]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / BugReporter.cpp
1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Analysis/ProgramPoint.h"
25 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/OwningPtr.h"
30 #include <queue>
31
32 using namespace clang;
33 using namespace ento;
34
35 BugReporterVisitor::~BugReporterVisitor() {}
36 BugReporterContext::~BugReporterContext() {
37   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I)
38     if ((*I)->isOwnedByReporterContext()) delete *I;
39 }
40
41 void BugReporterContext::addVisitor(BugReporterVisitor* visitor) {
42   if (!visitor)
43     return;
44
45   llvm::FoldingSetNodeID ID;
46   visitor->Profile(ID);
47   void *InsertPos;
48
49   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
50     delete visitor;
51     return;
52   }
53
54   CallbacksSet.InsertNode(visitor, InsertPos);
55   Callbacks = F.add(visitor, Callbacks);
56 }
57
58 //===----------------------------------------------------------------------===//
59 // Helper routines for walking the ExplodedGraph and fetching statements.
60 //===----------------------------------------------------------------------===//
61
62 static inline const Stmt* GetStmt(const ProgramPoint &P) {
63   if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
64     return SP->getStmt();
65   else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P))
66     return BE->getSrc()->getTerminator();
67
68   return 0;
69 }
70
71 static inline const ExplodedNode*
72 GetPredecessorNode(const ExplodedNode* N) {
73   return N->pred_empty() ? NULL : *(N->pred_begin());
74 }
75
76 static inline const ExplodedNode*
77 GetSuccessorNode(const ExplodedNode* N) {
78   return N->succ_empty() ? NULL : *(N->succ_begin());
79 }
80
81 static const Stmt* GetPreviousStmt(const ExplodedNode* N) {
82   for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
83     if (const Stmt *S = GetStmt(N->getLocation()))
84       return S;
85
86   return 0;
87 }
88
89 static const Stmt* GetNextStmt(const ExplodedNode* N) {
90   for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
91     if (const Stmt *S = GetStmt(N->getLocation())) {
92       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
93       // not actual statement points.
94       switch (S->getStmtClass()) {
95         case Stmt::ChooseExprClass:
96         case Stmt::BinaryConditionalOperatorClass: continue;
97         case Stmt::ConditionalOperatorClass: continue;
98         case Stmt::BinaryOperatorClass: {
99           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
100           if (Op == BO_LAnd || Op == BO_LOr)
101             continue;
102           break;
103         }
104         default:
105           break;
106       }
107
108       // Some expressions don't have locations.
109       if (S->getLocStart().isInvalid())
110         continue;
111
112       return S;
113     }
114
115   return 0;
116 }
117
118 static inline const Stmt*
119 GetCurrentOrPreviousStmt(const ExplodedNode* N) {
120   if (const Stmt *S = GetStmt(N->getLocation()))
121     return S;
122
123   return GetPreviousStmt(N);
124 }
125
126 static inline const Stmt*
127 GetCurrentOrNextStmt(const ExplodedNode* N) {
128   if (const Stmt *S = GetStmt(N->getLocation()))
129     return S;
130
131   return GetNextStmt(N);
132 }
133
134 //===----------------------------------------------------------------------===//
135 // PathDiagnosticBuilder and its associated routines and helper objects.
136 //===----------------------------------------------------------------------===//
137
138 typedef llvm::DenseMap<const ExplodedNode*,
139 const ExplodedNode*> NodeBackMap;
140
141 namespace {
142 class NodeMapClosure : public BugReport::NodeResolver {
143   NodeBackMap& M;
144 public:
145   NodeMapClosure(NodeBackMap *m) : M(*m) {}
146   ~NodeMapClosure() {}
147
148   const ExplodedNode* getOriginalNode(const ExplodedNode* N) {
149     NodeBackMap::iterator I = M.find(N);
150     return I == M.end() ? 0 : I->second;
151   }
152 };
153
154 class PathDiagnosticBuilder : public BugReporterContext {
155   BugReport *R;
156   PathDiagnosticClient *PDC;
157   llvm::OwningPtr<ParentMap> PM;
158   NodeMapClosure NMC;
159 public:
160   PathDiagnosticBuilder(GRBugReporter &br,
161                         BugReport *r, NodeBackMap *Backmap,
162                         PathDiagnosticClient *pdc)
163     : BugReporterContext(br),
164       R(r), PDC(pdc), NMC(Backmap) {
165     addVisitor(R);
166   }
167
168   PathDiagnosticLocation ExecutionContinues(const ExplodedNode* N);
169
170   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream& os,
171                                             const ExplodedNode* N);
172
173   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
174
175   ParentMap& getParentMap() { return R->getErrorNode()->getParentMap(); }
176
177   const Stmt *getParent(const Stmt *S) {
178     return getParentMap().getParent(S);
179   }
180
181   virtual NodeMapClosure& getNodeResolver() { return NMC; }
182
183   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
184
185   PathDiagnosticClient::PathGenerationScheme getGenerationScheme() const {
186     return PDC ? PDC->getGenerationScheme() : PathDiagnosticClient::Extensive;
187   }
188
189   bool supportsLogicalOpControlFlow() const {
190     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
191   }
192 };
193 } // end anonymous namespace
194
195 PathDiagnosticLocation
196 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode* N) {
197   if (const Stmt *S = GetNextStmt(N))
198     return PathDiagnosticLocation(S, getSourceManager());
199
200   return FullSourceLoc(N->getLocationContext()->getDecl()->getBodyRBrace(),
201                        getSourceManager());
202 }
203
204 PathDiagnosticLocation
205 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream& os,
206                                           const ExplodedNode* N) {
207
208   // Slow, but probably doesn't matter.
209   if (os.str().empty())
210     os << ' ';
211
212   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
213
214   if (Loc.asStmt())
215     os << "Execution continues on line "
216        << getSourceManager().getInstantiationLineNumber(Loc.asLocation())
217        << '.';
218   else {
219     os << "Execution jumps to the end of the ";
220     const Decl *D = N->getLocationContext()->getDecl();
221     if (isa<ObjCMethodDecl>(D))
222       os << "method";
223     else if (isa<FunctionDecl>(D))
224       os << "function";
225     else {
226       assert(isa<BlockDecl>(D));
227       os << "anonymous block";
228     }
229     os << '.';
230   }
231
232   return Loc;
233 }
234
235 static bool IsNested(const Stmt *S, ParentMap &PM) {
236   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
237     return true;
238
239   const Stmt *Parent = PM.getParentIgnoreParens(S);
240
241   if (Parent)
242     switch (Parent->getStmtClass()) {
243       case Stmt::ForStmtClass:
244       case Stmt::DoStmtClass:
245       case Stmt::WhileStmtClass:
246         return true;
247       default:
248         break;
249     }
250
251   return false;
252 }
253
254 PathDiagnosticLocation
255 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
256   assert(S && "Null Stmt* passed to getEnclosingStmtLocation");
257   ParentMap &P = getParentMap();
258   SourceManager &SMgr = getSourceManager();
259
260   while (IsNested(S, P)) {
261     const Stmt *Parent = P.getParentIgnoreParens(S);
262
263     if (!Parent)
264       break;
265
266     switch (Parent->getStmtClass()) {
267       case Stmt::BinaryOperatorClass: {
268         const BinaryOperator *B = cast<BinaryOperator>(Parent);
269         if (B->isLogicalOp())
270           return PathDiagnosticLocation(S, SMgr);
271         break;
272       }
273       case Stmt::CompoundStmtClass:
274       case Stmt::StmtExprClass:
275         return PathDiagnosticLocation(S, SMgr);
276       case Stmt::ChooseExprClass:
277         // Similar to '?' if we are referring to condition, just have the edge
278         // point to the entire choose expression.
279         if (cast<ChooseExpr>(Parent)->getCond() == S)
280           return PathDiagnosticLocation(Parent, SMgr);
281         else
282           return PathDiagnosticLocation(S, SMgr);
283       case Stmt::BinaryConditionalOperatorClass:
284       case Stmt::ConditionalOperatorClass:
285         // For '?', if we are referring to condition, just have the edge point
286         // to the entire '?' expression.
287         if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
288           return PathDiagnosticLocation(Parent, SMgr);
289         else
290           return PathDiagnosticLocation(S, SMgr);
291       case Stmt::DoStmtClass:
292           return PathDiagnosticLocation(S, SMgr);
293       case Stmt::ForStmtClass:
294         if (cast<ForStmt>(Parent)->getBody() == S)
295           return PathDiagnosticLocation(S, SMgr);
296         break;
297       case Stmt::IfStmtClass:
298         if (cast<IfStmt>(Parent)->getCond() != S)
299           return PathDiagnosticLocation(S, SMgr);
300         break;
301       case Stmt::ObjCForCollectionStmtClass:
302         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
303           return PathDiagnosticLocation(S, SMgr);
304         break;
305       case Stmt::WhileStmtClass:
306         if (cast<WhileStmt>(Parent)->getCond() != S)
307           return PathDiagnosticLocation(S, SMgr);
308         break;
309       default:
310         break;
311     }
312
313     S = Parent;
314   }
315
316   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
317
318   // Special case: DeclStmts can appear in for statement declarations, in which
319   //  case the ForStmt is the context.
320   if (isa<DeclStmt>(S)) {
321     if (const Stmt *Parent = P.getParent(S)) {
322       switch (Parent->getStmtClass()) {
323         case Stmt::ForStmtClass:
324         case Stmt::ObjCForCollectionStmtClass:
325           return PathDiagnosticLocation(Parent, SMgr);
326         default:
327           break;
328       }
329     }
330   }
331   else if (isa<BinaryOperator>(S)) {
332     // Special case: the binary operator represents the initialization
333     // code in a for statement (this can happen when the variable being
334     // initialized is an old variable.
335     if (const ForStmt *FS =
336           dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
337       if (FS->getInit() == S)
338         return PathDiagnosticLocation(FS, SMgr);
339     }
340   }
341
342   return PathDiagnosticLocation(S, SMgr);
343 }
344
345 //===----------------------------------------------------------------------===//
346 // ScanNotableSymbols: closure-like callback for scanning Store bindings.
347 //===----------------------------------------------------------------------===//
348
349 static const VarDecl*
350 GetMostRecentVarDeclBinding(const ExplodedNode* N,
351                             GRStateManager& VMgr, SVal X) {
352
353   for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
354
355     ProgramPoint P = N->getLocation();
356
357     if (!isa<PostStmt>(P))
358       continue;
359
360     const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
361
362     if (!DR)
363       continue;
364
365     SVal Y = N->getState()->getSVal(DR);
366
367     if (X != Y)
368       continue;
369
370     const VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
371
372     if (!VD)
373       continue;
374
375     return VD;
376   }
377
378   return 0;
379 }
380
381 namespace {
382 class NotableSymbolHandler
383 : public StoreManager::BindingsHandler {
384
385   SymbolRef Sym;
386   const GRState* PrevSt;
387   const Stmt* S;
388   GRStateManager& VMgr;
389   const ExplodedNode* Pred;
390   PathDiagnostic& PD;
391   BugReporter& BR;
392
393 public:
394
395   NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
396                        GRStateManager& vmgr, const ExplodedNode* pred,
397                        PathDiagnostic& pd, BugReporter& br)
398   : Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
399
400   bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R,
401                      SVal V) {
402
403     SymbolRef ScanSym = V.getAsSymbol();
404
405     if (ScanSym != Sym)
406       return true;
407
408     // Check if the previous state has this binding.
409     SVal X = PrevSt->getSVal(loc::MemRegionVal(R));
410
411     if (X == V) // Same binding?
412       return true;
413
414     // Different binding.  Only handle assignments for now.  We don't pull
415     // this check out of the loop because we will eventually handle other
416     // cases.
417
418     VarDecl *VD = 0;
419
420     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
421       if (!B->isAssignmentOp())
422         return true;
423
424       // What variable did we assign to?
425       DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
426
427       if (!DR)
428         return true;
429
430       VD = dyn_cast<VarDecl>(DR->getDecl());
431     }
432     else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
433       // FIXME: Eventually CFGs won't have DeclStmts.  Right now we
434       //  assume that each DeclStmt has a single Decl.  This invariant
435       //  holds by construction in the CFG.
436       VD = dyn_cast<VarDecl>(*DS->decl_begin());
437     }
438
439     if (!VD)
440       return true;
441
442     // What is the most recently referenced variable with this binding?
443     const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
444
445     if (!MostRecent)
446       return true;
447
448     // Create the diagnostic.
449     FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
450
451     if (Loc::isLocType(VD->getType())) {
452       std::string msg = "'" + std::string(VD->getNameAsString()) +
453       "' now aliases '" + MostRecent->getNameAsString() + "'";
454
455       PD.push_front(new PathDiagnosticEventPiece(L, msg));
456     }
457
458     return true;
459   }
460 };
461 }
462
463 static void HandleNotableSymbol(const ExplodedNode* N,
464                                 const Stmt* S,
465                                 SymbolRef Sym, BugReporter& BR,
466                                 PathDiagnostic& PD) {
467
468   const ExplodedNode* Pred = N->pred_empty() ? 0 : *N->pred_begin();
469   const GRState* PrevSt = Pred ? Pred->getState() : 0;
470
471   if (!PrevSt)
472     return;
473
474   // Look at the region bindings of the current state that map to the
475   // specified symbol.  Are any of them not in the previous state?
476   GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
477   NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
478   cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
479 }
480
481 namespace {
482 class ScanNotableSymbols
483 : public StoreManager::BindingsHandler {
484
485   llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
486   const ExplodedNode* N;
487   const Stmt* S;
488   GRBugReporter& BR;
489   PathDiagnostic& PD;
490
491 public:
492   ScanNotableSymbols(const ExplodedNode* n, const Stmt* s,
493                      GRBugReporter& br, PathDiagnostic& pd)
494   : N(n), S(s), BR(br), PD(pd) {}
495
496   bool HandleBinding(StoreManager& SMgr, Store store,
497                      const MemRegion* R, SVal V) {
498
499     SymbolRef ScanSym = V.getAsSymbol();
500
501     if (!ScanSym)
502       return true;
503
504     if (!BR.isNotable(ScanSym))
505       return true;
506
507     if (AlreadyProcessed.count(ScanSym))
508       return true;
509
510     AlreadyProcessed.insert(ScanSym);
511
512     HandleNotableSymbol(N, S, ScanSym, BR, PD);
513     return true;
514   }
515 };
516 } // end anonymous namespace
517
518 //===----------------------------------------------------------------------===//
519 // "Minimal" path diagnostic generation algorithm.
520 //===----------------------------------------------------------------------===//
521
522 static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM);
523
524 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
525                                           PathDiagnosticBuilder &PDB,
526                                           const ExplodedNode *N) {
527
528   SourceManager& SMgr = PDB.getSourceManager();
529   const ExplodedNode* NextNode = N->pred_empty()
530                                         ? NULL : *(N->pred_begin());
531   while (NextNode) {
532     N = NextNode;
533     NextNode = GetPredecessorNode(N);
534
535     ProgramPoint P = N->getLocation();
536
537     if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
538       const CFGBlock* Src = BE->getSrc();
539       const CFGBlock* Dst = BE->getDst();
540       const Stmt* T = Src->getTerminator();
541
542       if (!T)
543         continue;
544
545       FullSourceLoc Start(T->getLocStart(), SMgr);
546
547       switch (T->getStmtClass()) {
548         default:
549           break;
550
551         case Stmt::GotoStmtClass:
552         case Stmt::IndirectGotoStmtClass: {
553           const Stmt* S = GetNextStmt(N);
554
555           if (!S)
556             continue;
557
558           std::string sbuf;
559           llvm::raw_string_ostream os(sbuf);
560           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
561
562           os << "Control jumps to line "
563           << End.asLocation().getInstantiationLineNumber();
564           PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
565                                                            os.str()));
566           break;
567         }
568
569         case Stmt::SwitchStmtClass: {
570           // Figure out what case arm we took.
571           std::string sbuf;
572           llvm::raw_string_ostream os(sbuf);
573
574           if (const Stmt* S = Dst->getLabel()) {
575             PathDiagnosticLocation End(S, SMgr);
576
577             switch (S->getStmtClass()) {
578               default:
579                 os << "No cases match in the switch statement. "
580                 "Control jumps to line "
581                 << End.asLocation().getInstantiationLineNumber();
582                 break;
583               case Stmt::DefaultStmtClass:
584                 os << "Control jumps to the 'default' case at line "
585                 << End.asLocation().getInstantiationLineNumber();
586                 break;
587
588               case Stmt::CaseStmtClass: {
589                 os << "Control jumps to 'case ";
590                 const CaseStmt* Case = cast<CaseStmt>(S);
591                 const Expr* LHS = Case->getLHS()->IgnoreParenCasts();
592
593                 // Determine if it is an enum.
594                 bool GetRawInt = true;
595
596                 if (const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
597                   // FIXME: Maybe this should be an assertion.  Are there cases
598                   // were it is not an EnumConstantDecl?
599                   const EnumConstantDecl* D =
600                     dyn_cast<EnumConstantDecl>(DR->getDecl());
601
602                   if (D) {
603                     GetRawInt = false;
604                     os << D;
605                   }
606                 }
607
608                 if (GetRawInt)
609                   os << LHS->EvaluateAsInt(PDB.getASTContext());
610
611                 os << ":'  at line "
612                 << End.asLocation().getInstantiationLineNumber();
613                 break;
614               }
615             }
616             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
617                                                              os.str()));
618           }
619           else {
620             os << "'Default' branch taken. ";
621             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
622             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
623                                                              os.str()));
624           }
625
626           break;
627         }
628
629         case Stmt::BreakStmtClass:
630         case Stmt::ContinueStmtClass: {
631           std::string sbuf;
632           llvm::raw_string_ostream os(sbuf);
633           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
634           PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
635                                                            os.str()));
636           break;
637         }
638
639           // Determine control-flow for ternary '?'.
640         case Stmt::BinaryConditionalOperatorClass:
641         case Stmt::ConditionalOperatorClass: {
642           std::string sbuf;
643           llvm::raw_string_ostream os(sbuf);
644           os << "'?' condition is ";
645
646           if (*(Src->succ_begin()+1) == Dst)
647             os << "false";
648           else
649             os << "true";
650
651           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
652
653           if (const Stmt *S = End.asStmt())
654             End = PDB.getEnclosingStmtLocation(S);
655
656           PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
657                                                            os.str()));
658           break;
659         }
660
661           // Determine control-flow for short-circuited '&&' and '||'.
662         case Stmt::BinaryOperatorClass: {
663           if (!PDB.supportsLogicalOpControlFlow())
664             break;
665
666           const BinaryOperator *B = cast<BinaryOperator>(T);
667           std::string sbuf;
668           llvm::raw_string_ostream os(sbuf);
669           os << "Left side of '";
670
671           if (B->getOpcode() == BO_LAnd) {
672             os << "&&" << "' is ";
673
674             if (*(Src->succ_begin()+1) == Dst) {
675               os << "false";
676               PathDiagnosticLocation End(B->getLHS(), SMgr);
677               PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
678               PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
679                                                                os.str()));
680             }
681             else {
682               os << "true";
683               PathDiagnosticLocation Start(B->getLHS(), SMgr);
684               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
685               PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
686                                                                os.str()));
687             }
688           }
689           else {
690             assert(B->getOpcode() == BO_LOr);
691             os << "||" << "' is ";
692
693             if (*(Src->succ_begin()+1) == Dst) {
694               os << "false";
695               PathDiagnosticLocation Start(B->getLHS(), SMgr);
696               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
697               PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
698                                                                os.str()));
699             }
700             else {
701               os << "true";
702               PathDiagnosticLocation End(B->getLHS(), SMgr);
703               PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
704               PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
705                                                                os.str()));
706             }
707           }
708
709           break;
710         }
711
712         case Stmt::DoStmtClass:  {
713           if (*(Src->succ_begin()) == Dst) {
714             std::string sbuf;
715             llvm::raw_string_ostream os(sbuf);
716
717             os << "Loop condition is true. ";
718             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
719
720             if (const Stmt *S = End.asStmt())
721               End = PDB.getEnclosingStmtLocation(S);
722
723             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
724                                                              os.str()));
725           }
726           else {
727             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
728
729             if (const Stmt *S = End.asStmt())
730               End = PDB.getEnclosingStmtLocation(S);
731
732             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
733                               "Loop condition is false.  Exiting loop"));
734           }
735
736           break;
737         }
738
739         case Stmt::WhileStmtClass:
740         case Stmt::ForStmtClass: {
741           if (*(Src->succ_begin()+1) == Dst) {
742             std::string sbuf;
743             llvm::raw_string_ostream os(sbuf);
744
745             os << "Loop condition is false. ";
746             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
747             if (const Stmt *S = End.asStmt())
748               End = PDB.getEnclosingStmtLocation(S);
749
750             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
751                                                              os.str()));
752           }
753           else {
754             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
755             if (const Stmt *S = End.asStmt())
756               End = PDB.getEnclosingStmtLocation(S);
757
758             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
759                             "Loop condition is true.  Entering loop body"));
760           }
761
762           break;
763         }
764
765         case Stmt::IfStmtClass: {
766           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
767
768           if (const Stmt *S = End.asStmt())
769             End = PDB.getEnclosingStmtLocation(S);
770
771           if (*(Src->succ_begin()+1) == Dst)
772             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
773                                                         "Taking false branch"));
774           else
775             PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
776                                                          "Taking true branch"));
777
778           break;
779         }
780       }
781     }
782
783     if (NextNode) {
784       for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
785            E = PDB.visitor_end(); I!=E; ++I) {
786         if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB))
787           PD.push_front(p);
788       }
789     }
790
791     if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
792       // Scan the region bindings, and see if a "notable" symbol has a new
793       // lval binding.
794       ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD);
795       PDB.getStateManager().iterBindings(N->getState(), SNS);
796     }
797   }
798
799   // After constructing the full PathDiagnostic, do a pass over it to compact
800   // PathDiagnosticPieces that occur within a macro.
801   CompactPathDiagnostic(PD, PDB.getSourceManager());
802 }
803
804 //===----------------------------------------------------------------------===//
805 // "Extensive" PathDiagnostic generation.
806 //===----------------------------------------------------------------------===//
807
808 static bool IsControlFlowExpr(const Stmt *S) {
809   const Expr *E = dyn_cast<Expr>(S);
810
811   if (!E)
812     return false;
813
814   E = E->IgnoreParenCasts();
815
816   if (isa<AbstractConditionalOperator>(E))
817     return true;
818
819   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
820     if (B->isLogicalOp())
821       return true;
822
823   return false;
824 }
825
826 namespace {
827 class ContextLocation : public PathDiagnosticLocation {
828   bool IsDead;
829 public:
830   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
831     : PathDiagnosticLocation(L), IsDead(isdead) {}
832
833   void markDead() { IsDead = true; }
834   bool isDead() const { return IsDead; }
835 };
836
837 class EdgeBuilder {
838   std::vector<ContextLocation> CLocs;
839   typedef std::vector<ContextLocation>::iterator iterator;
840   PathDiagnostic &PD;
841   PathDiagnosticBuilder &PDB;
842   PathDiagnosticLocation PrevLoc;
843
844   bool IsConsumedExpr(const PathDiagnosticLocation &L);
845
846   bool containsLocation(const PathDiagnosticLocation &Container,
847                         const PathDiagnosticLocation &Containee);
848
849   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
850
851   PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
852                                          bool firstCharOnly = false) {
853     if (const Stmt *S = L.asStmt()) {
854       const Stmt *Original = S;
855       while (1) {
856         // Adjust the location for some expressions that are best referenced
857         // by one of their subexpressions.
858         switch (S->getStmtClass()) {
859           default:
860             break;
861           case Stmt::ParenExprClass:
862           case Stmt::GenericSelectionExprClass:
863             S = cast<Expr>(S)->IgnoreParens();
864             firstCharOnly = true;
865             continue;
866           case Stmt::BinaryConditionalOperatorClass:
867           case Stmt::ConditionalOperatorClass:
868             S = cast<AbstractConditionalOperator>(S)->getCond();
869             firstCharOnly = true;
870             continue;
871           case Stmt::ChooseExprClass:
872             S = cast<ChooseExpr>(S)->getCond();
873             firstCharOnly = true;
874             continue;
875           case Stmt::BinaryOperatorClass:
876             S = cast<BinaryOperator>(S)->getLHS();
877             firstCharOnly = true;
878             continue;
879         }
880
881         break;
882       }
883
884       if (S != Original)
885         L = PathDiagnosticLocation(S, L.getManager());
886     }
887
888     if (firstCharOnly)
889       L = PathDiagnosticLocation(L.asLocation());
890
891     return L;
892   }
893
894   void popLocation() {
895     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
896       // For contexts, we only one the first character as the range.
897       rawAddEdge(cleanUpLocation(CLocs.back(), true));
898     }
899     CLocs.pop_back();
900   }
901
902 public:
903   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
904     : PD(pd), PDB(pdb) {
905
906       // If the PathDiagnostic already has pieces, add the enclosing statement
907       // of the first piece as a context as well.
908       if (!PD.empty()) {
909         PrevLoc = PD.begin()->getLocation();
910
911         if (const Stmt *S = PrevLoc.asStmt())
912           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
913       }
914   }
915
916   ~EdgeBuilder() {
917     while (!CLocs.empty()) popLocation();
918
919     // Finally, add an initial edge from the start location of the first
920     // statement (if it doesn't already exist).
921     // FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
922     if (const CompoundStmt *CS =
923           dyn_cast_or_null<CompoundStmt>(PDB.getCodeDecl().getBody()))
924       if (!CS->body_empty()) {
925         SourceLocation Loc = (*CS->body_begin())->getLocStart();
926         rawAddEdge(PathDiagnosticLocation(Loc, PDB.getSourceManager()));
927       }
928
929   }
930
931   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
932
933   void rawAddEdge(PathDiagnosticLocation NewLoc);
934
935   void addContext(const Stmt *S);
936   void addExtendedContext(const Stmt *S);
937 };
938 } // end anonymous namespace
939
940
941 PathDiagnosticLocation
942 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
943   if (const Stmt *S = L.asStmt()) {
944     if (IsControlFlowExpr(S))
945       return L;
946
947     return PDB.getEnclosingStmtLocation(S);
948   }
949
950   return L;
951 }
952
953 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
954                                    const PathDiagnosticLocation &Containee) {
955
956   if (Container == Containee)
957     return true;
958
959   if (Container.asDecl())
960     return true;
961
962   if (const Stmt *S = Containee.asStmt())
963     if (const Stmt *ContainerS = Container.asStmt()) {
964       while (S) {
965         if (S == ContainerS)
966           return true;
967         S = PDB.getParent(S);
968       }
969       return false;
970     }
971
972   // Less accurate: compare using source ranges.
973   SourceRange ContainerR = Container.asRange();
974   SourceRange ContaineeR = Containee.asRange();
975
976   SourceManager &SM = PDB.getSourceManager();
977   SourceLocation ContainerRBeg = SM.getInstantiationLoc(ContainerR.getBegin());
978   SourceLocation ContainerREnd = SM.getInstantiationLoc(ContainerR.getEnd());
979   SourceLocation ContaineeRBeg = SM.getInstantiationLoc(ContaineeR.getBegin());
980   SourceLocation ContaineeREnd = SM.getInstantiationLoc(ContaineeR.getEnd());
981
982   unsigned ContainerBegLine = SM.getInstantiationLineNumber(ContainerRBeg);
983   unsigned ContainerEndLine = SM.getInstantiationLineNumber(ContainerREnd);
984   unsigned ContaineeBegLine = SM.getInstantiationLineNumber(ContaineeRBeg);
985   unsigned ContaineeEndLine = SM.getInstantiationLineNumber(ContaineeREnd);
986
987   assert(ContainerBegLine <= ContainerEndLine);
988   assert(ContaineeBegLine <= ContaineeEndLine);
989
990   return (ContainerBegLine <= ContaineeBegLine &&
991           ContainerEndLine >= ContaineeEndLine &&
992           (ContainerBegLine != ContaineeBegLine ||
993            SM.getInstantiationColumnNumber(ContainerRBeg) <=
994            SM.getInstantiationColumnNumber(ContaineeRBeg)) &&
995           (ContainerEndLine != ContaineeEndLine ||
996            SM.getInstantiationColumnNumber(ContainerREnd) >=
997            SM.getInstantiationColumnNumber(ContainerREnd)));
998 }
999
1000 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1001   if (!PrevLoc.isValid()) {
1002     PrevLoc = NewLoc;
1003     return;
1004   }
1005
1006   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1007   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1008
1009   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1010     return;
1011
1012   // FIXME: Ignore intra-macro edges for now.
1013   if (NewLocClean.asLocation().getInstantiationLoc() ==
1014       PrevLocClean.asLocation().getInstantiationLoc())
1015     return;
1016
1017   PD.push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1018   PrevLoc = NewLoc;
1019 }
1020
1021 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1022
1023   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1024     return;
1025
1026   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1027
1028   while (!CLocs.empty()) {
1029     ContextLocation &TopContextLoc = CLocs.back();
1030
1031     // Is the top location context the same as the one for the new location?
1032     if (TopContextLoc == CLoc) {
1033       if (alwaysAdd) {
1034         if (IsConsumedExpr(TopContextLoc) &&
1035             !IsControlFlowExpr(TopContextLoc.asStmt()))
1036             TopContextLoc.markDead();
1037
1038         rawAddEdge(NewLoc);
1039       }
1040
1041       return;
1042     }
1043
1044     if (containsLocation(TopContextLoc, CLoc)) {
1045       if (alwaysAdd) {
1046         rawAddEdge(NewLoc);
1047
1048         if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1049           CLocs.push_back(ContextLocation(CLoc, true));
1050           return;
1051         }
1052       }
1053
1054       CLocs.push_back(CLoc);
1055       return;
1056     }
1057
1058     // Context does not contain the location.  Flush it.
1059     popLocation();
1060   }
1061
1062   // If we reach here, there is no enclosing context.  Just add the edge.
1063   rawAddEdge(NewLoc);
1064 }
1065
1066 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1067   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1068     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1069
1070   return false;
1071 }
1072
1073 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1074   if (!S)
1075     return;
1076
1077   const Stmt *Parent = PDB.getParent(S);
1078   while (Parent) {
1079     if (isa<CompoundStmt>(Parent))
1080       Parent = PDB.getParent(Parent);
1081     else
1082       break;
1083   }
1084
1085   if (Parent) {
1086     switch (Parent->getStmtClass()) {
1087       case Stmt::DoStmtClass:
1088       case Stmt::ObjCAtSynchronizedStmtClass:
1089         addContext(Parent);
1090       default:
1091         break;
1092     }
1093   }
1094
1095   addContext(S);
1096 }
1097
1098 void EdgeBuilder::addContext(const Stmt *S) {
1099   if (!S)
1100     return;
1101
1102   PathDiagnosticLocation L(S, PDB.getSourceManager());
1103
1104   while (!CLocs.empty()) {
1105     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1106
1107     // Is the top location context the same as the one for the new location?
1108     if (TopContextLoc == L)
1109       return;
1110
1111     if (containsLocation(TopContextLoc, L)) {
1112       CLocs.push_back(L);
1113       return;
1114     }
1115
1116     // Context does not contain the location.  Flush it.
1117     popLocation();
1118   }
1119
1120   CLocs.push_back(L);
1121 }
1122
1123 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1124                                             PathDiagnosticBuilder &PDB,
1125                                             const ExplodedNode *N) {
1126   EdgeBuilder EB(PD, PDB);
1127
1128   const ExplodedNode* NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1129   while (NextNode) {
1130     N = NextNode;
1131     NextNode = GetPredecessorNode(N);
1132     ProgramPoint P = N->getLocation();
1133
1134     do {
1135       // Block edges.
1136       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1137         const CFGBlock &Blk = *BE->getSrc();
1138         const Stmt *Term = Blk.getTerminator();
1139
1140         // Are we jumping to the head of a loop?  Add a special diagnostic.
1141         if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
1142           PathDiagnosticLocation L(Loop, PDB.getSourceManager());
1143           const CompoundStmt *CS = NULL;
1144
1145           if (!Term) {
1146             if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1147               CS = dyn_cast<CompoundStmt>(FS->getBody());
1148             else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1149               CS = dyn_cast<CompoundStmt>(WS->getBody());
1150           }
1151
1152           PathDiagnosticEventPiece *p =
1153             new PathDiagnosticEventPiece(L,
1154                                         "Looping back to the head of the loop");
1155
1156           EB.addEdge(p->getLocation(), true);
1157           PD.push_front(p);
1158
1159           if (CS) {
1160             PathDiagnosticLocation BL(CS->getRBracLoc(),
1161                                       PDB.getSourceManager());
1162             BL = PathDiagnosticLocation(BL.asLocation());
1163             EB.addEdge(BL);
1164           }
1165         }
1166
1167         if (Term)
1168           EB.addContext(Term);
1169
1170         break;
1171       }
1172
1173       if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1174         if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
1175           const Stmt *stmt = S->getStmt();
1176           if (IsControlFlowExpr(stmt)) {
1177             // Add the proper context for '&&', '||', and '?'.
1178             EB.addContext(stmt);
1179           }
1180           else
1181             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1182         }
1183         
1184         break;
1185       }
1186     } while (0);
1187
1188     if (!NextNode)
1189       continue;
1190
1191     for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
1192          E = PDB.visitor_end(); I!=E; ++I) {
1193       if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) {
1194         const PathDiagnosticLocation &Loc = p->getLocation();
1195         EB.addEdge(Loc, true);
1196         PD.push_front(p);
1197         if (const Stmt *S = Loc.asStmt())
1198           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1199       }
1200     }
1201   }
1202 }
1203
1204 //===----------------------------------------------------------------------===//
1205 // Methods for BugType and subclasses.
1206 //===----------------------------------------------------------------------===//
1207 BugType::~BugType() { }
1208
1209 void BugType::FlushReports(BugReporter &BR) {}
1210
1211 //===----------------------------------------------------------------------===//
1212 // Methods for BugReport and subclasses.
1213 //===----------------------------------------------------------------------===//
1214 BugReport::~BugReport() {}
1215 RangedBugReport::~RangedBugReport() {}
1216
1217 const Stmt* BugReport::getStmt() const {
1218   ProgramPoint ProgP = ErrorNode->getLocation();
1219   const Stmt *S = NULL;
1220
1221   if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
1222     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1223     if (BE->getBlock() == &Exit)
1224       S = GetPreviousStmt(ErrorNode);
1225   }
1226   if (!S)
1227     S = GetStmt(ProgP);
1228
1229   return S;
1230 }
1231
1232 PathDiagnosticPiece*
1233 BugReport::getEndPath(BugReporterContext& BRC,
1234                       const ExplodedNode* EndPathNode) {
1235
1236   const Stmt* S = getStmt();
1237
1238   if (!S)
1239     return NULL;
1240
1241   BugReport::ranges_iterator Beg, End;
1242   llvm::tie(Beg, End) = getRanges();
1243   PathDiagnosticLocation L(S, BRC.getSourceManager());
1244
1245   // Only add the statement itself as a range if we didn't specify any
1246   // special ranges for this report.
1247   PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription(),
1248                                                         Beg == End);
1249
1250   for (; Beg != End; ++Beg)
1251     P->addRange(*Beg);
1252
1253   return P;
1254 }
1255
1256 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1257 BugReport::getRanges() const {
1258   if (const Expr* E = dyn_cast_or_null<Expr>(getStmt())) {
1259     R = E->getSourceRange();
1260     assert(R.isValid());
1261     return std::make_pair(&R, &R+1);
1262   }
1263   else
1264     return std::make_pair(ranges_iterator(), ranges_iterator());
1265 }
1266
1267 SourceLocation BugReport::getLocation() const {
1268   if (ErrorNode)
1269     if (const Stmt* S = GetCurrentOrPreviousStmt(ErrorNode)) {
1270       // For member expressions, return the location of the '.' or '->'.
1271       if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1272         return ME->getMemberLoc();
1273       // For binary operators, return the location of the operator.
1274       if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1275         return B->getOperatorLoc();
1276
1277       return S->getLocStart();
1278     }
1279
1280   return FullSourceLoc();
1281 }
1282
1283 PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode* N,
1284                                           const ExplodedNode* PrevN,
1285                                           BugReporterContext &BRC) {
1286   return NULL;
1287 }
1288
1289 //===----------------------------------------------------------------------===//
1290 // Methods for BugReporter and subclasses.
1291 //===----------------------------------------------------------------------===//
1292
1293 BugReportEquivClass::~BugReportEquivClass() {
1294   for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
1295 }
1296
1297 GRBugReporter::~GRBugReporter() { }
1298 BugReporterData::~BugReporterData() {}
1299
1300 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1301
1302 GRStateManager&
1303 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1304
1305 BugReporter::~BugReporter() { FlushReports(); }
1306
1307 void BugReporter::FlushReports() {
1308   if (BugTypes.isEmpty())
1309     return;
1310
1311   // First flush the warnings for each BugType.  This may end up creating new
1312   // warnings and new BugTypes.
1313   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1314   // Turn NSErrorChecker into a proper checker and remove this.
1315   llvm::SmallVector<const BugType*, 16> bugTypes;
1316   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1317     bugTypes.push_back(*I);
1318   for (llvm::SmallVector<const BugType*, 16>::iterator
1319          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1320     const_cast<BugType*>(*I)->FlushReports(*this);
1321
1322   typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
1323   for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
1324     BugReportEquivClass& EQ = *EI;
1325     FlushReport(EQ);
1326   }
1327
1328   // BugReporter owns and deletes only BugTypes created implicitly through
1329   // EmitBasicReport.
1330   // FIXME: There are leaks from checkers that assume that the BugTypes they
1331   // create will be destroyed by the BugReporter.
1332   for (llvm::StringMap<BugType*>::iterator
1333          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1334     delete I->second;
1335
1336   // Remove all references to the BugType objects.
1337   BugTypes = F.getEmptySet();
1338 }
1339
1340 //===----------------------------------------------------------------------===//
1341 // PathDiagnostics generation.
1342 //===----------------------------------------------------------------------===//
1343
1344 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1345                  std::pair<ExplodedNode*, unsigned> >
1346 MakeReportGraph(const ExplodedGraph* G,
1347                 llvm::SmallVectorImpl<const ExplodedNode*> &nodes) {
1348
1349   // Create the trimmed graph.  It will contain the shortest paths from the
1350   // error nodes to the root.  In the new graph we should only have one
1351   // error node unless there are two or more error nodes with the same minimum
1352   // path length.
1353   ExplodedGraph* GTrim;
1354   InterExplodedGraphMap* NMap;
1355
1356   llvm::DenseMap<const void*, const void*> InverseMap;
1357   llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1358                                    &InverseMap);
1359
1360   // Create owning pointers for GTrim and NMap just to ensure that they are
1361   // released when this function exists.
1362   llvm::OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1363   llvm::OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1364
1365   // Find the (first) error node in the trimmed graph.  We just need to consult
1366   // the node map (NMap) which maps from nodes in the original graph to nodes
1367   // in the new graph.
1368
1369   std::queue<const ExplodedNode*> WS;
1370   typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1371   IndexMapTy IndexMap;
1372
1373   for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1374     const ExplodedNode *originalNode = nodes[nodeIndex];
1375     if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1376       WS.push(N);
1377       IndexMap[originalNode] = nodeIndex;
1378     }
1379   }
1380
1381   assert(!WS.empty() && "No error node found in the trimmed graph.");
1382
1383   // Create a new (third!) graph with a single path.  This is the graph
1384   // that will be returned to the caller.
1385   ExplodedGraph *GNew = new ExplodedGraph();
1386
1387   // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1388   // to the root node, and then construct a new graph that contains only
1389   // a single path.
1390   llvm::DenseMap<const void*,unsigned> Visited;
1391
1392   unsigned cnt = 0;
1393   const ExplodedNode* Root = 0;
1394
1395   while (!WS.empty()) {
1396     const ExplodedNode* Node = WS.front();
1397     WS.pop();
1398
1399     if (Visited.find(Node) != Visited.end())
1400       continue;
1401
1402     Visited[Node] = cnt++;
1403
1404     if (Node->pred_empty()) {
1405       Root = Node;
1406       break;
1407     }
1408
1409     for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1410          E=Node->pred_end(); I!=E; ++I)
1411       WS.push(*I);
1412   }
1413
1414   assert(Root);
1415
1416   // Now walk from the root down the BFS path, always taking the successor
1417   // with the lowest number.
1418   ExplodedNode *Last = 0, *First = 0;
1419   NodeBackMap *BM = new NodeBackMap();
1420   unsigned NodeIndex = 0;
1421
1422   for ( const ExplodedNode *N = Root ;;) {
1423     // Lookup the number associated with the current node.
1424     llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1425     assert(I != Visited.end());
1426
1427     // Create the equivalent node in the new graph with the same state
1428     // and location.
1429     ExplodedNode* NewN = GNew->getNode(N->getLocation(), N->getState());
1430
1431     // Store the mapping to the original node.
1432     llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1433     assert(IMitr != InverseMap.end() && "No mapping to original node.");
1434     (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1435
1436     // Link up the new node with the previous node.
1437     if (Last)
1438       NewN->addPredecessor(Last, *GNew);
1439
1440     Last = NewN;
1441
1442     // Are we at the final node?
1443     IndexMapTy::iterator IMI =
1444       IndexMap.find((const ExplodedNode*)(IMitr->second));
1445     if (IMI != IndexMap.end()) {
1446       First = NewN;
1447       NodeIndex = IMI->second;
1448       break;
1449     }
1450
1451     // Find the next successor node.  We choose the node that is marked
1452     // with the lowest DFS number.
1453     ExplodedNode::const_succ_iterator SI = N->succ_begin();
1454     ExplodedNode::const_succ_iterator SE = N->succ_end();
1455     N = 0;
1456
1457     for (unsigned MinVal = 0; SI != SE; ++SI) {
1458
1459       I = Visited.find(*SI);
1460
1461       if (I == Visited.end())
1462         continue;
1463
1464       if (!N || I->second < MinVal) {
1465         N = *SI;
1466         MinVal = I->second;
1467       }
1468     }
1469
1470     assert(N);
1471   }
1472
1473   assert(First);
1474
1475   return std::make_pair(std::make_pair(GNew, BM),
1476                         std::make_pair(First, NodeIndex));
1477 }
1478
1479 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1480 ///  and collapses PathDiagosticPieces that are expanded by macros.
1481 static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
1482   typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> >
1483           MacroStackTy;
1484
1485   typedef std::vector<PathDiagnosticPiece*>
1486           PiecesTy;
1487
1488   MacroStackTy MacroStack;
1489   PiecesTy Pieces;
1490
1491   for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) {
1492     // Get the location of the PathDiagnosticPiece.
1493     const FullSourceLoc Loc = I->getLocation().asLocation();
1494
1495     // Determine the instantiation location, which is the location we group
1496     // related PathDiagnosticPieces.
1497     SourceLocation InstantiationLoc = Loc.isMacroID() ?
1498                                       SM.getInstantiationLoc(Loc) :
1499                                       SourceLocation();
1500
1501     if (Loc.isFileID()) {
1502       MacroStack.clear();
1503       Pieces.push_back(&*I);
1504       continue;
1505     }
1506
1507     assert(Loc.isMacroID());
1508
1509     // Is the PathDiagnosticPiece within the same macro group?
1510     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1511       MacroStack.back().first->push_back(&*I);
1512       continue;
1513     }
1514
1515     // We aren't in the same group.  Are we descending into a new macro
1516     // or are part of an old one?
1517     PathDiagnosticMacroPiece *MacroGroup = 0;
1518
1519     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1520                                           SM.getInstantiationLoc(Loc) :
1521                                           SourceLocation();
1522
1523     // Walk the entire macro stack.
1524     while (!MacroStack.empty()) {
1525       if (InstantiationLoc == MacroStack.back().second) {
1526         MacroGroup = MacroStack.back().first;
1527         break;
1528       }
1529
1530       if (ParentInstantiationLoc == MacroStack.back().second) {
1531         MacroGroup = MacroStack.back().first;
1532         break;
1533       }
1534
1535       MacroStack.pop_back();
1536     }
1537
1538     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1539       // Create a new macro group and add it to the stack.
1540       PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc);
1541
1542       if (MacroGroup)
1543         MacroGroup->push_back(NewGroup);
1544       else {
1545         assert(InstantiationLoc.isFileID());
1546         Pieces.push_back(NewGroup);
1547       }
1548
1549       MacroGroup = NewGroup;
1550       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1551     }
1552
1553     // Finally, add the PathDiagnosticPiece to the group.
1554     MacroGroup->push_back(&*I);
1555   }
1556
1557   // Now take the pieces and construct a new PathDiagnostic.
1558   PD.resetPath(false);
1559
1560   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
1561     if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I))
1562       if (!MP->containsEvent()) {
1563         delete MP;
1564         continue;
1565       }
1566
1567     PD.push_back(*I);
1568   }
1569 }
1570
1571 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1572                         llvm::SmallVectorImpl<BugReport *> &bugReports) {
1573
1574   assert(!bugReports.empty());
1575   llvm::SmallVector<const ExplodedNode *, 10> errorNodes;
1576   for (llvm::SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(),
1577     E = bugReports.end(); I != E; ++I) {
1578       errorNodes.push_back((*I)->getErrorNode());
1579   }
1580
1581   // Construct a new graph that contains only a single path from the error
1582   // node to a root.
1583   const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1584   std::pair<ExplodedNode*, unsigned> >&
1585     GPair = MakeReportGraph(&getGraph(), errorNodes);
1586
1587   // Find the BugReport with the original location.
1588   assert(GPair.second.second < bugReports.size());
1589   BugReport *R = bugReports[GPair.second.second];
1590   assert(R && "No original report found for sliced graph.");
1591
1592   llvm::OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1593   llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1594   const ExplodedNode *N = GPair.second.first;
1595
1596   // Start building the path diagnostic...
1597   PathDiagnosticBuilder PDB(*this, R, BackMap.get(), getPathDiagnosticClient());
1598
1599   if (PathDiagnosticPiece* Piece = R->getEndPath(PDB, N))
1600     PD.push_back(Piece);
1601   else
1602     return;
1603
1604   // Register node visitors.
1605   R->registerInitialVisitors(PDB, N);
1606   bugreporter::registerNilReceiverVisitor(PDB);
1607
1608   switch (PDB.getGenerationScheme()) {
1609     case PathDiagnosticClient::Extensive:
1610       GenerateExtensivePathDiagnostic(PD, PDB, N);
1611       break;
1612     case PathDiagnosticClient::Minimal:
1613       GenerateMinimalPathDiagnostic(PD, PDB, N);
1614       break;
1615   }
1616 }
1617
1618 void BugReporter::Register(BugType *BT) {
1619   BugTypes = F.add(BugTypes, BT);
1620 }
1621
1622 void BugReporter::EmitReport(BugReport* R) {
1623   // Compute the bug report's hash to determine its equivalence class.
1624   llvm::FoldingSetNodeID ID;
1625   R->Profile(ID);
1626
1627   // Lookup the equivance class.  If there isn't one, create it.
1628   BugType& BT = R->getBugType();
1629   Register(&BT);
1630   void *InsertPos;
1631   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1632
1633   if (!EQ) {
1634     EQ = new BugReportEquivClass(R);
1635     EQClasses.InsertNode(EQ, InsertPos);
1636   }
1637   else
1638     EQ->AddReport(R);
1639 }
1640
1641
1642 //===----------------------------------------------------------------------===//
1643 // Emitting reports in equivalence classes.
1644 //===----------------------------------------------------------------------===//
1645
1646 namespace {
1647 struct FRIEC_WLItem {
1648   const ExplodedNode *N;
1649   ExplodedNode::const_succ_iterator I, E;
1650   
1651   FRIEC_WLItem(const ExplodedNode *n)
1652   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1653 };  
1654 }
1655
1656 static BugReport *
1657 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1658                              llvm::SmallVectorImpl<BugReport*> &bugReports) {
1659
1660   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1661   assert(I != E);
1662   BugReport *R = *I;
1663   BugType& BT = R->getBugType();
1664
1665   // If we don't need to suppress any of the nodes because they are
1666   // post-dominated by a sink, simply add all the nodes in the equivalence class
1667   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
1668   if (!BT.isSuppressOnSink()) {
1669     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1670       const ExplodedNode* N = I->getErrorNode();
1671       if (N) {
1672         R = *I;
1673         bugReports.push_back(R);
1674       }
1675     }
1676     return R;
1677   }
1678
1679   // For bug reports that should be suppressed when all paths are post-dominated
1680   // by a sink node, iterate through the reports in the equivalence class
1681   // until we find one that isn't post-dominated (if one exists).  We use a
1682   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
1683   // this as a recursive function, but we don't want to risk blowing out the
1684   // stack for very long paths.
1685   BugReport *exampleReport = 0;
1686
1687   for (; I != E; ++I) {
1688     R = *I;
1689     const ExplodedNode *errorNode = R->getErrorNode();
1690
1691     if (!errorNode)
1692       continue;
1693     if (errorNode->isSink()) {
1694       assert(false &&
1695            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
1696       return 0;
1697     }
1698     // No successors?  By definition this nodes isn't post-dominated by a sink.
1699     if (errorNode->succ_empty()) {
1700       bugReports.push_back(R);
1701       if (!exampleReport)
1702         exampleReport = R;
1703       continue;
1704     }
1705
1706     // At this point we know that 'N' is not a sink and it has at least one
1707     // successor.  Use a DFS worklist to find a non-sink end-of-path node.    
1708     typedef FRIEC_WLItem WLItem;
1709     typedef llvm::SmallVector<WLItem, 10> DFSWorkList;
1710     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
1711     
1712     DFSWorkList WL;
1713     WL.push_back(errorNode);
1714     Visited[errorNode] = 1;
1715     
1716     while (!WL.empty()) {
1717       WLItem &WI = WL.back();
1718       assert(!WI.N->succ_empty());
1719             
1720       for (; WI.I != WI.E; ++WI.I) {
1721         const ExplodedNode *Succ = *WI.I;        
1722         // End-of-path node?
1723         if (Succ->succ_empty()) {
1724           // If we found an end-of-path node that is not a sink.
1725           if (!Succ->isSink()) {
1726             bugReports.push_back(R);
1727             if (!exampleReport)
1728               exampleReport = R;
1729             WL.clear();
1730             break;
1731           }
1732           // Found a sink?  Continue on to the next successor.
1733           continue;
1734         }
1735         // Mark the successor as visited.  If it hasn't been explored,
1736         // enqueue it to the DFS worklist.
1737         unsigned &mark = Visited[Succ];
1738         if (!mark) {
1739           mark = 1;
1740           WL.push_back(Succ);
1741           break;
1742         }
1743       }
1744
1745       // The worklist may have been cleared at this point.  First
1746       // check if it is empty before checking the last item.
1747       if (!WL.empty() && &WL.back() == &WI)
1748         WL.pop_back();
1749     }
1750   }
1751
1752   // ExampleReport will be NULL if all the nodes in the equivalence class
1753   // were post-dominated by sinks.
1754   return exampleReport;
1755 }
1756
1757 //===----------------------------------------------------------------------===//
1758 // DiagnosticCache.  This is a hack to cache analyzer diagnostics.  It
1759 // uses global state, which eventually should go elsewhere.
1760 //===----------------------------------------------------------------------===//
1761 namespace {
1762 class DiagCacheItem : public llvm::FoldingSetNode {
1763   llvm::FoldingSetNodeID ID;
1764 public:
1765   DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
1766     ID.AddString(R->getBugType().getName());
1767     ID.AddString(R->getBugType().getCategory());
1768     ID.AddString(R->getDescription());
1769     ID.AddInteger(R->getLocation().getRawEncoding());
1770     PD->Profile(ID);    
1771   }
1772   
1773   void Profile(llvm::FoldingSetNodeID &id) {
1774     id = ID;
1775   }
1776   
1777   llvm::FoldingSetNodeID &getID() { return ID; }
1778 };
1779 }
1780
1781 static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
1782   // FIXME: Eventually this diagnostic cache should reside in something
1783   // like AnalysisManager instead of being a static variable.  This is
1784   // really unsafe in the long term.
1785   typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
1786   static DiagnosticCache DC;
1787   
1788   void *InsertPos;
1789   DiagCacheItem *Item = new DiagCacheItem(R, PD);
1790   
1791   if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
1792     delete Item;
1793     return true;
1794   }
1795   
1796   DC.InsertNode(Item, InsertPos);
1797   return false;
1798 }
1799
1800 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
1801   llvm::SmallVector<BugReport*, 10> bugReports;
1802   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
1803   if (!exampleReport)
1804     return;
1805   
1806   PathDiagnosticClient* PD = getPathDiagnosticClient();
1807
1808   // FIXME: Make sure we use the 'R' for the path that was actually used.
1809   // Probably doesn't make a difference in practice.
1810   BugType& BT = exampleReport->getBugType();
1811
1812   llvm::OwningPtr<PathDiagnostic>
1813     D(new PathDiagnostic(exampleReport->getBugType().getName(),
1814                          !PD || PD->useVerboseDescription()
1815                          ? exampleReport->getDescription() 
1816                          : exampleReport->getShortDescription(),
1817                          BT.getCategory()));
1818
1819   if (!bugReports.empty())
1820     GeneratePathDiagnostic(*D.get(), bugReports);
1821
1822   if (IsCachedDiagnostic(exampleReport, D.get()))
1823     return;
1824   
1825   // Get the meta data.
1826   std::pair<const char**, const char**> Meta =
1827     exampleReport->getExtraDescriptiveText();
1828   for (const char** s = Meta.first; s != Meta.second; ++s)
1829     D->addMeta(*s);
1830
1831   // Emit a summary diagnostic to the regular Diagnostics engine.
1832   BugReport::ranges_iterator Beg, End;
1833   llvm::tie(Beg, End) = exampleReport->getRanges();
1834   Diagnostic &Diag = getDiagnostic();
1835   FullSourceLoc L(exampleReport->getLocation(), getSourceManager());
1836   
1837   // Search the description for '%', as that will be interpretted as a
1838   // format character by FormatDiagnostics.
1839   llvm::StringRef desc = exampleReport->getShortDescription();
1840   unsigned ErrorDiag;
1841   {
1842     llvm::SmallString<512> TmpStr;
1843     llvm::raw_svector_ostream Out(TmpStr);
1844     for (llvm::StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I)
1845       if (*I == '%')
1846         Out << "%%";
1847       else
1848         Out << *I;
1849     
1850     Out.flush();
1851     ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, TmpStr);
1852   }        
1853
1854   {
1855     DiagnosticBuilder diagBuilder = Diag.Report(L, ErrorDiag);
1856     for (BugReport::ranges_iterator I = Beg; I != End; ++I)
1857       diagBuilder << *I;
1858   }
1859
1860   // Emit a full diagnostic for the path if we have a PathDiagnosticClient.
1861   if (!PD)
1862     return;
1863
1864   if (D->empty()) {
1865     PathDiagnosticPiece* piece =
1866       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
1867
1868     for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
1869     D->push_back(piece);
1870   }
1871
1872   PD->HandlePathDiagnostic(D.take());
1873 }
1874
1875 void BugReporter::EmitBasicReport(llvm::StringRef name, llvm::StringRef str,
1876                                   SourceLocation Loc,
1877                                   SourceRange* RBeg, unsigned NumRanges) {
1878   EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
1879 }
1880
1881 void BugReporter::EmitBasicReport(llvm::StringRef name,
1882                                   llvm::StringRef category,
1883                                   llvm::StringRef str, SourceLocation Loc,
1884                                   SourceRange* RBeg, unsigned NumRanges) {
1885
1886   // 'BT' is owned by BugReporter.
1887   BugType *BT = getBugTypeForName(name, category);
1888   FullSourceLoc L = getContext().getFullLoc(Loc);
1889   RangedBugReport *R = new DiagBugReport(*BT, str, L);
1890   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
1891   EmitReport(R);
1892 }
1893
1894 BugType *BugReporter::getBugTypeForName(llvm::StringRef name,
1895                                         llvm::StringRef category) {
1896   llvm::SmallString<136> fullDesc;
1897   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
1898   llvm::StringMapEntry<BugType *> &
1899       entry = StrBugTypes.GetOrCreateValue(fullDesc);
1900   BugType *BT = entry.getValue();
1901   if (!BT) {
1902     BT = new BugType(name, category);
1903     entry.setValue(BT);
1904   }
1905   return BT;
1906 }