]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaStmt.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Sema / SemaStmt.cpp
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Scope.h"
16 #include "clang/Sema/ScopeInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallVector.h"
32 using namespace clang;
33 using namespace sema;
34
35 StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36   Expr *E = expr.get();
37   if (!E) // FIXME: FullExprArg has no error state?
38     return StmtError();
39
40   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41   // void expression for its side effects.  Conversion to void allows any
42   // operand, even incomplete types.
43
44   // Same thing in for stmt first clause (when expr) and third clause.
45   return Owned(static_cast<Stmt*>(E));
46 }
47
48
49 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                                SourceLocation LeadingEmptyMacroLoc) {
51   return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacroLoc));
52 }
53
54 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                                SourceLocation EndLoc) {
56   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58   // If we have an invalid decl, just return an error.
59   if (DG.isNull()) return StmtError();
60
61   return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62 }
63
64 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67   // If we have an invalid decl, just return.
68   if (DG.isNull() || !DG.isSingleDecl()) return;
69   VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71   // suppress any potential 'unused variable' warning.
72   var->setUsed();
73
74   // foreach variables are never actually initialized in the way that
75   // the parser came up with.
76   var->setInit(0);
77
78   // In ARC, we don't need to retain the iteration variable of a fast
79   // enumeration loop.  Rather than actually trying to catch that
80   // during declaration processing, we remove the consequences here.
81   if (getLangOptions().ObjCAutoRefCount) {
82     QualType type = var->getType();
83
84     // Only do this if we inferred the lifetime.  Inferred lifetime
85     // will show up as a local qualifier because explicit lifetime
86     // should have shown up as an AttributedType instead.
87     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88       // Add 'const' and mark the variable as pseudo-strong.
89       var->setType(type.withConst());
90       var->setARCPseudoStrong(true);
91     }
92   }
93 }
94
95 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
96   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
97     return DiagnoseUnusedExprResult(Label->getSubStmt());
98
99   const Expr *E = dyn_cast_or_null<Expr>(S);
100   if (!E)
101     return;
102
103   SourceLocation Loc;
104   SourceRange R1, R2;
105   if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
106     return;
107
108   // Okay, we have an unused result.  Depending on what the base expression is,
109   // we might want to make a more specific diagnostic.  Check for one of these
110   // cases now.
111   unsigned DiagID = diag::warn_unused_expr;
112   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
113     E = Temps->getSubExpr();
114   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
115     E = TempExpr->getSubExpr();
116
117   E = E->IgnoreParenImpCasts();
118   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
119     if (E->getType()->isVoidType())
120       return;
121
122     // If the callee has attribute pure, const, or warn_unused_result, warn with
123     // a more specific message to make it clear what is happening.
124     if (const Decl *FD = CE->getCalleeDecl()) {
125       if (FD->getAttr<WarnUnusedResultAttr>()) {
126         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
127         return;
128       }
129       if (FD->getAttr<PureAttr>()) {
130         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
131         return;
132       }
133       if (FD->getAttr<ConstAttr>()) {
134         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
135         return;
136       }
137     }
138   } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
139     if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
140       Diag(Loc, diag::err_arc_unused_init_message) << R1;
141       return;
142     }
143     const ObjCMethodDecl *MD = ME->getMethodDecl();
144     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
145       Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
146       return;
147     }
148   } else if (isa<ObjCPropertyRefExpr>(E)) {
149     DiagID = diag::warn_unused_property_expr;
150   } else if (const CXXFunctionalCastExpr *FC
151                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
152     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
153         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
154       return;
155   }
156   // Diagnose "(void*) blah" as a typo for "(void) blah".
157   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
158     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
159     QualType T = TI->getType();
160
161     // We really do want to use the non-canonical type here.
162     if (T == Context.VoidPtrTy) {
163       PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
164
165       Diag(Loc, diag::warn_unused_voidptr)
166         << FixItHint::CreateRemoval(TL.getStarLoc());
167       return;
168     }
169   }
170
171   DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
172 }
173
174 StmtResult
175 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
176                         MultiStmtArg elts, bool isStmtExpr) {
177   unsigned NumElts = elts.size();
178   Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
179   // If we're in C89 mode, check that we don't have any decls after stmts.  If
180   // so, emit an extension diagnostic.
181   if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
182     // Note that __extension__ can be around a decl.
183     unsigned i = 0;
184     // Skip over all declarations.
185     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
186       /*empty*/;
187
188     // We found the end of the list or a statement.  Scan for another declstmt.
189     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
190       /*empty*/;
191
192     if (i != NumElts) {
193       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
194       Diag(D->getLocation(), diag::ext_mixed_decls_code);
195     }
196   }
197   // Warn about unused expressions in statements.
198   for (unsigned i = 0; i != NumElts; ++i) {
199     // Ignore statements that are last in a statement expression.
200     if (isStmtExpr && i == NumElts - 1)
201       continue;
202
203     DiagnoseUnusedExprResult(Elts[i]);
204   }
205
206   return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
207 }
208
209 StmtResult
210 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
211                     SourceLocation DotDotDotLoc, Expr *RHSVal,
212                     SourceLocation ColonLoc) {
213   assert((LHSVal != 0) && "missing expression in case statement");
214
215   // C99 6.8.4.2p3: The expression shall be an integer constant.
216   // However, GCC allows any evaluatable integer expression.
217   if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
218       VerifyIntegerConstantExpression(LHSVal))
219     return StmtError();
220
221   // GCC extension: The expression shall be an integer constant.
222
223   if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
224       VerifyIntegerConstantExpression(RHSVal)) {
225     RHSVal = 0;  // Recover by just forgetting about it.
226   }
227
228   if (getCurFunction()->SwitchStack.empty()) {
229     Diag(CaseLoc, diag::err_case_not_in_switch);
230     return StmtError();
231   }
232
233   CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
234                                         ColonLoc);
235   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
236   return Owned(CS);
237 }
238
239 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
240 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
241   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
242   CS->setSubStmt(SubStmt);
243 }
244
245 StmtResult
246 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
247                        Stmt *SubStmt, Scope *CurScope) {
248   if (getCurFunction()->SwitchStack.empty()) {
249     Diag(DefaultLoc, diag::err_default_not_in_switch);
250     return Owned(SubStmt);
251   }
252
253   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
254   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
255   return Owned(DS);
256 }
257
258 StmtResult
259 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
260                      SourceLocation ColonLoc, Stmt *SubStmt) {
261   
262   // If the label was multiply defined, reject it now.
263   if (TheDecl->getStmt()) {
264     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
265     Diag(TheDecl->getLocation(), diag::note_previous_definition);
266     return Owned(SubStmt);
267   }
268
269   // Otherwise, things are good.  Fill in the declaration and return it.
270   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
271   TheDecl->setStmt(LS);
272   if (!TheDecl->isGnuLocal())
273     TheDecl->setLocation(IdentLoc);
274   return Owned(LS);
275 }
276
277 StmtResult
278 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
279                   Stmt *thenStmt, SourceLocation ElseLoc,
280                   Stmt *elseStmt) {
281   ExprResult CondResult(CondVal.release());
282
283   VarDecl *ConditionVar = 0;
284   if (CondVar) {
285     ConditionVar = cast<VarDecl>(CondVar);
286     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
287     if (CondResult.isInvalid())
288       return StmtError();
289   }
290   Expr *ConditionExpr = CondResult.takeAs<Expr>();
291   if (!ConditionExpr)
292     return StmtError();
293
294   DiagnoseUnusedExprResult(thenStmt);
295
296   // Warn if the if block has a null body without an else value.
297   // this helps prevent bugs due to typos, such as
298   // if (condition);
299   //   do_stuff();
300   //
301   if (!elseStmt) {
302     if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
303       // But do not warn if the body is a macro that expands to nothing, e.g:
304       //
305       // #define CALL(x)
306       // if (condition)
307       //   CALL(0);
308       //
309       if (!stmt->hasLeadingEmptyMacro())
310         Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
311   }
312
313   DiagnoseUnusedExprResult(elseStmt);
314
315   return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
316                                     thenStmt, ElseLoc, elseStmt));
317 }
318
319 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
320 /// the specified width and sign.  If an overflow occurs, detect it and emit
321 /// the specified diagnostic.
322 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
323                                               unsigned NewWidth, bool NewSign,
324                                               SourceLocation Loc,
325                                               unsigned DiagID) {
326   // Perform a conversion to the promoted condition type if needed.
327   if (NewWidth > Val.getBitWidth()) {
328     // If this is an extension, just do it.
329     Val = Val.extend(NewWidth);
330     Val.setIsSigned(NewSign);
331
332     // If the input was signed and negative and the output is
333     // unsigned, don't bother to warn: this is implementation-defined
334     // behavior.
335     // FIXME: Introduce a second, default-ignored warning for this case?
336   } else if (NewWidth < Val.getBitWidth()) {
337     // If this is a truncation, check for overflow.
338     llvm::APSInt ConvVal(Val);
339     ConvVal = ConvVal.trunc(NewWidth);
340     ConvVal.setIsSigned(NewSign);
341     ConvVal = ConvVal.extend(Val.getBitWidth());
342     ConvVal.setIsSigned(Val.isSigned());
343     if (ConvVal != Val)
344       Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
345
346     // Regardless of whether a diagnostic was emitted, really do the
347     // truncation.
348     Val = Val.trunc(NewWidth);
349     Val.setIsSigned(NewSign);
350   } else if (NewSign != Val.isSigned()) {
351     // Convert the sign to match the sign of the condition.  This can cause
352     // overflow as well: unsigned(INTMIN)
353     // We don't diagnose this overflow, because it is implementation-defined
354     // behavior.
355     // FIXME: Introduce a second, default-ignored warning for this case?
356     llvm::APSInt OldVal(Val);
357     Val.setIsSigned(NewSign);
358   }
359 }
360
361 namespace {
362   struct CaseCompareFunctor {
363     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
364                     const llvm::APSInt &RHS) {
365       return LHS.first < RHS;
366     }
367     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
368                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
369       return LHS.first < RHS.first;
370     }
371     bool operator()(const llvm::APSInt &LHS,
372                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
373       return LHS < RHS.first;
374     }
375   };
376 }
377
378 /// CmpCaseVals - Comparison predicate for sorting case values.
379 ///
380 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
381                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
382   if (lhs.first < rhs.first)
383     return true;
384
385   if (lhs.first == rhs.first &&
386       lhs.second->getCaseLoc().getRawEncoding()
387        < rhs.second->getCaseLoc().getRawEncoding())
388     return true;
389   return false;
390 }
391
392 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
393 ///
394 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
395                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
396 {
397   return lhs.first < rhs.first;
398 }
399
400 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
401 ///
402 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
403                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
404 {
405   return lhs.first == rhs.first;
406 }
407
408 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
409 /// potentially integral-promoted expression @p expr.
410 static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
411   if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
412     const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
413     QualType TypeBeforePromotion = ExprBeforePromotion->getType();
414     if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
415       return TypeBeforePromotion;
416     }
417   }
418   return expr->getType();
419 }
420
421 StmtResult
422 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
423                              Decl *CondVar) {
424   ExprResult CondResult;
425
426   VarDecl *ConditionVar = 0;
427   if (CondVar) {
428     ConditionVar = cast<VarDecl>(CondVar);
429     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
430     if (CondResult.isInvalid())
431       return StmtError();
432
433     Cond = CondResult.release();
434   }
435
436   if (!Cond)
437     return StmtError();
438
439   CondResult
440     = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
441                           PDiag(diag::err_typecheck_statement_requires_integer),
442                                    PDiag(diag::err_switch_incomplete_class_type)
443                                      << Cond->getSourceRange(),
444                                    PDiag(diag::err_switch_explicit_conversion),
445                                          PDiag(diag::note_switch_conversion),
446                                    PDiag(diag::err_switch_multiple_conversions),
447                                          PDiag(diag::note_switch_conversion),
448                                          PDiag(0));
449   if (CondResult.isInvalid()) return StmtError();
450   Cond = CondResult.take();
451
452   if (!CondVar) {
453     CheckImplicitConversions(Cond, SwitchLoc);
454     CondResult = MaybeCreateExprWithCleanups(Cond);
455     if (CondResult.isInvalid())
456       return StmtError();
457     Cond = CondResult.take();
458   }
459
460   getCurFunction()->setHasBranchIntoScope();
461
462   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
463   getCurFunction()->SwitchStack.push_back(SS);
464   return Owned(SS);
465 }
466
467 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
468   if (Val.getBitWidth() < BitWidth)
469     Val = Val.extend(BitWidth);
470   else if (Val.getBitWidth() > BitWidth)
471     Val = Val.trunc(BitWidth);
472   Val.setIsSigned(IsSigned);
473 }
474
475 StmtResult
476 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
477                             Stmt *BodyStmt) {
478   SwitchStmt *SS = cast<SwitchStmt>(Switch);
479   assert(SS == getCurFunction()->SwitchStack.back() &&
480          "switch stack missing push/pop!");
481
482   SS->setBody(BodyStmt, SwitchLoc);
483   getCurFunction()->SwitchStack.pop_back();
484
485   if (SS->getCond() == 0)
486     return StmtError();
487
488   Expr *CondExpr = SS->getCond();
489   Expr *CondExprBeforePromotion = CondExpr;
490   QualType CondTypeBeforePromotion =
491       GetTypeBeforeIntegralPromotion(CondExpr);
492
493   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
494   ExprResult CondResult = UsualUnaryConversions(CondExpr);
495   if (CondResult.isInvalid())
496     return StmtError();
497   CondExpr = CondResult.take();
498   QualType CondType = CondExpr->getType();
499   SS->setCond(CondExpr);
500
501   // C++ 6.4.2.p2:
502   // Integral promotions are performed (on the switch condition).
503   //
504   // A case value unrepresentable by the original switch condition
505   // type (before the promotion) doesn't make sense, even when it can
506   // be represented by the promoted type.  Therefore we need to find
507   // the pre-promotion type of the switch condition.
508   if (!CondExpr->isTypeDependent()) {
509     // We have already converted the expression to an integral or enumeration
510     // type, when we started the switch statement. If we don't have an
511     // appropriate type now, just return an error.
512     if (!CondType->isIntegralOrEnumerationType())
513       return StmtError();
514
515     if (CondExpr->isKnownToHaveBooleanValue()) {
516       // switch(bool_expr) {...} is often a programmer error, e.g.
517       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
518       // One can always use an if statement instead of switch(bool_expr).
519       Diag(SwitchLoc, diag::warn_bool_switch_condition)
520           << CondExpr->getSourceRange();
521     }
522   }
523
524   // Get the bitwidth of the switched-on value before promotions.  We must
525   // convert the integer case values to this width before comparison.
526   bool HasDependentValue
527     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
528   unsigned CondWidth
529     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
530   bool CondIsSigned 
531     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
532
533   // Accumulate all of the case values in a vector so that we can sort them
534   // and detect duplicates.  This vector contains the APInt for the case after
535   // it has been converted to the condition type.
536   typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
537   CaseValsTy CaseVals;
538
539   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
540   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
541   CaseRangesTy CaseRanges;
542
543   DefaultStmt *TheDefaultStmt = 0;
544
545   bool CaseListIsErroneous = false;
546
547   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
548        SC = SC->getNextSwitchCase()) {
549
550     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
551       if (TheDefaultStmt) {
552         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
553         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
554
555         // FIXME: Remove the default statement from the switch block so that
556         // we'll return a valid AST.  This requires recursing down the AST and
557         // finding it, not something we are set up to do right now.  For now,
558         // just lop the entire switch stmt out of the AST.
559         CaseListIsErroneous = true;
560       }
561       TheDefaultStmt = DS;
562
563     } else {
564       CaseStmt *CS = cast<CaseStmt>(SC);
565
566       // We already verified that the expression has a i-c-e value (C99
567       // 6.8.4.2p3) - get that value now.
568       Expr *Lo = CS->getLHS();
569
570       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
571         HasDependentValue = true;
572         break;
573       }
574
575       llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
576
577       // Convert the value to the same width/sign as the condition.
578       ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
579                                          Lo->getLocStart(),
580                                          diag::warn_case_value_overflow);
581
582       // If the LHS is not the same type as the condition, insert an implicit
583       // cast.
584       Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
585       CS->setLHS(Lo);
586
587       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
588       if (CS->getRHS()) {
589         if (CS->getRHS()->isTypeDependent() ||
590             CS->getRHS()->isValueDependent()) {
591           HasDependentValue = true;
592           break;
593         }
594         CaseRanges.push_back(std::make_pair(LoVal, CS));
595       } else
596         CaseVals.push_back(std::make_pair(LoVal, CS));
597     }
598   }
599
600   if (!HasDependentValue) {
601     // If we don't have a default statement, check whether the
602     // condition is constant.
603     llvm::APSInt ConstantCondValue;
604     bool HasConstantCond = false;
605     bool ShouldCheckConstantCond = false;
606     if (!HasDependentValue && !TheDefaultStmt) {
607       Expr::EvalResult Result;
608       HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
609       if (HasConstantCond) {
610         assert(Result.Val.isInt() && "switch condition evaluated to non-int");
611         ConstantCondValue = Result.Val.getInt();
612         ShouldCheckConstantCond = true;
613
614         assert(ConstantCondValue.getBitWidth() == CondWidth &&
615                ConstantCondValue.isSigned() == CondIsSigned);
616       }
617     }
618
619     // Sort all the scalar case values so we can easily detect duplicates.
620     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
621
622     if (!CaseVals.empty()) {
623       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
624         if (ShouldCheckConstantCond &&
625             CaseVals[i].first == ConstantCondValue)
626           ShouldCheckConstantCond = false;
627
628         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
629           // If we have a duplicate, report it.
630           Diag(CaseVals[i].second->getLHS()->getLocStart(),
631                diag::err_duplicate_case) << CaseVals[i].first.toString(10);
632           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
633                diag::note_duplicate_case_prev);
634           // FIXME: We really want to remove the bogus case stmt from the
635           // substmt, but we have no way to do this right now.
636           CaseListIsErroneous = true;
637         }
638       }
639     }
640
641     // Detect duplicate case ranges, which usually don't exist at all in
642     // the first place.
643     if (!CaseRanges.empty()) {
644       // Sort all the case ranges by their low value so we can easily detect
645       // overlaps between ranges.
646       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
647
648       // Scan the ranges, computing the high values and removing empty ranges.
649       std::vector<llvm::APSInt> HiVals;
650       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
651         llvm::APSInt &LoVal = CaseRanges[i].first;
652         CaseStmt *CR = CaseRanges[i].second;
653         Expr *Hi = CR->getRHS();
654         llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
655
656         // Convert the value to the same width/sign as the condition.
657         ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
658                                            Hi->getLocStart(),
659                                            diag::warn_case_value_overflow);
660
661         // If the LHS is not the same type as the condition, insert an implicit
662         // cast.
663         Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
664         CR->setRHS(Hi);
665
666         // If the low value is bigger than the high value, the case is empty.
667         if (LoVal > HiVal) {
668           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
669             << SourceRange(CR->getLHS()->getLocStart(),
670                            Hi->getLocEnd());
671           CaseRanges.erase(CaseRanges.begin()+i);
672           --i, --e;
673           continue;
674         }
675
676         if (ShouldCheckConstantCond &&
677             LoVal <= ConstantCondValue &&
678             ConstantCondValue <= HiVal)
679           ShouldCheckConstantCond = false;
680
681         HiVals.push_back(HiVal);
682       }
683
684       // Rescan the ranges, looking for overlap with singleton values and other
685       // ranges.  Since the range list is sorted, we only need to compare case
686       // ranges with their neighbors.
687       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
688         llvm::APSInt &CRLo = CaseRanges[i].first;
689         llvm::APSInt &CRHi = HiVals[i];
690         CaseStmt *CR = CaseRanges[i].second;
691
692         // Check to see whether the case range overlaps with any
693         // singleton cases.
694         CaseStmt *OverlapStmt = 0;
695         llvm::APSInt OverlapVal(32);
696
697         // Find the smallest value >= the lower bound.  If I is in the
698         // case range, then we have overlap.
699         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
700                                                   CaseVals.end(), CRLo,
701                                                   CaseCompareFunctor());
702         if (I != CaseVals.end() && I->first < CRHi) {
703           OverlapVal  = I->first;   // Found overlap with scalar.
704           OverlapStmt = I->second;
705         }
706
707         // Find the smallest value bigger than the upper bound.
708         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
709         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
710           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
711           OverlapStmt = (I-1)->second;
712         }
713
714         // Check to see if this case stmt overlaps with the subsequent
715         // case range.
716         if (i && CRLo <= HiVals[i-1]) {
717           OverlapVal  = HiVals[i-1];       // Found overlap with range.
718           OverlapStmt = CaseRanges[i-1].second;
719         }
720
721         if (OverlapStmt) {
722           // If we have a duplicate, report it.
723           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
724             << OverlapVal.toString(10);
725           Diag(OverlapStmt->getLHS()->getLocStart(),
726                diag::note_duplicate_case_prev);
727           // FIXME: We really want to remove the bogus case stmt from the
728           // substmt, but we have no way to do this right now.
729           CaseListIsErroneous = true;
730         }
731       }
732     }
733
734     // Complain if we have a constant condition and we didn't find a match.
735     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
736       // TODO: it would be nice if we printed enums as enums, chars as
737       // chars, etc.
738       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
739         << ConstantCondValue.toString(10)
740         << CondExpr->getSourceRange();
741     }
742
743     // Check to see if switch is over an Enum and handles all of its
744     // values.  We only issue a warning if there is not 'default:', but
745     // we still do the analysis to preserve this information in the AST
746     // (which can be used by flow-based analyes).
747     //
748     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
749
750     // If switch has default case, then ignore it.
751     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
752       const EnumDecl *ED = ET->getDecl();
753       typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
754         EnumValsTy;
755       EnumValsTy EnumVals;
756
757       // Gather all enum values, set their type and sort them,
758       // allowing easier comparison with CaseVals.
759       for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
760            EDI != ED->enumerator_end(); ++EDI) {
761         llvm::APSInt Val = EDI->getInitVal();
762         AdjustAPSInt(Val, CondWidth, CondIsSigned);
763         EnumVals.push_back(std::make_pair(Val, *EDI));
764       }
765       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
766       EnumValsTy::iterator EIend =
767         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
768
769       // See which case values aren't in enum.
770       // TODO: we might want to check whether case values are out of the
771       // enum even if we don't want to check whether all cases are handled.
772       if (!TheDefaultStmt) {
773         EnumValsTy::const_iterator EI = EnumVals.begin();
774         for (CaseValsTy::const_iterator CI = CaseVals.begin();
775              CI != CaseVals.end(); CI++) {
776           while (EI != EIend && EI->first < CI->first)
777             EI++;
778           if (EI == EIend || EI->first > CI->first)
779             Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
780               << ED->getDeclName();
781         }
782         // See which of case ranges aren't in enum
783         EI = EnumVals.begin();
784         for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
785              RI != CaseRanges.end() && EI != EIend; RI++) {
786           while (EI != EIend && EI->first < RI->first)
787             EI++;
788
789           if (EI == EIend || EI->first != RI->first) {
790             Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
791               << ED->getDeclName();
792           }
793
794           llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
795           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
796           while (EI != EIend && EI->first < Hi)
797             EI++;
798           if (EI == EIend || EI->first != Hi)
799             Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
800               << ED->getDeclName();
801         }
802       }
803
804       // Check which enum vals aren't in switch
805       CaseValsTy::const_iterator CI = CaseVals.begin();
806       CaseRangesTy::const_iterator RI = CaseRanges.begin();
807       bool hasCasesNotInSwitch = false;
808
809       llvm::SmallVector<DeclarationName,8> UnhandledNames;
810
811       for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
812         // Drop unneeded case values
813         llvm::APSInt CIVal;
814         while (CI != CaseVals.end() && CI->first < EI->first)
815           CI++;
816
817         if (CI != CaseVals.end() && CI->first == EI->first)
818           continue;
819
820         // Drop unneeded case ranges
821         for (; RI != CaseRanges.end(); RI++) {
822           llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
823           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
824           if (EI->first <= Hi)
825             break;
826         }
827
828         if (RI == CaseRanges.end() || EI->first < RI->first) {
829           hasCasesNotInSwitch = true;
830           if (!TheDefaultStmt)
831             UnhandledNames.push_back(EI->second->getDeclName());
832         }
833       }
834
835       // Produce a nice diagnostic if multiple values aren't handled.
836       switch (UnhandledNames.size()) {
837       case 0: break;
838       case 1:
839         Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
840           << UnhandledNames[0];
841         break;
842       case 2:
843         Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
844           << UnhandledNames[0] << UnhandledNames[1];
845         break;
846       case 3:
847         Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
848           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
849         break;
850       default:
851         Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
852           << (unsigned)UnhandledNames.size()
853           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
854         break;
855       }
856
857       if (!hasCasesNotInSwitch)
858         SS->setAllEnumCasesCovered();
859     }
860   }
861
862   // FIXME: If the case list was broken is some way, we don't have a good system
863   // to patch it up.  Instead, just return the whole substmt as broken.
864   if (CaseListIsErroneous)
865     return StmtError();
866
867   return Owned(SS);
868 }
869
870 StmtResult
871 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
872                      Decl *CondVar, Stmt *Body) {
873   ExprResult CondResult(Cond.release());
874
875   VarDecl *ConditionVar = 0;
876   if (CondVar) {
877     ConditionVar = cast<VarDecl>(CondVar);
878     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
879     if (CondResult.isInvalid())
880       return StmtError();
881   }
882   Expr *ConditionExpr = CondResult.take();
883   if (!ConditionExpr)
884     return StmtError();
885
886   DiagnoseUnusedExprResult(Body);
887
888   return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
889                                        Body, WhileLoc));
890 }
891
892 StmtResult
893 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
894                   SourceLocation WhileLoc, SourceLocation CondLParen,
895                   Expr *Cond, SourceLocation CondRParen) {
896   assert(Cond && "ActOnDoStmt(): missing expression");
897
898   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
899   if (CondResult.isInvalid() || CondResult.isInvalid())
900     return StmtError();
901   Cond = CondResult.take();
902
903   CheckImplicitConversions(Cond, DoLoc);
904   CondResult = MaybeCreateExprWithCleanups(Cond);
905   if (CondResult.isInvalid())
906     return StmtError();
907   Cond = CondResult.take();
908
909   DiagnoseUnusedExprResult(Body);
910
911   return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
912 }
913
914 StmtResult
915 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
916                    Stmt *First, FullExprArg second, Decl *secondVar,
917                    FullExprArg third,
918                    SourceLocation RParenLoc, Stmt *Body) {
919   if (!getLangOptions().CPlusPlus) {
920     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
921       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
922       // declare identifiers for objects having storage class 'auto' or
923       // 'register'.
924       for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
925            DI!=DE; ++DI) {
926         VarDecl *VD = dyn_cast<VarDecl>(*DI);
927         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
928           VD = 0;
929         if (VD == 0)
930           Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
931         // FIXME: mark decl erroneous!
932       }
933     }
934   }
935
936   ExprResult SecondResult(second.release());
937   VarDecl *ConditionVar = 0;
938   if (secondVar) {
939     ConditionVar = cast<VarDecl>(secondVar);
940     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
941     if (SecondResult.isInvalid())
942       return StmtError();
943   }
944
945   Expr *Third  = third.release().takeAs<Expr>();
946
947   DiagnoseUnusedExprResult(First);
948   DiagnoseUnusedExprResult(Third);
949   DiagnoseUnusedExprResult(Body);
950
951   return Owned(new (Context) ForStmt(Context, First,
952                                      SecondResult.take(), ConditionVar,
953                                      Third, Body, ForLoc, LParenLoc,
954                                      RParenLoc));
955 }
956
957 /// In an Objective C collection iteration statement:
958 ///   for (x in y)
959 /// x can be an arbitrary l-value expression.  Bind it up as a
960 /// full-expression.
961 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
962   CheckImplicitConversions(E);
963   ExprResult Result = MaybeCreateExprWithCleanups(E);
964   if (Result.isInvalid()) return StmtError();
965   return Owned(static_cast<Stmt*>(Result.get()));
966 }
967
968 StmtResult
969 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
970                                  SourceLocation LParenLoc,
971                                  Stmt *First, Expr *Second,
972                                  SourceLocation RParenLoc, Stmt *Body) {
973   if (First) {
974     QualType FirstType;
975     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
976       if (!DS->isSingleDecl())
977         return StmtError(Diag((*DS->decl_begin())->getLocation(),
978                          diag::err_toomany_element_decls));
979
980       VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
981       FirstType = D->getType();
982       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
983       // declare identifiers for objects having storage class 'auto' or
984       // 'register'.
985       if (!D->hasLocalStorage())
986         return StmtError(Diag(D->getLocation(),
987                               diag::err_non_variable_decl_in_for));
988     } else {
989       Expr *FirstE = cast<Expr>(First);
990       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
991         return StmtError(Diag(First->getLocStart(),
992                    diag::err_selector_element_not_lvalue)
993           << First->getSourceRange());
994
995       FirstType = static_cast<Expr*>(First)->getType();
996     }
997     if (!FirstType->isDependentType() &&
998         !FirstType->isObjCObjectPointerType() &&
999         !FirstType->isBlockPointerType())
1000         Diag(ForLoc, diag::err_selector_element_type)
1001           << FirstType << First->getSourceRange();
1002   }
1003   if (Second && !Second->isTypeDependent()) {
1004     ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
1005     if (Result.isInvalid())
1006       return StmtError();
1007     Second = Result.take();
1008     QualType SecondType = Second->getType();
1009     if (!SecondType->isObjCObjectPointerType())
1010       Diag(ForLoc, diag::err_collection_expr_type)
1011         << SecondType << Second->getSourceRange();
1012     else if (const ObjCObjectPointerType *OPT =
1013              SecondType->getAsObjCInterfacePointerType()) {
1014       llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
1015       IdentifierInfo* selIdent =
1016         &Context.Idents.get("countByEnumeratingWithState");
1017       KeyIdents.push_back(selIdent);
1018       selIdent = &Context.Idents.get("objects");
1019       KeyIdents.push_back(selIdent);
1020       selIdent = &Context.Idents.get("count");
1021       KeyIdents.push_back(selIdent);
1022       Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
1023       if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
1024         if (!IDecl->isForwardDecl() &&
1025             !IDecl->lookupInstanceMethod(CSelector) &&
1026             !LookupMethodInQualifiedType(CSelector, OPT, true)) {
1027           // Must further look into private implementation methods.
1028           if (!LookupPrivateInstanceMethod(CSelector, IDecl))
1029             Diag(ForLoc, diag::warn_collection_expr_type)
1030               << SecondType << CSelector << Second->getSourceRange();
1031         }
1032       }
1033     }
1034   }
1035   return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1036                                                    ForLoc, RParenLoc));
1037 }
1038
1039 namespace {
1040
1041 enum BeginEndFunction {
1042   BEF_begin,
1043   BEF_end
1044 };
1045
1046 /// Build a variable declaration for a for-range statement.
1047 static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1048                                      QualType Type, const char *Name) {
1049   DeclContext *DC = SemaRef.CurContext;
1050   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1051   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1052   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1053                                   TInfo, SC_Auto, SC_None);
1054   Decl->setImplicit();
1055   return Decl;
1056 }
1057
1058 /// Finish building a variable declaration for a for-range statement.
1059 /// \return true if an error occurs.
1060 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1061                                   SourceLocation Loc, int diag) {
1062   // Deduce the type for the iterator variable now rather than leaving it to
1063   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1064   TypeSourceInfo *InitTSI = 0;
1065   if (Init->getType()->isVoidType() ||
1066       !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1067     SemaRef.Diag(Loc, diag) << Init->getType();
1068   if (!InitTSI) {
1069     Decl->setInvalidDecl();
1070     return true;
1071   }
1072   Decl->setTypeSourceInfo(InitTSI);
1073   Decl->setType(InitTSI->getType());
1074
1075   // In ARC, infer lifetime.
1076   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1077   // we're doing the equivalent of fast iteration.
1078   if (SemaRef.getLangOptions().ObjCAutoRefCount && 
1079       SemaRef.inferObjCARCLifetime(Decl))
1080     Decl->setInvalidDecl();
1081
1082   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1083                                /*TypeMayContainAuto=*/false);
1084   SemaRef.FinalizeDeclaration(Decl);
1085   SemaRef.CurContext->addHiddenDecl(Decl);
1086   return false;
1087 }
1088
1089 /// Produce a note indicating which begin/end function was implicitly called
1090 /// by a C++0x for-range statement. This is often not obvious from the code,
1091 /// nor from the diagnostics produced when analysing the implicit expressions
1092 /// required in a for-range statement.
1093 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1094                                   BeginEndFunction BEF) {
1095   CallExpr *CE = dyn_cast<CallExpr>(E);
1096   if (!CE)
1097     return;
1098   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1099   if (!D)
1100     return;
1101   SourceLocation Loc = D->getLocation();
1102
1103   std::string Description;
1104   bool IsTemplate = false;
1105   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1106     Description = SemaRef.getTemplateArgumentBindingsText(
1107       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1108     IsTemplate = true;
1109   }
1110
1111   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1112     << BEF << IsTemplate << Description << E->getType();
1113 }
1114
1115 /// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1116 /// given LookupResult is non-empty, it is assumed to describe a member which
1117 /// will be invoked. Otherwise, the function will be found via argument
1118 /// dependent lookup.
1119 static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1120                                             SourceLocation Loc,
1121                                             VarDecl *Decl,
1122                                             BeginEndFunction BEF,
1123                                             const DeclarationNameInfo &NameInfo,
1124                                             LookupResult &MemberLookup,
1125                                             Expr *Range) {
1126   ExprResult CallExpr;
1127   if (!MemberLookup.empty()) {
1128     ExprResult MemberRef =
1129       SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1130                                        /*IsPtr=*/false, CXXScopeSpec(),
1131                                        /*Qualifier=*/0, MemberLookup,
1132                                        /*TemplateArgs=*/0);
1133     if (MemberRef.isInvalid())
1134       return ExprError();
1135     CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1136                                      Loc, 0);
1137     if (CallExpr.isInvalid())
1138       return ExprError();
1139   } else {
1140     UnresolvedSet<0> FoundNames;
1141     // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1142     // std is an associated namespace.
1143     UnresolvedLookupExpr *Fn =
1144       UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1145                                    NestedNameSpecifierLoc(), NameInfo,
1146                                    /*NeedsADL=*/true, /*Overloaded=*/false,
1147                                    FoundNames.begin(), FoundNames.end(),
1148                                    /*LookInStdNamespace=*/true);
1149     CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1150                                                0);
1151     if (CallExpr.isInvalid()) {
1152       SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1153         << Range->getType();
1154       return ExprError();
1155     }
1156   }
1157   if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1158                             diag::err_for_range_iter_deduction_failure)) {
1159     NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1160     return ExprError();
1161   }
1162   return CallExpr;
1163 }
1164
1165 }
1166
1167 /// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1168 ///
1169 /// C++0x [stmt.ranged]:
1170 ///   A range-based for statement is equivalent to
1171 ///
1172 ///   {
1173 ///     auto && __range = range-init;
1174 ///     for ( auto __begin = begin-expr,
1175 ///           __end = end-expr;
1176 ///           __begin != __end;
1177 ///           ++__begin ) {
1178 ///       for-range-declaration = *__begin;
1179 ///       statement
1180 ///     }
1181 ///   }
1182 ///
1183 /// The body of the loop is not available yet, since it cannot be analysed until
1184 /// we have determined the type of the for-range-declaration.
1185 StmtResult
1186 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1187                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
1188                            SourceLocation RParenLoc) {
1189   if (!First || !Range)
1190     return StmtError();
1191
1192   DeclStmt *DS = dyn_cast<DeclStmt>(First);
1193   assert(DS && "first part of for range not a decl stmt");
1194
1195   if (!DS->isSingleDecl()) {
1196     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1197     return StmtError();
1198   }
1199   if (DS->getSingleDecl()->isInvalidDecl())
1200     return StmtError();
1201
1202   if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1203     return StmtError();
1204
1205   // Build  auto && __range = range-init
1206   SourceLocation RangeLoc = Range->getLocStart();
1207   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1208                                            Context.getAutoRRefDeductType(),
1209                                            "__range");
1210   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1211                             diag::err_for_range_deduction_failure))
1212     return StmtError();
1213
1214   // Claim the type doesn't contain auto: we've already done the checking.
1215   DeclGroupPtrTy RangeGroup =
1216     BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1217   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1218   if (RangeDecl.isInvalid())
1219     return StmtError();
1220
1221   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1222                               /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1223                               RParenLoc);
1224 }
1225
1226 /// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1227 StmtResult
1228 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1229                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1230                            Expr *Inc, Stmt *LoopVarDecl,
1231                            SourceLocation RParenLoc) {
1232   Scope *S = getCurScope();
1233
1234   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1235   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1236   QualType RangeVarType = RangeVar->getType();
1237
1238   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1239   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1240
1241   StmtResult BeginEndDecl = BeginEnd;
1242   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1243
1244   if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1245     SourceLocation RangeLoc = RangeVar->getLocation();
1246
1247     ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1248                                            RangeVarType.getNonReferenceType(),
1249                                            VK_LValue, ColonLoc);
1250     if (RangeRef.isInvalid())
1251       return StmtError();
1252
1253     QualType AutoType = Context.getAutoDeductType();
1254     Expr *Range = RangeVar->getInit();
1255     if (!Range)
1256       return StmtError();
1257     QualType RangeType = Range->getType();
1258
1259     if (RequireCompleteType(RangeLoc, RangeType,
1260                             PDiag(diag::err_for_range_incomplete_type)))
1261       return StmtError();
1262
1263     // Build auto __begin = begin-expr, __end = end-expr.
1264     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1265                                              "__begin");
1266     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1267                                            "__end");
1268
1269     // Build begin-expr and end-expr and attach to __begin and __end variables.
1270     ExprResult BeginExpr, EndExpr;
1271     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1272       // - if _RangeT is an array type, begin-expr and end-expr are __range and
1273       //   __range + __bound, respectively, where __bound is the array bound. If
1274       //   _RangeT is an array of unknown size or an array of incomplete type,
1275       //   the program is ill-formed;
1276
1277       // begin-expr is __range.
1278       BeginExpr = RangeRef;
1279       if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1280                                 diag::err_for_range_iter_deduction_failure)) {
1281         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1282         return StmtError();
1283       }
1284
1285       // Find the array bound.
1286       ExprResult BoundExpr;
1287       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1288         BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1289                                                  Context.getPointerDiffType(),
1290                                                  RangeLoc));
1291       else if (const VariableArrayType *VAT =
1292                dyn_cast<VariableArrayType>(UnqAT))
1293         BoundExpr = VAT->getSizeExpr();
1294       else {
1295         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1296         // UnqAT is not incomplete and Range is not type-dependent.
1297         assert(0 && "Unexpected array type in for-range");
1298         return StmtError();
1299       }
1300
1301       // end-expr is __range + __bound.
1302       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1303                            BoundExpr.get());
1304       if (EndExpr.isInvalid())
1305         return StmtError();
1306       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1307                                 diag::err_for_range_iter_deduction_failure)) {
1308         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1309         return StmtError();
1310       }
1311     } else {
1312       DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1313                                         ColonLoc);
1314       DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1315                                       ColonLoc);
1316
1317       LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1318       LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1319
1320       if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1321         // - if _RangeT is a class type, the unqualified-ids begin and end are
1322         //   looked up in the scope of class _RangeT as if by class member access
1323         //   lookup (3.4.5), and if either (or both) finds at least one
1324         //   declaration, begin-expr and end-expr are __range.begin() and
1325         //   __range.end(), respectively;
1326         LookupQualifiedName(BeginMemberLookup, D);
1327         LookupQualifiedName(EndMemberLookup, D);
1328
1329         if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1330           Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1331             << RangeType << BeginMemberLookup.empty();
1332           return StmtError();
1333         }
1334       } else {
1335         // - otherwise, begin-expr and end-expr are begin(__range) and
1336         //   end(__range), respectively, where begin and end are looked up with
1337         //   argument-dependent lookup (3.4.2). For the purposes of this name
1338         //   lookup, namespace std is an associated namespace.
1339       }
1340
1341       BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1342                                             BEF_begin, BeginNameInfo,
1343                                             BeginMemberLookup, RangeRef.get());
1344       if (BeginExpr.isInvalid())
1345         return StmtError();
1346
1347       EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1348                                           BEF_end, EndNameInfo,
1349                                           EndMemberLookup, RangeRef.get());
1350       if (EndExpr.isInvalid())
1351         return StmtError();
1352     }
1353
1354     // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1355     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1356     if (!Context.hasSameType(BeginType, EndType)) {
1357       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1358         << BeginType << EndType;
1359       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1360       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1361     }
1362
1363     Decl *BeginEndDecls[] = { BeginVar, EndVar };
1364     // Claim the type doesn't contain auto: we've already done the checking.
1365     DeclGroupPtrTy BeginEndGroup =
1366       BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1367     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1368
1369     ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1370                                            BeginType.getNonReferenceType(),
1371                                            VK_LValue, ColonLoc);
1372     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1373                                          VK_LValue, ColonLoc);
1374
1375     // Build and check __begin != __end expression.
1376     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1377                            BeginRef.get(), EndRef.get());
1378     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1379     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1380     if (NotEqExpr.isInvalid()) {
1381       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1382       if (!Context.hasSameType(BeginType, EndType))
1383         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1384       return StmtError();
1385     }
1386
1387     // Build and check ++__begin expression.
1388     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1389     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1390     if (IncrExpr.isInvalid()) {
1391       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1392       return StmtError();
1393     }
1394
1395     // Build and check *__begin  expression.
1396     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1397     if (DerefExpr.isInvalid()) {
1398       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1399       return StmtError();
1400     }
1401
1402     // Attach  *__begin  as initializer for VD.
1403     if (!LoopVar->isInvalidDecl()) {
1404       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1405                            /*TypeMayContainAuto=*/true);
1406       if (LoopVar->isInvalidDecl())
1407         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1408     }
1409   } else {
1410     // The range is implicitly used as a placeholder when it is dependent.
1411     RangeVar->setUsed();
1412   }
1413
1414   return Owned(new (Context) CXXForRangeStmt(RangeDS,
1415                                      cast_or_null<DeclStmt>(BeginEndDecl.get()),
1416                                              NotEqExpr.take(), IncrExpr.take(),
1417                                              LoopVarDS, /*Body=*/0, ForLoc,
1418                                              ColonLoc, RParenLoc));
1419 }
1420
1421 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1422 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1423 /// body cannot be performed until after the type of the range variable is
1424 /// determined.
1425 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1426   if (!S || !B)
1427     return StmtError();
1428
1429   cast<CXXForRangeStmt>(S)->setBody(B);
1430   return S;
1431 }
1432
1433 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1434                                SourceLocation LabelLoc,
1435                                LabelDecl *TheDecl) {
1436   getCurFunction()->setHasBranchIntoScope();
1437   TheDecl->setUsed();
1438   return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1439 }
1440
1441 StmtResult
1442 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1443                             Expr *E) {
1444   // Convert operand to void*
1445   if (!E->isTypeDependent()) {
1446     QualType ETy = E->getType();
1447     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1448     ExprResult ExprRes = Owned(E);
1449     AssignConvertType ConvTy =
1450       CheckSingleAssignmentConstraints(DestTy, ExprRes);
1451     if (ExprRes.isInvalid())
1452       return StmtError();
1453     E = ExprRes.take();
1454     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1455       return StmtError();
1456   }
1457
1458   getCurFunction()->setHasIndirectGoto();
1459
1460   return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1461 }
1462
1463 StmtResult
1464 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1465   Scope *S = CurScope->getContinueParent();
1466   if (!S) {
1467     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1468     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1469   }
1470
1471   return Owned(new (Context) ContinueStmt(ContinueLoc));
1472 }
1473
1474 StmtResult
1475 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1476   Scope *S = CurScope->getBreakParent();
1477   if (!S) {
1478     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1479     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1480   }
1481
1482   return Owned(new (Context) BreakStmt(BreakLoc));
1483 }
1484
1485 /// \brief Determine whether the given expression is a candidate for
1486 /// copy elision in either a return statement or a throw expression.
1487 ///
1488 /// \param ReturnType If we're determining the copy elision candidate for
1489 /// a return statement, this is the return type of the function. If we're
1490 /// determining the copy elision candidate for a throw expression, this will
1491 /// be a NULL type.
1492 ///
1493 /// \param E The expression being returned from the function or block, or
1494 /// being thrown.
1495 ///
1496 /// \param AllowFunctionParameter Whether we allow function parameters to
1497 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1498 /// we re-use this logic to determine whether we should try to move as part of
1499 /// a return or throw (which does allow function parameters).
1500 ///
1501 /// \returns The NRVO candidate variable, if the return statement may use the
1502 /// NRVO, or NULL if there is no such candidate.
1503 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1504                                              Expr *E,
1505                                              bool AllowFunctionParameter) {
1506   QualType ExprType = E->getType();
1507   // - in a return statement in a function with ...
1508   // ... a class return type ...
1509   if (!ReturnType.isNull()) {
1510     if (!ReturnType->isRecordType())
1511       return 0;
1512     // ... the same cv-unqualified type as the function return type ...
1513     if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1514       return 0;
1515   }
1516
1517   // ... the expression is the name of a non-volatile automatic object
1518   // (other than a function or catch-clause parameter)) ...
1519   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1520   if (!DR)
1521     return 0;
1522   const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1523   if (!VD)
1524     return 0;
1525
1526   if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1527       !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1528       !VD->getType().isVolatileQualified() &&
1529       ((VD->getKind() == Decl::Var) ||
1530        (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1531     return VD;
1532
1533   return 0;
1534 }
1535
1536 /// \brief Perform the initialization of a potentially-movable value, which
1537 /// is the result of return value.
1538 ///
1539 /// This routine implements C++0x [class.copy]p33, which attempts to treat
1540 /// returned lvalues as rvalues in certain cases (to prefer move construction),
1541 /// then falls back to treating them as lvalues if that failed.
1542 ExprResult
1543 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1544                                       const VarDecl *NRVOCandidate,
1545                                       QualType ResultType,
1546                                       Expr *Value,
1547                                       bool AllowNRVO) {
1548   // C++0x [class.copy]p33:
1549   //   When the criteria for elision of a copy operation are met or would
1550   //   be met save for the fact that the source object is a function
1551   //   parameter, and the object to be copied is designated by an lvalue,
1552   //   overload resolution to select the constructor for the copy is first
1553   //   performed as if the object were designated by an rvalue.
1554   ExprResult Res = ExprError();
1555   if (AllowNRVO &&
1556       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1557     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1558                               Value->getType(), CK_LValueToRValue,
1559                               Value, VK_XValue);
1560
1561     Expr *InitExpr = &AsRvalue;
1562     InitializationKind Kind
1563       = InitializationKind::CreateCopy(Value->getLocStart(),
1564                                        Value->getLocStart());
1565     InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1566
1567     //   [...] If overload resolution fails, or if the type of the first
1568     //   parameter of the selected constructor is not an rvalue reference
1569     //   to the object's type (possibly cv-qualified), overload resolution
1570     //   is performed again, considering the object as an lvalue.
1571     if (Seq) {
1572       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1573            StepEnd = Seq.step_end();
1574            Step != StepEnd; ++Step) {
1575         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1576           continue;
1577
1578         CXXConstructorDecl *Constructor
1579         = cast<CXXConstructorDecl>(Step->Function.Function);
1580
1581         const RValueReferenceType *RRefType
1582           = Constructor->getParamDecl(0)->getType()
1583                                                  ->getAs<RValueReferenceType>();
1584
1585         // If we don't meet the criteria, break out now.
1586         if (!RRefType ||
1587             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1588                             Context.getTypeDeclType(Constructor->getParent())))
1589           break;
1590
1591         // Promote "AsRvalue" to the heap, since we now need this
1592         // expression node to persist.
1593         Value = ImplicitCastExpr::Create(Context, Value->getType(),
1594                                          CK_LValueToRValue, Value, 0,
1595                                          VK_XValue);
1596
1597         // Complete type-checking the initialization of the return type
1598         // using the constructor we found.
1599         Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1600       }
1601     }
1602   }
1603
1604   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1605   // above, or overload resolution failed. Either way, we need to try
1606   // (again) now with the return value expression as written.
1607   if (Res.isInvalid())
1608     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1609
1610   return Res;
1611 }
1612
1613 /// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1614 ///
1615 StmtResult
1616 Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1617   // If this is the first return we've seen in the block, infer the type of
1618   // the block from it.
1619   BlockScopeInfo *CurBlock = getCurBlock();
1620   if (CurBlock->ReturnType.isNull()) {
1621     if (RetValExp) {
1622       // Don't call UsualUnaryConversions(), since we don't want to do
1623       // integer promotions here.
1624       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1625       if (Result.isInvalid())
1626         return StmtError();
1627       RetValExp = Result.take();
1628
1629       if (!RetValExp->isTypeDependent()) {
1630         CurBlock->ReturnType = RetValExp->getType();
1631         if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1632           // We have to remove a 'const' added to copied-in variable which was
1633           // part of the implementation spec. and not the actual qualifier for
1634           // the variable.
1635           if (CDRE->isConstQualAdded())
1636             CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1637         }
1638       } else
1639         CurBlock->ReturnType = Context.DependentTy;
1640     } else
1641       CurBlock->ReturnType = Context.VoidTy;
1642   }
1643   QualType FnRetType = CurBlock->ReturnType;
1644
1645   if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1646     Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1647       << getCurFunctionOrMethodDecl()->getDeclName();
1648     return StmtError();
1649   }
1650
1651   // Otherwise, verify that this result type matches the previous one.  We are
1652   // pickier with blocks than for normal functions because we don't have GCC
1653   // compatibility to worry about here.
1654   ReturnStmt *Result = 0;
1655   if (CurBlock->ReturnType->isVoidType()) {
1656     if (RetValExp && !RetValExp->isTypeDependent() &&
1657         (!getLangOptions().CPlusPlus || !RetValExp->getType()->isVoidType())) {
1658       Diag(ReturnLoc, diag::err_return_block_has_expr);
1659       RetValExp = 0;
1660     }
1661     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1662   } else if (!RetValExp) {
1663     if (!CurBlock->ReturnType->isDependentType())
1664       return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1665
1666     Result = new (Context) ReturnStmt(ReturnLoc, 0, 0);
1667   } else {
1668     const VarDecl *NRVOCandidate = 0;
1669
1670     if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1671       // we have a non-void block with an expression, continue checking
1672
1673       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1674       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1675       // function return.
1676
1677       // In C++ the return statement is handled via a copy initialization.
1678       // the C version of which boils down to CheckSingleAssignmentConstraints.
1679       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1680       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1681                                                                      FnRetType,
1682                                                            NRVOCandidate != 0);
1683       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1684                                                        FnRetType, RetValExp);
1685       if (Res.isInvalid()) {
1686         // FIXME: Cleanup temporaries here, anyway?
1687         return StmtError();
1688       }
1689
1690       if (RetValExp) {
1691         CheckImplicitConversions(RetValExp, ReturnLoc);
1692         RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1693       }
1694
1695       RetValExp = Res.takeAs<Expr>();
1696       if (RetValExp)
1697         CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1698     }
1699
1700     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1701   }
1702
1703   // If we need to check for the named return value optimization, save the
1704   // return statement in our scope for later processing.
1705   if (getLangOptions().CPlusPlus && FnRetType->isRecordType() && 
1706       !CurContext->isDependentContext())
1707     FunctionScopes.back()->Returns.push_back(Result);
1708
1709   return Owned(Result);
1710 }
1711
1712 StmtResult
1713 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1714   // Check for unexpanded parameter packs.
1715   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1716     return StmtError();
1717   
1718   if (getCurBlock())
1719     return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1720
1721   QualType FnRetType;
1722   QualType DeclaredRetType;
1723   if (const FunctionDecl *FD = getCurFunctionDecl()) {
1724     FnRetType = FD->getResultType();
1725     DeclaredRetType = FnRetType;
1726     if (FD->hasAttr<NoReturnAttr>() ||
1727         FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1728       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1729         << getCurFunctionOrMethodDecl()->getDeclName();
1730   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1731     DeclaredRetType = MD->getResultType();
1732     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1733       // In the implementation of a method with a related return type, the
1734       // type used to type-check the validity of return statements within the 
1735       // method body is a pointer to the type of the class being implemented.
1736       FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1737       FnRetType = Context.getObjCObjectPointerType(FnRetType);
1738     } else {
1739       FnRetType = DeclaredRetType;
1740     }
1741   } else // If we don't have a function/method context, bail.
1742     return StmtError();
1743
1744   ReturnStmt *Result = 0;
1745   if (FnRetType->isVoidType()) {
1746     if (RetValExp) {
1747       if (!RetValExp->isTypeDependent()) {
1748         // C99 6.8.6.4p1 (ext_ since GCC warns)
1749         unsigned D = diag::ext_return_has_expr;
1750         if (RetValExp->getType()->isVoidType())
1751           D = diag::ext_return_has_void_expr;
1752         else {
1753           ExprResult Result = Owned(RetValExp);
1754           Result = IgnoredValueConversions(Result.take());
1755           if (Result.isInvalid())
1756             return StmtError();
1757           RetValExp = Result.take();
1758           RetValExp = ImpCastExprToType(RetValExp,
1759                                         Context.VoidTy, CK_ToVoid).take();
1760         }
1761
1762         // return (some void expression); is legal in C++.
1763         if (D != diag::ext_return_has_void_expr ||
1764             !getLangOptions().CPlusPlus) {
1765           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1766
1767           int FunctionKind = 0;
1768           if (isa<ObjCMethodDecl>(CurDecl))
1769             FunctionKind = 1;
1770           else if (isa<CXXConstructorDecl>(CurDecl))
1771             FunctionKind = 2;
1772           else if (isa<CXXDestructorDecl>(CurDecl))
1773             FunctionKind = 3;
1774
1775           Diag(ReturnLoc, D)
1776             << CurDecl->getDeclName() << FunctionKind
1777             << RetValExp->getSourceRange();
1778         }
1779       }
1780
1781       CheckImplicitConversions(RetValExp, ReturnLoc);
1782       RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1783     }
1784
1785     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1786   } else if (!RetValExp && !FnRetType->isDependentType()) {
1787     unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1788     // C99 6.8.6.4p1 (ext_ since GCC warns)
1789     if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1790
1791     if (FunctionDecl *FD = getCurFunctionDecl())
1792       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1793     else
1794       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1795     Result = new (Context) ReturnStmt(ReturnLoc);
1796   } else {
1797     const VarDecl *NRVOCandidate = 0;
1798     if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1799       // we have a non-void function with an expression, continue checking
1800
1801       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1802       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1803       // function return.
1804
1805       // In C++ the return statement is handled via a copy initialization,
1806       // the C version of which boils down to CheckSingleAssignmentConstraints.
1807       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1808       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1809                                                                      FnRetType,
1810                                                             NRVOCandidate != 0);
1811       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1812                                                        FnRetType, RetValExp);
1813       if (Res.isInvalid()) {
1814         // FIXME: Cleanup temporaries here, anyway?
1815         return StmtError();
1816       }
1817
1818       RetValExp = Res.takeAs<Expr>();
1819       if (RetValExp)
1820         CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1821     }
1822
1823     if (RetValExp) {
1824       // If we type-checked an Objective-C method's return type based
1825       // on a related return type, we may need to adjust the return
1826       // type again. Do so now.
1827       if (DeclaredRetType != FnRetType) {
1828         ExprResult result = PerformImplicitConversion(RetValExp,
1829                                                       DeclaredRetType,
1830                                                       AA_Returning);
1831         if (result.isInvalid()) return StmtError();
1832         RetValExp = result.take();
1833       }
1834
1835       CheckImplicitConversions(RetValExp, ReturnLoc);
1836       RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1837     }
1838     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1839   }
1840
1841   // If we need to check for the named return value optimization, save the
1842   // return statement in our scope for later processing.
1843   if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1844       !CurContext->isDependentContext())
1845     FunctionScopes.back()->Returns.push_back(Result);
1846   
1847   return Owned(Result);
1848 }
1849
1850 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1851 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
1852 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1853 /// provide a strong guidance to not use it.
1854 ///
1855 /// This method checks to see if the argument is an acceptable l-value and
1856 /// returns false if it is a case we can handle.
1857 static bool CheckAsmLValue(const Expr *E, Sema &S) {
1858   // Type dependent expressions will be checked during instantiation.
1859   if (E->isTypeDependent())
1860     return false;
1861
1862   if (E->isLValue())
1863     return false;  // Cool, this is an lvalue.
1864
1865   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1866   // are supposed to allow.
1867   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1868   if (E != E2 && E2->isLValue()) {
1869     if (!S.getLangOptions().HeinousExtensions)
1870       S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1871         << E->getSourceRange();
1872     else
1873       S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1874         << E->getSourceRange();
1875     // Accept, even if we emitted an error diagnostic.
1876     return false;
1877   }
1878
1879   // None of the above, just randomly invalid non-lvalue.
1880   return true;
1881 }
1882
1883 /// isOperandMentioned - Return true if the specified operand # is mentioned
1884 /// anywhere in the decomposed asm string.
1885 static bool isOperandMentioned(unsigned OpNo, 
1886                          llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1887   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1888     const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1889     if (!Piece.isOperand()) continue;
1890     
1891     // If this is a reference to the input and if the input was the smaller
1892     // one, then we have to reject this asm.
1893     if (Piece.getOperandNo() == OpNo)
1894       return true;
1895   }
1896  
1897   return false;
1898 }
1899
1900 StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1901                               bool IsVolatile, unsigned NumOutputs,
1902                               unsigned NumInputs, IdentifierInfo **Names,
1903                               MultiExprArg constraints, MultiExprArg exprs,
1904                               Expr *asmString, MultiExprArg clobbers,
1905                               SourceLocation RParenLoc, bool MSAsm) {
1906   unsigned NumClobbers = clobbers.size();
1907   StringLiteral **Constraints =
1908     reinterpret_cast<StringLiteral**>(constraints.get());
1909   Expr **Exprs = exprs.get();
1910   StringLiteral *AsmString = cast<StringLiteral>(asmString);
1911   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1912
1913   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1914
1915   // The parser verifies that there is a string literal here.
1916   if (AsmString->isWide())
1917     return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1918       << AsmString->getSourceRange());
1919
1920   for (unsigned i = 0; i != NumOutputs; i++) {
1921     StringLiteral *Literal = Constraints[i];
1922     if (Literal->isWide())
1923       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1924         << Literal->getSourceRange());
1925
1926     llvm::StringRef OutputName;
1927     if (Names[i])
1928       OutputName = Names[i]->getName();
1929
1930     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1931     if (!Context.Target.validateOutputConstraint(Info))
1932       return StmtError(Diag(Literal->getLocStart(),
1933                             diag::err_asm_invalid_output_constraint)
1934                        << Info.getConstraintStr());
1935
1936     // Check that the output exprs are valid lvalues.
1937     Expr *OutputExpr = Exprs[i];
1938     if (CheckAsmLValue(OutputExpr, *this)) {
1939       return StmtError(Diag(OutputExpr->getLocStart(),
1940                   diag::err_asm_invalid_lvalue_in_output)
1941         << OutputExpr->getSourceRange());
1942     }
1943
1944     OutputConstraintInfos.push_back(Info);
1945   }
1946
1947   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1948
1949   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1950     StringLiteral *Literal = Constraints[i];
1951     if (Literal->isWide())
1952       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1953         << Literal->getSourceRange());
1954
1955     llvm::StringRef InputName;
1956     if (Names[i])
1957       InputName = Names[i]->getName();
1958
1959     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1960     if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1961                                                 NumOutputs, Info)) {
1962       return StmtError(Diag(Literal->getLocStart(),
1963                             diag::err_asm_invalid_input_constraint)
1964                        << Info.getConstraintStr());
1965     }
1966
1967     Expr *InputExpr = Exprs[i];
1968
1969     // Only allow void types for memory constraints.
1970     if (Info.allowsMemory() && !Info.allowsRegister()) {
1971       if (CheckAsmLValue(InputExpr, *this))
1972         return StmtError(Diag(InputExpr->getLocStart(),
1973                               diag::err_asm_invalid_lvalue_in_input)
1974                          << Info.getConstraintStr()
1975                          << InputExpr->getSourceRange());
1976     }
1977
1978     if (Info.allowsRegister()) {
1979       if (InputExpr->getType()->isVoidType()) {
1980         return StmtError(Diag(InputExpr->getLocStart(),
1981                               diag::err_asm_invalid_type_in_input)
1982           << InputExpr->getType() << Info.getConstraintStr()
1983           << InputExpr->getSourceRange());
1984       }
1985     }
1986
1987     ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
1988     if (Result.isInvalid())
1989       return StmtError();
1990
1991     Exprs[i] = Result.take();
1992     InputConstraintInfos.push_back(Info);
1993   }
1994
1995   // Check that the clobbers are valid.
1996   for (unsigned i = 0; i != NumClobbers; i++) {
1997     StringLiteral *Literal = Clobbers[i];
1998     if (Literal->isWide())
1999       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2000         << Literal->getSourceRange());
2001
2002     llvm::StringRef Clobber = Literal->getString();
2003
2004     if (!Context.Target.isValidClobber(Clobber))
2005       return StmtError(Diag(Literal->getLocStart(),
2006                   diag::err_asm_unknown_register_name) << Clobber);
2007   }
2008
2009   AsmStmt *NS =
2010     new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2011                           NumOutputs, NumInputs, Names, Constraints, Exprs,
2012                           AsmString, NumClobbers, Clobbers, RParenLoc);
2013   // Validate the asm string, ensuring it makes sense given the operands we
2014   // have.
2015   llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2016   unsigned DiagOffs;
2017   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2018     Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2019            << AsmString->getSourceRange();
2020     return StmtError();
2021   }
2022
2023   // Validate tied input operands for type mismatches.
2024   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2025     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2026
2027     // If this is a tied constraint, verify that the output and input have
2028     // either exactly the same type, or that they are int/ptr operands with the
2029     // same size (int/long, int*/long, are ok etc).
2030     if (!Info.hasTiedOperand()) continue;
2031
2032     unsigned TiedTo = Info.getTiedOperand();
2033     unsigned InputOpNo = i+NumOutputs;
2034     Expr *OutputExpr = Exprs[TiedTo];
2035     Expr *InputExpr = Exprs[InputOpNo];
2036     QualType InTy = InputExpr->getType();
2037     QualType OutTy = OutputExpr->getType();
2038     if (Context.hasSameType(InTy, OutTy))
2039       continue;  // All types can be tied to themselves.
2040
2041     // Decide if the input and output are in the same domain (integer/ptr or
2042     // floating point.
2043     enum AsmDomain {
2044       AD_Int, AD_FP, AD_Other
2045     } InputDomain, OutputDomain;
2046
2047     if (InTy->isIntegerType() || InTy->isPointerType())
2048       InputDomain = AD_Int;
2049     else if (InTy->isRealFloatingType())
2050       InputDomain = AD_FP;
2051     else
2052       InputDomain = AD_Other;
2053
2054     if (OutTy->isIntegerType() || OutTy->isPointerType())
2055       OutputDomain = AD_Int;
2056     else if (OutTy->isRealFloatingType())
2057       OutputDomain = AD_FP;
2058     else
2059       OutputDomain = AD_Other;
2060
2061     // They are ok if they are the same size and in the same domain.  This
2062     // allows tying things like:
2063     //   void* to int*
2064     //   void* to int            if they are the same size.
2065     //   double to long double   if they are the same size.
2066     //
2067     uint64_t OutSize = Context.getTypeSize(OutTy);
2068     uint64_t InSize = Context.getTypeSize(InTy);
2069     if (OutSize == InSize && InputDomain == OutputDomain &&
2070         InputDomain != AD_Other)
2071       continue;
2072
2073     // If the smaller input/output operand is not mentioned in the asm string,
2074     // then we can promote the smaller one to a larger input and the asm string
2075     // won't notice.
2076     bool SmallerValueMentioned = false;
2077     
2078     // If this is a reference to the input and if the input was the smaller
2079     // one, then we have to reject this asm.
2080     if (isOperandMentioned(InputOpNo, Pieces)) {
2081       // This is a use in the asm string of the smaller operand.  Since we
2082       // codegen this by promoting to a wider value, the asm will get printed
2083       // "wrong".
2084       SmallerValueMentioned |= InSize < OutSize;
2085     }
2086     if (isOperandMentioned(TiedTo, Pieces)) {
2087       // If this is a reference to the output, and if the output is the larger
2088       // value, then it's ok because we'll promote the input to the larger type.
2089       SmallerValueMentioned |= OutSize < InSize;
2090     }
2091
2092     // If the smaller value wasn't mentioned in the asm string, and if the
2093     // output was a register, just extend the shorter one to the size of the
2094     // larger one.
2095     if (!SmallerValueMentioned && InputDomain != AD_Other &&
2096         OutputConstraintInfos[TiedTo].allowsRegister())
2097       continue;
2098     
2099     // Either both of the operands were mentioned or the smaller one was
2100     // mentioned.  One more special case that we'll allow: if the tied input is
2101     // integer, unmentioned, and is a constant, then we'll allow truncating it
2102     // down to the size of the destination.
2103     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2104         !isOperandMentioned(InputOpNo, Pieces) &&
2105         InputExpr->isEvaluatable(Context)) {
2106       CastKind castKind =
2107         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2108       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2109       Exprs[InputOpNo] = InputExpr;
2110       NS->setInputExpr(i, InputExpr);
2111       continue;
2112     }
2113     
2114     Diag(InputExpr->getLocStart(),
2115          diag::err_asm_tying_incompatible_types)
2116       << InTy << OutTy << OutputExpr->getSourceRange()
2117       << InputExpr->getSourceRange();
2118     return StmtError();
2119   }
2120
2121   return Owned(NS);
2122 }
2123
2124 StmtResult
2125 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2126                            SourceLocation RParen, Decl *Parm,
2127                            Stmt *Body) {
2128   VarDecl *Var = cast_or_null<VarDecl>(Parm);
2129   if (Var && Var->isInvalidDecl())
2130     return StmtError();
2131
2132   return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2133 }
2134
2135 StmtResult
2136 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2137   return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2138 }
2139
2140 StmtResult
2141 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2142                          MultiStmtArg CatchStmts, Stmt *Finally) {
2143   if (!getLangOptions().ObjCExceptions)
2144     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2145
2146   getCurFunction()->setHasBranchProtectedScope();
2147   unsigned NumCatchStmts = CatchStmts.size();
2148   return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2149                                      CatchStmts.release(),
2150                                      NumCatchStmts,
2151                                      Finally));
2152 }
2153
2154 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2155                                                   Expr *Throw) {
2156   if (Throw) {
2157     ExprResult Result = DefaultLvalueConversion(Throw);
2158     if (Result.isInvalid())
2159       return StmtError();
2160
2161     Throw = Result.take();
2162     QualType ThrowType = Throw->getType();
2163     // Make sure the expression type is an ObjC pointer or "void *".
2164     if (!ThrowType->isDependentType() &&
2165         !ThrowType->isObjCObjectPointerType()) {
2166       const PointerType *PT = ThrowType->getAs<PointerType>();
2167       if (!PT || !PT->getPointeeType()->isVoidType())
2168         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2169                          << Throw->getType() << Throw->getSourceRange());
2170     }
2171   }
2172
2173   return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2174 }
2175
2176 StmtResult
2177 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2178                            Scope *CurScope) {
2179   if (!getLangOptions().ObjCExceptions)
2180     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2181
2182   if (!Throw) {
2183     // @throw without an expression designates a rethrow (which much occur
2184     // in the context of an @catch clause).
2185     Scope *AtCatchParent = CurScope;
2186     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2187       AtCatchParent = AtCatchParent->getParent();
2188     if (!AtCatchParent)
2189       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2190   }
2191
2192   return BuildObjCAtThrowStmt(AtLoc, Throw);
2193 }
2194
2195 StmtResult
2196 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2197                                   Stmt *SyncBody) {
2198   getCurFunction()->setHasBranchProtectedScope();
2199
2200   ExprResult Result = DefaultLvalueConversion(SyncExpr);
2201   if (Result.isInvalid())
2202     return StmtError();
2203
2204   SyncExpr = Result.take();
2205   // Make sure the expression type is an ObjC pointer or "void *".
2206   if (!SyncExpr->getType()->isDependentType() &&
2207       !SyncExpr->getType()->isObjCObjectPointerType()) {
2208     const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
2209     if (!PT || !PT->getPointeeType()->isVoidType())
2210       return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
2211                        << SyncExpr->getType() << SyncExpr->getSourceRange());
2212   }
2213
2214   return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2215 }
2216
2217 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2218 /// and creates a proper catch handler from them.
2219 StmtResult
2220 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2221                          Stmt *HandlerBlock) {
2222   // There's nothing to test that ActOnExceptionDecl didn't already test.
2223   return Owned(new (Context) CXXCatchStmt(CatchLoc,
2224                                           cast_or_null<VarDecl>(ExDecl),
2225                                           HandlerBlock));
2226 }
2227
2228 StmtResult
2229 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2230   getCurFunction()->setHasBranchProtectedScope();
2231   return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2232 }
2233
2234 namespace {
2235
2236 class TypeWithHandler {
2237   QualType t;
2238   CXXCatchStmt *stmt;
2239 public:
2240   TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2241   : t(type), stmt(statement) {}
2242
2243   // An arbitrary order is fine as long as it places identical
2244   // types next to each other.
2245   bool operator<(const TypeWithHandler &y) const {
2246     if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2247       return true;
2248     if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2249       return false;
2250     else
2251       return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2252   }
2253
2254   bool operator==(const TypeWithHandler& other) const {
2255     return t == other.t;
2256   }
2257
2258   CXXCatchStmt *getCatchStmt() const { return stmt; }
2259   SourceLocation getTypeSpecStartLoc() const {
2260     return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2261   }
2262 };
2263
2264 }
2265
2266 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2267 /// handlers and creates a try statement from them.
2268 StmtResult
2269 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2270                        MultiStmtArg RawHandlers) {
2271   // Don't report an error if 'try' is used in system headers.
2272   if (!getLangOptions().CXXExceptions &&
2273       !getSourceManager().isInSystemHeader(TryLoc))
2274       Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2275
2276   unsigned NumHandlers = RawHandlers.size();
2277   assert(NumHandlers > 0 &&
2278          "The parser shouldn't call this if there are no handlers.");
2279   Stmt **Handlers = RawHandlers.get();
2280
2281   llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2282
2283   for (unsigned i = 0; i < NumHandlers; ++i) {
2284     CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
2285     if (!Handler->getExceptionDecl()) {
2286       if (i < NumHandlers - 1)
2287         return StmtError(Diag(Handler->getLocStart(),
2288                               diag::err_early_catch_all));
2289
2290       continue;
2291     }
2292
2293     const QualType CaughtType = Handler->getCaughtType();
2294     const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2295     TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2296   }
2297
2298   // Detect handlers for the same type as an earlier one.
2299   if (NumHandlers > 1) {
2300     llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2301
2302     TypeWithHandler prev = TypesWithHandlers[0];
2303     for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2304       TypeWithHandler curr = TypesWithHandlers[i];
2305
2306       if (curr == prev) {
2307         Diag(curr.getTypeSpecStartLoc(),
2308              diag::warn_exception_caught_by_earlier_handler)
2309           << curr.getCatchStmt()->getCaughtType().getAsString();
2310         Diag(prev.getTypeSpecStartLoc(),
2311              diag::note_previous_exception_handler)
2312           << prev.getCatchStmt()->getCaughtType().getAsString();
2313       }
2314
2315       prev = curr;
2316     }
2317   }
2318
2319   getCurFunction()->setHasBranchProtectedScope();
2320
2321   // FIXME: We should detect handlers that cannot catch anything because an
2322   // earlier handler catches a superclass. Need to find a method that is not
2323   // quadratic for this.
2324   // Neither of these are explicitly forbidden, but every compiler detects them
2325   // and warns.
2326
2327   return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2328                                   Handlers, NumHandlers));
2329 }
2330
2331 StmtResult
2332 Sema::ActOnSEHTryBlock(bool IsCXXTry,
2333                        SourceLocation TryLoc,
2334                        Stmt *TryBlock,
2335                        Stmt *Handler) {
2336   assert(TryBlock && Handler);
2337
2338   getCurFunction()->setHasBranchProtectedScope();
2339
2340   return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2341 }
2342
2343 StmtResult
2344 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2345                           Expr *FilterExpr,
2346                           Stmt *Block) {
2347   assert(FilterExpr && Block);
2348
2349   if(!FilterExpr->getType()->isIntegerType()) {
2350     return StmtError(Diag(FilterExpr->getExprLoc(),
2351                      diag::err_filter_expression_integral)
2352                      << FilterExpr->getType());
2353   }
2354
2355   return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2356 }
2357
2358 StmtResult
2359 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2360                            Stmt *Block) {
2361   assert(Block);
2362   return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2363 }