]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Sema / SemaExprCXX.cpp
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DeclSpec.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ParsedTemplate.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 using namespace clang;
34 using namespace sema;
35
36 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
37                                    IdentifierInfo &II,
38                                    SourceLocation NameLoc,
39                                    Scope *S, CXXScopeSpec &SS,
40                                    ParsedType ObjectTypePtr,
41                                    bool EnteringContext) {
42   // Determine where to perform name lookup.
43
44   // FIXME: This area of the standard is very messy, and the current
45   // wording is rather unclear about which scopes we search for the
46   // destructor name; see core issues 399 and 555. Issue 399 in
47   // particular shows where the current description of destructor name
48   // lookup is completely out of line with existing practice, e.g.,
49   // this appears to be ill-formed:
50   //
51   //   namespace N {
52   //     template <typename T> struct S {
53   //       ~S();
54   //     };
55   //   }
56   //
57   //   void f(N::S<int>* s) {
58   //     s->N::S<int>::~S();
59   //   }
60   //
61   // See also PR6358 and PR6359.
62   // For this reason, we're currently only doing the C++03 version of this
63   // code; the C++0x version has to wait until we get a proper spec.
64   QualType SearchType;
65   DeclContext *LookupCtx = 0;
66   bool isDependent = false;
67   bool LookInScope = false;
68
69   // If we have an object type, it's because we are in a
70   // pseudo-destructor-expression or a member access expression, and
71   // we know what type we're looking for.
72   if (ObjectTypePtr)
73     SearchType = GetTypeFromParser(ObjectTypePtr);
74
75   if (SS.isSet()) {
76     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
77
78     bool AlreadySearched = false;
79     bool LookAtPrefix = true;
80     // C++ [basic.lookup.qual]p6:
81     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
82     //   the type-names are looked up as types in the scope designated by the
83     //   nested-name-specifier. In a qualified-id of the form:
84     //
85     //     ::[opt] nested-name-specifier  ~ class-name
86     //
87     //   where the nested-name-specifier designates a namespace scope, and in
88     //   a qualified-id of the form:
89     //
90     //     ::opt nested-name-specifier class-name ::  ~ class-name
91     //
92     //   the class-names are looked up as types in the scope designated by
93     //   the nested-name-specifier.
94     //
95     // Here, we check the first case (completely) and determine whether the
96     // code below is permitted to look at the prefix of the
97     // nested-name-specifier.
98     DeclContext *DC = computeDeclContext(SS, EnteringContext);
99     if (DC && DC->isFileContext()) {
100       AlreadySearched = true;
101       LookupCtx = DC;
102       isDependent = false;
103     } else if (DC && isa<CXXRecordDecl>(DC))
104       LookAtPrefix = false;
105
106     // The second case from the C++03 rules quoted further above.
107     NestedNameSpecifier *Prefix = 0;
108     if (AlreadySearched) {
109       // Nothing left to do.
110     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
111       CXXScopeSpec PrefixSS;
112       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
113       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
114       isDependent = isDependentScopeSpecifier(PrefixSS);
115     } else if (ObjectTypePtr) {
116       LookupCtx = computeDeclContext(SearchType);
117       isDependent = SearchType->isDependentType();
118     } else {
119       LookupCtx = computeDeclContext(SS, EnteringContext);
120       isDependent = LookupCtx && LookupCtx->isDependentContext();
121     }
122
123     LookInScope = false;
124   } else if (ObjectTypePtr) {
125     // C++ [basic.lookup.classref]p3:
126     //   If the unqualified-id is ~type-name, the type-name is looked up
127     //   in the context of the entire postfix-expression. If the type T
128     //   of the object expression is of a class type C, the type-name is
129     //   also looked up in the scope of class C. At least one of the
130     //   lookups shall find a name that refers to (possibly
131     //   cv-qualified) T.
132     LookupCtx = computeDeclContext(SearchType);
133     isDependent = SearchType->isDependentType();
134     assert((isDependent || !SearchType->isIncompleteType()) &&
135            "Caller should have completed object type");
136
137     LookInScope = true;
138   } else {
139     // Perform lookup into the current scope (only).
140     LookInScope = true;
141   }
142
143   TypeDecl *NonMatchingTypeDecl = 0;
144   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
145   for (unsigned Step = 0; Step != 2; ++Step) {
146     // Look for the name first in the computed lookup context (if we
147     // have one) and, if that fails to find a match, in the scope (if
148     // we're allowed to look there).
149     Found.clear();
150     if (Step == 0 && LookupCtx)
151       LookupQualifiedName(Found, LookupCtx);
152     else if (Step == 1 && LookInScope && S)
153       LookupName(Found, S);
154     else
155       continue;
156
157     // FIXME: Should we be suppressing ambiguities here?
158     if (Found.isAmbiguous())
159       return ParsedType();
160
161     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
162       QualType T = Context.getTypeDeclType(Type);
163
164       if (SearchType.isNull() || SearchType->isDependentType() ||
165           Context.hasSameUnqualifiedType(T, SearchType)) {
166         // We found our type!
167
168         return ParsedType::make(T);
169       }
170
171       if (!SearchType.isNull())
172         NonMatchingTypeDecl = Type;
173     }
174
175     // If the name that we found is a class template name, and it is
176     // the same name as the template name in the last part of the
177     // nested-name-specifier (if present) or the object type, then
178     // this is the destructor for that class.
179     // FIXME: This is a workaround until we get real drafting for core
180     // issue 399, for which there isn't even an obvious direction.
181     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
182       QualType MemberOfType;
183       if (SS.isSet()) {
184         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
185           // Figure out the type of the context, if it has one.
186           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
187             MemberOfType = Context.getTypeDeclType(Record);
188         }
189       }
190       if (MemberOfType.isNull())
191         MemberOfType = SearchType;
192
193       if (MemberOfType.isNull())
194         continue;
195
196       // We're referring into a class template specialization. If the
197       // class template we found is the same as the template being
198       // specialized, we found what we are looking for.
199       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
200         if (ClassTemplateSpecializationDecl *Spec
201               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
202           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
203                 Template->getCanonicalDecl())
204             return ParsedType::make(MemberOfType);
205         }
206
207         continue;
208       }
209
210       // We're referring to an unresolved class template
211       // specialization. Determine whether we class template we found
212       // is the same as the template being specialized or, if we don't
213       // know which template is being specialized, that it at least
214       // has the same name.
215       if (const TemplateSpecializationType *SpecType
216             = MemberOfType->getAs<TemplateSpecializationType>()) {
217         TemplateName SpecName = SpecType->getTemplateName();
218
219         // The class template we found is the same template being
220         // specialized.
221         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
222           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
223             return ParsedType::make(MemberOfType);
224
225           continue;
226         }
227
228         // The class template we found has the same name as the
229         // (dependent) template name being specialized.
230         if (DependentTemplateName *DepTemplate
231                                     = SpecName.getAsDependentTemplateName()) {
232           if (DepTemplate->isIdentifier() &&
233               DepTemplate->getIdentifier() == Template->getIdentifier())
234             return ParsedType::make(MemberOfType);
235
236           continue;
237         }
238       }
239     }
240   }
241
242   if (isDependent) {
243     // We didn't find our type, but that's okay: it's dependent
244     // anyway.
245     
246     // FIXME: What if we have no nested-name-specifier?
247     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
248                                    SS.getWithLocInContext(Context),
249                                    II, NameLoc);
250     return ParsedType::make(T);
251   }
252
253   if (NonMatchingTypeDecl) {
254     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
255     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
256       << T << SearchType;
257     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
258       << T;
259   } else if (ObjectTypePtr)
260     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
261       << &II;
262   else
263     Diag(NameLoc, diag::err_destructor_class_name);
264
265   return ParsedType();
266 }
267
268 /// \brief Build a C++ typeid expression with a type operand.
269 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
270                                 SourceLocation TypeidLoc,
271                                 TypeSourceInfo *Operand,
272                                 SourceLocation RParenLoc) {
273   // C++ [expr.typeid]p4:
274   //   The top-level cv-qualifiers of the lvalue expression or the type-id
275   //   that is the operand of typeid are always ignored.
276   //   If the type of the type-id is a class type or a reference to a class
277   //   type, the class shall be completely-defined.
278   Qualifiers Quals;
279   QualType T
280     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
281                                       Quals);
282   if (T->getAs<RecordType>() &&
283       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
284     return ExprError();
285
286   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
287                                            Operand,
288                                            SourceRange(TypeidLoc, RParenLoc)));
289 }
290
291 /// \brief Build a C++ typeid expression with an expression operand.
292 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
293                                 SourceLocation TypeidLoc,
294                                 Expr *E,
295                                 SourceLocation RParenLoc) {
296   bool isUnevaluatedOperand = true;
297   if (E && !E->isTypeDependent()) {
298     QualType T = E->getType();
299     if (const RecordType *RecordT = T->getAs<RecordType>()) {
300       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
301       // C++ [expr.typeid]p3:
302       //   [...] If the type of the expression is a class type, the class
303       //   shall be completely-defined.
304       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305         return ExprError();
306
307       // C++ [expr.typeid]p3:
308       //   When typeid is applied to an expression other than an glvalue of a
309       //   polymorphic class type [...] [the] expression is an unevaluated
310       //   operand. [...]
311       if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
312         isUnevaluatedOperand = false;
313
314         // We require a vtable to query the type at run time.
315         MarkVTableUsed(TypeidLoc, RecordD);
316       }
317     }
318
319     // C++ [expr.typeid]p4:
320     //   [...] If the type of the type-id is a reference to a possibly
321     //   cv-qualified type, the result of the typeid expression refers to a
322     //   std::type_info object representing the cv-unqualified referenced
323     //   type.
324     Qualifiers Quals;
325     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
326     if (!Context.hasSameType(T, UnqualT)) {
327       T = UnqualT;
328       E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
329     }
330   }
331
332   // If this is an unevaluated operand, clear out the set of
333   // declaration references we have been computing and eliminate any
334   // temporaries introduced in its computation.
335   if (isUnevaluatedOperand)
336     ExprEvalContexts.back().Context = Unevaluated;
337
338   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
339                                            E,
340                                            SourceRange(TypeidLoc, RParenLoc)));
341 }
342
343 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
344 ExprResult
345 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
346                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
347   // Find the std::type_info type.
348   if (!getStdNamespace())
349     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
350
351   if (!CXXTypeInfoDecl) {
352     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
353     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
354     LookupQualifiedName(R, getStdNamespace());
355     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
356     if (!CXXTypeInfoDecl)
357       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
358   }
359
360   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
361
362   if (isType) {
363     // The operand is a type; handle it as such.
364     TypeSourceInfo *TInfo = 0;
365     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
366                                    &TInfo);
367     if (T.isNull())
368       return ExprError();
369
370     if (!TInfo)
371       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
372
373     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
374   }
375
376   // The operand is an expression.
377   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
378 }
379
380 /// Retrieve the UuidAttr associated with QT.
381 static UuidAttr *GetUuidAttrOfType(QualType QT) {
382   // Optionally remove one level of pointer, reference or array indirection.
383   const Type *Ty = QT.getTypePtr();;
384   if (QT->isPointerType() || QT->isReferenceType())
385     Ty = QT->getPointeeType().getTypePtr();
386   else if (QT->isArrayType())
387     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
388
389   // Loop all record redeclaration looking for an uuid attribute.
390   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
391   for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
392        E = RD->redecls_end(); I != E; ++I) {
393     if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
394       return Uuid;
395   }
396
397   return 0;
398 }
399
400 /// \brief Build a Microsoft __uuidof expression with a type operand.
401 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
402                                 SourceLocation TypeidLoc,
403                                 TypeSourceInfo *Operand,
404                                 SourceLocation RParenLoc) {
405   if (!Operand->getType()->isDependentType()) {
406     if (!GetUuidAttrOfType(Operand->getType()))
407       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
408   }
409
410   // FIXME: add __uuidof semantic analysis for type operand.
411   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
412                                            Operand,
413                                            SourceRange(TypeidLoc, RParenLoc)));
414 }
415
416 /// \brief Build a Microsoft __uuidof expression with an expression operand.
417 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
418                                 SourceLocation TypeidLoc,
419                                 Expr *E,
420                                 SourceLocation RParenLoc) {
421   if (!E->getType()->isDependentType()) {
422     if (!GetUuidAttrOfType(E->getType()) &&
423         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
424       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
425   }
426   // FIXME: add __uuidof semantic analysis for type operand.
427   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
428                                            E,
429                                            SourceRange(TypeidLoc, RParenLoc)));
430 }
431
432 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
433 ExprResult
434 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
435                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
436   // If MSVCGuidDecl has not been cached, do the lookup.
437   if (!MSVCGuidDecl) {
438     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
439     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
440     LookupQualifiedName(R, Context.getTranslationUnitDecl());
441     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
442     if (!MSVCGuidDecl)
443       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
444   }
445
446   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
447
448   if (isType) {
449     // The operand is a type; handle it as such.
450     TypeSourceInfo *TInfo = 0;
451     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
452                                    &TInfo);
453     if (T.isNull())
454       return ExprError();
455
456     if (!TInfo)
457       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
458
459     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
460   }
461
462   // The operand is an expression.
463   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
464 }
465
466 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
467 ExprResult
468 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
469   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
470          "Unknown C++ Boolean value!");
471   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
472                                                 Context.BoolTy, OpLoc));
473 }
474
475 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
476 ExprResult
477 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
478   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
479 }
480
481 /// ActOnCXXThrow - Parse throw expressions.
482 ExprResult
483 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
484   bool IsThrownVarInScope = false;
485   if (Ex) {
486     // C++0x [class.copymove]p31:
487     //   When certain criteria are met, an implementation is allowed to omit the 
488     //   copy/move construction of a class object [...]
489     //
490     //     - in a throw-expression, when the operand is the name of a 
491     //       non-volatile automatic object (other than a function or catch-
492     //       clause parameter) whose scope does not extend beyond the end of the 
493     //       innermost enclosing try-block (if there is one), the copy/move 
494     //       operation from the operand to the exception object (15.1) can be 
495     //       omitted by constructing the automatic object directly into the 
496     //       exception object
497     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
498       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
499         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
500           for( ; S; S = S->getParent()) {
501             if (S->isDeclScope(Var)) {
502               IsThrownVarInScope = true;
503               break;
504             }
505             
506             if (S->getFlags() &
507                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
508                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
509                  Scope::TryScope))
510               break;
511           }
512         }
513       }
514   }
515   
516   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
517 }
518
519 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 
520                                bool IsThrownVarInScope) {
521   // Don't report an error if 'throw' is used in system headers.
522   if (!getLangOptions().CXXExceptions &&
523       !getSourceManager().isInSystemHeader(OpLoc))
524     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
525   
526   if (Ex && !Ex->isTypeDependent()) {
527     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
528     if (ExRes.isInvalid())
529       return ExprError();
530     Ex = ExRes.take();
531   }
532   
533   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
534                                           IsThrownVarInScope));
535 }
536
537 /// CheckCXXThrowOperand - Validate the operand of a throw.
538 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
539                                       bool IsThrownVarInScope) {
540   // C++ [except.throw]p3:
541   //   A throw-expression initializes a temporary object, called the exception
542   //   object, the type of which is determined by removing any top-level
543   //   cv-qualifiers from the static type of the operand of throw and adjusting
544   //   the type from "array of T" or "function returning T" to "pointer to T"
545   //   or "pointer to function returning T", [...]
546   if (E->getType().hasQualifiers())
547     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
548                       CastCategory(E)).take();
549
550   ExprResult Res = DefaultFunctionArrayConversion(E);
551   if (Res.isInvalid())
552     return ExprError();
553   E = Res.take();
554
555   //   If the type of the exception would be an incomplete type or a pointer
556   //   to an incomplete type other than (cv) void the program is ill-formed.
557   QualType Ty = E->getType();
558   bool isPointer = false;
559   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
560     Ty = Ptr->getPointeeType();
561     isPointer = true;
562   }
563   if (!isPointer || !Ty->isVoidType()) {
564     if (RequireCompleteType(ThrowLoc, Ty,
565                             PDiag(isPointer ? diag::err_throw_incomplete_ptr
566                                             : diag::err_throw_incomplete)
567                               << E->getSourceRange()))
568       return ExprError();
569
570     if (RequireNonAbstractType(ThrowLoc, E->getType(),
571                                PDiag(diag::err_throw_abstract_type)
572                                  << E->getSourceRange()))
573       return ExprError();
574   }
575
576   // Initialize the exception result.  This implicitly weeds out
577   // abstract types or types with inaccessible copy constructors.
578   
579   // C++0x [class.copymove]p31:
580   //   When certain criteria are met, an implementation is allowed to omit the 
581   //   copy/move construction of a class object [...]
582   //
583   //     - in a throw-expression, when the operand is the name of a 
584   //       non-volatile automatic object (other than a function or catch-clause 
585   //       parameter) whose scope does not extend beyond the end of the 
586   //       innermost enclosing try-block (if there is one), the copy/move 
587   //       operation from the operand to the exception object (15.1) can be 
588   //       omitted by constructing the automatic object directly into the 
589   //       exception object
590   const VarDecl *NRVOVariable = 0;
591   if (IsThrownVarInScope)
592     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
593   
594   InitializedEntity Entity =
595       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
596                                              /*NRVO=*/NRVOVariable != 0);
597   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
598                                         QualType(), E,
599                                         IsThrownVarInScope);
600   if (Res.isInvalid())
601     return ExprError();
602   E = Res.take();
603
604   // If the exception has class type, we need additional handling.
605   const RecordType *RecordTy = Ty->getAs<RecordType>();
606   if (!RecordTy)
607     return Owned(E);
608   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
609
610   // If we are throwing a polymorphic class type or pointer thereof,
611   // exception handling will make use of the vtable.
612   MarkVTableUsed(ThrowLoc, RD);
613
614   // If a pointer is thrown, the referenced object will not be destroyed.
615   if (isPointer)
616     return Owned(E);
617
618   // If the class has a non-trivial destructor, we must be able to call it.
619   if (RD->hasTrivialDestructor())
620     return Owned(E);
621
622   CXXDestructorDecl *Destructor
623     = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
624   if (!Destructor)
625     return Owned(E);
626
627   MarkDeclarationReferenced(E->getExprLoc(), Destructor);
628   CheckDestructorAccess(E->getExprLoc(), Destructor,
629                         PDiag(diag::err_access_dtor_exception) << Ty);
630   return Owned(E);
631 }
632
633 QualType Sema::getAndCaptureCurrentThisType() {
634   // Ignore block scopes: we can capture through them.
635   // Ignore nested enum scopes: we'll diagnose non-constant expressions
636   // where they're invalid, and other uses are legitimate.
637   // Don't ignore nested class scopes: you can't use 'this' in a local class.
638   DeclContext *DC = CurContext;
639   unsigned NumBlocks = 0;
640   while (true) {
641     if (isa<BlockDecl>(DC)) {
642       DC = cast<BlockDecl>(DC)->getDeclContext();
643       ++NumBlocks;
644     } else if (isa<EnumDecl>(DC))
645       DC = cast<EnumDecl>(DC)->getDeclContext();
646     else break;
647   }
648
649   QualType ThisTy;
650   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
651     if (method && method->isInstance())
652       ThisTy = method->getThisType(Context);
653   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
654     // C++0x [expr.prim]p4:
655     //   Otherwise, if a member-declarator declares a non-static data member
656     // of a class X, the expression this is a prvalue of type "pointer to X"
657     // within the optional brace-or-equal-initializer.
658     Scope *S = getScopeForContext(DC);
659     if (!S || S->getFlags() & Scope::ThisScope)
660       ThisTy = Context.getPointerType(Context.getRecordType(RD));
661   }
662
663   // Mark that we're closing on 'this' in all the block scopes we ignored.
664   if (!ThisTy.isNull())
665     for (unsigned idx = FunctionScopes.size() - 1;
666          NumBlocks; --idx, --NumBlocks)
667       cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
668
669   return ThisTy;
670 }
671
672 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
673   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
674   /// is a non-lvalue expression whose value is the address of the object for
675   /// which the function is called.
676
677   QualType ThisTy = getAndCaptureCurrentThisType();
678   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
679
680   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
681 }
682
683 ExprResult
684 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
685                                 SourceLocation LParenLoc,
686                                 MultiExprArg exprs,
687                                 SourceLocation RParenLoc) {
688   if (!TypeRep)
689     return ExprError();
690
691   TypeSourceInfo *TInfo;
692   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
693   if (!TInfo)
694     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
695
696   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
697 }
698
699 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
700 /// Can be interpreted either as function-style casting ("int(x)")
701 /// or class type construction ("ClassType(x,y,z)")
702 /// or creation of a value-initialized type ("int()").
703 ExprResult
704 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
705                                 SourceLocation LParenLoc,
706                                 MultiExprArg exprs,
707                                 SourceLocation RParenLoc) {
708   QualType Ty = TInfo->getType();
709   unsigned NumExprs = exprs.size();
710   Expr **Exprs = (Expr**)exprs.get();
711   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
712   SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
713
714   if (Ty->isDependentType() ||
715       CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
716     exprs.release();
717
718     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
719                                                     LParenLoc,
720                                                     Exprs, NumExprs,
721                                                     RParenLoc));
722   }
723
724   if (Ty->isArrayType())
725     return ExprError(Diag(TyBeginLoc,
726                           diag::err_value_init_for_array_type) << FullRange);
727   if (!Ty->isVoidType() &&
728       RequireCompleteType(TyBeginLoc, Ty,
729                           PDiag(diag::err_invalid_incomplete_type_use)
730                             << FullRange))
731     return ExprError();
732
733   if (RequireNonAbstractType(TyBeginLoc, Ty,
734                              diag::err_allocation_of_abstract_type))
735     return ExprError();
736
737
738   // C++ [expr.type.conv]p1:
739   // If the expression list is a single expression, the type conversion
740   // expression is equivalent (in definedness, and if defined in meaning) to the
741   // corresponding cast expression.
742   //
743   if (NumExprs == 1) {
744     CastKind Kind = CK_Invalid;
745     ExprValueKind VK = VK_RValue;
746     CXXCastPath BasePath;
747     ExprResult CastExpr =
748       CheckCastTypes(TInfo->getTypeLoc().getBeginLoc(),
749                      TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
750                      Kind, VK, BasePath,
751                      /*FunctionalStyle=*/true);
752     if (CastExpr.isInvalid())
753       return ExprError();
754     Exprs[0] = CastExpr.take();
755
756     exprs.release();
757
758     return Owned(CXXFunctionalCastExpr::Create(Context,
759                                                Ty.getNonLValueExprType(Context),
760                                                VK, TInfo, TyBeginLoc, Kind,
761                                                Exprs[0], &BasePath,
762                                                RParenLoc));
763   }
764
765   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
766   InitializationKind Kind
767     = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
768                                                   LParenLoc, RParenLoc)
769                : InitializationKind::CreateValue(TyBeginLoc,
770                                                  LParenLoc, RParenLoc);
771   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
772   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
773
774   // FIXME: Improve AST representation?
775   return move(Result);
776 }
777
778 /// doesUsualArrayDeleteWantSize - Answers whether the usual
779 /// operator delete[] for the given type has a size_t parameter.
780 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
781                                          QualType allocType) {
782   const RecordType *record =
783     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
784   if (!record) return false;
785
786   // Try to find an operator delete[] in class scope.
787
788   DeclarationName deleteName =
789     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
790   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
791   S.LookupQualifiedName(ops, record->getDecl());
792
793   // We're just doing this for information.
794   ops.suppressDiagnostics();
795
796   // Very likely: there's no operator delete[].
797   if (ops.empty()) return false;
798
799   // If it's ambiguous, it should be illegal to call operator delete[]
800   // on this thing, so it doesn't matter if we allocate extra space or not.
801   if (ops.isAmbiguous()) return false;
802
803   LookupResult::Filter filter = ops.makeFilter();
804   while (filter.hasNext()) {
805     NamedDecl *del = filter.next()->getUnderlyingDecl();
806
807     // C++0x [basic.stc.dynamic.deallocation]p2:
808     //   A template instance is never a usual deallocation function,
809     //   regardless of its signature.
810     if (isa<FunctionTemplateDecl>(del)) {
811       filter.erase();
812       continue;
813     }
814
815     // C++0x [basic.stc.dynamic.deallocation]p2:
816     //   If class T does not declare [an operator delete[] with one
817     //   parameter] but does declare a member deallocation function
818     //   named operator delete[] with exactly two parameters, the
819     //   second of which has type std::size_t, then this function
820     //   is a usual deallocation function.
821     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
822       filter.erase();
823       continue;
824     }
825   }
826   filter.done();
827
828   if (!ops.isSingleResult()) return false;
829
830   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
831   return (del->getNumParams() == 2);
832 }
833
834 /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
835 /// @code new (memory) int[size][4] @endcode
836 /// or
837 /// @code ::new Foo(23, "hello") @endcode
838 /// For the interpretation of this heap of arguments, consult the base version.
839 ExprResult
840 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
841                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
842                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
843                   Declarator &D, SourceLocation ConstructorLParen,
844                   MultiExprArg ConstructorArgs,
845                   SourceLocation ConstructorRParen) {
846   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
847
848   Expr *ArraySize = 0;
849   // If the specified type is an array, unwrap it and save the expression.
850   if (D.getNumTypeObjects() > 0 &&
851       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
852     DeclaratorChunk &Chunk = D.getTypeObject(0);
853     if (TypeContainsAuto)
854       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
855         << D.getSourceRange());
856     if (Chunk.Arr.hasStatic)
857       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
858         << D.getSourceRange());
859     if (!Chunk.Arr.NumElts)
860       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
861         << D.getSourceRange());
862
863     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
864     D.DropFirstTypeObject();
865   }
866
867   // Every dimension shall be of constant size.
868   if (ArraySize) {
869     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
870       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
871         break;
872
873       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
874       if (Expr *NumElts = (Expr *)Array.NumElts) {
875         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
876             !NumElts->isIntegerConstantExpr(Context)) {
877           Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
878             << NumElts->getSourceRange();
879           return ExprError();
880         }
881       }
882     }
883   }
884
885   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
886   QualType AllocType = TInfo->getType();
887   if (D.isInvalidType())
888     return ExprError();
889
890   return BuildCXXNew(StartLoc, UseGlobal,
891                      PlacementLParen,
892                      move(PlacementArgs),
893                      PlacementRParen,
894                      TypeIdParens,
895                      AllocType,
896                      TInfo,
897                      ArraySize,
898                      ConstructorLParen,
899                      move(ConstructorArgs),
900                      ConstructorRParen,
901                      TypeContainsAuto);
902 }
903
904 ExprResult
905 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
906                   SourceLocation PlacementLParen,
907                   MultiExprArg PlacementArgs,
908                   SourceLocation PlacementRParen,
909                   SourceRange TypeIdParens,
910                   QualType AllocType,
911                   TypeSourceInfo *AllocTypeInfo,
912                   Expr *ArraySize,
913                   SourceLocation ConstructorLParen,
914                   MultiExprArg ConstructorArgs,
915                   SourceLocation ConstructorRParen,
916                   bool TypeMayContainAuto) {
917   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
918
919   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
920   if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
921     if (ConstructorArgs.size() == 0)
922       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
923                        << AllocType << TypeRange);
924     if (ConstructorArgs.size() != 1) {
925       Expr *FirstBad = ConstructorArgs.get()[1];
926       return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
927                             diag::err_auto_new_ctor_multiple_expressions)
928                        << AllocType << TypeRange);
929     }
930     TypeSourceInfo *DeducedType = 0;
931     if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
932       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
933                        << AllocType
934                        << ConstructorArgs.get()[0]->getType()
935                        << TypeRange
936                        << ConstructorArgs.get()[0]->getSourceRange());
937     if (!DeducedType)
938       return ExprError();
939
940     AllocTypeInfo = DeducedType;
941     AllocType = AllocTypeInfo->getType();
942   }
943   
944   // Per C++0x [expr.new]p5, the type being constructed may be a
945   // typedef of an array type.
946   if (!ArraySize) {
947     if (const ConstantArrayType *Array
948                               = Context.getAsConstantArrayType(AllocType)) {
949       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
950                                          Context.getSizeType(),
951                                          TypeRange.getEnd());
952       AllocType = Array->getElementType();
953     }
954   }
955
956   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
957     return ExprError();
958
959   // In ARC, infer 'retaining' for the allocated 
960   if (getLangOptions().ObjCAutoRefCount &&
961       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
962       AllocType->isObjCLifetimeType()) {
963     AllocType = Context.getLifetimeQualifiedType(AllocType,
964                                     AllocType->getObjCARCImplicitLifetime());
965   }
966
967   QualType ResultType = Context.getPointerType(AllocType);
968     
969   // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
970   //   or enumeration type with a non-negative value."
971   if (ArraySize && !ArraySize->isTypeDependent()) {
972
973     QualType SizeType = ArraySize->getType();
974
975     ExprResult ConvertedSize
976       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
977                                        PDiag(diag::err_array_size_not_integral),
978                                      PDiag(diag::err_array_size_incomplete_type)
979                                        << ArraySize->getSourceRange(),
980                                PDiag(diag::err_array_size_explicit_conversion),
981                                        PDiag(diag::note_array_size_conversion),
982                                PDiag(diag::err_array_size_ambiguous_conversion),
983                                        PDiag(diag::note_array_size_conversion),
984                           PDiag(getLangOptions().CPlusPlus0x? 0
985                                             : diag::ext_array_size_conversion));
986     if (ConvertedSize.isInvalid())
987       return ExprError();
988
989     ArraySize = ConvertedSize.take();
990     SizeType = ArraySize->getType();
991     if (!SizeType->isIntegralOrUnscopedEnumerationType())
992       return ExprError();
993
994     // Let's see if this is a constant < 0. If so, we reject it out of hand.
995     // We don't care about special rules, so we tell the machinery it's not
996     // evaluated - it gives us a result in more cases.
997     if (!ArraySize->isValueDependent()) {
998       llvm::APSInt Value;
999       if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
1000         if (Value < llvm::APSInt(
1001                         llvm::APInt::getNullValue(Value.getBitWidth()),
1002                                  Value.isUnsigned()))
1003           return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
1004                                 diag::err_typecheck_negative_array_size)
1005             << ArraySize->getSourceRange());
1006
1007         if (!AllocType->isDependentType()) {
1008           unsigned ActiveSizeBits
1009             = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1010           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1011             Diag(ArraySize->getSourceRange().getBegin(),
1012                  diag::err_array_too_large)
1013               << Value.toString(10)
1014               << ArraySize->getSourceRange();
1015             return ExprError();
1016           }
1017         }
1018       } else if (TypeIdParens.isValid()) {
1019         // Can't have dynamic array size when the type-id is in parentheses.
1020         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1021           << ArraySize->getSourceRange()
1022           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1023           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1024
1025         TypeIdParens = SourceRange();
1026       }
1027     }
1028
1029     // ARC: warn about ABI issues.
1030     if (getLangOptions().ObjCAutoRefCount) {
1031       QualType BaseAllocType = Context.getBaseElementType(AllocType);
1032       if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1033         Diag(StartLoc, diag::warn_err_new_delete_object_array)
1034           << 0 << BaseAllocType;
1035     }
1036
1037     // Note that we do *not* convert the argument in any way.  It can
1038     // be signed, larger than size_t, whatever.
1039   }
1040
1041   FunctionDecl *OperatorNew = 0;
1042   FunctionDecl *OperatorDelete = 0;
1043   Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1044   unsigned NumPlaceArgs = PlacementArgs.size();
1045
1046   if (!AllocType->isDependentType() &&
1047       !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
1048       FindAllocationFunctions(StartLoc,
1049                               SourceRange(PlacementLParen, PlacementRParen),
1050                               UseGlobal, AllocType, ArraySize, PlaceArgs,
1051                               NumPlaceArgs, OperatorNew, OperatorDelete))
1052     return ExprError();
1053
1054   // If this is an array allocation, compute whether the usual array
1055   // deallocation function for the type has a size_t parameter.
1056   bool UsualArrayDeleteWantsSize = false;
1057   if (ArraySize && !AllocType->isDependentType())
1058     UsualArrayDeleteWantsSize
1059       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1060
1061   llvm::SmallVector<Expr *, 8> AllPlaceArgs;
1062   if (OperatorNew) {
1063     // Add default arguments, if any.
1064     const FunctionProtoType *Proto =
1065       OperatorNew->getType()->getAs<FunctionProtoType>();
1066     VariadicCallType CallType =
1067       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1068
1069     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1070                                Proto, 1, PlaceArgs, NumPlaceArgs,
1071                                AllPlaceArgs, CallType))
1072       return ExprError();
1073
1074     NumPlaceArgs = AllPlaceArgs.size();
1075     if (NumPlaceArgs > 0)
1076       PlaceArgs = &AllPlaceArgs[0];
1077   }
1078
1079   bool Init = ConstructorLParen.isValid();
1080   // --- Choosing a constructor ---
1081   CXXConstructorDecl *Constructor = 0;
1082   Expr **ConsArgs = (Expr**)ConstructorArgs.get();
1083   unsigned NumConsArgs = ConstructorArgs.size();
1084   ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
1085
1086   // Array 'new' can't have any initializers.
1087   if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
1088     SourceRange InitRange(ConsArgs[0]->getLocStart(),
1089                           ConsArgs[NumConsArgs - 1]->getLocEnd());
1090
1091     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1092     return ExprError();
1093   }
1094
1095   if (!AllocType->isDependentType() &&
1096       !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1097     // C++0x [expr.new]p15:
1098     //   A new-expression that creates an object of type T initializes that
1099     //   object as follows:
1100     InitializationKind Kind
1101     //     - If the new-initializer is omitted, the object is default-
1102     //       initialized (8.5); if no initialization is performed,
1103     //       the object has indeterminate value
1104       = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1105     //     - Otherwise, the new-initializer is interpreted according to the
1106     //       initialization rules of 8.5 for direct-initialization.
1107              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1108                                                 ConstructorLParen,
1109                                                 ConstructorRParen);
1110
1111     InitializedEntity Entity
1112       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1113     InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1114     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1115                                                 move(ConstructorArgs));
1116     if (FullInit.isInvalid())
1117       return ExprError();
1118
1119     // FullInit is our initializer; walk through it to determine if it's a
1120     // constructor call, which CXXNewExpr handles directly.
1121     if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1122       if (CXXBindTemporaryExpr *Binder
1123             = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1124         FullInitExpr = Binder->getSubExpr();
1125       if (CXXConstructExpr *Construct
1126                     = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1127         Constructor = Construct->getConstructor();
1128         for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1129                                          AEnd = Construct->arg_end();
1130              A != AEnd; ++A)
1131           ConvertedConstructorArgs.push_back(*A);
1132       } else {
1133         // Take the converted initializer.
1134         ConvertedConstructorArgs.push_back(FullInit.release());
1135       }
1136     } else {
1137       // No initialization required.
1138     }
1139
1140     // Take the converted arguments and use them for the new expression.
1141     NumConsArgs = ConvertedConstructorArgs.size();
1142     ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1143   }
1144
1145   // Mark the new and delete operators as referenced.
1146   if (OperatorNew)
1147     MarkDeclarationReferenced(StartLoc, OperatorNew);
1148   if (OperatorDelete)
1149     MarkDeclarationReferenced(StartLoc, OperatorDelete);
1150
1151   // C++0x [expr.new]p17:
1152   //   If the new expression creates an array of objects of class type,
1153   //   access and ambiguity control are done for the destructor.
1154   if (ArraySize && Constructor) {
1155     if (CXXDestructorDecl *dtor = LookupDestructor(Constructor->getParent())) {
1156       MarkDeclarationReferenced(StartLoc, dtor);
1157       CheckDestructorAccess(StartLoc, dtor, 
1158                             PDiag(diag::err_access_dtor)
1159                               << Context.getBaseElementType(AllocType));
1160     }
1161   }
1162
1163   PlacementArgs.release();
1164   ConstructorArgs.release();
1165
1166   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1167                                         PlaceArgs, NumPlaceArgs, TypeIdParens,
1168                                         ArraySize, Constructor, Init,
1169                                         ConsArgs, NumConsArgs, OperatorDelete,
1170                                         UsualArrayDeleteWantsSize,
1171                                         ResultType, AllocTypeInfo,
1172                                         StartLoc,
1173                                         Init ? ConstructorRParen :
1174                                                TypeRange.getEnd(),
1175                                         ConstructorLParen, ConstructorRParen));
1176 }
1177
1178 /// CheckAllocatedType - Checks that a type is suitable as the allocated type
1179 /// in a new-expression.
1180 /// dimension off and stores the size expression in ArraySize.
1181 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1182                               SourceRange R) {
1183   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1184   //   abstract class type or array thereof.
1185   if (AllocType->isFunctionType())
1186     return Diag(Loc, diag::err_bad_new_type)
1187       << AllocType << 0 << R;
1188   else if (AllocType->isReferenceType())
1189     return Diag(Loc, diag::err_bad_new_type)
1190       << AllocType << 1 << R;
1191   else if (!AllocType->isDependentType() &&
1192            RequireCompleteType(Loc, AllocType,
1193                                PDiag(diag::err_new_incomplete_type)
1194                                  << R))
1195     return true;
1196   else if (RequireNonAbstractType(Loc, AllocType,
1197                                   diag::err_allocation_of_abstract_type))
1198     return true;
1199   else if (AllocType->isVariablyModifiedType())
1200     return Diag(Loc, diag::err_variably_modified_new_type)
1201              << AllocType;
1202   else if (unsigned AddressSpace = AllocType.getAddressSpace())
1203     return Diag(Loc, diag::err_address_space_qualified_new)
1204       << AllocType.getUnqualifiedType() << AddressSpace;
1205   else if (getLangOptions().ObjCAutoRefCount) {
1206     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1207       QualType BaseAllocType = Context.getBaseElementType(AT);
1208       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1209           BaseAllocType->isObjCLifetimeType())
1210         return Diag(Loc, diag::err_arc_new_array_without_ownership)
1211           << BaseAllocType;
1212     }
1213   }
1214            
1215   return false;
1216 }
1217
1218 /// \brief Determine whether the given function is a non-placement
1219 /// deallocation function.
1220 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1221   if (FD->isInvalidDecl())
1222     return false;
1223
1224   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1225     return Method->isUsualDeallocationFunction();
1226
1227   return ((FD->getOverloadedOperator() == OO_Delete ||
1228            FD->getOverloadedOperator() == OO_Array_Delete) &&
1229           FD->getNumParams() == 1);
1230 }
1231
1232 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1233 /// that are appropriate for the allocation.
1234 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1235                                    bool UseGlobal, QualType AllocType,
1236                                    bool IsArray, Expr **PlaceArgs,
1237                                    unsigned NumPlaceArgs,
1238                                    FunctionDecl *&OperatorNew,
1239                                    FunctionDecl *&OperatorDelete) {
1240   // --- Choosing an allocation function ---
1241   // C++ 5.3.4p8 - 14 & 18
1242   // 1) If UseGlobal is true, only look in the global scope. Else, also look
1243   //   in the scope of the allocated class.
1244   // 2) If an array size is given, look for operator new[], else look for
1245   //   operator new.
1246   // 3) The first argument is always size_t. Append the arguments from the
1247   //   placement form.
1248
1249   llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1250   // We don't care about the actual value of this argument.
1251   // FIXME: Should the Sema create the expression and embed it in the syntax
1252   // tree? Or should the consumer just recalculate the value?
1253   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1254                       Context.Target.getPointerWidth(0)),
1255                       Context.getSizeType(),
1256                       SourceLocation());
1257   AllocArgs[0] = &Size;
1258   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1259
1260   // C++ [expr.new]p8:
1261   //   If the allocated type is a non-array type, the allocation
1262   //   function's name is operator new and the deallocation function's
1263   //   name is operator delete. If the allocated type is an array
1264   //   type, the allocation function's name is operator new[] and the
1265   //   deallocation function's name is operator delete[].
1266   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1267                                         IsArray ? OO_Array_New : OO_New);
1268   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1269                                         IsArray ? OO_Array_Delete : OO_Delete);
1270
1271   QualType AllocElemType = Context.getBaseElementType(AllocType);
1272
1273   if (AllocElemType->isRecordType() && !UseGlobal) {
1274     CXXRecordDecl *Record
1275       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1276     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1277                           AllocArgs.size(), Record, /*AllowMissing=*/true,
1278                           OperatorNew))
1279       return true;
1280   }
1281   if (!OperatorNew) {
1282     // Didn't find a member overload. Look for a global one.
1283     DeclareGlobalNewDelete();
1284     DeclContext *TUDecl = Context.getTranslationUnitDecl();
1285     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1286                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1287                           OperatorNew))
1288       return true;
1289   }
1290
1291   // We don't need an operator delete if we're running under
1292   // -fno-exceptions.
1293   if (!getLangOptions().Exceptions) {
1294     OperatorDelete = 0;
1295     return false;
1296   }
1297
1298   // FindAllocationOverload can change the passed in arguments, so we need to
1299   // copy them back.
1300   if (NumPlaceArgs > 0)
1301     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1302
1303   // C++ [expr.new]p19:
1304   //
1305   //   If the new-expression begins with a unary :: operator, the
1306   //   deallocation function's name is looked up in the global
1307   //   scope. Otherwise, if the allocated type is a class type T or an
1308   //   array thereof, the deallocation function's name is looked up in
1309   //   the scope of T. If this lookup fails to find the name, or if
1310   //   the allocated type is not a class type or array thereof, the
1311   //   deallocation function's name is looked up in the global scope.
1312   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1313   if (AllocElemType->isRecordType() && !UseGlobal) {
1314     CXXRecordDecl *RD
1315       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1316     LookupQualifiedName(FoundDelete, RD);
1317   }
1318   if (FoundDelete.isAmbiguous())
1319     return true; // FIXME: clean up expressions?
1320
1321   if (FoundDelete.empty()) {
1322     DeclareGlobalNewDelete();
1323     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1324   }
1325
1326   FoundDelete.suppressDiagnostics();
1327
1328   llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1329
1330   // Whether we're looking for a placement operator delete is dictated
1331   // by whether we selected a placement operator new, not by whether
1332   // we had explicit placement arguments.  This matters for things like
1333   //   struct A { void *operator new(size_t, int = 0); ... };
1334   //   A *a = new A()
1335   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1336
1337   if (isPlacementNew) {
1338     // C++ [expr.new]p20:
1339     //   A declaration of a placement deallocation function matches the
1340     //   declaration of a placement allocation function if it has the
1341     //   same number of parameters and, after parameter transformations
1342     //   (8.3.5), all parameter types except the first are
1343     //   identical. [...]
1344     //
1345     // To perform this comparison, we compute the function type that
1346     // the deallocation function should have, and use that type both
1347     // for template argument deduction and for comparison purposes.
1348     //
1349     // FIXME: this comparison should ignore CC and the like.
1350     QualType ExpectedFunctionType;
1351     {
1352       const FunctionProtoType *Proto
1353         = OperatorNew->getType()->getAs<FunctionProtoType>();
1354
1355       llvm::SmallVector<QualType, 4> ArgTypes;
1356       ArgTypes.push_back(Context.VoidPtrTy);
1357       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1358         ArgTypes.push_back(Proto->getArgType(I));
1359
1360       FunctionProtoType::ExtProtoInfo EPI;
1361       EPI.Variadic = Proto->isVariadic();
1362
1363       ExpectedFunctionType
1364         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1365                                   ArgTypes.size(), EPI);
1366     }
1367
1368     for (LookupResult::iterator D = FoundDelete.begin(),
1369                              DEnd = FoundDelete.end();
1370          D != DEnd; ++D) {
1371       FunctionDecl *Fn = 0;
1372       if (FunctionTemplateDecl *FnTmpl
1373             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1374         // Perform template argument deduction to try to match the
1375         // expected function type.
1376         TemplateDeductionInfo Info(Context, StartLoc);
1377         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1378           continue;
1379       } else
1380         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1381
1382       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1383         Matches.push_back(std::make_pair(D.getPair(), Fn));
1384     }
1385   } else {
1386     // C++ [expr.new]p20:
1387     //   [...] Any non-placement deallocation function matches a
1388     //   non-placement allocation function. [...]
1389     for (LookupResult::iterator D = FoundDelete.begin(),
1390                              DEnd = FoundDelete.end();
1391          D != DEnd; ++D) {
1392       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1393         if (isNonPlacementDeallocationFunction(Fn))
1394           Matches.push_back(std::make_pair(D.getPair(), Fn));
1395     }
1396   }
1397
1398   // C++ [expr.new]p20:
1399   //   [...] If the lookup finds a single matching deallocation
1400   //   function, that function will be called; otherwise, no
1401   //   deallocation function will be called.
1402   if (Matches.size() == 1) {
1403     OperatorDelete = Matches[0].second;
1404
1405     // C++0x [expr.new]p20:
1406     //   If the lookup finds the two-parameter form of a usual
1407     //   deallocation function (3.7.4.2) and that function, considered
1408     //   as a placement deallocation function, would have been
1409     //   selected as a match for the allocation function, the program
1410     //   is ill-formed.
1411     if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1412         isNonPlacementDeallocationFunction(OperatorDelete)) {
1413       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1414         << SourceRange(PlaceArgs[0]->getLocStart(),
1415                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1416       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1417         << DeleteName;
1418     } else {
1419       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1420                             Matches[0].first);
1421     }
1422   }
1423
1424   return false;
1425 }
1426
1427 /// FindAllocationOverload - Find an fitting overload for the allocation
1428 /// function in the specified scope.
1429 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1430                                   DeclarationName Name, Expr** Args,
1431                                   unsigned NumArgs, DeclContext *Ctx,
1432                                   bool AllowMissing, FunctionDecl *&Operator,
1433                                   bool Diagnose) {
1434   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1435   LookupQualifiedName(R, Ctx);
1436   if (R.empty()) {
1437     if (AllowMissing || !Diagnose)
1438       return false;
1439     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1440       << Name << Range;
1441   }
1442
1443   if (R.isAmbiguous())
1444     return true;
1445
1446   R.suppressDiagnostics();
1447
1448   OverloadCandidateSet Candidates(StartLoc);
1449   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1450        Alloc != AllocEnd; ++Alloc) {
1451     // Even member operator new/delete are implicitly treated as
1452     // static, so don't use AddMemberCandidate.
1453     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1454
1455     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1456       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1457                                    /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1458                                    Candidates,
1459                                    /*SuppressUserConversions=*/false);
1460       continue;
1461     }
1462
1463     FunctionDecl *Fn = cast<FunctionDecl>(D);
1464     AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1465                          /*SuppressUserConversions=*/false);
1466   }
1467
1468   // Do the resolution.
1469   OverloadCandidateSet::iterator Best;
1470   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1471   case OR_Success: {
1472     // Got one!
1473     FunctionDecl *FnDecl = Best->Function;
1474     MarkDeclarationReferenced(StartLoc, FnDecl);
1475     // The first argument is size_t, and the first parameter must be size_t,
1476     // too. This is checked on declaration and can be assumed. (It can't be
1477     // asserted on, though, since invalid decls are left in there.)
1478     // Watch out for variadic allocator function.
1479     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1480     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1481       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1482                                                        FnDecl->getParamDecl(i));
1483
1484       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1485         return true;
1486
1487       ExprResult Result
1488         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1489       if (Result.isInvalid())
1490         return true;
1491
1492       Args[i] = Result.takeAs<Expr>();
1493     }
1494     Operator = FnDecl;
1495     CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
1496                           Diagnose);
1497     return false;
1498   }
1499
1500   case OR_No_Viable_Function:
1501     if (Diagnose) {
1502       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1503         << Name << Range;
1504       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1505     }
1506     return true;
1507
1508   case OR_Ambiguous:
1509     if (Diagnose) {
1510       Diag(StartLoc, diag::err_ovl_ambiguous_call)
1511         << Name << Range;
1512       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1513     }
1514     return true;
1515
1516   case OR_Deleted: {
1517     if (Diagnose) {
1518       Diag(StartLoc, diag::err_ovl_deleted_call)
1519         << Best->Function->isDeleted()
1520         << Name 
1521         << getDeletedOrUnavailableSuffix(Best->Function)
1522         << Range;
1523       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1524     }
1525     return true;
1526   }
1527   }
1528   assert(false && "Unreachable, bad result from BestViableFunction");
1529   return true;
1530 }
1531
1532
1533 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1534 /// delete. These are:
1535 /// @code
1536 ///   // C++03:
1537 ///   void* operator new(std::size_t) throw(std::bad_alloc);
1538 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
1539 ///   void operator delete(void *) throw();
1540 ///   void operator delete[](void *) throw();
1541 ///   // C++0x:
1542 ///   void* operator new(std::size_t);
1543 ///   void* operator new[](std::size_t);
1544 ///   void operator delete(void *);
1545 ///   void operator delete[](void *);
1546 /// @endcode
1547 /// C++0x operator delete is implicitly noexcept.
1548 /// Note that the placement and nothrow forms of new are *not* implicitly
1549 /// declared. Their use requires including \<new\>.
1550 void Sema::DeclareGlobalNewDelete() {
1551   if (GlobalNewDeleteDeclared)
1552     return;
1553
1554   // C++ [basic.std.dynamic]p2:
1555   //   [...] The following allocation and deallocation functions (18.4) are
1556   //   implicitly declared in global scope in each translation unit of a
1557   //   program
1558   //
1559   //     C++03:
1560   //     void* operator new(std::size_t) throw(std::bad_alloc);
1561   //     void* operator new[](std::size_t) throw(std::bad_alloc);
1562   //     void  operator delete(void*) throw();
1563   //     void  operator delete[](void*) throw();
1564   //     C++0x:
1565   //     void* operator new(std::size_t);
1566   //     void* operator new[](std::size_t);
1567   //     void  operator delete(void*);
1568   //     void  operator delete[](void*);
1569   //
1570   //   These implicit declarations introduce only the function names operator
1571   //   new, operator new[], operator delete, operator delete[].
1572   //
1573   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1574   // "std" or "bad_alloc" as necessary to form the exception specification.
1575   // However, we do not make these implicit declarations visible to name
1576   // lookup.
1577   // Note that the C++0x versions of operator delete are deallocation functions,
1578   // and thus are implicitly noexcept.
1579   if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1580     // The "std::bad_alloc" class has not yet been declared, so build it
1581     // implicitly.
1582     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1583                                         getOrCreateStdNamespace(),
1584                                         SourceLocation(), SourceLocation(),
1585                                       &PP.getIdentifierTable().get("bad_alloc"),
1586                                         0);
1587     getStdBadAlloc()->setImplicit(true);
1588   }
1589
1590   GlobalNewDeleteDeclared = true;
1591
1592   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1593   QualType SizeT = Context.getSizeType();
1594   bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1595
1596   DeclareGlobalAllocationFunction(
1597       Context.DeclarationNames.getCXXOperatorName(OO_New),
1598       VoidPtr, SizeT, AssumeSaneOperatorNew);
1599   DeclareGlobalAllocationFunction(
1600       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1601       VoidPtr, SizeT, AssumeSaneOperatorNew);
1602   DeclareGlobalAllocationFunction(
1603       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1604       Context.VoidTy, VoidPtr);
1605   DeclareGlobalAllocationFunction(
1606       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1607       Context.VoidTy, VoidPtr);
1608 }
1609
1610 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1611 /// allocation function if it doesn't already exist.
1612 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1613                                            QualType Return, QualType Argument,
1614                                            bool AddMallocAttr) {
1615   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1616
1617   // Check if this function is already declared.
1618   {
1619     DeclContext::lookup_iterator Alloc, AllocEnd;
1620     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1621          Alloc != AllocEnd; ++Alloc) {
1622       // Only look at non-template functions, as it is the predefined,
1623       // non-templated allocation function we are trying to declare here.
1624       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1625         QualType InitialParamType =
1626           Context.getCanonicalType(
1627             Func->getParamDecl(0)->getType().getUnqualifiedType());
1628         // FIXME: Do we need to check for default arguments here?
1629         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1630           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1631             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1632           return;
1633         }
1634       }
1635     }
1636   }
1637
1638   QualType BadAllocType;
1639   bool HasBadAllocExceptionSpec
1640     = (Name.getCXXOverloadedOperator() == OO_New ||
1641        Name.getCXXOverloadedOperator() == OO_Array_New);
1642   if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1643     assert(StdBadAlloc && "Must have std::bad_alloc declared");
1644     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1645   }
1646
1647   FunctionProtoType::ExtProtoInfo EPI;
1648   if (HasBadAllocExceptionSpec) {
1649     if (!getLangOptions().CPlusPlus0x) {
1650       EPI.ExceptionSpecType = EST_Dynamic;
1651       EPI.NumExceptions = 1;
1652       EPI.Exceptions = &BadAllocType;
1653     }
1654   } else {
1655     EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1656                                 EST_BasicNoexcept : EST_DynamicNone;
1657   }
1658
1659   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1660   FunctionDecl *Alloc =
1661     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1662                          SourceLocation(), Name,
1663                          FnType, /*TInfo=*/0, SC_None,
1664                          SC_None, false, true);
1665   Alloc->setImplicit();
1666
1667   if (AddMallocAttr)
1668     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1669
1670   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1671                                            SourceLocation(), 0,
1672                                            Argument, /*TInfo=*/0,
1673                                            SC_None, SC_None, 0);
1674   Alloc->setParams(&Param, 1);
1675
1676   // FIXME: Also add this declaration to the IdentifierResolver, but
1677   // make sure it is at the end of the chain to coincide with the
1678   // global scope.
1679   Context.getTranslationUnitDecl()->addDecl(Alloc);
1680 }
1681
1682 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1683                                     DeclarationName Name,
1684                                     FunctionDecl* &Operator, bool Diagnose) {
1685   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1686   // Try to find operator delete/operator delete[] in class scope.
1687   LookupQualifiedName(Found, RD);
1688
1689   if (Found.isAmbiguous())
1690     return true;
1691
1692   Found.suppressDiagnostics();
1693
1694   llvm::SmallVector<DeclAccessPair,4> Matches;
1695   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1696        F != FEnd; ++F) {
1697     NamedDecl *ND = (*F)->getUnderlyingDecl();
1698
1699     // Ignore template operator delete members from the check for a usual
1700     // deallocation function.
1701     if (isa<FunctionTemplateDecl>(ND))
1702       continue;
1703
1704     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1705       Matches.push_back(F.getPair());
1706   }
1707
1708   // There's exactly one suitable operator;  pick it.
1709   if (Matches.size() == 1) {
1710     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1711
1712     if (Operator->isDeleted()) {
1713       if (Diagnose) {
1714         Diag(StartLoc, diag::err_deleted_function_use);
1715         Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
1716       }
1717       return true;
1718     }
1719
1720     CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1721                           Matches[0], Diagnose);
1722     return false;
1723
1724   // We found multiple suitable operators;  complain about the ambiguity.
1725   } else if (!Matches.empty()) {
1726     if (Diagnose) {
1727       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1728         << Name << RD;
1729
1730       for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1731              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1732         Diag((*F)->getUnderlyingDecl()->getLocation(),
1733              diag::note_member_declared_here) << Name;
1734     }
1735     return true;
1736   }
1737
1738   // We did find operator delete/operator delete[] declarations, but
1739   // none of them were suitable.
1740   if (!Found.empty()) {
1741     if (Diagnose) {
1742       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1743         << Name << RD;
1744
1745       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1746            F != FEnd; ++F)
1747         Diag((*F)->getUnderlyingDecl()->getLocation(),
1748              diag::note_member_declared_here) << Name;
1749     }
1750     return true;
1751   }
1752
1753   // Look for a global declaration.
1754   DeclareGlobalNewDelete();
1755   DeclContext *TUDecl = Context.getTranslationUnitDecl();
1756
1757   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1758   Expr* DeallocArgs[1];
1759   DeallocArgs[0] = &Null;
1760   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1761                              DeallocArgs, 1, TUDecl, !Diagnose,
1762                              Operator, Diagnose))
1763     return true;
1764
1765   assert(Operator && "Did not find a deallocation function!");
1766   return false;
1767 }
1768
1769 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1770 /// @code ::delete ptr; @endcode
1771 /// or
1772 /// @code delete [] ptr; @endcode
1773 ExprResult
1774 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1775                      bool ArrayForm, Expr *ExE) {
1776   // C++ [expr.delete]p1:
1777   //   The operand shall have a pointer type, or a class type having a single
1778   //   conversion function to a pointer type. The result has type void.
1779   //
1780   // DR599 amends "pointer type" to "pointer to object type" in both cases.
1781
1782   ExprResult Ex = Owned(ExE);
1783   FunctionDecl *OperatorDelete = 0;
1784   bool ArrayFormAsWritten = ArrayForm;
1785   bool UsualArrayDeleteWantsSize = false;
1786
1787   if (!Ex.get()->isTypeDependent()) {
1788     QualType Type = Ex.get()->getType();
1789
1790     if (const RecordType *Record = Type->getAs<RecordType>()) {
1791       if (RequireCompleteType(StartLoc, Type,
1792                               PDiag(diag::err_delete_incomplete_class_type)))
1793         return ExprError();
1794
1795       llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1796
1797       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1798       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1799       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1800              E = Conversions->end(); I != E; ++I) {
1801         NamedDecl *D = I.getDecl();
1802         if (isa<UsingShadowDecl>(D))
1803           D = cast<UsingShadowDecl>(D)->getTargetDecl();
1804
1805         // Skip over templated conversion functions; they aren't considered.
1806         if (isa<FunctionTemplateDecl>(D))
1807           continue;
1808
1809         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1810
1811         QualType ConvType = Conv->getConversionType().getNonReferenceType();
1812         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1813           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1814             ObjectPtrConversions.push_back(Conv);
1815       }
1816       if (ObjectPtrConversions.size() == 1) {
1817         // We have a single conversion to a pointer-to-object type. Perform
1818         // that conversion.
1819         // TODO: don't redo the conversion calculation.
1820         ExprResult Res =
1821           PerformImplicitConversion(Ex.get(),
1822                             ObjectPtrConversions.front()->getConversionType(),
1823                                     AA_Converting);
1824         if (Res.isUsable()) {
1825           Ex = move(Res);
1826           Type = Ex.get()->getType();
1827         }
1828       }
1829       else if (ObjectPtrConversions.size() > 1) {
1830         Diag(StartLoc, diag::err_ambiguous_delete_operand)
1831               << Type << Ex.get()->getSourceRange();
1832         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1833           NoteOverloadCandidate(ObjectPtrConversions[i]);
1834         return ExprError();
1835       }
1836     }
1837
1838     if (!Type->isPointerType())
1839       return ExprError(Diag(StartLoc, diag::err_delete_operand)
1840         << Type << Ex.get()->getSourceRange());
1841
1842     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1843     if (Pointee->isVoidType() && !isSFINAEContext()) {
1844       // The C++ standard bans deleting a pointer to a non-object type, which
1845       // effectively bans deletion of "void*". However, most compilers support
1846       // this, so we treat it as a warning unless we're in a SFINAE context.
1847       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1848         << Type << Ex.get()->getSourceRange();
1849     } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1850       return ExprError(Diag(StartLoc, diag::err_delete_operand)
1851         << Type << Ex.get()->getSourceRange());
1852     else if (!Pointee->isDependentType() &&
1853              RequireCompleteType(StartLoc, Pointee,
1854                                  PDiag(diag::warn_delete_incomplete)
1855                                    << Ex.get()->getSourceRange()))
1856       return ExprError();
1857     else if (unsigned AddressSpace = Pointee.getAddressSpace())
1858       return Diag(Ex.get()->getLocStart(), 
1859                   diag::err_address_space_qualified_delete)
1860                << Pointee.getUnqualifiedType() << AddressSpace;
1861     // C++ [expr.delete]p2:
1862     //   [Note: a pointer to a const type can be the operand of a
1863     //   delete-expression; it is not necessary to cast away the constness
1864     //   (5.2.11) of the pointer expression before it is used as the operand
1865     //   of the delete-expression. ]
1866     if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
1867       Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, CK_NoOp,
1868                                           Ex.take(), 0, VK_RValue));
1869
1870     if (Pointee->isArrayType() && !ArrayForm) {
1871       Diag(StartLoc, diag::warn_delete_array_type)
1872           << Type << Ex.get()->getSourceRange()
1873           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1874       ArrayForm = true;
1875     }
1876
1877     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1878                                       ArrayForm ? OO_Array_Delete : OO_Delete);
1879
1880     QualType PointeeElem = Context.getBaseElementType(Pointee);
1881     if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1882       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1883
1884       if (!UseGlobal &&
1885           FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1886         return ExprError();
1887
1888       // If we're allocating an array of records, check whether the
1889       // usual operator delete[] has a size_t parameter.
1890       if (ArrayForm) {
1891         // If the user specifically asked to use the global allocator,
1892         // we'll need to do the lookup into the class.
1893         if (UseGlobal)
1894           UsualArrayDeleteWantsSize =
1895             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1896
1897         // Otherwise, the usual operator delete[] should be the
1898         // function we just found.
1899         else if (isa<CXXMethodDecl>(OperatorDelete))
1900           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1901       }
1902
1903       if (!RD->hasTrivialDestructor())
1904         if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1905           MarkDeclarationReferenced(StartLoc,
1906                                     const_cast<CXXDestructorDecl*>(Dtor));
1907           DiagnoseUseOfDecl(Dtor, StartLoc);
1908         }
1909
1910       // C++ [expr.delete]p3:
1911       //   In the first alternative (delete object), if the static type of the
1912       //   object to be deleted is different from its dynamic type, the static
1913       //   type shall be a base class of the dynamic type of the object to be
1914       //   deleted and the static type shall have a virtual destructor or the
1915       //   behavior is undefined.
1916       //
1917       // Note: a final class cannot be derived from, no issue there
1918       if (!ArrayForm && RD->isPolymorphic() && !RD->hasAttr<FinalAttr>()) {
1919         CXXDestructorDecl *dtor = RD->getDestructor();
1920         if (!dtor || !dtor->isVirtual())
1921           Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
1922       }
1923
1924     } else if (getLangOptions().ObjCAutoRefCount &&
1925                PointeeElem->isObjCLifetimeType() &&
1926                (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
1927                 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
1928                ArrayForm) {
1929       Diag(StartLoc, diag::warn_err_new_delete_object_array)
1930         << 1 << PointeeElem;
1931     }
1932
1933     if (!OperatorDelete) {
1934       // Look for a global declaration.
1935       DeclareGlobalNewDelete();
1936       DeclContext *TUDecl = Context.getTranslationUnitDecl();
1937       Expr *Arg = Ex.get();
1938       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1939                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
1940                                  OperatorDelete))
1941         return ExprError();
1942     }
1943
1944     MarkDeclarationReferenced(StartLoc, OperatorDelete);
1945     
1946     // Check access and ambiguity of operator delete and destructor.
1947     if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1948       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1949       if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1950           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 
1951                       PDiag(diag::err_access_dtor) << PointeeElem);
1952       }
1953     }
1954
1955   }
1956
1957   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1958                                            ArrayFormAsWritten,
1959                                            UsualArrayDeleteWantsSize,
1960                                            OperatorDelete, Ex.take(), StartLoc));
1961 }
1962
1963 /// \brief Check the use of the given variable as a C++ condition in an if,
1964 /// while, do-while, or switch statement.
1965 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1966                                         SourceLocation StmtLoc,
1967                                         bool ConvertToBoolean) {
1968   QualType T = ConditionVar->getType();
1969
1970   // C++ [stmt.select]p2:
1971   //   The declarator shall not specify a function or an array.
1972   if (T->isFunctionType())
1973     return ExprError(Diag(ConditionVar->getLocation(),
1974                           diag::err_invalid_use_of_function_type)
1975                        << ConditionVar->getSourceRange());
1976   else if (T->isArrayType())
1977     return ExprError(Diag(ConditionVar->getLocation(),
1978                           diag::err_invalid_use_of_array_type)
1979                      << ConditionVar->getSourceRange());
1980
1981   ExprResult Condition =
1982     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), 
1983                                         ConditionVar,
1984                                         ConditionVar->getLocation(),
1985                             ConditionVar->getType().getNonReferenceType(),
1986                               VK_LValue));
1987   if (ConvertToBoolean) {
1988     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
1989     if (Condition.isInvalid())
1990       return ExprError();
1991   }
1992
1993   return move(Condition);
1994 }
1995
1996 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1997 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
1998   // C++ 6.4p4:
1999   // The value of a condition that is an initialized declaration in a statement
2000   // other than a switch statement is the value of the declared variable
2001   // implicitly converted to type bool. If that conversion is ill-formed, the
2002   // program is ill-formed.
2003   // The value of a condition that is an expression is the value of the
2004   // expression, implicitly converted to bool.
2005   //
2006   return PerformContextuallyConvertToBool(CondExpr);
2007 }
2008
2009 /// Helper function to determine whether this is the (deprecated) C++
2010 /// conversion from a string literal to a pointer to non-const char or
2011 /// non-const wchar_t (for narrow and wide string literals,
2012 /// respectively).
2013 bool
2014 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2015   // Look inside the implicit cast, if it exists.
2016   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2017     From = Cast->getSubExpr();
2018
2019   // A string literal (2.13.4) that is not a wide string literal can
2020   // be converted to an rvalue of type "pointer to char"; a wide
2021   // string literal can be converted to an rvalue of type "pointer
2022   // to wchar_t" (C++ 4.2p2).
2023   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2024     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2025       if (const BuiltinType *ToPointeeType
2026           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2027         // This conversion is considered only when there is an
2028         // explicit appropriate pointer target type (C++ 4.2p2).
2029         if (!ToPtrType->getPointeeType().hasQualifiers() &&
2030             ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
2031              (!StrLit->isWide() &&
2032               (ToPointeeType->getKind() == BuiltinType::Char_U ||
2033                ToPointeeType->getKind() == BuiltinType::Char_S))))
2034           return true;
2035       }
2036
2037   return false;
2038 }
2039
2040 static ExprResult BuildCXXCastArgument(Sema &S,
2041                                        SourceLocation CastLoc,
2042                                        QualType Ty,
2043                                        CastKind Kind,
2044                                        CXXMethodDecl *Method,
2045                                        NamedDecl *FoundDecl,
2046                                        Expr *From) {
2047   switch (Kind) {
2048   default: assert(0 && "Unhandled cast kind!");
2049   case CK_ConstructorConversion: {
2050     ASTOwningVector<Expr*> ConstructorArgs(S);
2051
2052     if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
2053                                   MultiExprArg(&From, 1),
2054                                   CastLoc, ConstructorArgs))
2055       return ExprError();
2056
2057     ExprResult Result =
2058     S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2059                             move_arg(ConstructorArgs),
2060                             /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
2061                             SourceRange());
2062     if (Result.isInvalid())
2063       return ExprError();
2064
2065     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2066   }
2067
2068   case CK_UserDefinedConversion: {
2069     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2070
2071     // Create an implicit call expr that calls it.
2072     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
2073     if (Result.isInvalid())
2074       return ExprError();
2075
2076     return S.MaybeBindToTemporary(Result.get());
2077   }
2078   }
2079 }
2080
2081 /// PerformImplicitConversion - Perform an implicit conversion of the
2082 /// expression From to the type ToType using the pre-computed implicit
2083 /// conversion sequence ICS. Returns the converted
2084 /// expression. Action is the kind of conversion we're performing,
2085 /// used in the error message.
2086 ExprResult
2087 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2088                                 const ImplicitConversionSequence &ICS,
2089                                 AssignmentAction Action, 
2090                                 CheckedConversionKind CCK) {
2091   switch (ICS.getKind()) {
2092   case ImplicitConversionSequence::StandardConversion: {
2093     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2094                                                Action, CCK);
2095     if (Res.isInvalid())
2096       return ExprError();
2097     From = Res.take();
2098     break;
2099   }
2100
2101   case ImplicitConversionSequence::UserDefinedConversion: {
2102
2103       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2104       CastKind CastKind;
2105       QualType BeforeToType;
2106       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2107         CastKind = CK_UserDefinedConversion;
2108
2109         // If the user-defined conversion is specified by a conversion function,
2110         // the initial standard conversion sequence converts the source type to
2111         // the implicit object parameter of the conversion function.
2112         BeforeToType = Context.getTagDeclType(Conv->getParent());
2113       } else {
2114         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2115         CastKind = CK_ConstructorConversion;
2116         // Do no conversion if dealing with ... for the first conversion.
2117         if (!ICS.UserDefined.EllipsisConversion) {
2118           // If the user-defined conversion is specified by a constructor, the
2119           // initial standard conversion sequence converts the source type to the
2120           // type required by the argument of the constructor
2121           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2122         }
2123       }
2124       // Watch out for elipsis conversion.
2125       if (!ICS.UserDefined.EllipsisConversion) {
2126         ExprResult Res =
2127           PerformImplicitConversion(From, BeforeToType,
2128                                     ICS.UserDefined.Before, AA_Converting,
2129                                     CCK);
2130         if (Res.isInvalid())
2131           return ExprError();
2132         From = Res.take();
2133       }
2134
2135       ExprResult CastArg
2136         = BuildCXXCastArgument(*this,
2137                                From->getLocStart(),
2138                                ToType.getNonReferenceType(),
2139                                CastKind, cast<CXXMethodDecl>(FD),
2140                                ICS.UserDefined.FoundConversionFunction,
2141                                From);
2142
2143       if (CastArg.isInvalid())
2144         return ExprError();
2145
2146       From = CastArg.take();
2147
2148       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2149                                        AA_Converting, CCK);
2150   }
2151
2152   case ImplicitConversionSequence::AmbiguousConversion:
2153     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2154                           PDiag(diag::err_typecheck_ambiguous_condition)
2155                             << From->getSourceRange());
2156      return ExprError();
2157
2158   case ImplicitConversionSequence::EllipsisConversion:
2159     assert(false && "Cannot perform an ellipsis conversion");
2160     return Owned(From);
2161
2162   case ImplicitConversionSequence::BadConversion:
2163     return ExprError();
2164   }
2165
2166   // Everything went well.
2167   return Owned(From);
2168 }
2169
2170 /// PerformImplicitConversion - Perform an implicit conversion of the
2171 /// expression From to the type ToType by following the standard
2172 /// conversion sequence SCS. Returns the converted
2173 /// expression. Flavor is the context in which we're performing this
2174 /// conversion, for use in error messages.
2175 ExprResult
2176 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2177                                 const StandardConversionSequence& SCS,
2178                                 AssignmentAction Action, 
2179                                 CheckedConversionKind CCK) {
2180   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2181   
2182   // Overall FIXME: we are recomputing too many types here and doing far too
2183   // much extra work. What this means is that we need to keep track of more
2184   // information that is computed when we try the implicit conversion initially,
2185   // so that we don't need to recompute anything here.
2186   QualType FromType = From->getType();
2187   
2188   if (SCS.CopyConstructor) {
2189     // FIXME: When can ToType be a reference type?
2190     assert(!ToType->isReferenceType());
2191     if (SCS.Second == ICK_Derived_To_Base) {
2192       ASTOwningVector<Expr*> ConstructorArgs(*this);
2193       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2194                                   MultiExprArg(*this, &From, 1),
2195                                   /*FIXME:ConstructLoc*/SourceLocation(),
2196                                   ConstructorArgs))
2197         return ExprError();
2198       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2199                                    ToType, SCS.CopyConstructor,
2200                                    move_arg(ConstructorArgs),
2201                                    /*ZeroInit*/ false,
2202                                    CXXConstructExpr::CK_Complete,
2203                                    SourceRange());
2204     }
2205     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2206                                  ToType, SCS.CopyConstructor,
2207                                  MultiExprArg(*this, &From, 1),
2208                                  /*ZeroInit*/ false,
2209                                  CXXConstructExpr::CK_Complete,
2210                                  SourceRange());
2211   }
2212
2213   // Resolve overloaded function references.
2214   if (Context.hasSameType(FromType, Context.OverloadTy)) {
2215     DeclAccessPair Found;
2216     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2217                                                           true, Found);
2218     if (!Fn)
2219       return ExprError();
2220
2221     if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2222       return ExprError();
2223
2224     From = FixOverloadedFunctionReference(From, Found, Fn);
2225     FromType = From->getType();
2226   }
2227
2228   // Perform the first implicit conversion.
2229   switch (SCS.First) {
2230   case ICK_Identity:
2231     // Nothing to do.
2232     break;
2233
2234   case ICK_Lvalue_To_Rvalue:
2235     // Should this get its own ICK?
2236     if (From->getObjectKind() == OK_ObjCProperty) {
2237       ExprResult FromRes = ConvertPropertyForRValue(From);
2238       if (FromRes.isInvalid())
2239         return ExprError();
2240       From = FromRes.take();
2241       if (!From->isGLValue()) break;
2242     }
2243
2244     // Check for trivial buffer overflows.
2245     CheckArrayAccess(From);
2246
2247     FromType = FromType.getUnqualifiedType();
2248     From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2249                                     From, 0, VK_RValue);
2250     break;
2251
2252   case ICK_Array_To_Pointer:
2253     FromType = Context.getArrayDecayedType(FromType);
2254     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 
2255                              VK_RValue, /*BasePath=*/0, CCK).take();
2256     break;
2257
2258   case ICK_Function_To_Pointer:
2259     FromType = Context.getPointerType(FromType);
2260     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 
2261                              VK_RValue, /*BasePath=*/0, CCK).take();
2262     break;
2263
2264   default:
2265     assert(false && "Improper first standard conversion");
2266     break;
2267   }
2268
2269   // Perform the second implicit conversion
2270   switch (SCS.Second) {
2271   case ICK_Identity:
2272     // If both sides are functions (or pointers/references to them), there could
2273     // be incompatible exception declarations.
2274     if (CheckExceptionSpecCompatibility(From, ToType))
2275       return ExprError();
2276     // Nothing else to do.
2277     break;
2278
2279   case ICK_NoReturn_Adjustment:
2280     // If both sides are functions (or pointers/references to them), there could
2281     // be incompatible exception declarations.
2282     if (CheckExceptionSpecCompatibility(From, ToType))
2283       return ExprError();
2284
2285     From = ImpCastExprToType(From, ToType, CK_NoOp, 
2286                              VK_RValue, /*BasePath=*/0, CCK).take();
2287     break;
2288
2289   case ICK_Integral_Promotion:
2290   case ICK_Integral_Conversion:
2291     From = ImpCastExprToType(From, ToType, CK_IntegralCast, 
2292                              VK_RValue, /*BasePath=*/0, CCK).take();
2293     break;
2294
2295   case ICK_Floating_Promotion:
2296   case ICK_Floating_Conversion:
2297     From = ImpCastExprToType(From, ToType, CK_FloatingCast, 
2298                              VK_RValue, /*BasePath=*/0, CCK).take();
2299     break;
2300
2301   case ICK_Complex_Promotion:
2302   case ICK_Complex_Conversion: {
2303     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2304     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2305     CastKind CK;
2306     if (FromEl->isRealFloatingType()) {
2307       if (ToEl->isRealFloatingType())
2308         CK = CK_FloatingComplexCast;
2309       else
2310         CK = CK_FloatingComplexToIntegralComplex;
2311     } else if (ToEl->isRealFloatingType()) {
2312       CK = CK_IntegralComplexToFloatingComplex;
2313     } else {
2314       CK = CK_IntegralComplexCast;
2315     }
2316     From = ImpCastExprToType(From, ToType, CK, 
2317                              VK_RValue, /*BasePath=*/0, CCK).take();
2318     break;
2319   }
2320
2321   case ICK_Floating_Integral:
2322     if (ToType->isRealFloatingType())
2323       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 
2324                                VK_RValue, /*BasePath=*/0, CCK).take();
2325     else
2326       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 
2327                                VK_RValue, /*BasePath=*/0, CCK).take();
2328     break;
2329
2330   case ICK_Compatible_Conversion:
2331       From = ImpCastExprToType(From, ToType, CK_NoOp, 
2332                                VK_RValue, /*BasePath=*/0, CCK).take();
2333     break;
2334
2335   case ICK_Writeback_Conversion:
2336   case ICK_Pointer_Conversion: {
2337     if (SCS.IncompatibleObjC && Action != AA_Casting) {
2338       // Diagnose incompatible Objective-C conversions
2339       if (Action == AA_Initializing || Action == AA_Assigning)
2340         Diag(From->getSourceRange().getBegin(),
2341              diag::ext_typecheck_convert_incompatible_pointer)
2342           << ToType << From->getType() << Action
2343           << From->getSourceRange();
2344       else
2345         Diag(From->getSourceRange().getBegin(),
2346              diag::ext_typecheck_convert_incompatible_pointer)
2347           << From->getType() << ToType << Action
2348           << From->getSourceRange();
2349
2350       if (From->getType()->isObjCObjectPointerType() &&
2351           ToType->isObjCObjectPointerType())
2352         EmitRelatedResultTypeNote(From);
2353     } 
2354     else if (getLangOptions().ObjCAutoRefCount &&
2355              !CheckObjCARCUnavailableWeakConversion(ToType, 
2356                                                     From->getType())) {
2357            if (Action == AA_Initializing)
2358              Diag(From->getSourceRange().getBegin(), 
2359                   diag::err_arc_weak_unavailable_assign);
2360            else
2361              Diag(From->getSourceRange().getBegin(),
2362                   diag::err_arc_convesion_of_weak_unavailable) 
2363                   << (Action == AA_Casting) << From->getType() << ToType 
2364                   << From->getSourceRange();
2365          }
2366              
2367     CastKind Kind = CK_Invalid;
2368     CXXCastPath BasePath;
2369     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2370       return ExprError();
2371     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2372              .take();
2373     break;
2374   }
2375
2376   case ICK_Pointer_Member: {
2377     CastKind Kind = CK_Invalid;
2378     CXXCastPath BasePath;
2379     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2380       return ExprError();
2381     if (CheckExceptionSpecCompatibility(From, ToType))
2382       return ExprError();
2383     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2384              .take();
2385     break;
2386   }
2387
2388   case ICK_Boolean_Conversion:
2389     From = ImpCastExprToType(From, Context.BoolTy,
2390                              ScalarTypeToBooleanCastKind(FromType), 
2391                              VK_RValue, /*BasePath=*/0, CCK).take();
2392     break;
2393
2394   case ICK_Derived_To_Base: {
2395     CXXCastPath BasePath;
2396     if (CheckDerivedToBaseConversion(From->getType(),
2397                                      ToType.getNonReferenceType(),
2398                                      From->getLocStart(),
2399                                      From->getSourceRange(),
2400                                      &BasePath,
2401                                      CStyle))
2402       return ExprError();
2403
2404     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2405                       CK_DerivedToBase, CastCategory(From),
2406                       &BasePath, CCK).take();
2407     break;
2408   }
2409
2410   case ICK_Vector_Conversion:
2411     From = ImpCastExprToType(From, ToType, CK_BitCast, 
2412                              VK_RValue, /*BasePath=*/0, CCK).take();
2413     break;
2414
2415   case ICK_Vector_Splat:
2416     From = ImpCastExprToType(From, ToType, CK_VectorSplat, 
2417                              VK_RValue, /*BasePath=*/0, CCK).take();
2418     break;
2419
2420   case ICK_Complex_Real:
2421     // Case 1.  x -> _Complex y
2422     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2423       QualType ElType = ToComplex->getElementType();
2424       bool isFloatingComplex = ElType->isRealFloatingType();
2425
2426       // x -> y
2427       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2428         // do nothing
2429       } else if (From->getType()->isRealFloatingType()) {
2430         From = ImpCastExprToType(From, ElType,
2431                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2432       } else {
2433         assert(From->getType()->isIntegerType());
2434         From = ImpCastExprToType(From, ElType,
2435                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2436       }
2437       // y -> _Complex y
2438       From = ImpCastExprToType(From, ToType,
2439                    isFloatingComplex ? CK_FloatingRealToComplex
2440                                      : CK_IntegralRealToComplex).take();
2441
2442     // Case 2.  _Complex x -> y
2443     } else {
2444       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2445       assert(FromComplex);
2446
2447       QualType ElType = FromComplex->getElementType();
2448       bool isFloatingComplex = ElType->isRealFloatingType();
2449
2450       // _Complex x -> x
2451       From = ImpCastExprToType(From, ElType,
2452                    isFloatingComplex ? CK_FloatingComplexToReal
2453                                      : CK_IntegralComplexToReal, 
2454                                VK_RValue, /*BasePath=*/0, CCK).take();
2455
2456       // x -> y
2457       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2458         // do nothing
2459       } else if (ToType->isRealFloatingType()) {
2460         From = ImpCastExprToType(From, ToType,
2461                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 
2462                                  VK_RValue, /*BasePath=*/0, CCK).take();
2463       } else {
2464         assert(ToType->isIntegerType());
2465         From = ImpCastExprToType(From, ToType,
2466                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 
2467                                  VK_RValue, /*BasePath=*/0, CCK).take();
2468       }
2469     }
2470     break;
2471   
2472   case ICK_Block_Pointer_Conversion: {
2473     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2474                              VK_RValue, /*BasePath=*/0, CCK).take();
2475     break;
2476   }
2477       
2478   case ICK_TransparentUnionConversion: {
2479     ExprResult FromRes = Owned(From);
2480     Sema::AssignConvertType ConvTy =
2481       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2482     if (FromRes.isInvalid())
2483       return ExprError();
2484     From = FromRes.take();
2485     assert ((ConvTy == Sema::Compatible) &&
2486             "Improper transparent union conversion");
2487     (void)ConvTy;
2488     break;
2489   }
2490
2491   case ICK_Lvalue_To_Rvalue:
2492   case ICK_Array_To_Pointer:
2493   case ICK_Function_To_Pointer:
2494   case ICK_Qualification:
2495   case ICK_Num_Conversion_Kinds:
2496     assert(false && "Improper second standard conversion");
2497     break;
2498   }
2499
2500   switch (SCS.Third) {
2501   case ICK_Identity:
2502     // Nothing to do.
2503     break;
2504
2505   case ICK_Qualification: {
2506     // The qualification keeps the category of the inner expression, unless the
2507     // target type isn't a reference.
2508     ExprValueKind VK = ToType->isReferenceType() ?
2509                                   CastCategory(From) : VK_RValue;
2510     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2511                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2512
2513     if (SCS.DeprecatedStringLiteralToCharPtr &&
2514         !getLangOptions().WritableStrings)
2515       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2516         << ToType.getNonReferenceType();
2517
2518     break;
2519     }
2520
2521   default:
2522     assert(false && "Improper third standard conversion");
2523     break;
2524   }
2525
2526   return Owned(From);
2527 }
2528
2529 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2530                                      SourceLocation KWLoc,
2531                                      ParsedType Ty,
2532                                      SourceLocation RParen) {
2533   TypeSourceInfo *TSInfo;
2534   QualType T = GetTypeFromParser(Ty, &TSInfo);
2535
2536   if (!TSInfo)
2537     TSInfo = Context.getTrivialTypeSourceInfo(T);
2538   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2539 }
2540
2541 /// \brief Check the completeness of a type in a unary type trait.
2542 ///
2543 /// If the particular type trait requires a complete type, tries to complete
2544 /// it. If completing the type fails, a diagnostic is emitted and false
2545 /// returned. If completing the type succeeds or no completion was required,
2546 /// returns true.
2547 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2548                                                 UnaryTypeTrait UTT,
2549                                                 SourceLocation Loc,
2550                                                 QualType ArgTy) {
2551   // C++0x [meta.unary.prop]p3:
2552   //   For all of the class templates X declared in this Clause, instantiating
2553   //   that template with a template argument that is a class template
2554   //   specialization may result in the implicit instantiation of the template
2555   //   argument if and only if the semantics of X require that the argument
2556   //   must be a complete type.
2557   // We apply this rule to all the type trait expressions used to implement
2558   // these class templates. We also try to follow any GCC documented behavior
2559   // in these expressions to ensure portability of standard libraries.
2560   switch (UTT) {
2561     // is_complete_type somewhat obviously cannot require a complete type.
2562   case UTT_IsCompleteType:
2563     // Fall-through
2564
2565     // These traits are modeled on the type predicates in C++0x
2566     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2567     // requiring a complete type, as whether or not they return true cannot be
2568     // impacted by the completeness of the type.
2569   case UTT_IsVoid:
2570   case UTT_IsIntegral:
2571   case UTT_IsFloatingPoint:
2572   case UTT_IsArray:
2573   case UTT_IsPointer:
2574   case UTT_IsLvalueReference:
2575   case UTT_IsRvalueReference:
2576   case UTT_IsMemberFunctionPointer:
2577   case UTT_IsMemberObjectPointer:
2578   case UTT_IsEnum:
2579   case UTT_IsUnion:
2580   case UTT_IsClass:
2581   case UTT_IsFunction:
2582   case UTT_IsReference:
2583   case UTT_IsArithmetic:
2584   case UTT_IsFundamental:
2585   case UTT_IsObject:
2586   case UTT_IsScalar:
2587   case UTT_IsCompound:
2588   case UTT_IsMemberPointer:
2589     // Fall-through
2590
2591     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2592     // which requires some of its traits to have the complete type. However,
2593     // the completeness of the type cannot impact these traits' semantics, and
2594     // so they don't require it. This matches the comments on these traits in
2595     // Table 49.
2596   case UTT_IsConst:
2597   case UTT_IsVolatile:
2598   case UTT_IsSigned:
2599   case UTT_IsUnsigned:
2600     return true;
2601
2602     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2603     // applied to a complete type.
2604   case UTT_IsTrivial:
2605   case UTT_IsTriviallyCopyable:
2606   case UTT_IsStandardLayout:
2607   case UTT_IsPOD:
2608   case UTT_IsLiteral:
2609   case UTT_IsEmpty:
2610   case UTT_IsPolymorphic:
2611   case UTT_IsAbstract:
2612     // Fall-through
2613
2614     // These trait expressions are designed to help implement predicates in
2615     // [meta.unary.prop] despite not being named the same. They are specified
2616     // by both GCC and the Embarcadero C++ compiler, and require the complete
2617     // type due to the overarching C++0x type predicates being implemented
2618     // requiring the complete type.
2619   case UTT_HasNothrowAssign:
2620   case UTT_HasNothrowConstructor:
2621   case UTT_HasNothrowCopy:
2622   case UTT_HasTrivialAssign:
2623   case UTT_HasTrivialDefaultConstructor:
2624   case UTT_HasTrivialCopy:
2625   case UTT_HasTrivialDestructor:
2626   case UTT_HasVirtualDestructor:
2627     // Arrays of unknown bound are expressly allowed.
2628     QualType ElTy = ArgTy;
2629     if (ArgTy->isIncompleteArrayType())
2630       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2631
2632     // The void type is expressly allowed.
2633     if (ElTy->isVoidType())
2634       return true;
2635
2636     return !S.RequireCompleteType(
2637       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2638   }
2639   llvm_unreachable("Type trait not handled by switch");
2640 }
2641
2642 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2643                                    SourceLocation KeyLoc, QualType T) {
2644   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2645
2646   ASTContext &C = Self.Context;
2647   switch(UTT) {
2648     // Type trait expressions corresponding to the primary type category
2649     // predicates in C++0x [meta.unary.cat].
2650   case UTT_IsVoid:
2651     return T->isVoidType();
2652   case UTT_IsIntegral:
2653     return T->isIntegralType(C);
2654   case UTT_IsFloatingPoint:
2655     return T->isFloatingType();
2656   case UTT_IsArray:
2657     return T->isArrayType();
2658   case UTT_IsPointer:
2659     return T->isPointerType();
2660   case UTT_IsLvalueReference:
2661     return T->isLValueReferenceType();
2662   case UTT_IsRvalueReference:
2663     return T->isRValueReferenceType();
2664   case UTT_IsMemberFunctionPointer:
2665     return T->isMemberFunctionPointerType();
2666   case UTT_IsMemberObjectPointer:
2667     return T->isMemberDataPointerType();
2668   case UTT_IsEnum:
2669     return T->isEnumeralType();
2670   case UTT_IsUnion:
2671     return T->isUnionType();
2672   case UTT_IsClass:
2673     return T->isClassType() || T->isStructureType();
2674   case UTT_IsFunction:
2675     return T->isFunctionType();
2676
2677     // Type trait expressions which correspond to the convenient composition
2678     // predicates in C++0x [meta.unary.comp].
2679   case UTT_IsReference:
2680     return T->isReferenceType();
2681   case UTT_IsArithmetic:
2682     return T->isArithmeticType() && !T->isEnumeralType();
2683   case UTT_IsFundamental:
2684     return T->isFundamentalType();
2685   case UTT_IsObject:
2686     return T->isObjectType();
2687   case UTT_IsScalar:
2688     // Note: semantic analysis depends on Objective-C lifetime types to be
2689     // considered scalar types. However, such types do not actually behave
2690     // like scalar types at run time (since they may require retain/release
2691     // operations), so we report them as non-scalar.
2692     if (T->isObjCLifetimeType()) {
2693       switch (T.getObjCLifetime()) {
2694       case Qualifiers::OCL_None:
2695       case Qualifiers::OCL_ExplicitNone:
2696         return true;
2697
2698       case Qualifiers::OCL_Strong:
2699       case Qualifiers::OCL_Weak:
2700       case Qualifiers::OCL_Autoreleasing:
2701         return false;
2702       }
2703     }
2704       
2705     return T->isScalarType();
2706   case UTT_IsCompound:
2707     return T->isCompoundType();
2708   case UTT_IsMemberPointer:
2709     return T->isMemberPointerType();
2710
2711     // Type trait expressions which correspond to the type property predicates
2712     // in C++0x [meta.unary.prop].
2713   case UTT_IsConst:
2714     return T.isConstQualified();
2715   case UTT_IsVolatile:
2716     return T.isVolatileQualified();
2717   case UTT_IsTrivial:
2718     return T.isTrivialType(Self.Context);
2719   case UTT_IsTriviallyCopyable:
2720     return T.isTriviallyCopyableType(Self.Context);
2721   case UTT_IsStandardLayout:
2722     return T->isStandardLayoutType();
2723   case UTT_IsPOD:
2724     return T.isPODType(Self.Context);
2725   case UTT_IsLiteral:
2726     return T->isLiteralType();
2727   case UTT_IsEmpty:
2728     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2729       return !RD->isUnion() && RD->isEmpty();
2730     return false;
2731   case UTT_IsPolymorphic:
2732     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2733       return RD->isPolymorphic();
2734     return false;
2735   case UTT_IsAbstract:
2736     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2737       return RD->isAbstract();
2738     return false;
2739   case UTT_IsSigned:
2740     return T->isSignedIntegerType();
2741   case UTT_IsUnsigned:
2742     return T->isUnsignedIntegerType();
2743
2744     // Type trait expressions which query classes regarding their construction,
2745     // destruction, and copying. Rather than being based directly on the
2746     // related type predicates in the standard, they are specified by both
2747     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2748     // specifications.
2749     //
2750     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
2751     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2752   case UTT_HasTrivialDefaultConstructor:
2753     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2754     //   If __is_pod (type) is true then the trait is true, else if type is
2755     //   a cv class or union type (or array thereof) with a trivial default
2756     //   constructor ([class.ctor]) then the trait is true, else it is false.
2757     if (T.isPODType(Self.Context))
2758       return true;
2759     if (const RecordType *RT =
2760           C.getBaseElementType(T)->getAs<RecordType>())
2761       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
2762     return false;
2763   case UTT_HasTrivialCopy:
2764     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2765     //   If __is_pod (type) is true or type is a reference type then
2766     //   the trait is true, else if type is a cv class or union type
2767     //   with a trivial copy constructor ([class.copy]) then the trait
2768     //   is true, else it is false.
2769     if (T.isPODType(Self.Context) || T->isReferenceType())
2770       return true;
2771     if (const RecordType *RT = T->getAs<RecordType>())
2772       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2773     return false;
2774   case UTT_HasTrivialAssign:
2775     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2776     //   If type is const qualified or is a reference type then the
2777     //   trait is false. Otherwise if __is_pod (type) is true then the
2778     //   trait is true, else if type is a cv class or union type with
2779     //   a trivial copy assignment ([class.copy]) then the trait is
2780     //   true, else it is false.
2781     // Note: the const and reference restrictions are interesting,
2782     // given that const and reference members don't prevent a class
2783     // from having a trivial copy assignment operator (but do cause
2784     // errors if the copy assignment operator is actually used, q.v.
2785     // [class.copy]p12).
2786
2787     if (C.getBaseElementType(T).isConstQualified())
2788       return false;
2789     if (T.isPODType(Self.Context))
2790       return true;
2791     if (const RecordType *RT = T->getAs<RecordType>())
2792       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2793     return false;
2794   case UTT_HasTrivialDestructor:
2795     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2796     //   If __is_pod (type) is true or type is a reference type
2797     //   then the trait is true, else if type is a cv class or union
2798     //   type (or array thereof) with a trivial destructor
2799     //   ([class.dtor]) then the trait is true, else it is
2800     //   false.
2801     if (T.isPODType(Self.Context) || T->isReferenceType())
2802       return true;
2803       
2804     // Objective-C++ ARC: autorelease types don't require destruction.
2805     if (T->isObjCLifetimeType() && 
2806         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
2807       return true;
2808       
2809     if (const RecordType *RT =
2810           C.getBaseElementType(T)->getAs<RecordType>())
2811       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2812     return false;
2813   // TODO: Propagate nothrowness for implicitly declared special members.
2814   case UTT_HasNothrowAssign:
2815     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2816     //   If type is const qualified or is a reference type then the
2817     //   trait is false. Otherwise if __has_trivial_assign (type)
2818     //   is true then the trait is true, else if type is a cv class
2819     //   or union type with copy assignment operators that are known
2820     //   not to throw an exception then the trait is true, else it is
2821     //   false.
2822     if (C.getBaseElementType(T).isConstQualified())
2823       return false;
2824     if (T->isReferenceType())
2825       return false;
2826     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
2827       return true;     
2828     if (const RecordType *RT = T->getAs<RecordType>()) {
2829       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2830       if (RD->hasTrivialCopyAssignment())
2831         return true;
2832
2833       bool FoundAssign = false;
2834       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2835       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2836                        Sema::LookupOrdinaryName);
2837       if (Self.LookupQualifiedName(Res, RD)) {
2838         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2839              Op != OpEnd; ++Op) {
2840           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2841           if (Operator->isCopyAssignmentOperator()) {
2842             FoundAssign = true;
2843             const FunctionProtoType *CPT
2844                 = Operator->getType()->getAs<FunctionProtoType>();
2845             if (CPT->getExceptionSpecType() == EST_Delayed)
2846               return false;
2847             if (!CPT->isNothrow(Self.Context))
2848               return false;
2849           }
2850         }
2851       }
2852
2853       return FoundAssign;
2854     }
2855     return false;
2856   case UTT_HasNothrowCopy:
2857     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2858     //   If __has_trivial_copy (type) is true then the trait is true, else
2859     //   if type is a cv class or union type with copy constructors that are
2860     //   known not to throw an exception then the trait is true, else it is
2861     //   false.
2862     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
2863       return true;
2864     if (const RecordType *RT = T->getAs<RecordType>()) {
2865       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2866       if (RD->hasTrivialCopyConstructor())
2867         return true;
2868
2869       bool FoundConstructor = false;
2870       unsigned FoundTQs;
2871       DeclContext::lookup_const_iterator Con, ConEnd;
2872       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2873            Con != ConEnd; ++Con) {
2874         // A template constructor is never a copy constructor.
2875         // FIXME: However, it may actually be selected at the actual overload
2876         // resolution point.
2877         if (isa<FunctionTemplateDecl>(*Con))
2878           continue;
2879         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2880         if (Constructor->isCopyConstructor(FoundTQs)) {
2881           FoundConstructor = true;
2882           const FunctionProtoType *CPT
2883               = Constructor->getType()->getAs<FunctionProtoType>();
2884           if (CPT->getExceptionSpecType() == EST_Delayed)
2885             return false;
2886           // FIXME: check whether evaluating default arguments can throw.
2887           // For now, we'll be conservative and assume that they can throw.
2888           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
2889             return false;
2890         }
2891       }
2892
2893       return FoundConstructor;
2894     }
2895     return false;
2896   case UTT_HasNothrowConstructor:
2897     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2898     //   If __has_trivial_constructor (type) is true then the trait is
2899     //   true, else if type is a cv class or union type (or array
2900     //   thereof) with a default constructor that is known not to
2901     //   throw an exception then the trait is true, else it is false.
2902     if (T.isPODType(C) || T->isObjCLifetimeType())
2903       return true;
2904     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2905       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2906       if (RD->hasTrivialDefaultConstructor())
2907         return true;
2908
2909       DeclContext::lookup_const_iterator Con, ConEnd;
2910       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2911            Con != ConEnd; ++Con) {
2912         // FIXME: In C++0x, a constructor template can be a default constructor.
2913         if (isa<FunctionTemplateDecl>(*Con))
2914           continue;
2915         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2916         if (Constructor->isDefaultConstructor()) {
2917           const FunctionProtoType *CPT
2918               = Constructor->getType()->getAs<FunctionProtoType>();
2919           if (CPT->getExceptionSpecType() == EST_Delayed)
2920             return false;
2921           // TODO: check whether evaluating default arguments can throw.
2922           // For now, we'll be conservative and assume that they can throw.
2923           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2924         }
2925       }
2926     }
2927     return false;
2928   case UTT_HasVirtualDestructor:
2929     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2930     //   If type is a class type with a virtual destructor ([class.dtor])
2931     //   then the trait is true, else it is false.
2932     if (const RecordType *Record = T->getAs<RecordType>()) {
2933       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2934       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2935         return Destructor->isVirtual();
2936     }
2937     return false;
2938
2939     // These type trait expressions are modeled on the specifications for the
2940     // Embarcadero C++0x type trait functions:
2941     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2942   case UTT_IsCompleteType:
2943     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
2944     //   Returns True if and only if T is a complete type at the point of the
2945     //   function call.
2946     return !T->isIncompleteType();
2947   }
2948   llvm_unreachable("Type trait not covered by switch");
2949 }
2950
2951 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2952                                      SourceLocation KWLoc,
2953                                      TypeSourceInfo *TSInfo,
2954                                      SourceLocation RParen) {
2955   QualType T = TSInfo->getType();
2956   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
2957     return ExprError();
2958
2959   bool Value = false;
2960   if (!T->isDependentType())
2961     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
2962
2963   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2964                                                 RParen, Context.BoolTy));
2965 }
2966
2967 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2968                                       SourceLocation KWLoc,
2969                                       ParsedType LhsTy,
2970                                       ParsedType RhsTy,
2971                                       SourceLocation RParen) {
2972   TypeSourceInfo *LhsTSInfo;
2973   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2974   if (!LhsTSInfo)
2975     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2976
2977   TypeSourceInfo *RhsTSInfo;
2978   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2979   if (!RhsTSInfo)
2980     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2981
2982   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2983 }
2984
2985 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2986                                     QualType LhsT, QualType RhsT,
2987                                     SourceLocation KeyLoc) {
2988   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
2989          "Cannot evaluate traits of dependent types");
2990
2991   switch(BTT) {
2992   case BTT_IsBaseOf: {
2993     // C++0x [meta.rel]p2
2994     // Base is a base class of Derived without regard to cv-qualifiers or
2995     // Base and Derived are not unions and name the same class type without
2996     // regard to cv-qualifiers.
2997
2998     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2999     if (!lhsRecord) return false;
3000
3001     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3002     if (!rhsRecord) return false;
3003
3004     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3005              == (lhsRecord == rhsRecord));
3006
3007     if (lhsRecord == rhsRecord)
3008       return !lhsRecord->getDecl()->isUnion();
3009
3010     // C++0x [meta.rel]p2:
3011     //   If Base and Derived are class types and are different types
3012     //   (ignoring possible cv-qualifiers) then Derived shall be a
3013     //   complete type.
3014     if (Self.RequireCompleteType(KeyLoc, RhsT, 
3015                           diag::err_incomplete_type_used_in_type_trait_expr))
3016       return false;
3017
3018     return cast<CXXRecordDecl>(rhsRecord->getDecl())
3019       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3020   }
3021   case BTT_IsSame:
3022     return Self.Context.hasSameType(LhsT, RhsT);
3023   case BTT_TypeCompatible:
3024     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3025                                            RhsT.getUnqualifiedType());
3026   case BTT_IsConvertible:
3027   case BTT_IsConvertibleTo: {
3028     // C++0x [meta.rel]p4:
3029     //   Given the following function prototype:
3030     //
3031     //     template <class T> 
3032     //       typename add_rvalue_reference<T>::type create();
3033     //
3034     //   the predicate condition for a template specialization 
3035     //   is_convertible<From, To> shall be satisfied if and only if 
3036     //   the return expression in the following code would be 
3037     //   well-formed, including any implicit conversions to the return
3038     //   type of the function:
3039     //
3040     //     To test() { 
3041     //       return create<From>();
3042     //     }
3043     //
3044     //   Access checking is performed as if in a context unrelated to To and 
3045     //   From. Only the validity of the immediate context of the expression 
3046     //   of the return-statement (including conversions to the return type)
3047     //   is considered.
3048     //
3049     // We model the initialization as a copy-initialization of a temporary
3050     // of the appropriate type, which for this expression is identical to the
3051     // return statement (since NRVO doesn't apply).
3052     if (LhsT->isObjectType() || LhsT->isFunctionType())
3053       LhsT = Self.Context.getRValueReferenceType(LhsT);
3054     
3055     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3056     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3057                          Expr::getValueKindForType(LhsT));
3058     Expr *FromPtr = &From;
3059     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 
3060                                                            SourceLocation()));
3061     
3062     // Perform the initialization within a SFINAE trap at translation unit 
3063     // scope.
3064     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3065     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3066     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3067     if (Init.Failed())
3068       return false;
3069
3070     ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3071     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3072   }
3073   }
3074   llvm_unreachable("Unknown type trait or not implemented");
3075 }
3076
3077 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3078                                       SourceLocation KWLoc,
3079                                       TypeSourceInfo *LhsTSInfo,
3080                                       TypeSourceInfo *RhsTSInfo,
3081                                       SourceLocation RParen) {
3082   QualType LhsT = LhsTSInfo->getType();
3083   QualType RhsT = RhsTSInfo->getType();
3084
3085   if (BTT == BTT_TypeCompatible) {
3086     if (getLangOptions().CPlusPlus) {
3087       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3088         << SourceRange(KWLoc, RParen);
3089       return ExprError();
3090     }
3091   }
3092
3093   bool Value = false;
3094   if (!LhsT->isDependentType() && !RhsT->isDependentType())
3095     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3096
3097   // Select trait result type.
3098   QualType ResultType;
3099   switch (BTT) {
3100   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3101   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3102   case BTT_IsSame:         ResultType = Context.BoolTy; break;
3103   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3104   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3105   }
3106
3107   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3108                                                  RhsTSInfo, Value, RParen,
3109                                                  ResultType));
3110 }
3111
3112 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3113                                      SourceLocation KWLoc,
3114                                      ParsedType Ty,
3115                                      Expr* DimExpr,
3116                                      SourceLocation RParen) {
3117   TypeSourceInfo *TSInfo;
3118   QualType T = GetTypeFromParser(Ty, &TSInfo);
3119   if (!TSInfo)
3120     TSInfo = Context.getTrivialTypeSourceInfo(T);
3121
3122   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3123 }
3124
3125 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3126                                            QualType T, Expr *DimExpr,
3127                                            SourceLocation KeyLoc) {
3128   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3129
3130   switch(ATT) {
3131   case ATT_ArrayRank:
3132     if (T->isArrayType()) {
3133       unsigned Dim = 0;
3134       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3135         ++Dim;
3136         T = AT->getElementType();
3137       }
3138       return Dim;
3139     }
3140     return 0;
3141
3142   case ATT_ArrayExtent: {
3143     llvm::APSInt Value;
3144     uint64_t Dim;
3145     if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
3146       if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
3147         Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3148           DimExpr->getSourceRange();
3149         return false;
3150       }
3151       Dim = Value.getLimitedValue();
3152     } else {
3153       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3154         DimExpr->getSourceRange();
3155       return false;
3156     }
3157
3158     if (T->isArrayType()) {
3159       unsigned D = 0;
3160       bool Matched = false;
3161       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3162         if (Dim == D) {
3163           Matched = true;
3164           break;
3165         }
3166         ++D;
3167         T = AT->getElementType();
3168       }
3169
3170       if (Matched && T->isArrayType()) {
3171         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3172           return CAT->getSize().getLimitedValue();
3173       }
3174     }
3175     return 0;
3176   }
3177   }
3178   llvm_unreachable("Unknown type trait or not implemented");
3179 }
3180
3181 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3182                                      SourceLocation KWLoc,
3183                                      TypeSourceInfo *TSInfo,
3184                                      Expr* DimExpr,
3185                                      SourceLocation RParen) {
3186   QualType T = TSInfo->getType();
3187
3188   // FIXME: This should likely be tracked as an APInt to remove any host
3189   // assumptions about the width of size_t on the target.
3190   uint64_t Value = 0;
3191   if (!T->isDependentType())
3192     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3193
3194   // While the specification for these traits from the Embarcadero C++
3195   // compiler's documentation says the return type is 'unsigned int', Clang
3196   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3197   // compiler, there is no difference. On several other platforms this is an
3198   // important distinction.
3199   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3200                                                 DimExpr, RParen,
3201                                                 Context.getSizeType()));
3202 }
3203
3204 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3205                                       SourceLocation KWLoc,
3206                                       Expr *Queried,
3207                                       SourceLocation RParen) {
3208   // If error parsing the expression, ignore.
3209   if (!Queried)
3210     return ExprError();
3211
3212   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3213
3214   return move(Result);
3215 }
3216
3217 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3218   switch (ET) {
3219   case ET_IsLValueExpr: return E->isLValue();
3220   case ET_IsRValueExpr: return E->isRValue();
3221   }
3222   llvm_unreachable("Expression trait not covered by switch");
3223 }
3224
3225 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3226                                       SourceLocation KWLoc,
3227                                       Expr *Queried,
3228                                       SourceLocation RParen) {
3229   if (Queried->isTypeDependent()) {
3230     // Delay type-checking for type-dependent expressions.
3231   } else if (Queried->getType()->isPlaceholderType()) {
3232     ExprResult PE = CheckPlaceholderExpr(Queried);
3233     if (PE.isInvalid()) return ExprError();
3234     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3235   }
3236
3237   bool Value = EvaluateExpressionTrait(ET, Queried);
3238
3239   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3240                                                  RParen, Context.BoolTy));
3241 }
3242
3243 QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
3244                                             ExprValueKind &VK,
3245                                             SourceLocation Loc,
3246                                             bool isIndirect) {
3247   assert(!lex.get()->getType()->isPlaceholderType() &&
3248          !rex.get()->getType()->isPlaceholderType() &&
3249          "placeholders should have been weeded out by now");
3250
3251   // The LHS undergoes lvalue conversions if this is ->*.
3252   if (isIndirect) {
3253     lex = DefaultLvalueConversion(lex.take());
3254     if (lex.isInvalid()) return QualType();
3255   }
3256
3257   // The RHS always undergoes lvalue conversions.
3258   rex = DefaultLvalueConversion(rex.take());
3259   if (rex.isInvalid()) return QualType();
3260
3261   const char *OpSpelling = isIndirect ? "->*" : ".*";
3262   // C++ 5.5p2
3263   //   The binary operator .* [p3: ->*] binds its second operand, which shall
3264   //   be of type "pointer to member of T" (where T is a completely-defined
3265   //   class type) [...]
3266   QualType RType = rex.get()->getType();
3267   const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
3268   if (!MemPtr) {
3269     Diag(Loc, diag::err_bad_memptr_rhs)
3270       << OpSpelling << RType << rex.get()->getSourceRange();
3271     return QualType();
3272   }
3273
3274   QualType Class(MemPtr->getClass(), 0);
3275
3276   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3277   // member pointer points must be completely-defined. However, there is no
3278   // reason for this semantic distinction, and the rule is not enforced by
3279   // other compilers. Therefore, we do not check this property, as it is
3280   // likely to be considered a defect.
3281
3282   // C++ 5.5p2
3283   //   [...] to its first operand, which shall be of class T or of a class of
3284   //   which T is an unambiguous and accessible base class. [p3: a pointer to
3285   //   such a class]
3286   QualType LType = lex.get()->getType();
3287   if (isIndirect) {
3288     if (const PointerType *Ptr = LType->getAs<PointerType>())
3289       LType = Ptr->getPointeeType();
3290     else {
3291       Diag(Loc, diag::err_bad_memptr_lhs)
3292         << OpSpelling << 1 << LType
3293         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3294       return QualType();
3295     }
3296   }
3297
3298   if (!Context.hasSameUnqualifiedType(Class, LType)) {
3299     // If we want to check the hierarchy, we need a complete type.
3300     if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
3301         << OpSpelling << (int)isIndirect)) {
3302       return QualType();
3303     }
3304     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3305                        /*DetectVirtual=*/false);
3306     // FIXME: Would it be useful to print full ambiguity paths, or is that
3307     // overkill?
3308     if (!IsDerivedFrom(LType, Class, Paths) ||
3309         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3310       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3311         << (int)isIndirect << lex.get()->getType();
3312       return QualType();
3313     }
3314     // Cast LHS to type of use.
3315     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3316     ExprValueKind VK =
3317         isIndirect ? VK_RValue : CastCategory(lex.get());
3318
3319     CXXCastPath BasePath;
3320     BuildBasePathArray(Paths, BasePath);
3321     lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
3322   }
3323
3324   if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
3325     // Diagnose use of pointer-to-member type which when used as
3326     // the functional cast in a pointer-to-member expression.
3327     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3328      return QualType();
3329   }
3330
3331   // C++ 5.5p2
3332   //   The result is an object or a function of the type specified by the
3333   //   second operand.
3334   // The cv qualifiers are the union of those in the pointer and the left side,
3335   // in accordance with 5.5p5 and 5.2.5.
3336   QualType Result = MemPtr->getPointeeType();
3337   Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
3338
3339   // C++0x [expr.mptr.oper]p6:
3340   //   In a .* expression whose object expression is an rvalue, the program is
3341   //   ill-formed if the second operand is a pointer to member function with
3342   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3343   //   expression is an lvalue, the program is ill-formed if the second operand
3344   //   is a pointer to member function with ref-qualifier &&.
3345   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3346     switch (Proto->getRefQualifier()) {
3347     case RQ_None:
3348       // Do nothing
3349       break;
3350
3351     case RQ_LValue:
3352       if (!isIndirect && !lex.get()->Classify(Context).isLValue())
3353         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3354           << RType << 1 << lex.get()->getSourceRange();
3355       break;
3356
3357     case RQ_RValue:
3358       if (isIndirect || !lex.get()->Classify(Context).isRValue())
3359         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3360           << RType << 0 << lex.get()->getSourceRange();
3361       break;
3362     }
3363   }
3364
3365   // C++ [expr.mptr.oper]p6:
3366   //   The result of a .* expression whose second operand is a pointer
3367   //   to a data member is of the same value category as its
3368   //   first operand. The result of a .* expression whose second
3369   //   operand is a pointer to a member function is a prvalue. The
3370   //   result of an ->* expression is an lvalue if its second operand
3371   //   is a pointer to data member and a prvalue otherwise.
3372   if (Result->isFunctionType()) {
3373     VK = VK_RValue;
3374     return Context.BoundMemberTy;
3375   } else if (isIndirect) {
3376     VK = VK_LValue;
3377   } else {
3378     VK = lex.get()->getValueKind();
3379   }
3380
3381   return Result;
3382 }
3383
3384 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3385 ///
3386 /// This is part of the parameter validation for the ? operator. If either
3387 /// value operand is a class type, the two operands are attempted to be
3388 /// converted to each other. This function does the conversion in one direction.
3389 /// It returns true if the program is ill-formed and has already been diagnosed
3390 /// as such.
3391 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3392                                 SourceLocation QuestionLoc,
3393                                 bool &HaveConversion,
3394                                 QualType &ToType) {
3395   HaveConversion = false;
3396   ToType = To->getType();
3397
3398   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3399                                                            SourceLocation());
3400   // C++0x 5.16p3
3401   //   The process for determining whether an operand expression E1 of type T1
3402   //   can be converted to match an operand expression E2 of type T2 is defined
3403   //   as follows:
3404   //   -- If E2 is an lvalue:
3405   bool ToIsLvalue = To->isLValue();
3406   if (ToIsLvalue) {
3407     //   E1 can be converted to match E2 if E1 can be implicitly converted to
3408     //   type "lvalue reference to T2", subject to the constraint that in the
3409     //   conversion the reference must bind directly to E1.
3410     QualType T = Self.Context.getLValueReferenceType(ToType);
3411     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3412
3413     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3414     if (InitSeq.isDirectReferenceBinding()) {
3415       ToType = T;
3416       HaveConversion = true;
3417       return false;
3418     }
3419
3420     if (InitSeq.isAmbiguous())
3421       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3422   }
3423
3424   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3425   //      -- if E1 and E2 have class type, and the underlying class types are
3426   //         the same or one is a base class of the other:
3427   QualType FTy = From->getType();
3428   QualType TTy = To->getType();
3429   const RecordType *FRec = FTy->getAs<RecordType>();
3430   const RecordType *TRec = TTy->getAs<RecordType>();
3431   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3432                        Self.IsDerivedFrom(FTy, TTy);
3433   if (FRec && TRec &&
3434       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3435     //         E1 can be converted to match E2 if the class of T2 is the
3436     //         same type as, or a base class of, the class of T1, and
3437     //         [cv2 > cv1].
3438     if (FRec == TRec || FDerivedFromT) {
3439       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3440         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3441         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3442         if (InitSeq) {
3443           HaveConversion = true;
3444           return false;
3445         }
3446
3447         if (InitSeq.isAmbiguous())
3448           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3449       }
3450     }
3451
3452     return false;
3453   }
3454
3455   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3456   //        implicitly converted to the type that expression E2 would have
3457   //        if E2 were converted to an rvalue (or the type it has, if E2 is
3458   //        an rvalue).
3459   //
3460   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3461   // to the array-to-pointer or function-to-pointer conversions.
3462   if (!TTy->getAs<TagType>())
3463     TTy = TTy.getUnqualifiedType();
3464
3465   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3466   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3467   HaveConversion = !InitSeq.Failed();
3468   ToType = TTy;
3469   if (InitSeq.isAmbiguous())
3470     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3471
3472   return false;
3473 }
3474
3475 /// \brief Try to find a common type for two according to C++0x 5.16p5.
3476 ///
3477 /// This is part of the parameter validation for the ? operator. If either
3478 /// value operand is a class type, overload resolution is used to find a
3479 /// conversion to a common type.
3480 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3481                                     SourceLocation QuestionLoc) {
3482   Expr *Args[2] = { LHS.get(), RHS.get() };
3483   OverloadCandidateSet CandidateSet(QuestionLoc);
3484   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3485                                     CandidateSet);
3486
3487   OverloadCandidateSet::iterator Best;
3488   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3489     case OR_Success: {
3490       // We found a match. Perform the conversions on the arguments and move on.
3491       ExprResult LHSRes =
3492         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3493                                        Best->Conversions[0], Sema::AA_Converting);
3494       if (LHSRes.isInvalid())
3495         break;
3496       LHS = move(LHSRes);
3497
3498       ExprResult RHSRes =
3499         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3500                                        Best->Conversions[1], Sema::AA_Converting);
3501       if (RHSRes.isInvalid())
3502         break;
3503       RHS = move(RHSRes);
3504       if (Best->Function)
3505         Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
3506       return false;
3507     }
3508     
3509     case OR_No_Viable_Function:
3510
3511       // Emit a better diagnostic if one of the expressions is a null pointer
3512       // constant and the other is a pointer type. In this case, the user most
3513       // likely forgot to take the address of the other expression.
3514       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3515         return true;
3516
3517       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3518         << LHS.get()->getType() << RHS.get()->getType()
3519         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3520       return true;
3521
3522     case OR_Ambiguous:
3523       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3524         << LHS.get()->getType() << RHS.get()->getType()
3525         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3526       // FIXME: Print the possible common types by printing the return types of
3527       // the viable candidates.
3528       break;
3529
3530     case OR_Deleted:
3531       assert(false && "Conditional operator has only built-in overloads");
3532       break;
3533   }
3534   return true;
3535 }
3536
3537 /// \brief Perform an "extended" implicit conversion as returned by
3538 /// TryClassUnification.
3539 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3540   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3541   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3542                                                            SourceLocation());
3543   Expr *Arg = E.take();
3544   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3545   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3546   if (Result.isInvalid())
3547     return true;
3548
3549   E = Result;
3550   return false;
3551 }
3552
3553 /// \brief Check the operands of ?: under C++ semantics.
3554 ///
3555 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3556 /// extension. In this case, LHS == Cond. (But they're not aliases.)
3557 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3558                                            ExprValueKind &VK, ExprObjectKind &OK,
3559                                            SourceLocation QuestionLoc) {
3560   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3561   // interface pointers.
3562
3563   // C++0x 5.16p1
3564   //   The first expression is contextually converted to bool.
3565   if (!Cond.get()->isTypeDependent()) {
3566     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3567     if (CondRes.isInvalid())
3568       return QualType();
3569     Cond = move(CondRes);
3570   }
3571
3572   // Assume r-value.
3573   VK = VK_RValue;
3574   OK = OK_Ordinary;
3575
3576   // Either of the arguments dependent?
3577   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3578     return Context.DependentTy;
3579
3580   // C++0x 5.16p2
3581   //   If either the second or the third operand has type (cv) void, ...
3582   QualType LTy = LHS.get()->getType();
3583   QualType RTy = RHS.get()->getType();
3584   bool LVoid = LTy->isVoidType();
3585   bool RVoid = RTy->isVoidType();
3586   if (LVoid || RVoid) {
3587     //   ... then the [l2r] conversions are performed on the second and third
3588     //   operands ...
3589     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3590     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3591     if (LHS.isInvalid() || RHS.isInvalid())
3592       return QualType();
3593     LTy = LHS.get()->getType();
3594     RTy = RHS.get()->getType();
3595
3596     //   ... and one of the following shall hold:
3597     //   -- The second or the third operand (but not both) is a throw-
3598     //      expression; the result is of the type of the other and is an rvalue.
3599     bool LThrow = isa<CXXThrowExpr>(LHS.get());
3600     bool RThrow = isa<CXXThrowExpr>(RHS.get());
3601     if (LThrow && !RThrow)
3602       return RTy;
3603     if (RThrow && !LThrow)
3604       return LTy;
3605
3606     //   -- Both the second and third operands have type void; the result is of
3607     //      type void and is an rvalue.
3608     if (LVoid && RVoid)
3609       return Context.VoidTy;
3610
3611     // Neither holds, error.
3612     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3613       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3614       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3615     return QualType();
3616   }
3617
3618   // Neither is void.
3619
3620   // C++0x 5.16p3
3621   //   Otherwise, if the second and third operand have different types, and
3622   //   either has (cv) class type, and attempt is made to convert each of those
3623   //   operands to the other.
3624   if (!Context.hasSameType(LTy, RTy) &&
3625       (LTy->isRecordType() || RTy->isRecordType())) {
3626     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3627     // These return true if a single direction is already ambiguous.
3628     QualType L2RType, R2LType;
3629     bool HaveL2R, HaveR2L;
3630     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
3631       return QualType();
3632     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
3633       return QualType();
3634
3635     //   If both can be converted, [...] the program is ill-formed.
3636     if (HaveL2R && HaveR2L) {
3637       Diag(QuestionLoc, diag::err_conditional_ambiguous)
3638         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3639       return QualType();
3640     }
3641
3642     //   If exactly one conversion is possible, that conversion is applied to
3643     //   the chosen operand and the converted operands are used in place of the
3644     //   original operands for the remainder of this section.
3645     if (HaveL2R) {
3646       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
3647         return QualType();
3648       LTy = LHS.get()->getType();
3649     } else if (HaveR2L) {
3650       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
3651         return QualType();
3652       RTy = RHS.get()->getType();
3653     }
3654   }
3655
3656   // C++0x 5.16p4
3657   //   If the second and third operands are glvalues of the same value
3658   //   category and have the same type, the result is of that type and
3659   //   value category and it is a bit-field if the second or the third
3660   //   operand is a bit-field, or if both are bit-fields.
3661   // We only extend this to bitfields, not to the crazy other kinds of
3662   // l-values.
3663   bool Same = Context.hasSameType(LTy, RTy);
3664   if (Same &&
3665       LHS.get()->isGLValue() &&
3666       LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
3667       LHS.get()->isOrdinaryOrBitFieldObject() &&
3668       RHS.get()->isOrdinaryOrBitFieldObject()) {
3669     VK = LHS.get()->getValueKind();
3670     if (LHS.get()->getObjectKind() == OK_BitField ||
3671         RHS.get()->getObjectKind() == OK_BitField)
3672       OK = OK_BitField;
3673     return LTy;
3674   }
3675
3676   // C++0x 5.16p5
3677   //   Otherwise, the result is an rvalue. If the second and third operands
3678   //   do not have the same type, and either has (cv) class type, ...
3679   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3680     //   ... overload resolution is used to determine the conversions (if any)
3681     //   to be applied to the operands. If the overload resolution fails, the
3682     //   program is ill-formed.
3683     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3684       return QualType();
3685   }
3686
3687   // C++0x 5.16p6
3688   //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3689   //   conversions are performed on the second and third operands.
3690   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3691   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3692   if (LHS.isInvalid() || RHS.isInvalid())
3693     return QualType();
3694   LTy = LHS.get()->getType();
3695   RTy = RHS.get()->getType();
3696
3697   //   After those conversions, one of the following shall hold:
3698   //   -- The second and third operands have the same type; the result
3699   //      is of that type. If the operands have class type, the result
3700   //      is a prvalue temporary of the result type, which is
3701   //      copy-initialized from either the second operand or the third
3702   //      operand depending on the value of the first operand.
3703   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3704     if (LTy->isRecordType()) {
3705       // The operands have class type. Make a temporary copy.
3706       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3707       ExprResult LHSCopy = PerformCopyInitialization(Entity,
3708                                                      SourceLocation(),
3709                                                      LHS);
3710       if (LHSCopy.isInvalid())
3711         return QualType();
3712
3713       ExprResult RHSCopy = PerformCopyInitialization(Entity,
3714                                                      SourceLocation(),
3715                                                      RHS);
3716       if (RHSCopy.isInvalid())
3717         return QualType();
3718
3719       LHS = LHSCopy;
3720       RHS = RHSCopy;
3721     }
3722
3723     return LTy;
3724   }
3725
3726   // Extension: conditional operator involving vector types.
3727   if (LTy->isVectorType() || RTy->isVectorType())
3728     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
3729
3730   //   -- The second and third operands have arithmetic or enumeration type;
3731   //      the usual arithmetic conversions are performed to bring them to a
3732   //      common type, and the result is of that type.
3733   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3734     UsualArithmeticConversions(LHS, RHS);
3735     if (LHS.isInvalid() || RHS.isInvalid())
3736       return QualType();
3737     return LHS.get()->getType();
3738   }
3739
3740   //   -- The second and third operands have pointer type, or one has pointer
3741   //      type and the other is a null pointer constant; pointer conversions
3742   //      and qualification conversions are performed to bring them to their
3743   //      composite pointer type. The result is of the composite pointer type.
3744   //   -- The second and third operands have pointer to member type, or one has
3745   //      pointer to member type and the other is a null pointer constant;
3746   //      pointer to member conversions and qualification conversions are
3747   //      performed to bring them to a common type, whose cv-qualification
3748   //      shall match the cv-qualification of either the second or the third
3749   //      operand. The result is of the common type.
3750   bool NonStandardCompositeType = false;
3751   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3752                               isSFINAEContext()? 0 : &NonStandardCompositeType);
3753   if (!Composite.isNull()) {
3754     if (NonStandardCompositeType)
3755       Diag(QuestionLoc,
3756            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3757         << LTy << RTy << Composite
3758         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3759
3760     return Composite;
3761   }
3762
3763   // Similarly, attempt to find composite type of two objective-c pointers.
3764   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3765   if (!Composite.isNull())
3766     return Composite;
3767
3768   // Check if we are using a null with a non-pointer type.
3769   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3770     return QualType();
3771
3772   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3773     << LHS.get()->getType() << RHS.get()->getType()
3774     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3775   return QualType();
3776 }
3777
3778 /// \brief Find a merged pointer type and convert the two expressions to it.
3779 ///
3780 /// This finds the composite pointer type (or member pointer type) for @p E1
3781 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3782 /// type and returns it.
3783 /// It does not emit diagnostics.
3784 ///
3785 /// \param Loc The location of the operator requiring these two expressions to
3786 /// be converted to the composite pointer type.
3787 ///
3788 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3789 /// a non-standard (but still sane) composite type to which both expressions
3790 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3791 /// will be set true.
3792 QualType Sema::FindCompositePointerType(SourceLocation Loc,
3793                                         Expr *&E1, Expr *&E2,
3794                                         bool *NonStandardCompositeType) {
3795   if (NonStandardCompositeType)
3796     *NonStandardCompositeType = false;
3797
3798   assert(getLangOptions().CPlusPlus && "This function assumes C++");
3799   QualType T1 = E1->getType(), T2 = E2->getType();
3800
3801   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3802       !T2->isAnyPointerType() && !T2->isMemberPointerType())
3803    return QualType();
3804
3805   // C++0x 5.9p2
3806   //   Pointer conversions and qualification conversions are performed on
3807   //   pointer operands to bring them to their composite pointer type. If
3808   //   one operand is a null pointer constant, the composite pointer type is
3809   //   the type of the other operand.
3810   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3811     if (T2->isMemberPointerType())
3812       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
3813     else
3814       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
3815     return T2;
3816   }
3817   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3818     if (T1->isMemberPointerType())
3819       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
3820     else
3821       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
3822     return T1;
3823   }
3824
3825   // Now both have to be pointers or member pointers.
3826   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3827       (!T2->isPointerType() && !T2->isMemberPointerType()))
3828     return QualType();
3829
3830   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3831   //   the other has type "pointer to cv2 T" and the composite pointer type is
3832   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3833   //   Otherwise, the composite pointer type is a pointer type similar to the
3834   //   type of one of the operands, with a cv-qualification signature that is
3835   //   the union of the cv-qualification signatures of the operand types.
3836   // In practice, the first part here is redundant; it's subsumed by the second.
3837   // What we do here is, we build the two possible composite types, and try the
3838   // conversions in both directions. If only one works, or if the two composite
3839   // types are the same, we have succeeded.
3840   // FIXME: extended qualifiers?
3841   typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3842   QualifierVector QualifierUnion;
3843   typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3844       ContainingClassVector;
3845   ContainingClassVector MemberOfClass;
3846   QualType Composite1 = Context.getCanonicalType(T1),
3847            Composite2 = Context.getCanonicalType(T2);
3848   unsigned NeedConstBefore = 0;
3849   do {
3850     const PointerType *Ptr1, *Ptr2;
3851     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3852         (Ptr2 = Composite2->getAs<PointerType>())) {
3853       Composite1 = Ptr1->getPointeeType();
3854       Composite2 = Ptr2->getPointeeType();
3855
3856       // If we're allowed to create a non-standard composite type, keep track
3857       // of where we need to fill in additional 'const' qualifiers.
3858       if (NonStandardCompositeType &&
3859           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3860         NeedConstBefore = QualifierUnion.size();
3861
3862       QualifierUnion.push_back(
3863                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3864       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3865       continue;
3866     }
3867
3868     const MemberPointerType *MemPtr1, *MemPtr2;
3869     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3870         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3871       Composite1 = MemPtr1->getPointeeType();
3872       Composite2 = MemPtr2->getPointeeType();
3873
3874       // If we're allowed to create a non-standard composite type, keep track
3875       // of where we need to fill in additional 'const' qualifiers.
3876       if (NonStandardCompositeType &&
3877           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3878         NeedConstBefore = QualifierUnion.size();
3879
3880       QualifierUnion.push_back(
3881                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3882       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3883                                              MemPtr2->getClass()));
3884       continue;
3885     }
3886
3887     // FIXME: block pointer types?
3888
3889     // Cannot unwrap any more types.
3890     break;
3891   } while (true);
3892
3893   if (NeedConstBefore && NonStandardCompositeType) {
3894     // Extension: Add 'const' to qualifiers that come before the first qualifier
3895     // mismatch, so that our (non-standard!) composite type meets the
3896     // requirements of C++ [conv.qual]p4 bullet 3.
3897     for (unsigned I = 0; I != NeedConstBefore; ++I) {
3898       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3899         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3900         *NonStandardCompositeType = true;
3901       }
3902     }
3903   }
3904
3905   // Rewrap the composites as pointers or member pointers with the union CVRs.
3906   ContainingClassVector::reverse_iterator MOC
3907     = MemberOfClass.rbegin();
3908   for (QualifierVector::reverse_iterator
3909          I = QualifierUnion.rbegin(),
3910          E = QualifierUnion.rend();
3911        I != E; (void)++I, ++MOC) {
3912     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3913     if (MOC->first && MOC->second) {
3914       // Rebuild member pointer type
3915       Composite1 = Context.getMemberPointerType(
3916                                     Context.getQualifiedType(Composite1, Quals),
3917                                     MOC->first);
3918       Composite2 = Context.getMemberPointerType(
3919                                     Context.getQualifiedType(Composite2, Quals),
3920                                     MOC->second);
3921     } else {
3922       // Rebuild pointer type
3923       Composite1
3924         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3925       Composite2
3926         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3927     }
3928   }
3929
3930   // Try to convert to the first composite pointer type.
3931   InitializedEntity Entity1
3932     = InitializedEntity::InitializeTemporary(Composite1);
3933   InitializationKind Kind
3934     = InitializationKind::CreateCopy(Loc, SourceLocation());
3935   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3936   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3937
3938   if (E1ToC1 && E2ToC1) {
3939     // Conversion to Composite1 is viable.
3940     if (!Context.hasSameType(Composite1, Composite2)) {
3941       // Composite2 is a different type from Composite1. Check whether
3942       // Composite2 is also viable.
3943       InitializedEntity Entity2
3944         = InitializedEntity::InitializeTemporary(Composite2);
3945       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3946       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3947       if (E1ToC2 && E2ToC2) {
3948         // Both Composite1 and Composite2 are viable and are different;
3949         // this is an ambiguity.
3950         return QualType();
3951       }
3952     }
3953
3954     // Convert E1 to Composite1
3955     ExprResult E1Result
3956       = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3957     if (E1Result.isInvalid())
3958       return QualType();
3959     E1 = E1Result.takeAs<Expr>();
3960
3961     // Convert E2 to Composite1
3962     ExprResult E2Result
3963       = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3964     if (E2Result.isInvalid())
3965       return QualType();
3966     E2 = E2Result.takeAs<Expr>();
3967
3968     return Composite1;
3969   }
3970
3971   // Check whether Composite2 is viable.
3972   InitializedEntity Entity2
3973     = InitializedEntity::InitializeTemporary(Composite2);
3974   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3975   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3976   if (!E1ToC2 || !E2ToC2)
3977     return QualType();
3978
3979   // Convert E1 to Composite2
3980   ExprResult E1Result
3981     = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3982   if (E1Result.isInvalid())
3983     return QualType();
3984   E1 = E1Result.takeAs<Expr>();
3985
3986   // Convert E2 to Composite2
3987   ExprResult E2Result
3988     = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3989   if (E2Result.isInvalid())
3990     return QualType();
3991   E2 = E2Result.takeAs<Expr>();
3992
3993   return Composite2;
3994 }
3995
3996 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3997   if (!E)
3998     return ExprError();
3999
4000   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4001
4002   // If the result is a glvalue, we shouldn't bind it.
4003   if (!E->isRValue())
4004     return Owned(E);
4005
4006   // In ARC, calls that return a retainable type can return retained,
4007   // in which case we have to insert a consuming cast.
4008   if (getLangOptions().ObjCAutoRefCount &&
4009       E->getType()->isObjCRetainableType()) {
4010
4011     bool ReturnsRetained;
4012
4013     // For actual calls, we compute this by examining the type of the
4014     // called value.
4015     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4016       Expr *Callee = Call->getCallee()->IgnoreParens();
4017       QualType T = Callee->getType();
4018
4019       if (T == Context.BoundMemberTy) {
4020         // Handle pointer-to-members.
4021         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4022           T = BinOp->getRHS()->getType();
4023         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4024           T = Mem->getMemberDecl()->getType();
4025       }
4026       
4027       if (const PointerType *Ptr = T->getAs<PointerType>())
4028         T = Ptr->getPointeeType();
4029       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4030         T = Ptr->getPointeeType();
4031       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4032         T = MemPtr->getPointeeType();
4033       
4034       const FunctionType *FTy = T->getAs<FunctionType>();
4035       assert(FTy && "call to value not of function type?");
4036       ReturnsRetained = FTy->getExtInfo().getProducesResult();
4037
4038     // ActOnStmtExpr arranges things so that StmtExprs of retainable
4039     // type always produce a +1 object.
4040     } else if (isa<StmtExpr>(E)) {
4041       ReturnsRetained = true;
4042
4043     // For message sends and property references, we try to find an
4044     // actual method.  FIXME: we should infer retention by selector in
4045     // cases where we don't have an actual method.
4046     } else {
4047       Decl *D = 0;
4048       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4049         D = Send->getMethodDecl();
4050       } else {
4051         CastExpr *CE = cast<CastExpr>(E);
4052         // FIXME. What other cast kinds to check for?
4053         if (CE->getCastKind() == CK_ObjCProduceObject ||
4054             CE->getCastKind() == CK_LValueToRValue)
4055           return MaybeBindToTemporary(CE->getSubExpr());
4056         assert(CE->getCastKind() == CK_GetObjCProperty);
4057         const ObjCPropertyRefExpr *PRE = CE->getSubExpr()->getObjCProperty();
4058         D = (PRE->isImplicitProperty() ? PRE->getImplicitPropertyGetter() : 0);
4059       }
4060
4061       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4062     }
4063
4064     ExprNeedsCleanups = true;
4065
4066     CastKind ck = (ReturnsRetained ? CK_ObjCConsumeObject
4067                                    : CK_ObjCReclaimReturnedObject);
4068     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4069                                           VK_RValue));
4070   }
4071
4072   if (!getLangOptions().CPlusPlus)
4073     return Owned(E);
4074
4075   const RecordType *RT = E->getType()->getAs<RecordType>();
4076   if (!RT)
4077     return Owned(E);
4078
4079   // That should be enough to guarantee that this type is complete.
4080   // If it has a trivial destructor, we can avoid the extra copy.
4081   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4082   if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
4083     return Owned(E);
4084
4085   CXXDestructorDecl *Destructor = LookupDestructor(RD);
4086
4087   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4088   if (Destructor) {
4089     MarkDeclarationReferenced(E->getExprLoc(), Destructor);
4090     CheckDestructorAccess(E->getExprLoc(), Destructor,
4091                           PDiag(diag::err_access_dtor_temp)
4092                             << E->getType());
4093
4094     ExprTemporaries.push_back(Temp);
4095     ExprNeedsCleanups = true;
4096   }
4097   return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
4098 }
4099
4100 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4101   assert(SubExpr && "sub expression can't be null!");
4102
4103   unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
4104   assert(ExprTemporaries.size() >= FirstTemporary);
4105   assert(ExprNeedsCleanups || ExprTemporaries.size() == FirstTemporary);
4106   if (!ExprNeedsCleanups)
4107     return SubExpr;
4108
4109   Expr *E = ExprWithCleanups::Create(Context, SubExpr,
4110                                      ExprTemporaries.begin() + FirstTemporary,
4111                                      ExprTemporaries.size() - FirstTemporary);
4112   ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
4113                         ExprTemporaries.end());
4114   ExprNeedsCleanups = false;
4115
4116   return E;
4117 }
4118
4119 ExprResult
4120 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4121   if (SubExpr.isInvalid())
4122     return ExprError();
4123
4124   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4125 }
4126
4127 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4128   assert(SubStmt && "sub statement can't be null!");
4129
4130   if (!ExprNeedsCleanups)
4131     return SubStmt;
4132
4133   // FIXME: In order to attach the temporaries, wrap the statement into
4134   // a StmtExpr; currently this is only used for asm statements.
4135   // This is hacky, either create a new CXXStmtWithTemporaries statement or
4136   // a new AsmStmtWithTemporaries.
4137   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4138                                                       SourceLocation(),
4139                                                       SourceLocation());
4140   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4141                                    SourceLocation());
4142   return MaybeCreateExprWithCleanups(E);
4143 }
4144
4145 ExprResult
4146 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4147                                    tok::TokenKind OpKind, ParsedType &ObjectType,
4148                                    bool &MayBePseudoDestructor) {
4149   // Since this might be a postfix expression, get rid of ParenListExprs.
4150   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4151   if (Result.isInvalid()) return ExprError();
4152   Base = Result.get();
4153
4154   QualType BaseType = Base->getType();
4155   MayBePseudoDestructor = false;
4156   if (BaseType->isDependentType()) {
4157     // If we have a pointer to a dependent type and are using the -> operator,
4158     // the object type is the type that the pointer points to. We might still
4159     // have enough information about that type to do something useful.
4160     if (OpKind == tok::arrow)
4161       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4162         BaseType = Ptr->getPointeeType();
4163
4164     ObjectType = ParsedType::make(BaseType);
4165     MayBePseudoDestructor = true;
4166     return Owned(Base);
4167   }
4168
4169   // C++ [over.match.oper]p8:
4170   //   [...] When operator->returns, the operator-> is applied  to the value
4171   //   returned, with the original second operand.
4172   if (OpKind == tok::arrow) {
4173     // The set of types we've considered so far.
4174     llvm::SmallPtrSet<CanQualType,8> CTypes;
4175     llvm::SmallVector<SourceLocation, 8> Locations;
4176     CTypes.insert(Context.getCanonicalType(BaseType));
4177
4178     while (BaseType->isRecordType()) {
4179       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4180       if (Result.isInvalid())
4181         return ExprError();
4182       Base = Result.get();
4183       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4184         Locations.push_back(OpCall->getDirectCallee()->getLocation());
4185       BaseType = Base->getType();
4186       CanQualType CBaseType = Context.getCanonicalType(BaseType);
4187       if (!CTypes.insert(CBaseType)) {
4188         Diag(OpLoc, diag::err_operator_arrow_circular);
4189         for (unsigned i = 0; i < Locations.size(); i++)
4190           Diag(Locations[i], diag::note_declared_at);
4191         return ExprError();
4192       }
4193     }
4194
4195     if (BaseType->isPointerType())
4196       BaseType = BaseType->getPointeeType();
4197   }
4198
4199   // We could end up with various non-record types here, such as extended
4200   // vector types or Objective-C interfaces. Just return early and let
4201   // ActOnMemberReferenceExpr do the work.
4202   if (!BaseType->isRecordType()) {
4203     // C++ [basic.lookup.classref]p2:
4204     //   [...] If the type of the object expression is of pointer to scalar
4205     //   type, the unqualified-id is looked up in the context of the complete
4206     //   postfix-expression.
4207     //
4208     // This also indicates that we should be parsing a
4209     // pseudo-destructor-name.
4210     ObjectType = ParsedType();
4211     MayBePseudoDestructor = true;
4212     return Owned(Base);
4213   }
4214
4215   // The object type must be complete (or dependent).
4216   if (!BaseType->isDependentType() &&
4217       RequireCompleteType(OpLoc, BaseType,
4218                           PDiag(diag::err_incomplete_member_access)))
4219     return ExprError();
4220
4221   // C++ [basic.lookup.classref]p2:
4222   //   If the id-expression in a class member access (5.2.5) is an
4223   //   unqualified-id, and the type of the object expression is of a class
4224   //   type C (or of pointer to a class type C), the unqualified-id is looked
4225   //   up in the scope of class C. [...]
4226   ObjectType = ParsedType::make(BaseType);
4227   return move(Base);
4228 }
4229
4230 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4231                                                    Expr *MemExpr) {
4232   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4233   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4234     << isa<CXXPseudoDestructorExpr>(MemExpr)
4235     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4236
4237   return ActOnCallExpr(/*Scope*/ 0,
4238                        MemExpr,
4239                        /*LPLoc*/ ExpectedLParenLoc,
4240                        MultiExprArg(),
4241                        /*RPLoc*/ ExpectedLParenLoc);
4242 }
4243
4244 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4245                                            SourceLocation OpLoc,
4246                                            tok::TokenKind OpKind,
4247                                            const CXXScopeSpec &SS,
4248                                            TypeSourceInfo *ScopeTypeInfo,
4249                                            SourceLocation CCLoc,
4250                                            SourceLocation TildeLoc,
4251                                          PseudoDestructorTypeStorage Destructed,
4252                                            bool HasTrailingLParen) {
4253   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4254
4255   // C++ [expr.pseudo]p2:
4256   //   The left-hand side of the dot operator shall be of scalar type. The
4257   //   left-hand side of the arrow operator shall be of pointer to scalar type.
4258   //   This scalar type is the object type.
4259   QualType ObjectType = Base->getType();
4260   if (OpKind == tok::arrow) {
4261     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4262       ObjectType = Ptr->getPointeeType();
4263     } else if (!Base->isTypeDependent()) {
4264       // The user wrote "p->" when she probably meant "p."; fix it.
4265       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4266         << ObjectType << true
4267         << FixItHint::CreateReplacement(OpLoc, ".");
4268       if (isSFINAEContext())
4269         return ExprError();
4270
4271       OpKind = tok::period;
4272     }
4273   }
4274
4275   if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4276     Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4277       << ObjectType << Base->getSourceRange();
4278     return ExprError();
4279   }
4280
4281   // C++ [expr.pseudo]p2:
4282   //   [...] The cv-unqualified versions of the object type and of the type
4283   //   designated by the pseudo-destructor-name shall be the same type.
4284   if (DestructedTypeInfo) {
4285     QualType DestructedType = DestructedTypeInfo->getType();
4286     SourceLocation DestructedTypeStart
4287       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4288     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4289       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4290         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4291           << ObjectType << DestructedType << Base->getSourceRange()
4292           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4293
4294         // Recover by setting the destructed type to the object type.
4295         DestructedType = ObjectType;
4296         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4297                                                            DestructedTypeStart);
4298         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4299       } else if (DestructedType.getObjCLifetime() != 
4300                                                 ObjectType.getObjCLifetime()) {
4301         
4302         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4303           // Okay: just pretend that the user provided the correctly-qualified
4304           // type.
4305         } else {
4306           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4307             << ObjectType << DestructedType << Base->getSourceRange()
4308             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4309         }
4310         
4311         // Recover by setting the destructed type to the object type.
4312         DestructedType = ObjectType;
4313         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4314                                                            DestructedTypeStart);
4315         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4316       }
4317     }
4318   }
4319
4320   // C++ [expr.pseudo]p2:
4321   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4322   //   form
4323   //
4324   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4325   //
4326   //   shall designate the same scalar type.
4327   if (ScopeTypeInfo) {
4328     QualType ScopeType = ScopeTypeInfo->getType();
4329     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4330         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4331
4332       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4333            diag::err_pseudo_dtor_type_mismatch)
4334         << ObjectType << ScopeType << Base->getSourceRange()
4335         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4336
4337       ScopeType = QualType();
4338       ScopeTypeInfo = 0;
4339     }
4340   }
4341
4342   Expr *Result
4343     = new (Context) CXXPseudoDestructorExpr(Context, Base,
4344                                             OpKind == tok::arrow, OpLoc,
4345                                             SS.getWithLocInContext(Context),
4346                                             ScopeTypeInfo,
4347                                             CCLoc,
4348                                             TildeLoc,
4349                                             Destructed);
4350
4351   if (HasTrailingLParen)
4352     return Owned(Result);
4353
4354   return DiagnoseDtorReference(Destructed.getLocation(), Result);
4355 }
4356
4357 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4358                                            SourceLocation OpLoc,
4359                                            tok::TokenKind OpKind,
4360                                            CXXScopeSpec &SS,
4361                                            UnqualifiedId &FirstTypeName,
4362                                            SourceLocation CCLoc,
4363                                            SourceLocation TildeLoc,
4364                                            UnqualifiedId &SecondTypeName,
4365                                            bool HasTrailingLParen) {
4366   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4367           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4368          "Invalid first type name in pseudo-destructor");
4369   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4370           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4371          "Invalid second type name in pseudo-destructor");
4372
4373   // C++ [expr.pseudo]p2:
4374   //   The left-hand side of the dot operator shall be of scalar type. The
4375   //   left-hand side of the arrow operator shall be of pointer to scalar type.
4376   //   This scalar type is the object type.
4377   QualType ObjectType = Base->getType();
4378   if (OpKind == tok::arrow) {
4379     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4380       ObjectType = Ptr->getPointeeType();
4381     } else if (!ObjectType->isDependentType()) {
4382       // The user wrote "p->" when she probably meant "p."; fix it.
4383       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4384         << ObjectType << true
4385         << FixItHint::CreateReplacement(OpLoc, ".");
4386       if (isSFINAEContext())
4387         return ExprError();
4388
4389       OpKind = tok::period;
4390     }
4391   }
4392
4393   // Compute the object type that we should use for name lookup purposes. Only
4394   // record types and dependent types matter.
4395   ParsedType ObjectTypePtrForLookup;
4396   if (!SS.isSet()) {
4397     if (ObjectType->isRecordType())
4398       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4399     else if (ObjectType->isDependentType())
4400       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4401   }
4402
4403   // Convert the name of the type being destructed (following the ~) into a
4404   // type (with source-location information).
4405   QualType DestructedType;
4406   TypeSourceInfo *DestructedTypeInfo = 0;
4407   PseudoDestructorTypeStorage Destructed;
4408   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4409     ParsedType T = getTypeName(*SecondTypeName.Identifier,
4410                                SecondTypeName.StartLocation,
4411                                S, &SS, true, false, ObjectTypePtrForLookup);
4412     if (!T &&
4413         ((SS.isSet() && !computeDeclContext(SS, false)) ||
4414          (!SS.isSet() && ObjectType->isDependentType()))) {
4415       // The name of the type being destroyed is a dependent name, and we
4416       // couldn't find anything useful in scope. Just store the identifier and
4417       // it's location, and we'll perform (qualified) name lookup again at
4418       // template instantiation time.
4419       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4420                                                SecondTypeName.StartLocation);
4421     } else if (!T) {
4422       Diag(SecondTypeName.StartLocation,
4423            diag::err_pseudo_dtor_destructor_non_type)
4424         << SecondTypeName.Identifier << ObjectType;
4425       if (isSFINAEContext())
4426         return ExprError();
4427
4428       // Recover by assuming we had the right type all along.
4429       DestructedType = ObjectType;
4430     } else
4431       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
4432   } else {
4433     // Resolve the template-id to a type.
4434     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
4435     ASTTemplateArgsPtr TemplateArgsPtr(*this,
4436                                        TemplateId->getTemplateArgs(),
4437                                        TemplateId->NumArgs);
4438     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4439                                        TemplateId->Template,
4440                                        TemplateId->TemplateNameLoc,
4441                                        TemplateId->LAngleLoc,
4442                                        TemplateArgsPtr,
4443                                        TemplateId->RAngleLoc);
4444     if (T.isInvalid() || !T.get()) {
4445       // Recover by assuming we had the right type all along.
4446       DestructedType = ObjectType;
4447     } else
4448       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
4449   }
4450
4451   // If we've performed some kind of recovery, (re-)build the type source
4452   // information.
4453   if (!DestructedType.isNull()) {
4454     if (!DestructedTypeInfo)
4455       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
4456                                                   SecondTypeName.StartLocation);
4457     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4458   }
4459
4460   // Convert the name of the scope type (the type prior to '::') into a type.
4461   TypeSourceInfo *ScopeTypeInfo = 0;
4462   QualType ScopeType;
4463   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4464       FirstTypeName.Identifier) {
4465     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4466       ParsedType T = getTypeName(*FirstTypeName.Identifier,
4467                                  FirstTypeName.StartLocation,
4468                                  S, &SS, true, false, ObjectTypePtrForLookup);
4469       if (!T) {
4470         Diag(FirstTypeName.StartLocation,
4471              diag::err_pseudo_dtor_destructor_non_type)
4472           << FirstTypeName.Identifier << ObjectType;
4473
4474         if (isSFINAEContext())
4475           return ExprError();
4476
4477         // Just drop this type. It's unnecessary anyway.
4478         ScopeType = QualType();
4479       } else
4480         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
4481     } else {
4482       // Resolve the template-id to a type.
4483       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
4484       ASTTemplateArgsPtr TemplateArgsPtr(*this,
4485                                          TemplateId->getTemplateArgs(),
4486                                          TemplateId->NumArgs);
4487       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4488                                          TemplateId->Template,
4489                                          TemplateId->TemplateNameLoc,
4490                                          TemplateId->LAngleLoc,
4491                                          TemplateArgsPtr,
4492                                          TemplateId->RAngleLoc);
4493       if (T.isInvalid() || !T.get()) {
4494         // Recover by dropping this type.
4495         ScopeType = QualType();
4496       } else
4497         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
4498     }
4499   }
4500
4501   if (!ScopeType.isNull() && !ScopeTypeInfo)
4502     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
4503                                                   FirstTypeName.StartLocation);
4504
4505
4506   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
4507                                    ScopeTypeInfo, CCLoc, TildeLoc,
4508                                    Destructed, HasTrailingLParen);
4509 }
4510
4511 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
4512                                         CXXMethodDecl *Method) {
4513   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
4514                                           FoundDecl, Method);
4515   if (Exp.isInvalid())
4516     return true;
4517
4518   MemberExpr *ME =
4519       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
4520                                SourceLocation(), Method->getType(),
4521                                VK_RValue, OK_Ordinary);
4522   QualType ResultType = Method->getResultType();
4523   ExprValueKind VK = Expr::getValueKindForType(ResultType);
4524   ResultType = ResultType.getNonLValueExprType(Context);
4525
4526   MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
4527   CXXMemberCallExpr *CE =
4528     new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
4529                                     Exp.get()->getLocEnd());
4530   return CE;
4531 }
4532
4533 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
4534                                       SourceLocation RParen) {
4535   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
4536                                              Operand->CanThrow(Context),
4537                                              KeyLoc, RParen));
4538 }
4539
4540 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
4541                                    Expr *Operand, SourceLocation RParen) {
4542   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
4543 }
4544
4545 /// Perform the conversions required for an expression used in a
4546 /// context that ignores the result.
4547 ExprResult Sema::IgnoredValueConversions(Expr *E) {
4548   // C99 6.3.2.1:
4549   //   [Except in specific positions,] an lvalue that does not have
4550   //   array type is converted to the value stored in the
4551   //   designated object (and is no longer an lvalue).
4552   if (E->isRValue()) {
4553     // In C, function designators (i.e. expressions of function type)
4554     // are r-values, but we still want to do function-to-pointer decay
4555     // on them.  This is both technically correct and convenient for
4556     // some clients.
4557     if (!getLangOptions().CPlusPlus && E->getType()->isFunctionType())
4558       return DefaultFunctionArrayConversion(E);
4559
4560     return Owned(E);
4561   }
4562
4563   // We always want to do this on ObjC property references.
4564   if (E->getObjectKind() == OK_ObjCProperty) {
4565     ExprResult Res = ConvertPropertyForRValue(E);
4566     if (Res.isInvalid()) return Owned(E);
4567     E = Res.take();
4568     if (E->isRValue()) return Owned(E);
4569   }
4570
4571   // Otherwise, this rule does not apply in C++, at least not for the moment.
4572   if (getLangOptions().CPlusPlus) return Owned(E);
4573
4574   // GCC seems to also exclude expressions of incomplete enum type.
4575   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
4576     if (!T->getDecl()->isComplete()) {
4577       // FIXME: stupid workaround for a codegen bug!
4578       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
4579       return Owned(E);
4580     }
4581   }
4582
4583   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
4584   if (Res.isInvalid())
4585     return Owned(E);
4586   E = Res.take();
4587
4588   if (!E->getType()->isVoidType())
4589     RequireCompleteType(E->getExprLoc(), E->getType(),
4590                         diag::err_incomplete_type);
4591   return Owned(E);
4592 }
4593
4594 ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
4595   ExprResult FullExpr = Owned(FE);
4596
4597   if (!FullExpr.get())
4598     return ExprError();
4599
4600   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
4601     return ExprError();
4602
4603   FullExpr = CheckPlaceholderExpr(FullExpr.take());
4604   if (FullExpr.isInvalid())
4605     return ExprError();
4606
4607   FullExpr = IgnoredValueConversions(FullExpr.take());
4608   if (FullExpr.isInvalid())
4609     return ExprError();
4610
4611   CheckImplicitConversions(FullExpr.get());
4612   return MaybeCreateExprWithCleanups(FullExpr);
4613 }
4614
4615 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
4616   if (!FullStmt) return StmtError();
4617
4618   return MaybeCreateStmtWithCleanups(FullStmt);
4619 }
4620
4621 bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
4622                                         UnqualifiedId &Name) {
4623   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4624   DeclarationName TargetName = TargetNameInfo.getName();
4625   if (!TargetName)
4626     return false;
4627
4628   // Do the redeclaration lookup in the current scope.
4629   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
4630                  Sema::NotForRedeclaration);
4631   R.suppressDiagnostics();
4632   LookupParsedName(R, getCurScope(), &SS);
4633   return !R.empty(); 
4634 }