LAngleLoc);
752   SpecTL.setRAngleLoc(RAngleLoc);
753   SpecTL.setTemplateNameLoc(TemplateNameLoc);
754   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
755     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
756
757
758   SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T), 
759             CCLoc);
760   return false;
761 }
762
763 namespace {
764   /// \brief A structure that stores a nested-name-specifier annotation,
765   /// including both the nested-name-specifier 
766   struct NestedNameSpecifierAnnotation {
767     NestedNameSpecifier *NNS;
768   };
769 }
770
771 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
772   if (SS.isEmpty() || SS.isInvalid())
773     return 0;
774   
775   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
776                                                         SS.location_size()),
777                                llvm::alignOf<NestedNameSpecifierAnnotation>());
778   NestedNameSpecifierAnnotation *Annotation
779     = new (Mem) NestedNameSpecifierAnnotation;
780   Annotation->NNS = SS.getScopeRep();
781   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
782   return Annotation;
783 }
784
785 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 
786                                                 SourceRange AnnotationRange,
787                                                 CXXScopeSpec &SS) {
788   if (!AnnotationPtr) {
789     SS.SetInvalid(AnnotationRange);
790     return;
791   }
792   
793   NestedNameSpecifierAnnotation *Annotation
794     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
795   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
796 }
797
798 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
799   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
800
801   NestedNameSpecifier *Qualifier =
802     static_cast<NestedNameSpecifier*>(SS.getScopeRep());
803
804   // There are only two places a well-formed program may qualify a
805   // declarator: first, when defining a namespace or class member
806   // out-of-line, and second, when naming an explicitly-qualified
807   // friend function.  The latter case is governed by
808   // C++03 [basic.lookup.unqual]p10:
809   //   In a friend declaration naming a member function, a name used
810   //   in the function declarator and not part of a template-argument
811   //   in a template-id is first looked up in the scope of the member
812   //   function's class. If it is not found, or if the name is part of
813   //   a template-argument in a template-id, the look up is as
814   //   described for unqualified names in the definition of the class
815   //   granting friendship.
816   // i.e. we don't push a scope unless it's a class member.
817
818   switch (Qualifier->getKind()) {
819   case NestedNameSpecifier::Global:
820   case NestedNameSpecifier::Namespace:
821   case NestedNameSpecifier::NamespaceAlias:
822     // These are always namespace scopes.  We never want to enter a
823     // namespace scope from anything but a file context.
824     return CurContext->getRedeclContext()->isFileContext();
825
826   case NestedNameSpecifier::Identifier:
827   case NestedNameSpecifier::TypeSpec:
828   case NestedNameSpecifier::TypeSpecWithTemplate:
829     // These are never namespace scopes.
830     return true;
831   }
832
833   // Silence bogus warning.
834   return false;
835 }
836
837 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
838 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
839 /// After this method is called, according to [C++ 3.4.3p3], names should be
840 /// looked up in the declarator-id's scope, until the declarator is parsed and
841 /// ActOnCXXExitDeclaratorScope is called.
842 /// The 'SS' should be a non-empty valid CXXScopeSpec.
843 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
844   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
845
846   if (SS.isInvalid()) return true;
847
848   DeclContext *DC = computeDeclContext(SS, true);
849   if (!DC) return true;
850
851   // Before we enter a declarator's context, we need to make sure that
852   // it is a complete declaration context.
853   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
854     return true;
855     
856   EnterDeclaratorContext(S, DC);
857
858   // Rebuild the nested name specifier for the new scope.
859   if (DC->isDependentContext())
860     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
861
862   return false;
863 }
864
865 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
866 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
867 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
868 /// Used to indicate that names should revert to being looked up in the
869 /// defining scope.
870 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
871   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
872   if (SS.isInvalid())
873     return;
874   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
875          "exiting declarator scope we never really entered");
876   ExitDeclaratorContext(S);
877 }