]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
MFC r262329:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / dtrace / dtrace.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23
24 /*
25  * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29
30 #pragma ident   "%Z%%M% %I%     %E% SMI"
31
32 /*
33  * DTrace - Dynamic Tracing for Solaris
34  *
35  * This is the implementation of the Solaris Dynamic Tracing framework
36  * (DTrace).  The user-visible interface to DTrace is described at length in
37  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38  * library, the in-kernel DTrace framework, and the DTrace providers are
39  * described in the block comments in the <sys/dtrace.h> header file.  The
40  * internal architecture of DTrace is described in the block comments in the
41  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42  * implementation very much assume mastery of all of these sources; if one has
43  * an unanswered question about the implementation, one should consult them
44  * first.
45  *
46  * The functions here are ordered roughly as follows:
47  *
48  *   - Probe context functions
49  *   - Probe hashing functions
50  *   - Non-probe context utility functions
51  *   - Matching functions
52  *   - Provider-to-Framework API functions
53  *   - Probe management functions
54  *   - DIF object functions
55  *   - Format functions
56  *   - Predicate functions
57  *   - ECB functions
58  *   - Buffer functions
59  *   - Enabling functions
60  *   - DOF functions
61  *   - Anonymous enabling functions
62  *   - Consumer state functions
63  *   - Helper functions
64  *   - Hook functions
65  *   - Driver cookbook functions
66  *
67  * Each group of functions begins with a block comment labelled the "DTrace
68  * [Group] Functions", allowing one to find each block by searching forward
69  * on capital-f functions.
70  */
71 #include <sys/errno.h>
72 #if !defined(sun)
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/modctl.h>
77 #include <sys/conf.h>
78 #include <sys/systm.h>
79 #if defined(sun)
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #if defined(sun)
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #if defined(sun)
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #if defined(sun)
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #include <sys/policy.h>
102 #if defined(sun)
103 #include <sys/cred_impl.h>
104 #include <sys/procfs_isa.h>
105 #endif
106 #include <sys/taskq.h>
107 #if defined(sun)
108 #include <sys/mkdev.h>
109 #include <sys/kdi.h>
110 #endif
111 #include <sys/zone.h>
112 #include <sys/socket.h>
113 #include <netinet/in.h>
114
115 /* FreeBSD includes: */
116 #if !defined(sun)
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/eventhandler.h>
120 #include <sys/limits.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/sysctl.h>
125 #include <sys/lock.h>
126 #include <sys/mutex.h>
127 #include <sys/rwlock.h>
128 #include <sys/sx.h>
129 #include <sys/dtrace_bsd.h>
130 #include <netinet/in.h>
131 #include "dtrace_cddl.h"
132 #include "dtrace_debug.c"
133 #endif
134
135 /*
136  * DTrace Tunable Variables
137  *
138  * The following variables may be tuned by adding a line to /etc/system that
139  * includes both the name of the DTrace module ("dtrace") and the name of the
140  * variable.  For example:
141  *
142  *   set dtrace:dtrace_destructive_disallow = 1
143  *
144  * In general, the only variables that one should be tuning this way are those
145  * that affect system-wide DTrace behavior, and for which the default behavior
146  * is undesirable.  Most of these variables are tunable on a per-consumer
147  * basis using DTrace options, and need not be tuned on a system-wide basis.
148  * When tuning these variables, avoid pathological values; while some attempt
149  * is made to verify the integrity of these variables, they are not considered
150  * part of the supported interface to DTrace, and they are therefore not
151  * checked comprehensively.  Further, these variables should not be tuned
152  * dynamically via "mdb -kw" or other means; they should only be tuned via
153  * /etc/system.
154  */
155 int             dtrace_destructive_disallow = 0;
156 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
157 size_t          dtrace_difo_maxsize = (256 * 1024);
158 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
159 size_t          dtrace_global_maxsize = (16 * 1024);
160 size_t          dtrace_actions_max = (16 * 1024);
161 size_t          dtrace_retain_max = 1024;
162 dtrace_optval_t dtrace_helper_actions_max = 128;
163 dtrace_optval_t dtrace_helper_providers_max = 32;
164 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
165 size_t          dtrace_strsize_default = 256;
166 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
167 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
168 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
169 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
170 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
171 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
172 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
173 dtrace_optval_t dtrace_nspec_default = 1;
174 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
175 dtrace_optval_t dtrace_stackframes_default = 20;
176 dtrace_optval_t dtrace_ustackframes_default = 20;
177 dtrace_optval_t dtrace_jstackframes_default = 50;
178 dtrace_optval_t dtrace_jstackstrsize_default = 512;
179 int             dtrace_msgdsize_max = 128;
180 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
181 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
182 int             dtrace_devdepth_max = 32;
183 int             dtrace_err_verbose;
184 hrtime_t        dtrace_deadman_interval = NANOSEC;
185 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
186 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
187 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
188
189 /*
190  * DTrace External Variables
191  *
192  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
193  * available to DTrace consumers via the backtick (`) syntax.  One of these,
194  * dtrace_zero, is made deliberately so:  it is provided as a source of
195  * well-known, zero-filled memory.  While this variable is not documented,
196  * it is used by some translators as an implementation detail.
197  */
198 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
199
200 /*
201  * DTrace Internal Variables
202  */
203 #if defined(sun)
204 static dev_info_t       *dtrace_devi;           /* device info */
205 #endif
206 #if defined(sun)
207 static vmem_t           *dtrace_arena;          /* probe ID arena */
208 static vmem_t           *dtrace_minor;          /* minor number arena */
209 #else
210 static taskq_t          *dtrace_taskq;          /* task queue */
211 static struct unrhdr    *dtrace_arena;          /* Probe ID number.     */
212 #endif
213 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
214 static int              dtrace_nprobes;         /* number of probes */
215 static dtrace_provider_t *dtrace_provider;      /* provider list */
216 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
217 static int              dtrace_opens;           /* number of opens */
218 static int              dtrace_helpers;         /* number of helpers */
219 #if defined(sun)
220 static void             *dtrace_softstate;      /* softstate pointer */
221 #endif
222 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
223 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
224 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
225 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
226 static int              dtrace_toxranges;       /* number of toxic ranges */
227 static int              dtrace_toxranges_max;   /* size of toxic range array */
228 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
229 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
230 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
231 static kthread_t        *dtrace_panicked;       /* panicking thread */
232 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
233 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
234 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
235 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
236 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
237 #if !defined(sun)
238 static struct mtx       dtrace_unr_mtx;
239 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
240 int             dtrace_in_probe;        /* non-zero if executing a probe */
241 #if defined(__i386__) || defined(__amd64__)
242 uintptr_t       dtrace_in_probe_addr;   /* Address of invop when already in probe */
243 #endif
244 static eventhandler_tag dtrace_kld_load_tag;
245 static eventhandler_tag dtrace_kld_unload_try_tag;
246 #endif
247
248 /*
249  * DTrace Locking
250  * DTrace is protected by three (relatively coarse-grained) locks:
251  *
252  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
253  *     including enabling state, probes, ECBs, consumer state, helper state,
254  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
255  *     probe context is lock-free -- synchronization is handled via the
256  *     dtrace_sync() cross call mechanism.
257  *
258  * (2) dtrace_provider_lock is required when manipulating provider state, or
259  *     when provider state must be held constant.
260  *
261  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
262  *     when meta provider state must be held constant.
263  *
264  * The lock ordering between these three locks is dtrace_meta_lock before
265  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
266  * several places where dtrace_provider_lock is held by the framework as it
267  * calls into the providers -- which then call back into the framework,
268  * grabbing dtrace_lock.)
269  *
270  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
271  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
272  * role as a coarse-grained lock; it is acquired before both of these locks.
273  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
274  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
275  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
276  * acquired _between_ dtrace_provider_lock and dtrace_lock.
277  */
278 static kmutex_t         dtrace_lock;            /* probe state lock */
279 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
280 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
281
282 #if !defined(sun)
283 /* XXX FreeBSD hacks. */
284 #define cr_suid         cr_svuid
285 #define cr_sgid         cr_svgid
286 #define ipaddr_t        in_addr_t
287 #define mod_modname     pathname
288 #define vuprintf        vprintf
289 #define ttoproc(_a)     ((_a)->td_proc)
290 #define crgetzoneid(_a) 0
291 #define NCPU            MAXCPU
292 #define SNOCD           0
293 #define CPU_ON_INTR(_a) 0
294
295 #define PRIV_EFFECTIVE          (1 << 0)
296 #define PRIV_DTRACE_KERNEL      (1 << 1)
297 #define PRIV_DTRACE_PROC        (1 << 2)
298 #define PRIV_DTRACE_USER        (1 << 3)
299 #define PRIV_PROC_OWNER         (1 << 4)
300 #define PRIV_PROC_ZONE          (1 << 5)
301 #define PRIV_ALL                ~0
302
303 SYSCTL_DECL(_debug_dtrace);
304 SYSCTL_DECL(_kern_dtrace);
305 #endif
306
307 #if defined(sun)
308 #define curcpu  CPU->cpu_id
309 #endif
310
311
312 /*
313  * DTrace Provider Variables
314  *
315  * These are the variables relating to DTrace as a provider (that is, the
316  * provider of the BEGIN, END, and ERROR probes).
317  */
318 static dtrace_pattr_t   dtrace_provider_attr = {
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
321 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
322 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
324 };
325
326 static void
327 dtrace_nullop(void)
328 {}
329
330 static dtrace_pops_t    dtrace_provider_ops = {
331         (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
332         (void (*)(void *, modctl_t *))dtrace_nullop,
333         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337         NULL,
338         NULL,
339         NULL,
340         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
341 };
342
343 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
344 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
345 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
346
347 /*
348  * DTrace Helper Tracing Variables
349  */
350 uint32_t dtrace_helptrace_next = 0;
351 uint32_t dtrace_helptrace_nlocals;
352 char    *dtrace_helptrace_buffer;
353 int     dtrace_helptrace_bufsize = 512 * 1024;
354
355 #ifdef DEBUG
356 int     dtrace_helptrace_enabled = 1;
357 #else
358 int     dtrace_helptrace_enabled = 0;
359 #endif
360
361 /*
362  * DTrace Error Hashing
363  *
364  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
365  * table.  This is very useful for checking coverage of tests that are
366  * expected to induce DIF or DOF processing errors, and may be useful for
367  * debugging problems in the DIF code generator or in DOF generation .  The
368  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
369  */
370 #ifdef DEBUG
371 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
372 static const char *dtrace_errlast;
373 static kthread_t *dtrace_errthread;
374 static kmutex_t dtrace_errlock;
375 #endif
376
377 /*
378  * DTrace Macros and Constants
379  *
380  * These are various macros that are useful in various spots in the
381  * implementation, along with a few random constants that have no meaning
382  * outside of the implementation.  There is no real structure to this cpp
383  * mishmash -- but is there ever?
384  */
385 #define DTRACE_HASHSTR(hash, probe)     \
386         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
387
388 #define DTRACE_HASHNEXT(hash, probe)    \
389         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
390
391 #define DTRACE_HASHPREV(hash, probe)    \
392         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
393
394 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
395         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
396             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
397
398 #define DTRACE_AGGHASHSIZE_SLEW         17
399
400 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
401
402 /*
403  * The key for a thread-local variable consists of the lower 61 bits of the
404  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
405  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
406  * equal to a variable identifier.  This is necessary (but not sufficient) to
407  * assure that global associative arrays never collide with thread-local
408  * variables.  To guarantee that they cannot collide, we must also define the
409  * order for keying dynamic variables.  That order is:
410  *
411  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
412  *
413  * Because the variable-key and the tls-key are in orthogonal spaces, there is
414  * no way for a global variable key signature to match a thread-local key
415  * signature.
416  */
417 #if defined(sun)
418 #define DTRACE_TLS_THRKEY(where) { \
419         uint_t intr = 0; \
420         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
421         for (; actv; actv >>= 1) \
422                 intr++; \
423         ASSERT(intr < (1 << 3)); \
424         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
425             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
426 }
427 #else
428 #define DTRACE_TLS_THRKEY(where) { \
429         solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
430         uint_t intr = 0; \
431         uint_t actv = _c->cpu_intr_actv; \
432         for (; actv; actv >>= 1) \
433                 intr++; \
434         ASSERT(intr < (1 << 3)); \
435         (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
436             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
437 }
438 #endif
439
440 #define DT_BSWAP_8(x)   ((x) & 0xff)
441 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
442 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
443 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
444
445 #define DT_MASK_LO 0x00000000FFFFFFFFULL
446
447 #define DTRACE_STORE(type, tomax, offset, what) \
448         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
449
450 #ifndef __x86
451 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
452         if (addr & (size - 1)) {                                        \
453                 *flags |= CPU_DTRACE_BADALIGN;                          \
454                 cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
455                 return (0);                                             \
456         }
457 #else
458 #define DTRACE_ALIGNCHECK(addr, size, flags)
459 #endif
460
461 /*
462  * Test whether a range of memory starting at testaddr of size testsz falls
463  * within the range of memory described by addr, sz.  We take care to avoid
464  * problems with overflow and underflow of the unsigned quantities, and
465  * disallow all negative sizes.  Ranges of size 0 are allowed.
466  */
467 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
468         ((testaddr) - (baseaddr) < (basesz) && \
469         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
470         (testaddr) + (testsz) >= (testaddr))
471
472 /*
473  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
474  * alloc_sz on the righthand side of the comparison in order to avoid overflow
475  * or underflow in the comparison with it.  This is simpler than the INRANGE
476  * check above, because we know that the dtms_scratch_ptr is valid in the
477  * range.  Allocations of size zero are allowed.
478  */
479 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
480         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
481         (mstate)->dtms_scratch_ptr >= (alloc_sz))
482
483 #define DTRACE_LOADFUNC(bits)                                           \
484 /*CSTYLED*/                                                             \
485 uint##bits##_t                                                          \
486 dtrace_load##bits(uintptr_t addr)                                       \
487 {                                                                       \
488         size_t size = bits / NBBY;                                      \
489         /*CSTYLED*/                                                     \
490         uint##bits##_t rval;                                            \
491         int i;                                                          \
492         volatile uint16_t *flags = (volatile uint16_t *)                \
493             &cpu_core[curcpu].cpuc_dtrace_flags;                        \
494                                                                         \
495         DTRACE_ALIGNCHECK(addr, size, flags);                           \
496                                                                         \
497         for (i = 0; i < dtrace_toxranges; i++) {                        \
498                 if (addr >= dtrace_toxrange[i].dtt_limit)               \
499                         continue;                                       \
500                                                                         \
501                 if (addr + size <= dtrace_toxrange[i].dtt_base)         \
502                         continue;                                       \
503                                                                         \
504                 /*                                                      \
505                  * This address falls within a toxic region; return 0.  \
506                  */                                                     \
507                 *flags |= CPU_DTRACE_BADADDR;                           \
508                 cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
509                 return (0);                                             \
510         }                                                               \
511                                                                         \
512         *flags |= CPU_DTRACE_NOFAULT;                                   \
513         /*CSTYLED*/                                                     \
514         rval = *((volatile uint##bits##_t *)addr);                      \
515         *flags &= ~CPU_DTRACE_NOFAULT;                                  \
516                                                                         \
517         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
518 }
519
520 #ifdef _LP64
521 #define dtrace_loadptr  dtrace_load64
522 #else
523 #define dtrace_loadptr  dtrace_load32
524 #endif
525
526 #define DTRACE_DYNHASH_FREE     0
527 #define DTRACE_DYNHASH_SINK     1
528 #define DTRACE_DYNHASH_VALID    2
529
530 #define DTRACE_MATCH_NEXT       0
531 #define DTRACE_MATCH_DONE       1
532 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
533 #define DTRACE_STATE_ALIGN      64
534
535 #define DTRACE_FLAGS2FLT(flags)                                         \
536         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
537         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
538         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
539         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
540         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
541         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
542         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
543         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
544         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
545         DTRACEFLT_UNKNOWN)
546
547 #define DTRACEACT_ISSTRING(act)                                         \
548         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
549         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
550
551 /* Function prototype definitions: */
552 static size_t dtrace_strlen(const char *, size_t);
553 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
554 static void dtrace_enabling_provide(dtrace_provider_t *);
555 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
556 static void dtrace_enabling_matchall(void);
557 static void dtrace_enabling_reap(void);
558 static dtrace_state_t *dtrace_anon_grab(void);
559 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
560     dtrace_state_t *, uint64_t, uint64_t);
561 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
562 static void dtrace_buffer_drop(dtrace_buffer_t *);
563 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
564 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
565     dtrace_state_t *, dtrace_mstate_t *);
566 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
567     dtrace_optval_t);
568 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
569 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
570 uint16_t dtrace_load16(uintptr_t);
571 uint32_t dtrace_load32(uintptr_t);
572 uint64_t dtrace_load64(uintptr_t);
573 uint8_t dtrace_load8(uintptr_t);
574 void dtrace_dynvar_clean(dtrace_dstate_t *);
575 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
576     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
577 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
578
579 /*
580  * DTrace Probe Context Functions
581  *
582  * These functions are called from probe context.  Because probe context is
583  * any context in which C may be called, arbitrarily locks may be held,
584  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
585  * As a result, functions called from probe context may only call other DTrace
586  * support functions -- they may not interact at all with the system at large.
587  * (Note that the ASSERT macro is made probe-context safe by redefining it in
588  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
589  * loads are to be performed from probe context, they _must_ be in terms of
590  * the safe dtrace_load*() variants.
591  *
592  * Some functions in this block are not actually called from probe context;
593  * for these functions, there will be a comment above the function reading
594  * "Note:  not called from probe context."
595  */
596 void
597 dtrace_panic(const char *format, ...)
598 {
599         va_list alist;
600
601         va_start(alist, format);
602         dtrace_vpanic(format, alist);
603         va_end(alist);
604 }
605
606 int
607 dtrace_assfail(const char *a, const char *f, int l)
608 {
609         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
610
611         /*
612          * We just need something here that even the most clever compiler
613          * cannot optimize away.
614          */
615         return (a[(uintptr_t)f]);
616 }
617
618 /*
619  * Atomically increment a specified error counter from probe context.
620  */
621 static void
622 dtrace_error(uint32_t *counter)
623 {
624         /*
625          * Most counters stored to in probe context are per-CPU counters.
626          * However, there are some error conditions that are sufficiently
627          * arcane that they don't merit per-CPU storage.  If these counters
628          * are incremented concurrently on different CPUs, scalability will be
629          * adversely affected -- but we don't expect them to be white-hot in a
630          * correctly constructed enabling...
631          */
632         uint32_t oval, nval;
633
634         do {
635                 oval = *counter;
636
637                 if ((nval = oval + 1) == 0) {
638                         /*
639                          * If the counter would wrap, set it to 1 -- assuring
640                          * that the counter is never zero when we have seen
641                          * errors.  (The counter must be 32-bits because we
642                          * aren't guaranteed a 64-bit compare&swap operation.)
643                          * To save this code both the infamy of being fingered
644                          * by a priggish news story and the indignity of being
645                          * the target of a neo-puritan witch trial, we're
646                          * carefully avoiding any colorful description of the
647                          * likelihood of this condition -- but suffice it to
648                          * say that it is only slightly more likely than the
649                          * overflow of predicate cache IDs, as discussed in
650                          * dtrace_predicate_create().
651                          */
652                         nval = 1;
653                 }
654         } while (dtrace_cas32(counter, oval, nval) != oval);
655 }
656
657 /*
658  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
659  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
660  */
661 DTRACE_LOADFUNC(8)
662 DTRACE_LOADFUNC(16)
663 DTRACE_LOADFUNC(32)
664 DTRACE_LOADFUNC(64)
665
666 static int
667 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
668 {
669         if (dest < mstate->dtms_scratch_base)
670                 return (0);
671
672         if (dest + size < dest)
673                 return (0);
674
675         if (dest + size > mstate->dtms_scratch_ptr)
676                 return (0);
677
678         return (1);
679 }
680
681 static int
682 dtrace_canstore_statvar(uint64_t addr, size_t sz,
683     dtrace_statvar_t **svars, int nsvars)
684 {
685         int i;
686
687         for (i = 0; i < nsvars; i++) {
688                 dtrace_statvar_t *svar = svars[i];
689
690                 if (svar == NULL || svar->dtsv_size == 0)
691                         continue;
692
693                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
694                         return (1);
695         }
696
697         return (0);
698 }
699
700 /*
701  * Check to see if the address is within a memory region to which a store may
702  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
703  * region.  The caller of dtrace_canstore() is responsible for performing any
704  * alignment checks that are needed before stores are actually executed.
705  */
706 static int
707 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
708     dtrace_vstate_t *vstate)
709 {
710         /*
711          * First, check to see if the address is in scratch space...
712          */
713         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
714             mstate->dtms_scratch_size))
715                 return (1);
716
717         /*
718          * Now check to see if it's a dynamic variable.  This check will pick
719          * up both thread-local variables and any global dynamically-allocated
720          * variables.
721          */
722         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
723             vstate->dtvs_dynvars.dtds_size)) {
724                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
725                 uintptr_t base = (uintptr_t)dstate->dtds_base +
726                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
727                 uintptr_t chunkoffs;
728
729                 /*
730                  * Before we assume that we can store here, we need to make
731                  * sure that it isn't in our metadata -- storing to our
732                  * dynamic variable metadata would corrupt our state.  For
733                  * the range to not include any dynamic variable metadata,
734                  * it must:
735                  *
736                  *      (1) Start above the hash table that is at the base of
737                  *      the dynamic variable space
738                  *
739                  *      (2) Have a starting chunk offset that is beyond the
740                  *      dtrace_dynvar_t that is at the base of every chunk
741                  *
742                  *      (3) Not span a chunk boundary
743                  *
744                  */
745                 if (addr < base)
746                         return (0);
747
748                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
749
750                 if (chunkoffs < sizeof (dtrace_dynvar_t))
751                         return (0);
752
753                 if (chunkoffs + sz > dstate->dtds_chunksize)
754                         return (0);
755
756                 return (1);
757         }
758
759         /*
760          * Finally, check the static local and global variables.  These checks
761          * take the longest, so we perform them last.
762          */
763         if (dtrace_canstore_statvar(addr, sz,
764             vstate->dtvs_locals, vstate->dtvs_nlocals))
765                 return (1);
766
767         if (dtrace_canstore_statvar(addr, sz,
768             vstate->dtvs_globals, vstate->dtvs_nglobals))
769                 return (1);
770
771         return (0);
772 }
773
774
775 /*
776  * Convenience routine to check to see if the address is within a memory
777  * region in which a load may be issued given the user's privilege level;
778  * if not, it sets the appropriate error flags and loads 'addr' into the
779  * illegal value slot.
780  *
781  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
782  * appropriate memory access protection.
783  */
784 static int
785 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
786     dtrace_vstate_t *vstate)
787 {
788         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
789
790         /*
791          * If we hold the privilege to read from kernel memory, then
792          * everything is readable.
793          */
794         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
795                 return (1);
796
797         /*
798          * You can obviously read that which you can store.
799          */
800         if (dtrace_canstore(addr, sz, mstate, vstate))
801                 return (1);
802
803         /*
804          * We're allowed to read from our own string table.
805          */
806         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
807             mstate->dtms_difo->dtdo_strlen))
808                 return (1);
809
810         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
811         *illval = addr;
812         return (0);
813 }
814
815 /*
816  * Convenience routine to check to see if a given string is within a memory
817  * region in which a load may be issued given the user's privilege level;
818  * this exists so that we don't need to issue unnecessary dtrace_strlen()
819  * calls in the event that the user has all privileges.
820  */
821 static int
822 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
823     dtrace_vstate_t *vstate)
824 {
825         size_t strsz;
826
827         /*
828          * If we hold the privilege to read from kernel memory, then
829          * everything is readable.
830          */
831         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
832                 return (1);
833
834         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
835         if (dtrace_canload(addr, strsz, mstate, vstate))
836                 return (1);
837
838         return (0);
839 }
840
841 /*
842  * Convenience routine to check to see if a given variable is within a memory
843  * region in which a load may be issued given the user's privilege level.
844  */
845 static int
846 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
847     dtrace_vstate_t *vstate)
848 {
849         size_t sz;
850         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
851
852         /*
853          * If we hold the privilege to read from kernel memory, then
854          * everything is readable.
855          */
856         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
857                 return (1);
858
859         if (type->dtdt_kind == DIF_TYPE_STRING)
860                 sz = dtrace_strlen(src,
861                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
862         else
863                 sz = type->dtdt_size;
864
865         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
866 }
867
868 /*
869  * Compare two strings using safe loads.
870  */
871 static int
872 dtrace_strncmp(char *s1, char *s2, size_t limit)
873 {
874         uint8_t c1, c2;
875         volatile uint16_t *flags;
876
877         if (s1 == s2 || limit == 0)
878                 return (0);
879
880         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
881
882         do {
883                 if (s1 == NULL) {
884                         c1 = '\0';
885                 } else {
886                         c1 = dtrace_load8((uintptr_t)s1++);
887                 }
888
889                 if (s2 == NULL) {
890                         c2 = '\0';
891                 } else {
892                         c2 = dtrace_load8((uintptr_t)s2++);
893                 }
894
895                 if (c1 != c2)
896                         return (c1 - c2);
897         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
898
899         return (0);
900 }
901
902 /*
903  * Compute strlen(s) for a string using safe memory accesses.  The additional
904  * len parameter is used to specify a maximum length to ensure completion.
905  */
906 static size_t
907 dtrace_strlen(const char *s, size_t lim)
908 {
909         uint_t len;
910
911         for (len = 0; len != lim; len++) {
912                 if (dtrace_load8((uintptr_t)s++) == '\0')
913                         break;
914         }
915
916         return (len);
917 }
918
919 /*
920  * Check if an address falls within a toxic region.
921  */
922 static int
923 dtrace_istoxic(uintptr_t kaddr, size_t size)
924 {
925         uintptr_t taddr, tsize;
926         int i;
927
928         for (i = 0; i < dtrace_toxranges; i++) {
929                 taddr = dtrace_toxrange[i].dtt_base;
930                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
931
932                 if (kaddr - taddr < tsize) {
933                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934                         cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
935                         return (1);
936                 }
937
938                 if (taddr - kaddr < size) {
939                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
940                         cpu_core[curcpu].cpuc_dtrace_illval = taddr;
941                         return (1);
942                 }
943         }
944
945         return (0);
946 }
947
948 /*
949  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
950  * memory specified by the DIF program.  The dst is assumed to be safe memory
951  * that we can store to directly because it is managed by DTrace.  As with
952  * standard bcopy, overlapping copies are handled properly.
953  */
954 static void
955 dtrace_bcopy(const void *src, void *dst, size_t len)
956 {
957         if (len != 0) {
958                 uint8_t *s1 = dst;
959                 const uint8_t *s2 = src;
960
961                 if (s1 <= s2) {
962                         do {
963                                 *s1++ = dtrace_load8((uintptr_t)s2++);
964                         } while (--len != 0);
965                 } else {
966                         s2 += len;
967                         s1 += len;
968
969                         do {
970                                 *--s1 = dtrace_load8((uintptr_t)--s2);
971                         } while (--len != 0);
972                 }
973         }
974 }
975
976 /*
977  * Copy src to dst using safe memory accesses, up to either the specified
978  * length, or the point that a nul byte is encountered.  The src is assumed to
979  * be unsafe memory specified by the DIF program.  The dst is assumed to be
980  * safe memory that we can store to directly because it is managed by DTrace.
981  * Unlike dtrace_bcopy(), overlapping regions are not handled.
982  */
983 static void
984 dtrace_strcpy(const void *src, void *dst, size_t len)
985 {
986         if (len != 0) {
987                 uint8_t *s1 = dst, c;
988                 const uint8_t *s2 = src;
989
990                 do {
991                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
992                 } while (--len != 0 && c != '\0');
993         }
994 }
995
996 /*
997  * Copy src to dst, deriving the size and type from the specified (BYREF)
998  * variable type.  The src is assumed to be unsafe memory specified by the DIF
999  * program.  The dst is assumed to be DTrace variable memory that is of the
1000  * specified type; we assume that we can store to directly.
1001  */
1002 static void
1003 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1004 {
1005         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1006
1007         if (type->dtdt_kind == DIF_TYPE_STRING) {
1008                 dtrace_strcpy(src, dst, type->dtdt_size);
1009         } else {
1010                 dtrace_bcopy(src, dst, type->dtdt_size);
1011         }
1012 }
1013
1014 /*
1015  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1016  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1017  * safe memory that we can access directly because it is managed by DTrace.
1018  */
1019 static int
1020 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1021 {
1022         volatile uint16_t *flags;
1023
1024         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1025
1026         if (s1 == s2)
1027                 return (0);
1028
1029         if (s1 == NULL || s2 == NULL)
1030                 return (1);
1031
1032         if (s1 != s2 && len != 0) {
1033                 const uint8_t *ps1 = s1;
1034                 const uint8_t *ps2 = s2;
1035
1036                 do {
1037                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1038                                 return (1);
1039                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1040         }
1041         return (0);
1042 }
1043
1044 /*
1045  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1046  * is for safe DTrace-managed memory only.
1047  */
1048 static void
1049 dtrace_bzero(void *dst, size_t len)
1050 {
1051         uchar_t *cp;
1052
1053         for (cp = dst; len != 0; len--)
1054                 *cp++ = 0;
1055 }
1056
1057 static void
1058 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1059 {
1060         uint64_t result[2];
1061
1062         result[0] = addend1[0] + addend2[0];
1063         result[1] = addend1[1] + addend2[1] +
1064             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1065
1066         sum[0] = result[0];
1067         sum[1] = result[1];
1068 }
1069
1070 /*
1071  * Shift the 128-bit value in a by b. If b is positive, shift left.
1072  * If b is negative, shift right.
1073  */
1074 static void
1075 dtrace_shift_128(uint64_t *a, int b)
1076 {
1077         uint64_t mask;
1078
1079         if (b == 0)
1080                 return;
1081
1082         if (b < 0) {
1083                 b = -b;
1084                 if (b >= 64) {
1085                         a[0] = a[1] >> (b - 64);
1086                         a[1] = 0;
1087                 } else {
1088                         a[0] >>= b;
1089                         mask = 1LL << (64 - b);
1090                         mask -= 1;
1091                         a[0] |= ((a[1] & mask) << (64 - b));
1092                         a[1] >>= b;
1093                 }
1094         } else {
1095                 if (b >= 64) {
1096                         a[1] = a[0] << (b - 64);
1097                         a[0] = 0;
1098                 } else {
1099                         a[1] <<= b;
1100                         mask = a[0] >> (64 - b);
1101                         a[1] |= mask;
1102                         a[0] <<= b;
1103                 }
1104         }
1105 }
1106
1107 /*
1108  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1109  * use native multiplication on those, and then re-combine into the
1110  * resulting 128-bit value.
1111  *
1112  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1113  *     hi1 * hi2 << 64 +
1114  *     hi1 * lo2 << 32 +
1115  *     hi2 * lo1 << 32 +
1116  *     lo1 * lo2
1117  */
1118 static void
1119 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1120 {
1121         uint64_t hi1, hi2, lo1, lo2;
1122         uint64_t tmp[2];
1123
1124         hi1 = factor1 >> 32;
1125         hi2 = factor2 >> 32;
1126
1127         lo1 = factor1 & DT_MASK_LO;
1128         lo2 = factor2 & DT_MASK_LO;
1129
1130         product[0] = lo1 * lo2;
1131         product[1] = hi1 * hi2;
1132
1133         tmp[0] = hi1 * lo2;
1134         tmp[1] = 0;
1135         dtrace_shift_128(tmp, 32);
1136         dtrace_add_128(product, tmp, product);
1137
1138         tmp[0] = hi2 * lo1;
1139         tmp[1] = 0;
1140         dtrace_shift_128(tmp, 32);
1141         dtrace_add_128(product, tmp, product);
1142 }
1143
1144 /*
1145  * This privilege check should be used by actions and subroutines to
1146  * verify that the user credentials of the process that enabled the
1147  * invoking ECB match the target credentials
1148  */
1149 static int
1150 dtrace_priv_proc_common_user(dtrace_state_t *state)
1151 {
1152         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1153
1154         /*
1155          * We should always have a non-NULL state cred here, since if cred
1156          * is null (anonymous tracing), we fast-path bypass this routine.
1157          */
1158         ASSERT(s_cr != NULL);
1159
1160         if ((cr = CRED()) != NULL &&
1161             s_cr->cr_uid == cr->cr_uid &&
1162             s_cr->cr_uid == cr->cr_ruid &&
1163             s_cr->cr_uid == cr->cr_suid &&
1164             s_cr->cr_gid == cr->cr_gid &&
1165             s_cr->cr_gid == cr->cr_rgid &&
1166             s_cr->cr_gid == cr->cr_sgid)
1167                 return (1);
1168
1169         return (0);
1170 }
1171
1172 /*
1173  * This privilege check should be used by actions and subroutines to
1174  * verify that the zone of the process that enabled the invoking ECB
1175  * matches the target credentials
1176  */
1177 static int
1178 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1179 {
1180 #if defined(sun)
1181         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1182
1183         /*
1184          * We should always have a non-NULL state cred here, since if cred
1185          * is null (anonymous tracing), we fast-path bypass this routine.
1186          */
1187         ASSERT(s_cr != NULL);
1188
1189         if ((cr = CRED()) != NULL &&
1190             s_cr->cr_zone == cr->cr_zone)
1191                 return (1);
1192
1193         return (0);
1194 #else
1195         return (1);
1196 #endif
1197 }
1198
1199 /*
1200  * This privilege check should be used by actions and subroutines to
1201  * verify that the process has not setuid or changed credentials.
1202  */
1203 static int
1204 dtrace_priv_proc_common_nocd(void)
1205 {
1206         proc_t *proc;
1207
1208         if ((proc = ttoproc(curthread)) != NULL &&
1209             !(proc->p_flag & SNOCD))
1210                 return (1);
1211
1212         return (0);
1213 }
1214
1215 static int
1216 dtrace_priv_proc_destructive(dtrace_state_t *state)
1217 {
1218         int action = state->dts_cred.dcr_action;
1219
1220         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1221             dtrace_priv_proc_common_zone(state) == 0)
1222                 goto bad;
1223
1224         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1225             dtrace_priv_proc_common_user(state) == 0)
1226                 goto bad;
1227
1228         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1229             dtrace_priv_proc_common_nocd() == 0)
1230                 goto bad;
1231
1232         return (1);
1233
1234 bad:
1235         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1236
1237         return (0);
1238 }
1239
1240 static int
1241 dtrace_priv_proc_control(dtrace_state_t *state)
1242 {
1243         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1244                 return (1);
1245
1246         if (dtrace_priv_proc_common_zone(state) &&
1247             dtrace_priv_proc_common_user(state) &&
1248             dtrace_priv_proc_common_nocd())
1249                 return (1);
1250
1251         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1252
1253         return (0);
1254 }
1255
1256 static int
1257 dtrace_priv_proc(dtrace_state_t *state)
1258 {
1259         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1260                 return (1);
1261
1262         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1263
1264         return (0);
1265 }
1266
1267 static int
1268 dtrace_priv_kernel(dtrace_state_t *state)
1269 {
1270         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1271                 return (1);
1272
1273         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1274
1275         return (0);
1276 }
1277
1278 static int
1279 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1280 {
1281         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1282                 return (1);
1283
1284         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1285
1286         return (0);
1287 }
1288
1289 /*
1290  * Note:  not called from probe context.  This function is called
1291  * asynchronously (and at a regular interval) from outside of probe context to
1292  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1293  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1294  */
1295 void
1296 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1297 {
1298         dtrace_dynvar_t *dirty;
1299         dtrace_dstate_percpu_t *dcpu;
1300         int i, work = 0;
1301
1302         for (i = 0; i < NCPU; i++) {
1303                 dcpu = &dstate->dtds_percpu[i];
1304
1305                 ASSERT(dcpu->dtdsc_rinsing == NULL);
1306
1307                 /*
1308                  * If the dirty list is NULL, there is no dirty work to do.
1309                  */
1310                 if (dcpu->dtdsc_dirty == NULL)
1311                         continue;
1312
1313                 /*
1314                  * If the clean list is non-NULL, then we're not going to do
1315                  * any work for this CPU -- it means that there has not been
1316                  * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1317                  * since the last time we cleaned house.
1318                  */
1319                 if (dcpu->dtdsc_clean != NULL)
1320                         continue;
1321
1322                 work = 1;
1323
1324                 /*
1325                  * Atomically move the dirty list aside.
1326                  */
1327                 do {
1328                         dirty = dcpu->dtdsc_dirty;
1329
1330                         /*
1331                          * Before we zap the dirty list, set the rinsing list.
1332                          * (This allows for a potential assertion in
1333                          * dtrace_dynvar():  if a free dynamic variable appears
1334                          * on a hash chain, either the dirty list or the
1335                          * rinsing list for some CPU must be non-NULL.)
1336                          */
1337                         dcpu->dtdsc_rinsing = dirty;
1338                         dtrace_membar_producer();
1339                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1340                     dirty, NULL) != dirty);
1341         }
1342
1343         if (!work) {
1344                 /*
1345                  * We have no work to do; we can simply return.
1346                  */
1347                 return;
1348         }
1349
1350         dtrace_sync();
1351
1352         for (i = 0; i < NCPU; i++) {
1353                 dcpu = &dstate->dtds_percpu[i];
1354
1355                 if (dcpu->dtdsc_rinsing == NULL)
1356                         continue;
1357
1358                 /*
1359                  * We are now guaranteed that no hash chain contains a pointer
1360                  * into this dirty list; we can make it clean.
1361                  */
1362                 ASSERT(dcpu->dtdsc_clean == NULL);
1363                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1364                 dcpu->dtdsc_rinsing = NULL;
1365         }
1366
1367         /*
1368          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1369          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1370          * This prevents a race whereby a CPU incorrectly decides that
1371          * the state should be something other than DTRACE_DSTATE_CLEAN
1372          * after dtrace_dynvar_clean() has completed.
1373          */
1374         dtrace_sync();
1375
1376         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1377 }
1378
1379 /*
1380  * Depending on the value of the op parameter, this function looks-up,
1381  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1382  * allocation is requested, this function will return a pointer to a
1383  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1384  * variable can be allocated.  If NULL is returned, the appropriate counter
1385  * will be incremented.
1386  */
1387 dtrace_dynvar_t *
1388 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1389     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1390     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1391 {
1392         uint64_t hashval = DTRACE_DYNHASH_VALID;
1393         dtrace_dynhash_t *hash = dstate->dtds_hash;
1394         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1395         processorid_t me = curcpu, cpu = me;
1396         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1397         size_t bucket, ksize;
1398         size_t chunksize = dstate->dtds_chunksize;
1399         uintptr_t kdata, lock, nstate;
1400         uint_t i;
1401
1402         ASSERT(nkeys != 0);
1403
1404         /*
1405          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1406          * algorithm.  For the by-value portions, we perform the algorithm in
1407          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1408          * bit, and seems to have only a minute effect on distribution.  For
1409          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1410          * over each referenced byte.  It's painful to do this, but it's much
1411          * better than pathological hash distribution.  The efficacy of the
1412          * hashing algorithm (and a comparison with other algorithms) may be
1413          * found by running the ::dtrace_dynstat MDB dcmd.
1414          */
1415         for (i = 0; i < nkeys; i++) {
1416                 if (key[i].dttk_size == 0) {
1417                         uint64_t val = key[i].dttk_value;
1418
1419                         hashval += (val >> 48) & 0xffff;
1420                         hashval += (hashval << 10);
1421                         hashval ^= (hashval >> 6);
1422
1423                         hashval += (val >> 32) & 0xffff;
1424                         hashval += (hashval << 10);
1425                         hashval ^= (hashval >> 6);
1426
1427                         hashval += (val >> 16) & 0xffff;
1428                         hashval += (hashval << 10);
1429                         hashval ^= (hashval >> 6);
1430
1431                         hashval += val & 0xffff;
1432                         hashval += (hashval << 10);
1433                         hashval ^= (hashval >> 6);
1434                 } else {
1435                         /*
1436                          * This is incredibly painful, but it beats the hell
1437                          * out of the alternative.
1438                          */
1439                         uint64_t j, size = key[i].dttk_size;
1440                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1441
1442                         if (!dtrace_canload(base, size, mstate, vstate))
1443                                 break;
1444
1445                         for (j = 0; j < size; j++) {
1446                                 hashval += dtrace_load8(base + j);
1447                                 hashval += (hashval << 10);
1448                                 hashval ^= (hashval >> 6);
1449                         }
1450                 }
1451         }
1452
1453         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1454                 return (NULL);
1455
1456         hashval += (hashval << 3);
1457         hashval ^= (hashval >> 11);
1458         hashval += (hashval << 15);
1459
1460         /*
1461          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1462          * comes out to be one of our two sentinel hash values.  If this
1463          * actually happens, we set the hashval to be a value known to be a
1464          * non-sentinel value.
1465          */
1466         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1467                 hashval = DTRACE_DYNHASH_VALID;
1468
1469         /*
1470          * Yes, it's painful to do a divide here.  If the cycle count becomes
1471          * important here, tricks can be pulled to reduce it.  (However, it's
1472          * critical that hash collisions be kept to an absolute minimum;
1473          * they're much more painful than a divide.)  It's better to have a
1474          * solution that generates few collisions and still keeps things
1475          * relatively simple.
1476          */
1477         bucket = hashval % dstate->dtds_hashsize;
1478
1479         if (op == DTRACE_DYNVAR_DEALLOC) {
1480                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1481
1482                 for (;;) {
1483                         while ((lock = *lockp) & 1)
1484                                 continue;
1485
1486                         if (dtrace_casptr((volatile void *)lockp,
1487                             (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1488                                 break;
1489                 }
1490
1491                 dtrace_membar_producer();
1492         }
1493
1494 top:
1495         prev = NULL;
1496         lock = hash[bucket].dtdh_lock;
1497
1498         dtrace_membar_consumer();
1499
1500         start = hash[bucket].dtdh_chain;
1501         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1502             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1503             op != DTRACE_DYNVAR_DEALLOC));
1504
1505         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1506                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1507                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1508
1509                 if (dvar->dtdv_hashval != hashval) {
1510                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1511                                 /*
1512                                  * We've reached the sink, and therefore the
1513                                  * end of the hash chain; we can kick out of
1514                                  * the loop knowing that we have seen a valid
1515                                  * snapshot of state.
1516                                  */
1517                                 ASSERT(dvar->dtdv_next == NULL);
1518                                 ASSERT(dvar == &dtrace_dynhash_sink);
1519                                 break;
1520                         }
1521
1522                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1523                                 /*
1524                                  * We've gone off the rails:  somewhere along
1525                                  * the line, one of the members of this hash
1526                                  * chain was deleted.  Note that we could also
1527                                  * detect this by simply letting this loop run
1528                                  * to completion, as we would eventually hit
1529                                  * the end of the dirty list.  However, we
1530                                  * want to avoid running the length of the
1531                                  * dirty list unnecessarily (it might be quite
1532                                  * long), so we catch this as early as
1533                                  * possible by detecting the hash marker.  In
1534                                  * this case, we simply set dvar to NULL and
1535                                  * break; the conditional after the loop will
1536                                  * send us back to top.
1537                                  */
1538                                 dvar = NULL;
1539                                 break;
1540                         }
1541
1542                         goto next;
1543                 }
1544
1545                 if (dtuple->dtt_nkeys != nkeys)
1546                         goto next;
1547
1548                 for (i = 0; i < nkeys; i++, dkey++) {
1549                         if (dkey->dttk_size != key[i].dttk_size)
1550                                 goto next; /* size or type mismatch */
1551
1552                         if (dkey->dttk_size != 0) {
1553                                 if (dtrace_bcmp(
1554                                     (void *)(uintptr_t)key[i].dttk_value,
1555                                     (void *)(uintptr_t)dkey->dttk_value,
1556                                     dkey->dttk_size))
1557                                         goto next;
1558                         } else {
1559                                 if (dkey->dttk_value != key[i].dttk_value)
1560                                         goto next;
1561                         }
1562                 }
1563
1564                 if (op != DTRACE_DYNVAR_DEALLOC)
1565                         return (dvar);
1566
1567                 ASSERT(dvar->dtdv_next == NULL ||
1568                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1569
1570                 if (prev != NULL) {
1571                         ASSERT(hash[bucket].dtdh_chain != dvar);
1572                         ASSERT(start != dvar);
1573                         ASSERT(prev->dtdv_next == dvar);
1574                         prev->dtdv_next = dvar->dtdv_next;
1575                 } else {
1576                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1577                             start, dvar->dtdv_next) != start) {
1578                                 /*
1579                                  * We have failed to atomically swing the
1580                                  * hash table head pointer, presumably because
1581                                  * of a conflicting allocation on another CPU.
1582                                  * We need to reread the hash chain and try
1583                                  * again.
1584                                  */
1585                                 goto top;
1586                         }
1587                 }
1588
1589                 dtrace_membar_producer();
1590
1591                 /*
1592                  * Now set the hash value to indicate that it's free.
1593                  */
1594                 ASSERT(hash[bucket].dtdh_chain != dvar);
1595                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1596
1597                 dtrace_membar_producer();
1598
1599                 /*
1600                  * Set the next pointer to point at the dirty list, and
1601                  * atomically swing the dirty pointer to the newly freed dvar.
1602                  */
1603                 do {
1604                         next = dcpu->dtdsc_dirty;
1605                         dvar->dtdv_next = next;
1606                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1607
1608                 /*
1609                  * Finally, unlock this hash bucket.
1610                  */
1611                 ASSERT(hash[bucket].dtdh_lock == lock);
1612                 ASSERT(lock & 1);
1613                 hash[bucket].dtdh_lock++;
1614
1615                 return (NULL);
1616 next:
1617                 prev = dvar;
1618                 continue;
1619         }
1620
1621         if (dvar == NULL) {
1622                 /*
1623                  * If dvar is NULL, it is because we went off the rails:
1624                  * one of the elements that we traversed in the hash chain
1625                  * was deleted while we were traversing it.  In this case,
1626                  * we assert that we aren't doing a dealloc (deallocs lock
1627                  * the hash bucket to prevent themselves from racing with
1628                  * one another), and retry the hash chain traversal.
1629                  */
1630                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1631                 goto top;
1632         }
1633
1634         if (op != DTRACE_DYNVAR_ALLOC) {
1635                 /*
1636                  * If we are not to allocate a new variable, we want to
1637                  * return NULL now.  Before we return, check that the value
1638                  * of the lock word hasn't changed.  If it has, we may have
1639                  * seen an inconsistent snapshot.
1640                  */
1641                 if (op == DTRACE_DYNVAR_NOALLOC) {
1642                         if (hash[bucket].dtdh_lock != lock)
1643                                 goto top;
1644                 } else {
1645                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1646                         ASSERT(hash[bucket].dtdh_lock == lock);
1647                         ASSERT(lock & 1);
1648                         hash[bucket].dtdh_lock++;
1649                 }
1650
1651                 return (NULL);
1652         }
1653
1654         /*
1655          * We need to allocate a new dynamic variable.  The size we need is the
1656          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1657          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1658          * the size of any referred-to data (dsize).  We then round the final
1659          * size up to the chunksize for allocation.
1660          */
1661         for (ksize = 0, i = 0; i < nkeys; i++)
1662                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1663
1664         /*
1665          * This should be pretty much impossible, but could happen if, say,
1666          * strange DIF specified the tuple.  Ideally, this should be an
1667          * assertion and not an error condition -- but that requires that the
1668          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1669          * bullet-proof.  (That is, it must not be able to be fooled by
1670          * malicious DIF.)  Given the lack of backwards branches in DIF,
1671          * solving this would presumably not amount to solving the Halting
1672          * Problem -- but it still seems awfully hard.
1673          */
1674         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1675             ksize + dsize > chunksize) {
1676                 dcpu->dtdsc_drops++;
1677                 return (NULL);
1678         }
1679
1680         nstate = DTRACE_DSTATE_EMPTY;
1681
1682         do {
1683 retry:
1684                 free = dcpu->dtdsc_free;
1685
1686                 if (free == NULL) {
1687                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1688                         void *rval;
1689
1690                         if (clean == NULL) {
1691                                 /*
1692                                  * We're out of dynamic variable space on
1693                                  * this CPU.  Unless we have tried all CPUs,
1694                                  * we'll try to allocate from a different
1695                                  * CPU.
1696                                  */
1697                                 switch (dstate->dtds_state) {
1698                                 case DTRACE_DSTATE_CLEAN: {
1699                                         void *sp = &dstate->dtds_state;
1700
1701                                         if (++cpu >= NCPU)
1702                                                 cpu = 0;
1703
1704                                         if (dcpu->dtdsc_dirty != NULL &&
1705                                             nstate == DTRACE_DSTATE_EMPTY)
1706                                                 nstate = DTRACE_DSTATE_DIRTY;
1707
1708                                         if (dcpu->dtdsc_rinsing != NULL)
1709                                                 nstate = DTRACE_DSTATE_RINSING;
1710
1711                                         dcpu = &dstate->dtds_percpu[cpu];
1712
1713                                         if (cpu != me)
1714                                                 goto retry;
1715
1716                                         (void) dtrace_cas32(sp,
1717                                             DTRACE_DSTATE_CLEAN, nstate);
1718
1719                                         /*
1720                                          * To increment the correct bean
1721                                          * counter, take another lap.
1722                                          */
1723                                         goto retry;
1724                                 }
1725
1726                                 case DTRACE_DSTATE_DIRTY:
1727                                         dcpu->dtdsc_dirty_drops++;
1728                                         break;
1729
1730                                 case DTRACE_DSTATE_RINSING:
1731                                         dcpu->dtdsc_rinsing_drops++;
1732                                         break;
1733
1734                                 case DTRACE_DSTATE_EMPTY:
1735                                         dcpu->dtdsc_drops++;
1736                                         break;
1737                                 }
1738
1739                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1740                                 return (NULL);
1741                         }
1742
1743                         /*
1744                          * The clean list appears to be non-empty.  We want to
1745                          * move the clean list to the free list; we start by
1746                          * moving the clean pointer aside.
1747                          */
1748                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1749                             clean, NULL) != clean) {
1750                                 /*
1751                                  * We are in one of two situations:
1752                                  *
1753                                  *  (a) The clean list was switched to the
1754                                  *      free list by another CPU.
1755                                  *
1756                                  *  (b) The clean list was added to by the
1757                                  *      cleansing cyclic.
1758                                  *
1759                                  * In either of these situations, we can
1760                                  * just reattempt the free list allocation.
1761                                  */
1762                                 goto retry;
1763                         }
1764
1765                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1766
1767                         /*
1768                          * Now we'll move the clean list to the free list.
1769                          * It's impossible for this to fail:  the only way
1770                          * the free list can be updated is through this
1771                          * code path, and only one CPU can own the clean list.
1772                          * Thus, it would only be possible for this to fail if
1773                          * this code were racing with dtrace_dynvar_clean().
1774                          * (That is, if dtrace_dynvar_clean() updated the clean
1775                          * list, and we ended up racing to update the free
1776                          * list.)  This race is prevented by the dtrace_sync()
1777                          * in dtrace_dynvar_clean() -- which flushes the
1778                          * owners of the clean lists out before resetting
1779                          * the clean lists.
1780                          */
1781                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1782                         ASSERT(rval == NULL);
1783                         goto retry;
1784                 }
1785
1786                 dvar = free;
1787                 new_free = dvar->dtdv_next;
1788         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1789
1790         /*
1791          * We have now allocated a new chunk.  We copy the tuple keys into the
1792          * tuple array and copy any referenced key data into the data space
1793          * following the tuple array.  As we do this, we relocate dttk_value
1794          * in the final tuple to point to the key data address in the chunk.
1795          */
1796         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1797         dvar->dtdv_data = (void *)(kdata + ksize);
1798         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1799
1800         for (i = 0; i < nkeys; i++) {
1801                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1802                 size_t kesize = key[i].dttk_size;
1803
1804                 if (kesize != 0) {
1805                         dtrace_bcopy(
1806                             (const void *)(uintptr_t)key[i].dttk_value,
1807                             (void *)kdata, kesize);
1808                         dkey->dttk_value = kdata;
1809                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1810                 } else {
1811                         dkey->dttk_value = key[i].dttk_value;
1812                 }
1813
1814                 dkey->dttk_size = kesize;
1815         }
1816
1817         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1818         dvar->dtdv_hashval = hashval;
1819         dvar->dtdv_next = start;
1820
1821         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1822                 return (dvar);
1823
1824         /*
1825          * The cas has failed.  Either another CPU is adding an element to
1826          * this hash chain, or another CPU is deleting an element from this
1827          * hash chain.  The simplest way to deal with both of these cases
1828          * (though not necessarily the most efficient) is to free our
1829          * allocated block and tail-call ourselves.  Note that the free is
1830          * to the dirty list and _not_ to the free list.  This is to prevent
1831          * races with allocators, above.
1832          */
1833         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1834
1835         dtrace_membar_producer();
1836
1837         do {
1838                 free = dcpu->dtdsc_dirty;
1839                 dvar->dtdv_next = free;
1840         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1841
1842         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1843 }
1844
1845 /*ARGSUSED*/
1846 static void
1847 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1848 {
1849         if ((int64_t)nval < (int64_t)*oval)
1850                 *oval = nval;
1851 }
1852
1853 /*ARGSUSED*/
1854 static void
1855 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1856 {
1857         if ((int64_t)nval > (int64_t)*oval)
1858                 *oval = nval;
1859 }
1860
1861 static void
1862 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1863 {
1864         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1865         int64_t val = (int64_t)nval;
1866
1867         if (val < 0) {
1868                 for (i = 0; i < zero; i++) {
1869                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1870                                 quanta[i] += incr;
1871                                 return;
1872                         }
1873                 }
1874         } else {
1875                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1876                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1877                                 quanta[i - 1] += incr;
1878                                 return;
1879                         }
1880                 }
1881
1882                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1883                 return;
1884         }
1885
1886         ASSERT(0);
1887 }
1888
1889 static void
1890 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1891 {
1892         uint64_t arg = *lquanta++;
1893         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1894         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1895         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1896         int32_t val = (int32_t)nval, level;
1897
1898         ASSERT(step != 0);
1899         ASSERT(levels != 0);
1900
1901         if (val < base) {
1902                 /*
1903                  * This is an underflow.
1904                  */
1905                 lquanta[0] += incr;
1906                 return;
1907         }
1908
1909         level = (val - base) / step;
1910
1911         if (level < levels) {
1912                 lquanta[level + 1] += incr;
1913                 return;
1914         }
1915
1916         /*
1917          * This is an overflow.
1918          */
1919         lquanta[levels + 1] += incr;
1920 }
1921
1922 static int
1923 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1924     uint16_t high, uint16_t nsteps, int64_t value)
1925 {
1926         int64_t this = 1, last, next;
1927         int base = 1, order;
1928
1929         ASSERT(factor <= nsteps);
1930         ASSERT(nsteps % factor == 0);
1931
1932         for (order = 0; order < low; order++)
1933                 this *= factor;
1934
1935         /*
1936          * If our value is less than our factor taken to the power of the
1937          * low order of magnitude, it goes into the zeroth bucket.
1938          */
1939         if (value < (last = this))
1940                 return (0);
1941
1942         for (this *= factor; order <= high; order++) {
1943                 int nbuckets = this > nsteps ? nsteps : this;
1944
1945                 if ((next = this * factor) < this) {
1946                         /*
1947                          * We should not generally get log/linear quantizations
1948                          * with a high magnitude that allows 64-bits to
1949                          * overflow, but we nonetheless protect against this
1950                          * by explicitly checking for overflow, and clamping
1951                          * our value accordingly.
1952                          */
1953                         value = this - 1;
1954                 }
1955
1956                 if (value < this) {
1957                         /*
1958                          * If our value lies within this order of magnitude,
1959                          * determine its position by taking the offset within
1960                          * the order of magnitude, dividing by the bucket
1961                          * width, and adding to our (accumulated) base.
1962                          */
1963                         return (base + (value - last) / (this / nbuckets));
1964                 }
1965
1966                 base += nbuckets - (nbuckets / factor);
1967                 last = this;
1968                 this = next;
1969         }
1970
1971         /*
1972          * Our value is greater than or equal to our factor taken to the
1973          * power of one plus the high magnitude -- return the top bucket.
1974          */
1975         return (base);
1976 }
1977
1978 static void
1979 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1980 {
1981         uint64_t arg = *llquanta++;
1982         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1983         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1984         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1985         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1986
1987         llquanta[dtrace_aggregate_llquantize_bucket(factor,
1988             low, high, nsteps, nval)] += incr;
1989 }
1990
1991 /*ARGSUSED*/
1992 static void
1993 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1994 {
1995         data[0]++;
1996         data[1] += nval;
1997 }
1998
1999 /*ARGSUSED*/
2000 static void
2001 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2002 {
2003         int64_t snval = (int64_t)nval;
2004         uint64_t tmp[2];
2005
2006         data[0]++;
2007         data[1] += nval;
2008
2009         /*
2010          * What we want to say here is:
2011          *
2012          * data[2] += nval * nval;
2013          *
2014          * But given that nval is 64-bit, we could easily overflow, so
2015          * we do this as 128-bit arithmetic.
2016          */
2017         if (snval < 0)
2018                 snval = -snval;
2019
2020         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2021         dtrace_add_128(data + 2, tmp, data + 2);
2022 }
2023
2024 /*ARGSUSED*/
2025 static void
2026 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2027 {
2028         *oval = *oval + 1;
2029 }
2030
2031 /*ARGSUSED*/
2032 static void
2033 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2034 {
2035         *oval += nval;
2036 }
2037
2038 /*
2039  * Aggregate given the tuple in the principal data buffer, and the aggregating
2040  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2041  * buffer is specified as the buf parameter.  This routine does not return
2042  * failure; if there is no space in the aggregation buffer, the data will be
2043  * dropped, and a corresponding counter incremented.
2044  */
2045 static void
2046 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2047     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2048 {
2049         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2050         uint32_t i, ndx, size, fsize;
2051         uint32_t align = sizeof (uint64_t) - 1;
2052         dtrace_aggbuffer_t *agb;
2053         dtrace_aggkey_t *key;
2054         uint32_t hashval = 0, limit, isstr;
2055         caddr_t tomax, data, kdata;
2056         dtrace_actkind_t action;
2057         dtrace_action_t *act;
2058         uintptr_t offs;
2059
2060         if (buf == NULL)
2061                 return;
2062
2063         if (!agg->dtag_hasarg) {
2064                 /*
2065                  * Currently, only quantize() and lquantize() take additional
2066                  * arguments, and they have the same semantics:  an increment
2067                  * value that defaults to 1 when not present.  If additional
2068                  * aggregating actions take arguments, the setting of the
2069                  * default argument value will presumably have to become more
2070                  * sophisticated...
2071                  */
2072                 arg = 1;
2073         }
2074
2075         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2076         size = rec->dtrd_offset - agg->dtag_base;
2077         fsize = size + rec->dtrd_size;
2078
2079         ASSERT(dbuf->dtb_tomax != NULL);
2080         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2081
2082         if ((tomax = buf->dtb_tomax) == NULL) {
2083                 dtrace_buffer_drop(buf);
2084                 return;
2085         }
2086
2087         /*
2088          * The metastructure is always at the bottom of the buffer.
2089          */
2090         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2091             sizeof (dtrace_aggbuffer_t));
2092
2093         if (buf->dtb_offset == 0) {
2094                 /*
2095                  * We just kludge up approximately 1/8th of the size to be
2096                  * buckets.  If this guess ends up being routinely
2097                  * off-the-mark, we may need to dynamically readjust this
2098                  * based on past performance.
2099                  */
2100                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2101
2102                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2103                     (uintptr_t)tomax || hashsize == 0) {
2104                         /*
2105                          * We've been given a ludicrously small buffer;
2106                          * increment our drop count and leave.
2107                          */
2108                         dtrace_buffer_drop(buf);
2109                         return;
2110                 }
2111
2112                 /*
2113                  * And now, a pathetic attempt to try to get a an odd (or
2114                  * perchance, a prime) hash size for better hash distribution.
2115                  */
2116                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2117                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2118
2119                 agb->dtagb_hashsize = hashsize;
2120                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2121                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2122                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2123
2124                 for (i = 0; i < agb->dtagb_hashsize; i++)
2125                         agb->dtagb_hash[i] = NULL;
2126         }
2127
2128         ASSERT(agg->dtag_first != NULL);
2129         ASSERT(agg->dtag_first->dta_intuple);
2130
2131         /*
2132          * Calculate the hash value based on the key.  Note that we _don't_
2133          * include the aggid in the hashing (but we will store it as part of
2134          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2135          * algorithm: a simple, quick algorithm that has no known funnels, and
2136          * gets good distribution in practice.  The efficacy of the hashing
2137          * algorithm (and a comparison with other algorithms) may be found by
2138          * running the ::dtrace_aggstat MDB dcmd.
2139          */
2140         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2141                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2142                 limit = i + act->dta_rec.dtrd_size;
2143                 ASSERT(limit <= size);
2144                 isstr = DTRACEACT_ISSTRING(act);
2145
2146                 for (; i < limit; i++) {
2147                         hashval += data[i];
2148                         hashval += (hashval << 10);
2149                         hashval ^= (hashval >> 6);
2150
2151                         if (isstr && data[i] == '\0')
2152                                 break;
2153                 }
2154         }
2155
2156         hashval += (hashval << 3);
2157         hashval ^= (hashval >> 11);
2158         hashval += (hashval << 15);
2159
2160         /*
2161          * Yes, the divide here is expensive -- but it's generally the least
2162          * of the performance issues given the amount of data that we iterate
2163          * over to compute hash values, compare data, etc.
2164          */
2165         ndx = hashval % agb->dtagb_hashsize;
2166
2167         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2168                 ASSERT((caddr_t)key >= tomax);
2169                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2170
2171                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2172                         continue;
2173
2174                 kdata = key->dtak_data;
2175                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2176
2177                 for (act = agg->dtag_first; act->dta_intuple;
2178                     act = act->dta_next) {
2179                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2180                         limit = i + act->dta_rec.dtrd_size;
2181                         ASSERT(limit <= size);
2182                         isstr = DTRACEACT_ISSTRING(act);
2183
2184                         for (; i < limit; i++) {
2185                                 if (kdata[i] != data[i])
2186                                         goto next;
2187
2188                                 if (isstr && data[i] == '\0')
2189                                         break;
2190                         }
2191                 }
2192
2193                 if (action != key->dtak_action) {
2194                         /*
2195                          * We are aggregating on the same value in the same
2196                          * aggregation with two different aggregating actions.
2197                          * (This should have been picked up in the compiler,
2198                          * so we may be dealing with errant or devious DIF.)
2199                          * This is an error condition; we indicate as much,
2200                          * and return.
2201                          */
2202                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2203                         return;
2204                 }
2205
2206                 /*
2207                  * This is a hit:  we need to apply the aggregator to
2208                  * the value at this key.
2209                  */
2210                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2211                 return;
2212 next:
2213                 continue;
2214         }
2215
2216         /*
2217          * We didn't find it.  We need to allocate some zero-filled space,
2218          * link it into the hash table appropriately, and apply the aggregator
2219          * to the (zero-filled) value.
2220          */
2221         offs = buf->dtb_offset;
2222         while (offs & (align - 1))
2223                 offs += sizeof (uint32_t);
2224
2225         /*
2226          * If we don't have enough room to both allocate a new key _and_
2227          * its associated data, increment the drop count and return.
2228          */
2229         if ((uintptr_t)tomax + offs + fsize >
2230             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2231                 dtrace_buffer_drop(buf);
2232                 return;
2233         }
2234
2235         /*CONSTCOND*/
2236         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2237         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2238         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2239
2240         key->dtak_data = kdata = tomax + offs;
2241         buf->dtb_offset = offs + fsize;
2242
2243         /*
2244          * Now copy the data across.
2245          */
2246         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2247
2248         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2249                 kdata[i] = data[i];
2250
2251         /*
2252          * Because strings are not zeroed out by default, we need to iterate
2253          * looking for actions that store strings, and we need to explicitly
2254          * pad these strings out with zeroes.
2255          */
2256         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2257                 int nul;
2258
2259                 if (!DTRACEACT_ISSTRING(act))
2260                         continue;
2261
2262                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2263                 limit = i + act->dta_rec.dtrd_size;
2264                 ASSERT(limit <= size);
2265
2266                 for (nul = 0; i < limit; i++) {
2267                         if (nul) {
2268                                 kdata[i] = '\0';
2269                                 continue;
2270                         }
2271
2272                         if (data[i] != '\0')
2273                                 continue;
2274
2275                         nul = 1;
2276                 }
2277         }
2278
2279         for (i = size; i < fsize; i++)
2280                 kdata[i] = 0;
2281
2282         key->dtak_hashval = hashval;
2283         key->dtak_size = size;
2284         key->dtak_action = action;
2285         key->dtak_next = agb->dtagb_hash[ndx];
2286         agb->dtagb_hash[ndx] = key;
2287
2288         /*
2289          * Finally, apply the aggregator.
2290          */
2291         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2292         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2293 }
2294
2295 /*
2296  * Given consumer state, this routine finds a speculation in the INACTIVE
2297  * state and transitions it into the ACTIVE state.  If there is no speculation
2298  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2299  * incremented -- it is up to the caller to take appropriate action.
2300  */
2301 static int
2302 dtrace_speculation(dtrace_state_t *state)
2303 {
2304         int i = 0;
2305         dtrace_speculation_state_t current;
2306         uint32_t *stat = &state->dts_speculations_unavail, count;
2307
2308         while (i < state->dts_nspeculations) {
2309                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2310
2311                 current = spec->dtsp_state;
2312
2313                 if (current != DTRACESPEC_INACTIVE) {
2314                         if (current == DTRACESPEC_COMMITTINGMANY ||
2315                             current == DTRACESPEC_COMMITTING ||
2316                             current == DTRACESPEC_DISCARDING)
2317                                 stat = &state->dts_speculations_busy;
2318                         i++;
2319                         continue;
2320                 }
2321
2322                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2323                     current, DTRACESPEC_ACTIVE) == current)
2324                         return (i + 1);
2325         }
2326
2327         /*
2328          * We couldn't find a speculation.  If we found as much as a single
2329          * busy speculation buffer, we'll attribute this failure as "busy"
2330          * instead of "unavail".
2331          */
2332         do {
2333                 count = *stat;
2334         } while (dtrace_cas32(stat, count, count + 1) != count);
2335
2336         return (0);
2337 }
2338
2339 /*
2340  * This routine commits an active speculation.  If the specified speculation
2341  * is not in a valid state to perform a commit(), this routine will silently do
2342  * nothing.  The state of the specified speculation is transitioned according
2343  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2344  */
2345 static void
2346 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2347     dtrace_specid_t which)
2348 {
2349         dtrace_speculation_t *spec;
2350         dtrace_buffer_t *src, *dest;
2351         uintptr_t daddr, saddr, dlimit, slimit;
2352         dtrace_speculation_state_t current, new = 0;
2353         intptr_t offs;
2354         uint64_t timestamp;
2355
2356         if (which == 0)
2357                 return;
2358
2359         if (which > state->dts_nspeculations) {
2360                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2361                 return;
2362         }
2363
2364         spec = &state->dts_speculations[which - 1];
2365         src = &spec->dtsp_buffer[cpu];
2366         dest = &state->dts_buffer[cpu];
2367
2368         do {
2369                 current = spec->dtsp_state;
2370
2371                 if (current == DTRACESPEC_COMMITTINGMANY)
2372                         break;
2373
2374                 switch (current) {
2375                 case DTRACESPEC_INACTIVE:
2376                 case DTRACESPEC_DISCARDING:
2377                         return;
2378
2379                 case DTRACESPEC_COMMITTING:
2380                         /*
2381                          * This is only possible if we are (a) commit()'ing
2382                          * without having done a prior speculate() on this CPU
2383                          * and (b) racing with another commit() on a different
2384                          * CPU.  There's nothing to do -- we just assert that
2385                          * our offset is 0.
2386                          */
2387                         ASSERT(src->dtb_offset == 0);
2388                         return;
2389
2390                 case DTRACESPEC_ACTIVE:
2391                         new = DTRACESPEC_COMMITTING;
2392                         break;
2393
2394                 case DTRACESPEC_ACTIVEONE:
2395                         /*
2396                          * This speculation is active on one CPU.  If our
2397                          * buffer offset is non-zero, we know that the one CPU
2398                          * must be us.  Otherwise, we are committing on a
2399                          * different CPU from the speculate(), and we must
2400                          * rely on being asynchronously cleaned.
2401                          */
2402                         if (src->dtb_offset != 0) {
2403                                 new = DTRACESPEC_COMMITTING;
2404                                 break;
2405                         }
2406                         /*FALLTHROUGH*/
2407
2408                 case DTRACESPEC_ACTIVEMANY:
2409                         new = DTRACESPEC_COMMITTINGMANY;
2410                         break;
2411
2412                 default:
2413                         ASSERT(0);
2414                 }
2415         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2416             current, new) != current);
2417
2418         /*
2419          * We have set the state to indicate that we are committing this
2420          * speculation.  Now reserve the necessary space in the destination
2421          * buffer.
2422          */
2423         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2424             sizeof (uint64_t), state, NULL)) < 0) {
2425                 dtrace_buffer_drop(dest);
2426                 goto out;
2427         }
2428
2429         /*
2430          * We have sufficient space to copy the speculative buffer into the
2431          * primary buffer.  First, modify the speculative buffer, filling
2432          * in the timestamp of all entries with the current time.  The data
2433          * must have the commit() time rather than the time it was traced,
2434          * so that all entries in the primary buffer are in timestamp order.
2435          */
2436         timestamp = dtrace_gethrtime();
2437         saddr = (uintptr_t)src->dtb_tomax;
2438         slimit = saddr + src->dtb_offset;
2439         while (saddr < slimit) {
2440                 size_t size;
2441                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2442
2443                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2444                         saddr += sizeof (dtrace_epid_t);
2445                         continue;
2446                 }
2447                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2448                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2449
2450                 ASSERT3U(saddr + size, <=, slimit);
2451                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2452                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2453
2454                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2455
2456                 saddr += size;
2457         }
2458
2459         /*
2460          * Copy the buffer across.  (Note that this is a
2461          * highly subobtimal bcopy(); in the unlikely event that this becomes
2462          * a serious performance issue, a high-performance DTrace-specific
2463          * bcopy() should obviously be invented.)
2464          */
2465         daddr = (uintptr_t)dest->dtb_tomax + offs;
2466         dlimit = daddr + src->dtb_offset;
2467         saddr = (uintptr_t)src->dtb_tomax;
2468
2469         /*
2470          * First, the aligned portion.
2471          */
2472         while (dlimit - daddr >= sizeof (uint64_t)) {
2473                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2474
2475                 daddr += sizeof (uint64_t);
2476                 saddr += sizeof (uint64_t);
2477         }
2478
2479         /*
2480          * Now any left-over bit...
2481          */
2482         while (dlimit - daddr)
2483                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2484
2485         /*
2486          * Finally, commit the reserved space in the destination buffer.
2487          */
2488         dest->dtb_offset = offs + src->dtb_offset;
2489
2490 out:
2491         /*
2492          * If we're lucky enough to be the only active CPU on this speculation
2493          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2494          */
2495         if (current == DTRACESPEC_ACTIVE ||
2496             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2497                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2498                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2499
2500                 ASSERT(rval == DTRACESPEC_COMMITTING);
2501         }
2502
2503         src->dtb_offset = 0;
2504         src->dtb_xamot_drops += src->dtb_drops;
2505         src->dtb_drops = 0;
2506 }
2507
2508 /*
2509  * This routine discards an active speculation.  If the specified speculation
2510  * is not in a valid state to perform a discard(), this routine will silently
2511  * do nothing.  The state of the specified speculation is transitioned
2512  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2513  */
2514 static void
2515 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2516     dtrace_specid_t which)
2517 {
2518         dtrace_speculation_t *spec;
2519         dtrace_speculation_state_t current, new = 0;
2520         dtrace_buffer_t *buf;
2521
2522         if (which == 0)
2523                 return;
2524
2525         if (which > state->dts_nspeculations) {
2526                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2527                 return;
2528         }
2529
2530         spec = &state->dts_speculations[which - 1];
2531         buf = &spec->dtsp_buffer[cpu];
2532
2533         do {
2534                 current = spec->dtsp_state;
2535
2536                 switch (current) {
2537                 case DTRACESPEC_INACTIVE:
2538                 case DTRACESPEC_COMMITTINGMANY:
2539                 case DTRACESPEC_COMMITTING:
2540                 case DTRACESPEC_DISCARDING:
2541                         return;
2542
2543                 case DTRACESPEC_ACTIVE:
2544                 case DTRACESPEC_ACTIVEMANY:
2545                         new = DTRACESPEC_DISCARDING;
2546                         break;
2547
2548                 case DTRACESPEC_ACTIVEONE:
2549                         if (buf->dtb_offset != 0) {
2550                                 new = DTRACESPEC_INACTIVE;
2551                         } else {
2552                                 new = DTRACESPEC_DISCARDING;
2553                         }
2554                         break;
2555
2556                 default:
2557                         ASSERT(0);
2558                 }
2559         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2560             current, new) != current);
2561
2562         buf->dtb_offset = 0;
2563         buf->dtb_drops = 0;
2564 }
2565
2566 /*
2567  * Note:  not called from probe context.  This function is called
2568  * asynchronously from cross call context to clean any speculations that are
2569  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2570  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2571  * speculation.
2572  */
2573 static void
2574 dtrace_speculation_clean_here(dtrace_state_t *state)
2575 {
2576         dtrace_icookie_t cookie;
2577         processorid_t cpu = curcpu;
2578         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2579         dtrace_specid_t i;
2580
2581         cookie = dtrace_interrupt_disable();
2582
2583         if (dest->dtb_tomax == NULL) {
2584                 dtrace_interrupt_enable(cookie);
2585                 return;
2586         }
2587
2588         for (i = 0; i < state->dts_nspeculations; i++) {
2589                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2590                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2591
2592                 if (src->dtb_tomax == NULL)
2593                         continue;
2594
2595                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2596                         src->dtb_offset = 0;
2597                         continue;
2598                 }
2599
2600                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2601                         continue;
2602
2603                 if (src->dtb_offset == 0)
2604                         continue;
2605
2606                 dtrace_speculation_commit(state, cpu, i + 1);
2607         }
2608
2609         dtrace_interrupt_enable(cookie);
2610 }
2611
2612 /*
2613  * Note:  not called from probe context.  This function is called
2614  * asynchronously (and at a regular interval) to clean any speculations that
2615  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2616  * is work to be done, it cross calls all CPUs to perform that work;
2617  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2618  * INACTIVE state until they have been cleaned by all CPUs.
2619  */
2620 static void
2621 dtrace_speculation_clean(dtrace_state_t *state)
2622 {
2623         int work = 0, rv;
2624         dtrace_specid_t i;
2625
2626         for (i = 0; i < state->dts_nspeculations; i++) {
2627                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2628
2629                 ASSERT(!spec->dtsp_cleaning);
2630
2631                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2632                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2633                         continue;
2634
2635                 work++;
2636                 spec->dtsp_cleaning = 1;
2637         }
2638
2639         if (!work)
2640                 return;
2641
2642         dtrace_xcall(DTRACE_CPUALL,
2643             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2644
2645         /*
2646          * We now know that all CPUs have committed or discarded their
2647          * speculation buffers, as appropriate.  We can now set the state
2648          * to inactive.
2649          */
2650         for (i = 0; i < state->dts_nspeculations; i++) {
2651                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2652                 dtrace_speculation_state_t current, new;
2653
2654                 if (!spec->dtsp_cleaning)
2655                         continue;
2656
2657                 current = spec->dtsp_state;
2658                 ASSERT(current == DTRACESPEC_DISCARDING ||
2659                     current == DTRACESPEC_COMMITTINGMANY);
2660
2661                 new = DTRACESPEC_INACTIVE;
2662
2663                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2664                 ASSERT(rv == current);
2665                 spec->dtsp_cleaning = 0;
2666         }
2667 }
2668
2669 /*
2670  * Called as part of a speculate() to get the speculative buffer associated
2671  * with a given speculation.  Returns NULL if the specified speculation is not
2672  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2673  * the active CPU is not the specified CPU -- the speculation will be
2674  * atomically transitioned into the ACTIVEMANY state.
2675  */
2676 static dtrace_buffer_t *
2677 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2678     dtrace_specid_t which)
2679 {
2680         dtrace_speculation_t *spec;
2681         dtrace_speculation_state_t current, new = 0;
2682         dtrace_buffer_t *buf;
2683
2684         if (which == 0)
2685                 return (NULL);
2686
2687         if (which > state->dts_nspeculations) {
2688                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2689                 return (NULL);
2690         }
2691
2692         spec = &state->dts_speculations[which - 1];
2693         buf = &spec->dtsp_buffer[cpuid];
2694
2695         do {
2696                 current = spec->dtsp_state;
2697
2698                 switch (current) {
2699                 case DTRACESPEC_INACTIVE:
2700                 case DTRACESPEC_COMMITTINGMANY:
2701                 case DTRACESPEC_DISCARDING:
2702                         return (NULL);
2703
2704                 case DTRACESPEC_COMMITTING:
2705                         ASSERT(buf->dtb_offset == 0);
2706                         return (NULL);
2707
2708                 case DTRACESPEC_ACTIVEONE:
2709                         /*
2710                          * This speculation is currently active on one CPU.
2711                          * Check the offset in the buffer; if it's non-zero,
2712                          * that CPU must be us (and we leave the state alone).
2713                          * If it's zero, assume that we're starting on a new
2714                          * CPU -- and change the state to indicate that the
2715                          * speculation is active on more than one CPU.
2716                          */
2717                         if (buf->dtb_offset != 0)
2718                                 return (buf);
2719
2720                         new = DTRACESPEC_ACTIVEMANY;
2721                         break;
2722
2723                 case DTRACESPEC_ACTIVEMANY:
2724                         return (buf);
2725
2726                 case DTRACESPEC_ACTIVE:
2727                         new = DTRACESPEC_ACTIVEONE;
2728                         break;
2729
2730                 default:
2731                         ASSERT(0);
2732                 }
2733         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2734             current, new) != current);
2735
2736         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2737         return (buf);
2738 }
2739
2740 /*
2741  * Return a string.  In the event that the user lacks the privilege to access
2742  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2743  * don't fail access checking.
2744  *
2745  * dtrace_dif_variable() uses this routine as a helper for various
2746  * builtin values such as 'execname' and 'probefunc.'
2747  */
2748 uintptr_t
2749 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2750     dtrace_mstate_t *mstate)
2751 {
2752         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2753         uintptr_t ret;
2754         size_t strsz;
2755
2756         /*
2757          * The easy case: this probe is allowed to read all of memory, so
2758          * we can just return this as a vanilla pointer.
2759          */
2760         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2761                 return (addr);
2762
2763         /*
2764          * This is the tougher case: we copy the string in question from
2765          * kernel memory into scratch memory and return it that way: this
2766          * ensures that we won't trip up when access checking tests the
2767          * BYREF return value.
2768          */
2769         strsz = dtrace_strlen((char *)addr, size) + 1;
2770
2771         if (mstate->dtms_scratch_ptr + strsz >
2772             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2773                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2774                 return (0);
2775         }
2776
2777         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2778             strsz);
2779         ret = mstate->dtms_scratch_ptr;
2780         mstate->dtms_scratch_ptr += strsz;
2781         return (ret);
2782 }
2783
2784 /*
2785  * Return a string from a memoy address which is known to have one or
2786  * more concatenated, individually zero terminated, sub-strings.
2787  * In the event that the user lacks the privilege to access
2788  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2789  * don't fail access checking.
2790  *
2791  * dtrace_dif_variable() uses this routine as a helper for various
2792  * builtin values such as 'execargs'.
2793  */
2794 static uintptr_t
2795 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2796     dtrace_mstate_t *mstate)
2797 {
2798         char *p;
2799         size_t i;
2800         uintptr_t ret;
2801
2802         if (mstate->dtms_scratch_ptr + strsz >
2803             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2804                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2805                 return (0);
2806         }
2807
2808         dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2809             strsz);
2810
2811         /* Replace sub-string termination characters with a space. */
2812         for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2813             p++, i++)
2814                 if (*p == '\0')
2815                         *p = ' ';
2816
2817         ret = mstate->dtms_scratch_ptr;
2818         mstate->dtms_scratch_ptr += strsz;
2819         return (ret);
2820 }
2821
2822 /*
2823  * This function implements the DIF emulator's variable lookups.  The emulator
2824  * passes a reserved variable identifier and optional built-in array index.
2825  */
2826 static uint64_t
2827 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2828     uint64_t ndx)
2829 {
2830         /*
2831          * If we're accessing one of the uncached arguments, we'll turn this
2832          * into a reference in the args array.
2833          */
2834         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2835                 ndx = v - DIF_VAR_ARG0;
2836                 v = DIF_VAR_ARGS;
2837         }
2838
2839         switch (v) {
2840         case DIF_VAR_ARGS:
2841                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2842                 if (ndx >= sizeof (mstate->dtms_arg) /
2843                     sizeof (mstate->dtms_arg[0])) {
2844                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2845                         dtrace_provider_t *pv;
2846                         uint64_t val;
2847
2848                         pv = mstate->dtms_probe->dtpr_provider;
2849                         if (pv->dtpv_pops.dtps_getargval != NULL)
2850                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2851                                     mstate->dtms_probe->dtpr_id,
2852                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2853                         else
2854                                 val = dtrace_getarg(ndx, aframes);
2855
2856                         /*
2857                          * This is regrettably required to keep the compiler
2858                          * from tail-optimizing the call to dtrace_getarg().
2859                          * The condition always evaluates to true, but the
2860                          * compiler has no way of figuring that out a priori.
2861                          * (None of this would be necessary if the compiler
2862                          * could be relied upon to _always_ tail-optimize
2863                          * the call to dtrace_getarg() -- but it can't.)
2864                          */
2865                         if (mstate->dtms_probe != NULL)
2866                                 return (val);
2867
2868                         ASSERT(0);
2869                 }
2870
2871                 return (mstate->dtms_arg[ndx]);
2872
2873 #if defined(sun)
2874         case DIF_VAR_UREGS: {
2875                 klwp_t *lwp;
2876
2877                 if (!dtrace_priv_proc(state))
2878                         return (0);
2879
2880                 if ((lwp = curthread->t_lwp) == NULL) {
2881                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2882                         cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2883                         return (0);
2884                 }
2885
2886                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2887                 return (0);
2888         }
2889 #else
2890         case DIF_VAR_UREGS: {
2891                 struct trapframe *tframe;
2892
2893                 if (!dtrace_priv_proc(state))
2894                         return (0);
2895
2896                 if ((tframe = curthread->td_frame) == NULL) {
2897                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2898                         cpu_core[curcpu].cpuc_dtrace_illval = 0;
2899                         return (0);
2900                 }
2901
2902                 return (dtrace_getreg(tframe, ndx));
2903         }
2904 #endif
2905
2906         case DIF_VAR_CURTHREAD:
2907                 if (!dtrace_priv_kernel(state))
2908                         return (0);
2909                 return ((uint64_t)(uintptr_t)curthread);
2910
2911         case DIF_VAR_TIMESTAMP:
2912                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2913                         mstate->dtms_timestamp = dtrace_gethrtime();
2914                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2915                 }
2916                 return (mstate->dtms_timestamp);
2917
2918         case DIF_VAR_VTIMESTAMP:
2919                 ASSERT(dtrace_vtime_references != 0);
2920                 return (curthread->t_dtrace_vtime);
2921
2922         case DIF_VAR_WALLTIMESTAMP:
2923                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2924                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2925                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2926                 }
2927                 return (mstate->dtms_walltimestamp);
2928
2929 #if defined(sun)
2930         case DIF_VAR_IPL:
2931                 if (!dtrace_priv_kernel(state))
2932                         return (0);
2933                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2934                         mstate->dtms_ipl = dtrace_getipl();
2935                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2936                 }
2937                 return (mstate->dtms_ipl);
2938 #endif
2939
2940         case DIF_VAR_EPID:
2941                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2942                 return (mstate->dtms_epid);
2943
2944         case DIF_VAR_ID:
2945                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2946                 return (mstate->dtms_probe->dtpr_id);
2947
2948         case DIF_VAR_STACKDEPTH:
2949                 if (!dtrace_priv_kernel(state))
2950                         return (0);
2951                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2952                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2953
2954                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2955                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2956                 }
2957                 return (mstate->dtms_stackdepth);
2958
2959         case DIF_VAR_USTACKDEPTH:
2960                 if (!dtrace_priv_proc(state))
2961                         return (0);
2962                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2963                         /*
2964                          * See comment in DIF_VAR_PID.
2965                          */
2966                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2967                             CPU_ON_INTR(CPU)) {
2968                                 mstate->dtms_ustackdepth = 0;
2969                         } else {
2970                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2971                                 mstate->dtms_ustackdepth =
2972                                     dtrace_getustackdepth();
2973                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2974                         }
2975                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2976                 }
2977                 return (mstate->dtms_ustackdepth);
2978
2979         case DIF_VAR_CALLER:
2980                 if (!dtrace_priv_kernel(state))
2981                         return (0);
2982                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2983                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2984
2985                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2986                                 /*
2987                                  * If this is an unanchored probe, we are
2988                                  * required to go through the slow path:
2989                                  * dtrace_caller() only guarantees correct
2990                                  * results for anchored probes.
2991                                  */
2992                                 pc_t caller[2] = {0, 0};
2993
2994                                 dtrace_getpcstack(caller, 2, aframes,
2995                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2996                                 mstate->dtms_caller = caller[1];
2997                         } else if ((mstate->dtms_caller =
2998                             dtrace_caller(aframes)) == -1) {
2999                                 /*
3000                                  * We have failed to do this the quick way;
3001                                  * we must resort to the slower approach of
3002                                  * calling dtrace_getpcstack().
3003                                  */
3004                                 pc_t caller = 0;
3005
3006                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3007                                 mstate->dtms_caller = caller;
3008                         }
3009
3010                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3011                 }
3012                 return (mstate->dtms_caller);
3013
3014         case DIF_VAR_UCALLER:
3015                 if (!dtrace_priv_proc(state))
3016                         return (0);
3017
3018                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3019                         uint64_t ustack[3];
3020
3021                         /*
3022                          * dtrace_getupcstack() fills in the first uint64_t
3023                          * with the current PID.  The second uint64_t will
3024                          * be the program counter at user-level.  The third
3025                          * uint64_t will contain the caller, which is what
3026                          * we're after.
3027                          */
3028                         ustack[2] = 0;
3029                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3030                         dtrace_getupcstack(ustack, 3);
3031                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3032                         mstate->dtms_ucaller = ustack[2];
3033                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3034                 }
3035
3036                 return (mstate->dtms_ucaller);
3037
3038         case DIF_VAR_PROBEPROV:
3039                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3040                 return (dtrace_dif_varstr(
3041                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3042                     state, mstate));
3043
3044         case DIF_VAR_PROBEMOD:
3045                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3046                 return (dtrace_dif_varstr(
3047                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3048                     state, mstate));
3049
3050         case DIF_VAR_PROBEFUNC:
3051                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3052                 return (dtrace_dif_varstr(
3053                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3054                     state, mstate));
3055
3056         case DIF_VAR_PROBENAME:
3057                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3058                 return (dtrace_dif_varstr(
3059                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3060                     state, mstate));
3061
3062         case DIF_VAR_PID:
3063                 if (!dtrace_priv_proc(state))
3064                         return (0);
3065
3066 #if defined(sun)
3067                 /*
3068                  * Note that we are assuming that an unanchored probe is
3069                  * always due to a high-level interrupt.  (And we're assuming
3070                  * that there is only a single high level interrupt.)
3071                  */
3072                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3073                         return (pid0.pid_id);
3074
3075                 /*
3076                  * It is always safe to dereference one's own t_procp pointer:
3077                  * it always points to a valid, allocated proc structure.
3078                  * Further, it is always safe to dereference the p_pidp member
3079                  * of one's own proc structure.  (These are truisms becuase
3080                  * threads and processes don't clean up their own state --
3081                  * they leave that task to whomever reaps them.)
3082                  */
3083                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3084 #else
3085                 return ((uint64_t)curproc->p_pid);
3086 #endif
3087
3088         case DIF_VAR_PPID:
3089                 if (!dtrace_priv_proc(state))
3090                         return (0);
3091
3092 #if defined(sun)
3093                 /*
3094                  * See comment in DIF_VAR_PID.
3095                  */
3096                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3097                         return (pid0.pid_id);
3098
3099                 /*
3100                  * It is always safe to dereference one's own t_procp pointer:
3101                  * it always points to a valid, allocated proc structure.
3102                  * (This is true because threads don't clean up their own
3103                  * state -- they leave that task to whomever reaps them.)
3104                  */
3105                 return ((uint64_t)curthread->t_procp->p_ppid);
3106 #else
3107                 return ((uint64_t)curproc->p_pptr->p_pid);
3108 #endif
3109
3110         case DIF_VAR_TID:
3111 #if defined(sun)
3112                 /*
3113                  * See comment in DIF_VAR_PID.
3114                  */
3115                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3116                         return (0);
3117 #endif
3118
3119                 return ((uint64_t)curthread->t_tid);
3120
3121         case DIF_VAR_EXECARGS: {
3122                 struct pargs *p_args = curthread->td_proc->p_args;
3123
3124                 if (p_args == NULL)
3125                         return(0);
3126
3127                 return (dtrace_dif_varstrz(
3128                     (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3129         }
3130
3131         case DIF_VAR_EXECNAME:
3132 #if defined(sun)
3133                 if (!dtrace_priv_proc(state))
3134                         return (0);
3135
3136                 /*
3137                  * See comment in DIF_VAR_PID.
3138                  */
3139                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3140                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3141
3142                 /*
3143                  * It is always safe to dereference one's own t_procp pointer:
3144                  * it always points to a valid, allocated proc structure.
3145                  * (This is true because threads don't clean up their own
3146                  * state -- they leave that task to whomever reaps them.)
3147                  */
3148                 return (dtrace_dif_varstr(
3149                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3150                     state, mstate));
3151 #else
3152                 return (dtrace_dif_varstr(
3153                     (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3154 #endif
3155
3156         case DIF_VAR_ZONENAME:
3157 #if defined(sun)
3158                 if (!dtrace_priv_proc(state))
3159                         return (0);
3160
3161                 /*
3162                  * See comment in DIF_VAR_PID.
3163                  */
3164                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3165                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3166
3167                 /*
3168                  * It is always safe to dereference one's own t_procp pointer:
3169                  * it always points to a valid, allocated proc structure.
3170                  * (This is true because threads don't clean up their own
3171                  * state -- they leave that task to whomever reaps them.)
3172                  */
3173                 return (dtrace_dif_varstr(
3174                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3175                     state, mstate));
3176 #else
3177                 return (0);
3178 #endif
3179
3180         case DIF_VAR_UID:
3181                 if (!dtrace_priv_proc(state))
3182                         return (0);
3183
3184 #if defined(sun)
3185                 /*
3186                  * See comment in DIF_VAR_PID.
3187                  */
3188                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3189                         return ((uint64_t)p0.p_cred->cr_uid);
3190 #endif
3191
3192                 /*
3193                  * It is always safe to dereference one's own t_procp pointer:
3194                  * it always points to a valid, allocated proc structure.
3195                  * (This is true because threads don't clean up their own
3196                  * state -- they leave that task to whomever reaps them.)
3197                  *
3198                  * Additionally, it is safe to dereference one's own process
3199                  * credential, since this is never NULL after process birth.
3200                  */
3201                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3202
3203         case DIF_VAR_GID:
3204                 if (!dtrace_priv_proc(state))
3205                         return (0);
3206
3207 #if defined(sun)
3208                 /*
3209                  * See comment in DIF_VAR_PID.
3210                  */
3211                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3212                         return ((uint64_t)p0.p_cred->cr_gid);
3213 #endif
3214
3215                 /*
3216                  * It is always safe to dereference one's own t_procp pointer:
3217                  * it always points to a valid, allocated proc structure.
3218                  * (This is true because threads don't clean up their own
3219                  * state -- they leave that task to whomever reaps them.)
3220                  *
3221                  * Additionally, it is safe to dereference one's own process
3222                  * credential, since this is never NULL after process birth.
3223                  */
3224                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3225
3226         case DIF_VAR_ERRNO: {
3227 #if defined(sun)
3228                 klwp_t *lwp;
3229                 if (!dtrace_priv_proc(state))
3230                         return (0);
3231
3232                 /*
3233                  * See comment in DIF_VAR_PID.
3234                  */
3235                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3236                         return (0);
3237
3238                 /*
3239                  * It is always safe to dereference one's own t_lwp pointer in
3240                  * the event that this pointer is non-NULL.  (This is true
3241                  * because threads and lwps don't clean up their own state --
3242                  * they leave that task to whomever reaps them.)
3243                  */
3244                 if ((lwp = curthread->t_lwp) == NULL)
3245                         return (0);
3246
3247                 return ((uint64_t)lwp->lwp_errno);
3248 #else
3249                 return (curthread->td_errno);
3250 #endif
3251         }
3252 #if !defined(sun)
3253         case DIF_VAR_CPU: {
3254                 return curcpu;
3255         }
3256 #endif
3257         default:
3258                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3259                 return (0);
3260         }
3261 }
3262
3263 /*
3264  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3265  * Notice that we don't bother validating the proper number of arguments or
3266  * their types in the tuple stack.  This isn't needed because all argument
3267  * interpretation is safe because of our load safety -- the worst that can
3268  * happen is that a bogus program can obtain bogus results.
3269  */
3270 static void
3271 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3272     dtrace_key_t *tupregs, int nargs,
3273     dtrace_mstate_t *mstate, dtrace_state_t *state)
3274 {
3275         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3276         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3277         dtrace_vstate_t *vstate = &state->dts_vstate;
3278
3279 #if defined(sun)
3280         union {
3281                 mutex_impl_t mi;
3282                 uint64_t mx;
3283         } m;
3284
3285         union {
3286                 krwlock_t ri;
3287                 uintptr_t rw;
3288         } r;
3289 #else
3290         struct thread *lowner;
3291         union {
3292                 struct lock_object *li;
3293                 uintptr_t lx;
3294         } l;
3295 #endif
3296
3297         switch (subr) {
3298         case DIF_SUBR_RAND:
3299                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3300                 break;
3301
3302 #if defined(sun)
3303         case DIF_SUBR_MUTEX_OWNED:
3304                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3305                     mstate, vstate)) {
3306                         regs[rd] = 0;
3307                         break;
3308                 }
3309
3310                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3311                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3312                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3313                 else
3314                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3315                 break;
3316
3317         case DIF_SUBR_MUTEX_OWNER:
3318                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3319                     mstate, vstate)) {
3320                         regs[rd] = 0;
3321                         break;
3322                 }
3323
3324                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3325                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3326                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3327                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3328                 else
3329                         regs[rd] = 0;
3330                 break;
3331
3332         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3333                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3334                     mstate, vstate)) {
3335                         regs[rd] = 0;
3336                         break;
3337                 }
3338
3339                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3340                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3341                 break;
3342
3343         case DIF_SUBR_MUTEX_TYPE_SPIN:
3344                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3345                     mstate, vstate)) {
3346                         regs[rd] = 0;
3347                         break;
3348                 }
3349
3350                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3351                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3352                 break;
3353
3354         case DIF_SUBR_RW_READ_HELD: {
3355                 uintptr_t tmp;
3356
3357                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3358                     mstate, vstate)) {
3359                         regs[rd] = 0;
3360                         break;
3361                 }
3362
3363                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3364                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3365                 break;
3366         }
3367
3368         case DIF_SUBR_RW_WRITE_HELD:
3369                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3370                     mstate, vstate)) {
3371                         regs[rd] = 0;
3372                         break;
3373                 }
3374
3375                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3376                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3377                 break;
3378
3379         case DIF_SUBR_RW_ISWRITER:
3380                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3381                     mstate, vstate)) {
3382                         regs[rd] = 0;
3383                         break;
3384                 }
3385
3386                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3387                 regs[rd] = _RW_ISWRITER(&r.ri);
3388                 break;
3389
3390 #else
3391         case DIF_SUBR_MUTEX_OWNED:
3392                 if (!dtrace_canload(tupregs[0].dttk_value,
3393                         sizeof (struct lock_object), mstate, vstate)) {
3394                         regs[rd] = 0;
3395                         break;
3396                 }
3397                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3398                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3399                 break;
3400
3401         case DIF_SUBR_MUTEX_OWNER:
3402                 if (!dtrace_canload(tupregs[0].dttk_value,
3403                         sizeof (struct lock_object), mstate, vstate)) {
3404                         regs[rd] = 0;
3405                         break;
3406                 }
3407                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3408                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3409                 regs[rd] = (uintptr_t)lowner;
3410                 break;
3411
3412         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3413                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3414                     mstate, vstate)) {
3415                         regs[rd] = 0;
3416                         break;
3417                 }
3418                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3419                 /* XXX - should be only LC_SLEEPABLE? */
3420                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3421                     (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3422                 break;
3423
3424         case DIF_SUBR_MUTEX_TYPE_SPIN:
3425                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3426                     mstate, vstate)) {
3427                         regs[rd] = 0;
3428                         break;
3429                 }
3430                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3431                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3432                 break;
3433
3434         case DIF_SUBR_RW_READ_HELD: 
3435         case DIF_SUBR_SX_SHARED_HELD: 
3436                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3437                     mstate, vstate)) {
3438                         regs[rd] = 0;
3439                         break;
3440                 }
3441                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3442                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3443                     lowner == NULL;
3444                 break;
3445
3446         case DIF_SUBR_RW_WRITE_HELD:
3447         case DIF_SUBR_SX_EXCLUSIVE_HELD:
3448                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3449                     mstate, vstate)) {
3450                         regs[rd] = 0;
3451                         break;
3452                 }
3453                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3454                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3455                 regs[rd] = (lowner == curthread);
3456                 break;
3457
3458         case DIF_SUBR_RW_ISWRITER:
3459         case DIF_SUBR_SX_ISEXCLUSIVE:
3460                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3461                     mstate, vstate)) {
3462                         regs[rd] = 0;
3463                         break;
3464                 }
3465                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3466                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3467                     lowner != NULL;
3468                 break;
3469 #endif /* ! defined(sun) */
3470
3471         case DIF_SUBR_BCOPY: {
3472                 /*
3473                  * We need to be sure that the destination is in the scratch
3474                  * region -- no other region is allowed.
3475                  */
3476                 uintptr_t src = tupregs[0].dttk_value;
3477                 uintptr_t dest = tupregs[1].dttk_value;
3478                 size_t size = tupregs[2].dttk_value;
3479
3480                 if (!dtrace_inscratch(dest, size, mstate)) {
3481                         *flags |= CPU_DTRACE_BADADDR;
3482                         *illval = regs[rd];
3483                         break;
3484                 }
3485
3486                 if (!dtrace_canload(src, size, mstate, vstate)) {
3487                         regs[rd] = 0;
3488                         break;
3489                 }
3490
3491                 dtrace_bcopy((void *)src, (void *)dest, size);
3492                 break;
3493         }
3494
3495         case DIF_SUBR_ALLOCA:
3496         case DIF_SUBR_COPYIN: {
3497                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3498                 uint64_t size =
3499                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3500                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3501
3502                 /*
3503                  * This action doesn't require any credential checks since
3504                  * probes will not activate in user contexts to which the
3505                  * enabling user does not have permissions.
3506                  */
3507
3508                 /*
3509                  * Rounding up the user allocation size could have overflowed
3510                  * a large, bogus allocation (like -1ULL) to 0.
3511                  */
3512                 if (scratch_size < size ||
3513                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3514                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3515                         regs[rd] = 0;
3516                         break;
3517                 }
3518
3519                 if (subr == DIF_SUBR_COPYIN) {
3520                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3521                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3522                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3523                 }
3524
3525                 mstate->dtms_scratch_ptr += scratch_size;
3526                 regs[rd] = dest;
3527                 break;
3528         }
3529
3530         case DIF_SUBR_COPYINTO: {
3531                 uint64_t size = tupregs[1].dttk_value;
3532                 uintptr_t dest = tupregs[2].dttk_value;
3533
3534                 /*
3535                  * This action doesn't require any credential checks since
3536                  * probes will not activate in user contexts to which the
3537                  * enabling user does not have permissions.
3538                  */
3539                 if (!dtrace_inscratch(dest, size, mstate)) {
3540                         *flags |= CPU_DTRACE_BADADDR;
3541                         *illval = regs[rd];
3542                         break;
3543                 }
3544
3545                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3546                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3547                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3548                 break;
3549         }
3550
3551         case DIF_SUBR_COPYINSTR: {
3552                 uintptr_t dest = mstate->dtms_scratch_ptr;
3553                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3554
3555                 if (nargs > 1 && tupregs[1].dttk_value < size)
3556                         size = tupregs[1].dttk_value + 1;
3557
3558                 /*
3559                  * This action doesn't require any credential checks since
3560                  * probes will not activate in user contexts to which the
3561                  * enabling user does not have permissions.
3562                  */
3563                 if (!DTRACE_INSCRATCH(mstate, size)) {
3564                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3565                         regs[rd] = 0;
3566                         break;
3567                 }
3568
3569                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3570                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3571                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3572
3573                 ((char *)dest)[size - 1] = '\0';
3574                 mstate->dtms_scratch_ptr += size;
3575                 regs[rd] = dest;
3576                 break;
3577         }
3578
3579 #if defined(sun)
3580         case DIF_SUBR_MSGSIZE:
3581         case DIF_SUBR_MSGDSIZE: {
3582                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3583                 uintptr_t wptr, rptr;
3584                 size_t count = 0;
3585                 int cont = 0;
3586
3587                 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3588
3589                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3590                             vstate)) {
3591                                 regs[rd] = 0;
3592                                 break;
3593                         }
3594
3595                         wptr = dtrace_loadptr(baddr +
3596                             offsetof(mblk_t, b_wptr));
3597
3598                         rptr = dtrace_loadptr(baddr +
3599                             offsetof(mblk_t, b_rptr));
3600
3601                         if (wptr < rptr) {
3602                                 *flags |= CPU_DTRACE_BADADDR;
3603                                 *illval = tupregs[0].dttk_value;
3604                                 break;
3605                         }
3606
3607                         daddr = dtrace_loadptr(baddr +
3608                             offsetof(mblk_t, b_datap));
3609
3610                         baddr = dtrace_loadptr(baddr +
3611                             offsetof(mblk_t, b_cont));
3612
3613                         /*
3614                          * We want to prevent against denial-of-service here,
3615                          * so we're only going to search the list for
3616                          * dtrace_msgdsize_max mblks.
3617                          */
3618                         if (cont++ > dtrace_msgdsize_max) {
3619                                 *flags |= CPU_DTRACE_ILLOP;
3620                                 break;
3621                         }
3622
3623                         if (subr == DIF_SUBR_MSGDSIZE) {
3624                                 if (dtrace_load8(daddr +
3625                                     offsetof(dblk_t, db_type)) != M_DATA)
3626                                         continue;
3627                         }
3628
3629                         count += wptr - rptr;
3630                 }
3631
3632                 if (!(*flags & CPU_DTRACE_FAULT))
3633                         regs[rd] = count;
3634
3635                 break;
3636         }
3637 #endif
3638
3639         case DIF_SUBR_PROGENYOF: {
3640                 pid_t pid = tupregs[0].dttk_value;
3641                 proc_t *p;
3642                 int rval = 0;
3643
3644                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3645
3646                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3647 #if defined(sun)
3648                         if (p->p_pidp->pid_id == pid) {
3649 #else
3650                         if (p->p_pid == pid) {
3651 #endif
3652                                 rval = 1;
3653                                 break;
3654                         }
3655                 }
3656
3657                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3658
3659                 regs[rd] = rval;
3660                 break;
3661         }
3662
3663         case DIF_SUBR_SPECULATION:
3664                 regs[rd] = dtrace_speculation(state);
3665                 break;
3666
3667         case DIF_SUBR_COPYOUT: {
3668                 uintptr_t kaddr = tupregs[0].dttk_value;
3669                 uintptr_t uaddr = tupregs[1].dttk_value;
3670                 uint64_t size = tupregs[2].dttk_value;
3671
3672                 if (!dtrace_destructive_disallow &&
3673                     dtrace_priv_proc_control(state) &&
3674                     !dtrace_istoxic(kaddr, size)) {
3675                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3676                         dtrace_copyout(kaddr, uaddr, size, flags);
3677                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3678                 }
3679                 break;
3680         }
3681
3682         case DIF_SUBR_COPYOUTSTR: {
3683                 uintptr_t kaddr = tupregs[0].dttk_value;
3684                 uintptr_t uaddr = tupregs[1].dttk_value;
3685                 uint64_t size = tupregs[2].dttk_value;
3686
3687                 if (!dtrace_destructive_disallow &&
3688                     dtrace_priv_proc_control(state) &&
3689                     !dtrace_istoxic(kaddr, size)) {
3690                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3691                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3692                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3693                 }
3694                 break;
3695         }
3696
3697         case DIF_SUBR_STRLEN: {
3698                 size_t sz;
3699                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3700                 sz = dtrace_strlen((char *)addr,
3701                     state->dts_options[DTRACEOPT_STRSIZE]);
3702
3703                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3704                         regs[rd] = 0;
3705                         break;
3706                 }
3707
3708                 regs[rd] = sz;
3709
3710                 break;
3711         }
3712
3713         case DIF_SUBR_STRCHR:
3714         case DIF_SUBR_STRRCHR: {
3715                 /*
3716                  * We're going to iterate over the string looking for the
3717                  * specified character.  We will iterate until we have reached
3718                  * the string length or we have found the character.  If this
3719                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3720                  * of the specified character instead of the first.
3721                  */
3722                 uintptr_t saddr = tupregs[0].dttk_value;
3723                 uintptr_t addr = tupregs[0].dttk_value;
3724                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3725                 char c, target = (char)tupregs[1].dttk_value;
3726
3727                 for (regs[rd] = 0; addr < limit; addr++) {
3728                         if ((c = dtrace_load8(addr)) == target) {
3729                                 regs[rd] = addr;
3730
3731                                 if (subr == DIF_SUBR_STRCHR)
3732                                         break;
3733                         }
3734
3735                         if (c == '\0')
3736                                 break;
3737                 }
3738
3739                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3740                         regs[rd] = 0;
3741                         break;
3742                 }
3743
3744                 break;
3745         }
3746
3747         case DIF_SUBR_STRSTR:
3748         case DIF_SUBR_INDEX:
3749         case DIF_SUBR_RINDEX: {
3750                 /*
3751                  * We're going to iterate over the string looking for the
3752                  * specified string.  We will iterate until we have reached
3753                  * the string length or we have found the string.  (Yes, this
3754                  * is done in the most naive way possible -- but considering
3755                  * that the string we're searching for is likely to be
3756                  * relatively short, the complexity of Rabin-Karp or similar
3757                  * hardly seems merited.)
3758                  */
3759                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3760                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3761                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3762                 size_t len = dtrace_strlen(addr, size);
3763                 size_t sublen = dtrace_strlen(substr, size);
3764                 char *limit = addr + len, *orig = addr;
3765                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3766                 int inc = 1;
3767
3768                 regs[rd] = notfound;
3769
3770                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3771                         regs[rd] = 0;
3772                         break;
3773                 }
3774
3775                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3776                     vstate)) {
3777                         regs[rd] = 0;
3778                         break;
3779                 }
3780
3781                 /*
3782                  * strstr() and index()/rindex() have similar semantics if
3783                  * both strings are the empty string: strstr() returns a
3784                  * pointer to the (empty) string, and index() and rindex()
3785                  * both return index 0 (regardless of any position argument).
3786                  */
3787                 if (sublen == 0 && len == 0) {
3788                         if (subr == DIF_SUBR_STRSTR)
3789                                 regs[rd] = (uintptr_t)addr;
3790                         else
3791                                 regs[rd] = 0;
3792                         break;
3793                 }
3794
3795                 if (subr != DIF_SUBR_STRSTR) {
3796                         if (subr == DIF_SUBR_RINDEX) {
3797                                 limit = orig - 1;
3798                                 addr += len;
3799                                 inc = -1;
3800                         }
3801
3802                         /*
3803                          * Both index() and rindex() take an optional position
3804                          * argument that denotes the starting position.
3805                          */
3806                         if (nargs == 3) {
3807                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3808
3809                                 /*
3810                                  * If the position argument to index() is
3811                                  * negative, Perl implicitly clamps it at
3812                                  * zero.  This semantic is a little surprising
3813                                  * given the special meaning of negative
3814                                  * positions to similar Perl functions like
3815                                  * substr(), but it appears to reflect a
3816                                  * notion that index() can start from a
3817                                  * negative index and increment its way up to
3818                                  * the string.  Given this notion, Perl's
3819                                  * rindex() is at least self-consistent in
3820                                  * that it implicitly clamps positions greater
3821                                  * than the string length to be the string
3822                                  * length.  Where Perl completely loses
3823                                  * coherence, however, is when the specified
3824                                  * substring is the empty string ("").  In
3825                                  * this case, even if the position is
3826                                  * negative, rindex() returns 0 -- and even if
3827                                  * the position is greater than the length,
3828                                  * index() returns the string length.  These
3829                                  * semantics violate the notion that index()
3830                                  * should never return a value less than the
3831                                  * specified position and that rindex() should
3832                                  * never return a value greater than the
3833                                  * specified position.  (One assumes that
3834                                  * these semantics are artifacts of Perl's
3835                                  * implementation and not the results of
3836                                  * deliberate design -- it beggars belief that
3837                                  * even Larry Wall could desire such oddness.)
3838                                  * While in the abstract one would wish for
3839                                  * consistent position semantics across
3840                                  * substr(), index() and rindex() -- or at the
3841                                  * very least self-consistent position
3842                                  * semantics for index() and rindex() -- we
3843                                  * instead opt to keep with the extant Perl
3844                                  * semantics, in all their broken glory.  (Do
3845                                  * we have more desire to maintain Perl's
3846                                  * semantics than Perl does?  Probably.)
3847                                  */
3848                                 if (subr == DIF_SUBR_RINDEX) {
3849                                         if (pos < 0) {
3850                                                 if (sublen == 0)
3851                                                         regs[rd] = 0;
3852                                                 break;
3853                                         }
3854
3855                                         if (pos > len)
3856                                                 pos = len;
3857                                 } else {
3858                                         if (pos < 0)
3859                                                 pos = 0;
3860
3861                                         if (pos >= len) {
3862                                                 if (sublen == 0)
3863                                                         regs[rd] = len;
3864                                                 break;
3865                                         }
3866                                 }
3867
3868                                 addr = orig + pos;
3869                         }
3870                 }
3871
3872                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3873                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3874                                 if (subr != DIF_SUBR_STRSTR) {
3875                                         /*
3876                                          * As D index() and rindex() are
3877                                          * modeled on Perl (and not on awk),
3878                                          * we return a zero-based (and not a
3879                                          * one-based) index.  (For you Perl
3880                                          * weenies: no, we're not going to add
3881                                          * $[ -- and shouldn't you be at a con
3882                                          * or something?)
3883                                          */
3884                                         regs[rd] = (uintptr_t)(addr - orig);
3885                                         break;
3886                                 }
3887
3888                                 ASSERT(subr == DIF_SUBR_STRSTR);
3889                                 regs[rd] = (uintptr_t)addr;
3890                                 break;
3891                         }
3892                 }
3893
3894                 break;
3895         }
3896
3897         case DIF_SUBR_STRTOK: {
3898                 uintptr_t addr = tupregs[0].dttk_value;
3899                 uintptr_t tokaddr = tupregs[1].dttk_value;
3900                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3901                 uintptr_t limit, toklimit = tokaddr + size;
3902                 uint8_t c = 0, tokmap[32];       /* 256 / 8 */
3903                 char *dest = (char *)mstate->dtms_scratch_ptr;
3904                 int i;
3905
3906                 /*
3907                  * Check both the token buffer and (later) the input buffer,
3908                  * since both could be non-scratch addresses.
3909                  */
3910                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3911                         regs[rd] = 0;
3912                         break;
3913                 }
3914
3915                 if (!DTRACE_INSCRATCH(mstate, size)) {
3916                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3917                         regs[rd] = 0;
3918                         break;
3919                 }
3920
3921                 if (addr == 0) {
3922                         /*
3923                          * If the address specified is NULL, we use our saved
3924                          * strtok pointer from the mstate.  Note that this
3925                          * means that the saved strtok pointer is _only_
3926                          * valid within multiple enablings of the same probe --
3927                          * it behaves like an implicit clause-local variable.
3928                          */
3929                         addr = mstate->dtms_strtok;
3930                 } else {
3931                         /*
3932                          * If the user-specified address is non-NULL we must
3933                          * access check it.  This is the only time we have
3934                          * a chance to do so, since this address may reside
3935                          * in the string table of this clause-- future calls
3936                          * (when we fetch addr from mstate->dtms_strtok)
3937                          * would fail this access check.
3938                          */
3939                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3940                                 regs[rd] = 0;
3941                                 break;
3942                         }
3943                 }
3944
3945                 /*
3946                  * First, zero the token map, and then process the token
3947                  * string -- setting a bit in the map for every character
3948                  * found in the token string.
3949                  */
3950                 for (i = 0; i < sizeof (tokmap); i++)
3951                         tokmap[i] = 0;
3952
3953                 for (; tokaddr < toklimit; tokaddr++) {
3954                         if ((c = dtrace_load8(tokaddr)) == '\0')
3955                                 break;
3956
3957                         ASSERT((c >> 3) < sizeof (tokmap));
3958                         tokmap[c >> 3] |= (1 << (c & 0x7));
3959                 }
3960
3961                 for (limit = addr + size; addr < limit; addr++) {
3962                         /*
3963                          * We're looking for a character that is _not_ contained
3964                          * in the token string.
3965                          */
3966                         if ((c = dtrace_load8(addr)) == '\0')
3967                                 break;
3968
3969                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3970                                 break;
3971                 }
3972
3973                 if (c == '\0') {
3974                         /*
3975                          * We reached the end of the string without finding
3976                          * any character that was not in the token string.
3977                          * We return NULL in this case, and we set the saved
3978                          * address to NULL as well.
3979                          */
3980                         regs[rd] = 0;
3981                         mstate->dtms_strtok = 0;
3982                         break;
3983                 }
3984
3985                 /*
3986                  * From here on, we're copying into the destination string.
3987                  */
3988                 for (i = 0; addr < limit && i < size - 1; addr++) {
3989                         if ((c = dtrace_load8(addr)) == '\0')
3990                                 break;
3991
3992                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3993                                 break;
3994
3995                         ASSERT(i < size);
3996                         dest[i++] = c;
3997                 }
3998
3999                 ASSERT(i < size);
4000                 dest[i] = '\0';
4001                 regs[rd] = (uintptr_t)dest;
4002                 mstate->dtms_scratch_ptr += size;
4003                 mstate->dtms_strtok = addr;
4004                 break;
4005         }
4006
4007         case DIF_SUBR_SUBSTR: {
4008                 uintptr_t s = tupregs[0].dttk_value;
4009                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4010                 char *d = (char *)mstate->dtms_scratch_ptr;
4011                 int64_t index = (int64_t)tupregs[1].dttk_value;
4012                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4013                 size_t len = dtrace_strlen((char *)s, size);
4014                 int64_t i = 0;
4015
4016                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4017                         regs[rd] = 0;
4018                         break;
4019                 }
4020
4021                 if (!DTRACE_INSCRATCH(mstate, size)) {
4022                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4023                         regs[rd] = 0;
4024                         break;
4025                 }
4026
4027                 if (nargs <= 2)
4028                         remaining = (int64_t)size;
4029
4030                 if (index < 0) {
4031                         index += len;
4032
4033                         if (index < 0 && index + remaining > 0) {
4034                                 remaining += index;
4035                                 index = 0;
4036                         }
4037                 }
4038
4039                 if (index >= len || index < 0) {
4040                         remaining = 0;
4041                 } else if (remaining < 0) {
4042                         remaining += len - index;
4043                 } else if (index + remaining > size) {
4044                         remaining = size - index;
4045                 }
4046
4047                 for (i = 0; i < remaining; i++) {
4048                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4049                                 break;
4050                 }
4051
4052                 d[i] = '\0';
4053
4054                 mstate->dtms_scratch_ptr += size;
4055                 regs[rd] = (uintptr_t)d;
4056                 break;
4057         }
4058
4059         case DIF_SUBR_TOUPPER:
4060         case DIF_SUBR_TOLOWER: {
4061                 uintptr_t s = tupregs[0].dttk_value;
4062                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4063                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4064                 size_t len = dtrace_strlen((char *)s, size);
4065                 char lower, upper, convert;
4066                 int64_t i;
4067
4068                 if (subr == DIF_SUBR_TOUPPER) {
4069                         lower = 'a';
4070                         upper = 'z';
4071                         convert = 'A';
4072                 } else {
4073                         lower = 'A';
4074                         upper = 'Z';
4075                         convert = 'a';
4076                 }
4077
4078                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4079                         regs[rd] = 0;
4080                         break;
4081                 }
4082
4083                 if (!DTRACE_INSCRATCH(mstate, size)) {
4084                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4085                         regs[rd] = 0;
4086                         break;
4087                 }
4088
4089                 for (i = 0; i < size - 1; i++) {
4090                         if ((c = dtrace_load8(s + i)) == '\0')
4091                                 break;
4092
4093                         if (c >= lower && c <= upper)
4094                                 c = convert + (c - lower);
4095
4096                         dest[i] = c;
4097                 }
4098
4099                 ASSERT(i < size);
4100                 dest[i] = '\0';
4101                 regs[rd] = (uintptr_t)dest;
4102                 mstate->dtms_scratch_ptr += size;
4103                 break;
4104         }
4105
4106 #if defined(sun)
4107         case DIF_SUBR_GETMAJOR:
4108 #ifdef _LP64
4109                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4110 #else
4111                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4112 #endif
4113                 break;
4114
4115         case DIF_SUBR_GETMINOR:
4116 #ifdef _LP64
4117                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4118 #else
4119                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4120 #endif
4121                 break;
4122
4123         case DIF_SUBR_DDI_PATHNAME: {
4124                 /*
4125                  * This one is a galactic mess.  We are going to roughly
4126                  * emulate ddi_pathname(), but it's made more complicated
4127                  * by the fact that we (a) want to include the minor name and
4128                  * (b) must proceed iteratively instead of recursively.
4129                  */
4130                 uintptr_t dest = mstate->dtms_scratch_ptr;
4131                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4132                 char *start = (char *)dest, *end = start + size - 1;
4133                 uintptr_t daddr = tupregs[0].dttk_value;
4134                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4135                 char *s;
4136                 int i, len, depth = 0;
4137
4138                 /*
4139                  * Due to all the pointer jumping we do and context we must
4140                  * rely upon, we just mandate that the user must have kernel
4141                  * read privileges to use this routine.
4142                  */
4143                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4144                         *flags |= CPU_DTRACE_KPRIV;
4145                         *illval = daddr;
4146                         regs[rd] = 0;
4147                 }
4148
4149                 if (!DTRACE_INSCRATCH(mstate, size)) {
4150                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4151                         regs[rd] = 0;
4152                         break;
4153                 }
4154
4155                 *end = '\0';
4156
4157                 /*
4158                  * We want to have a name for the minor.  In order to do this,
4159                  * we need to walk the minor list from the devinfo.  We want
4160                  * to be sure that we don't infinitely walk a circular list,
4161                  * so we check for circularity by sending a scout pointer
4162                  * ahead two elements for every element that we iterate over;
4163                  * if the list is circular, these will ultimately point to the
4164                  * same element.  You may recognize this little trick as the
4165                  * answer to a stupid interview question -- one that always
4166                  * seems to be asked by those who had to have it laboriously
4167                  * explained to them, and who can't even concisely describe
4168                  * the conditions under which one would be forced to resort to
4169                  * this technique.  Needless to say, those conditions are
4170                  * found here -- and probably only here.  Is this the only use
4171                  * of this infamous trick in shipping, production code?  If it
4172                  * isn't, it probably should be...
4173                  */
4174                 if (minor != -1) {
4175                         uintptr_t maddr = dtrace_loadptr(daddr +
4176                             offsetof(struct dev_info, devi_minor));
4177
4178                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4179                         uintptr_t name = offsetof(struct ddi_minor_data,
4180                             d_minor) + offsetof(struct ddi_minor, name);
4181                         uintptr_t dev = offsetof(struct ddi_minor_data,
4182                             d_minor) + offsetof(struct ddi_minor, dev);
4183                         uintptr_t scout;
4184
4185                         if (maddr != NULL)
4186                                 scout = dtrace_loadptr(maddr + next);
4187
4188                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4189                                 uint64_t m;
4190 #ifdef _LP64
4191                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4192 #else
4193                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4194 #endif
4195                                 if (m != minor) {
4196                                         maddr = dtrace_loadptr(maddr + next);
4197
4198                                         if (scout == NULL)
4199                                                 continue;
4200
4201                                         scout = dtrace_loadptr(scout + next);
4202
4203                                         if (scout == NULL)
4204                                                 continue;
4205
4206                                         scout = dtrace_loadptr(scout + next);
4207
4208                                         if (scout == NULL)
4209                                                 continue;
4210
4211                                         if (scout == maddr) {
4212                                                 *flags |= CPU_DTRACE_ILLOP;
4213                                                 break;
4214                                         }
4215
4216                                         continue;
4217                                 }
4218
4219                                 /*
4220                                  * We have the minor data.  Now we need to
4221                                  * copy the minor's name into the end of the
4222                                  * pathname.
4223                                  */
4224                                 s = (char *)dtrace_loadptr(maddr + name);
4225                                 len = dtrace_strlen(s, size);
4226
4227                                 if (*flags & CPU_DTRACE_FAULT)
4228                                         break;
4229
4230                                 if (len != 0) {
4231                                         if ((end -= (len + 1)) < start)
4232                                                 break;
4233
4234                                         *end = ':';
4235                                 }
4236
4237                                 for (i = 1; i <= len; i++)
4238                                         end[i] = dtrace_load8((uintptr_t)s++);
4239                                 break;
4240                         }
4241                 }
4242
4243                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4244                         ddi_node_state_t devi_state;
4245
4246                         devi_state = dtrace_load32(daddr +
4247                             offsetof(struct dev_info, devi_node_state));
4248
4249                         if (*flags & CPU_DTRACE_FAULT)
4250                                 break;
4251
4252                         if (devi_state >= DS_INITIALIZED) {
4253                                 s = (char *)dtrace_loadptr(daddr +
4254                                     offsetof(struct dev_info, devi_addr));
4255                                 len = dtrace_strlen(s, size);
4256
4257                                 if (*flags & CPU_DTRACE_FAULT)
4258                                         break;
4259
4260                                 if (len != 0) {
4261                                         if ((end -= (len + 1)) < start)
4262                                                 break;
4263
4264                                         *end = '@';
4265                                 }
4266
4267                                 for (i = 1; i <= len; i++)
4268                                         end[i] = dtrace_load8((uintptr_t)s++);
4269                         }
4270
4271                         /*
4272                          * Now for the node name...
4273                          */
4274                         s = (char *)dtrace_loadptr(daddr +
4275                             offsetof(struct dev_info, devi_node_name));
4276
4277                         daddr = dtrace_loadptr(daddr +
4278                             offsetof(struct dev_info, devi_parent));
4279
4280                         /*
4281                          * If our parent is NULL (that is, if we're the root
4282                          * node), we're going to use the special path
4283                          * "devices".
4284                          */
4285                         if (daddr == 0)
4286                                 s = "devices";
4287
4288                         len = dtrace_strlen(s, size);
4289                         if (*flags & CPU_DTRACE_FAULT)
4290                                 break;
4291
4292                         if ((end -= (len + 1)) < start)
4293                                 break;
4294
4295                         for (i = 1; i <= len; i++)
4296                                 end[i] = dtrace_load8((uintptr_t)s++);
4297                         *end = '/';
4298
4299                         if (depth++ > dtrace_devdepth_max) {
4300                                 *flags |= CPU_DTRACE_ILLOP;
4301                                 break;
4302                         }
4303                 }
4304
4305                 if (end < start)
4306                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4307
4308                 if (daddr == 0) {
4309                         regs[rd] = (uintptr_t)end;
4310                         mstate->dtms_scratch_ptr += size;
4311                 }
4312
4313                 break;
4314         }
4315 #endif
4316
4317         case DIF_SUBR_STRJOIN: {
4318                 char *d = (char *)mstate->dtms_scratch_ptr;
4319                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4320                 uintptr_t s1 = tupregs[0].dttk_value;
4321                 uintptr_t s2 = tupregs[1].dttk_value;
4322                 int i = 0;
4323
4324                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4325                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4326                         regs[rd] = 0;
4327                         break;
4328                 }
4329
4330                 if (!DTRACE_INSCRATCH(mstate, size)) {
4331                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4332                         regs[rd] = 0;
4333                         break;
4334                 }
4335
4336                 for (;;) {
4337                         if (i >= size) {
4338                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4339                                 regs[rd] = 0;
4340                                 break;
4341                         }
4342
4343                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4344                                 i--;
4345                                 break;
4346                         }
4347                 }
4348
4349                 for (;;) {
4350                         if (i >= size) {
4351                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4352                                 regs[rd] = 0;
4353                                 break;
4354                         }
4355
4356                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4357                                 break;
4358                 }
4359
4360                 if (i < size) {
4361                         mstate->dtms_scratch_ptr += i;
4362                         regs[rd] = (uintptr_t)d;
4363                 }
4364
4365                 break;
4366         }
4367
4368         case DIF_SUBR_LLTOSTR: {
4369                 int64_t i = (int64_t)tupregs[0].dttk_value;
4370                 uint64_t val, digit;
4371                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4372                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4373                 int base = 10;
4374
4375                 if (nargs > 1) {
4376                         if ((base = tupregs[1].dttk_value) <= 1 ||
4377                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4378                                 *flags |= CPU_DTRACE_ILLOP;
4379                                 break;
4380                         }
4381                 }
4382
4383                 val = (base == 10 && i < 0) ? i * -1 : i;
4384
4385                 if (!DTRACE_INSCRATCH(mstate, size)) {
4386                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4387                         regs[rd] = 0;
4388                         break;
4389                 }
4390
4391                 for (*end-- = '\0'; val; val /= base) {
4392                         if ((digit = val % base) <= '9' - '0') {
4393                                 *end-- = '0' + digit;
4394                         } else {
4395                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4396                         }
4397                 }
4398
4399                 if (i == 0 && base == 16)
4400                         *end-- = '0';
4401
4402                 if (base == 16)
4403                         *end-- = 'x';
4404
4405                 if (i == 0 || base == 8 || base == 16)
4406                         *end-- = '0';
4407
4408                 if (i < 0 && base == 10)
4409                         *end-- = '-';
4410
4411                 regs[rd] = (uintptr_t)end + 1;
4412                 mstate->dtms_scratch_ptr += size;
4413                 break;
4414         }
4415
4416         case DIF_SUBR_HTONS:
4417         case DIF_SUBR_NTOHS:
4418 #if BYTE_ORDER == BIG_ENDIAN
4419                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4420 #else
4421                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4422 #endif
4423                 break;
4424
4425
4426         case DIF_SUBR_HTONL:
4427         case DIF_SUBR_NTOHL:
4428 #if BYTE_ORDER == BIG_ENDIAN
4429                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4430 #else
4431                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4432 #endif
4433                 break;
4434
4435
4436         case DIF_SUBR_HTONLL:
4437         case DIF_SUBR_NTOHLL:
4438 #if BYTE_ORDER == BIG_ENDIAN
4439                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4440 #else
4441                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4442 #endif
4443                 break;
4444
4445
4446         case DIF_SUBR_DIRNAME:
4447         case DIF_SUBR_BASENAME: {
4448                 char *dest = (char *)mstate->dtms_scratch_ptr;
4449                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4450                 uintptr_t src = tupregs[0].dttk_value;
4451                 int i, j, len = dtrace_strlen((char *)src, size);
4452                 int lastbase = -1, firstbase = -1, lastdir = -1;
4453                 int start, end;
4454
4455                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4456                         regs[rd] = 0;
4457                         break;
4458                 }
4459
4460                 if (!DTRACE_INSCRATCH(mstate, size)) {
4461                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4462                         regs[rd] = 0;
4463                         break;
4464                 }
4465
4466                 /*
4467                  * The basename and dirname for a zero-length string is
4468                  * defined to be "."
4469                  */
4470                 if (len == 0) {
4471                         len = 1;
4472                         src = (uintptr_t)".";
4473                 }
4474
4475                 /*
4476                  * Start from the back of the string, moving back toward the
4477                  * front until we see a character that isn't a slash.  That
4478                  * character is the last character in the basename.
4479                  */
4480                 for (i = len - 1; i >= 0; i--) {
4481                         if (dtrace_load8(src + i) != '/')
4482                                 break;
4483                 }
4484
4485                 if (i >= 0)
4486                         lastbase = i;
4487
4488                 /*
4489                  * Starting from the last character in the basename, move
4490                  * towards the front until we find a slash.  The character
4491                  * that we processed immediately before that is the first
4492                  * character in the basename.
4493                  */
4494                 for (; i >= 0; i--) {
4495                         if (dtrace_load8(src + i) == '/')
4496                                 break;
4497                 }
4498
4499                 if (i >= 0)
4500                         firstbase = i + 1;
4501
4502                 /*
4503                  * Now keep going until we find a non-slash character.  That
4504                  * character is the last character in the dirname.
4505                  */
4506                 for (; i >= 0; i--) {
4507                         if (dtrace_load8(src + i) != '/')
4508                                 break;
4509                 }
4510
4511                 if (i >= 0)
4512                         lastdir = i;
4513
4514                 ASSERT(!(lastbase == -1 && firstbase != -1));
4515                 ASSERT(!(firstbase == -1 && lastdir != -1));
4516
4517                 if (lastbase == -1) {
4518                         /*
4519                          * We didn't find a non-slash character.  We know that
4520                          * the length is non-zero, so the whole string must be
4521                          * slashes.  In either the dirname or the basename
4522                          * case, we return '/'.
4523                          */
4524                         ASSERT(firstbase == -1);
4525                         firstbase = lastbase = lastdir = 0;
4526                 }
4527
4528                 if (firstbase == -1) {
4529                         /*
4530                          * The entire string consists only of a basename
4531                          * component.  If we're looking for dirname, we need
4532                          * to change our string to be just "."; if we're
4533                          * looking for a basename, we'll just set the first
4534                          * character of the basename to be 0.
4535                          */
4536                         if (subr == DIF_SUBR_DIRNAME) {
4537                                 ASSERT(lastdir == -1);
4538                                 src = (uintptr_t)".";
4539                                 lastdir = 0;
4540                         } else {
4541                                 firstbase = 0;
4542                         }
4543                 }
4544
4545                 if (subr == DIF_SUBR_DIRNAME) {
4546                         if (lastdir == -1) {
4547                                 /*
4548                                  * We know that we have a slash in the name --
4549                                  * or lastdir would be set to 0, above.  And
4550                                  * because lastdir is -1, we know that this
4551                                  * slash must be the first character.  (That
4552                                  * is, the full string must be of the form
4553                                  * "/basename".)  In this case, the last
4554                                  * character of the directory name is 0.
4555                                  */
4556                                 lastdir = 0;
4557                         }
4558
4559                         start = 0;
4560                         end = lastdir;
4561                 } else {
4562                         ASSERT(subr == DIF_SUBR_BASENAME);
4563                         ASSERT(firstbase != -1 && lastbase != -1);
4564                         start = firstbase;
4565                         end = lastbase;
4566                 }
4567
4568                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4569                         dest[j] = dtrace_load8(src + i);
4570
4571                 dest[j] = '\0';
4572                 regs[rd] = (uintptr_t)dest;
4573                 mstate->dtms_scratch_ptr += size;
4574                 break;
4575         }
4576
4577         case DIF_SUBR_CLEANPATH: {
4578                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4579                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4580                 uintptr_t src = tupregs[0].dttk_value;
4581                 int i = 0, j = 0;
4582
4583                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4584                         regs[rd] = 0;
4585                         break;
4586                 }
4587
4588                 if (!DTRACE_INSCRATCH(mstate, size)) {
4589                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4590                         regs[rd] = 0;
4591                         break;
4592                 }
4593
4594                 /*
4595                  * Move forward, loading each character.
4596                  */
4597                 do {
4598                         c = dtrace_load8(src + i++);
4599 next:
4600                         if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
4601                                 break;
4602
4603                         if (c != '/') {
4604                                 dest[j++] = c;
4605                                 continue;
4606                         }
4607
4608                         c = dtrace_load8(src + i++);
4609
4610                         if (c == '/') {
4611                                 /*
4612                                  * We have two slashes -- we can just advance
4613                                  * to the next character.
4614                                  */
4615                                 goto next;
4616                         }
4617
4618                         if (c != '.') {
4619                                 /*
4620                                  * This is not "." and it's not ".." -- we can
4621                                  * just store the "/" and this character and
4622                                  * drive on.
4623                                  */
4624                                 dest[j++] = '/';
4625                                 dest[j++] = c;
4626                                 continue;
4627                         }
4628
4629                         c = dtrace_load8(src + i++);
4630
4631                         if (c == '/') {
4632                                 /*
4633                                  * This is a "/./" component.  We're not going
4634                                  * to store anything in the destination buffer;
4635                                  * we're just going to go to the next component.
4636                                  */
4637                                 goto next;
4638                         }
4639
4640                         if (c != '.') {
4641                                 /*
4642                                  * This is not ".." -- we can just store the
4643                                  * "/." and this character and continue
4644                                  * processing.
4645                                  */
4646                                 dest[j++] = '/';
4647                                 dest[j++] = '.';
4648                                 dest[j++] = c;
4649                                 continue;
4650                         }
4651
4652                         c = dtrace_load8(src + i++);
4653
4654                         if (c != '/' && c != '\0') {
4655                                 /*
4656                                  * This is not ".." -- it's "..[mumble]".
4657                                  * We'll store the "/.." and this character
4658                                  * and continue processing.
4659                                  */
4660                                 dest[j++] = '/';
4661                                 dest[j++] = '.';
4662                                 dest[j++] = '.';
4663                                 dest[j++] = c;
4664                                 continue;
4665                         }
4666
4667                         /*
4668                          * This is "/../" or "/..\0".  We need to back up
4669                          * our destination pointer until we find a "/".
4670                          */
4671                         i--;
4672                         while (j != 0 && dest[--j] != '/')
4673                                 continue;
4674
4675                         if (c == '\0')
4676                                 dest[++j] = '/';
4677                 } while (c != '\0');
4678
4679                 dest[j] = '\0';
4680                 regs[rd] = (uintptr_t)dest;
4681                 mstate->dtms_scratch_ptr += size;
4682                 break;
4683         }
4684
4685         case DIF_SUBR_INET_NTOA:
4686         case DIF_SUBR_INET_NTOA6:
4687         case DIF_SUBR_INET_NTOP: {
4688                 size_t size;
4689                 int af, argi, i;
4690                 char *base, *end;
4691
4692                 if (subr == DIF_SUBR_INET_NTOP) {
4693                         af = (int)tupregs[0].dttk_value;
4694                         argi = 1;
4695                 } else {
4696                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4697                         argi = 0;
4698                 }
4699
4700                 if (af == AF_INET) {
4701                         ipaddr_t ip4;
4702                         uint8_t *ptr8, val;
4703
4704                         /*
4705                          * Safely load the IPv4 address.
4706                          */
4707                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4708
4709                         /*
4710                          * Check an IPv4 string will fit in scratch.
4711                          */
4712                         size = INET_ADDRSTRLEN;
4713                         if (!DTRACE_INSCRATCH(mstate, size)) {
4714                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4715                                 regs[rd] = 0;
4716                                 break;
4717                         }
4718                         base = (char *)mstate->dtms_scratch_ptr;
4719                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4720
4721                         /*
4722                          * Stringify as a dotted decimal quad.
4723                          */
4724                         *end-- = '\0';
4725                         ptr8 = (uint8_t *)&ip4;
4726                         for (i = 3; i >= 0; i--) {
4727                                 val = ptr8[i];
4728
4729                                 if (val == 0) {
4730                                         *end-- = '0';
4731                                 } else {
4732                                         for (; val; val /= 10) {
4733                                                 *end-- = '0' + (val % 10);
4734                                         }
4735                                 }
4736
4737                                 if (i > 0)
4738                                         *end-- = '.';
4739                         }
4740                         ASSERT(end + 1 >= base);
4741
4742                 } else if (af == AF_INET6) {
4743                         struct in6_addr ip6;
4744                         int firstzero, tryzero, numzero, v6end;
4745                         uint16_t val;
4746                         const char digits[] = "0123456789abcdef";
4747
4748                         /*
4749                          * Stringify using RFC 1884 convention 2 - 16 bit
4750                          * hexadecimal values with a zero-run compression.
4751                          * Lower case hexadecimal digits are used.
4752                          *      eg, fe80::214:4fff:fe0b:76c8.
4753                          * The IPv4 embedded form is returned for inet_ntop,
4754                          * just the IPv4 string is returned for inet_ntoa6.
4755                          */
4756
4757                         /*
4758                          * Safely load the IPv6 address.
4759                          */
4760                         dtrace_bcopy(
4761                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4762                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4763
4764                         /*
4765                          * Check an IPv6 string will fit in scratch.
4766                          */
4767                         size = INET6_ADDRSTRLEN;
4768                         if (!DTRACE_INSCRATCH(mstate, size)) {
4769                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4770                                 regs[rd] = 0;
4771                                 break;
4772                         }
4773                         base = (char *)mstate->dtms_scratch_ptr;
4774                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4775                         *end-- = '\0';
4776
4777                         /*
4778                          * Find the longest run of 16 bit zero values
4779                          * for the single allowed zero compression - "::".
4780                          */
4781                         firstzero = -1;
4782                         tryzero = -1;
4783                         numzero = 1;
4784                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4785 #if defined(sun)
4786                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4787 #else
4788                                 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4789 #endif
4790                                     tryzero == -1 && i % 2 == 0) {
4791                                         tryzero = i;
4792                                         continue;
4793                                 }
4794
4795                                 if (tryzero != -1 &&
4796 #if defined(sun)
4797                                     (ip6._S6_un._S6_u8[i] != 0 ||
4798 #else
4799                                     (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4800 #endif
4801                                     i == sizeof (struct in6_addr) - 1)) {
4802
4803                                         if (i - tryzero <= numzero) {
4804                                                 tryzero = -1;
4805                                                 continue;
4806                                         }
4807
4808                                         firstzero = tryzero;
4809                                         numzero = i - i % 2 - tryzero;
4810                                         tryzero = -1;
4811
4812 #if defined(sun)
4813                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4814 #else
4815                                         if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4816 #endif
4817                                             i == sizeof (struct in6_addr) - 1)
4818                                                 numzero += 2;
4819                                 }
4820                         }
4821                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4822
4823                         /*
4824                          * Check for an IPv4 embedded address.
4825                          */
4826                         v6end = sizeof (struct in6_addr) - 2;
4827                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4828                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4829                                 for (i = sizeof (struct in6_addr) - 1;
4830                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4831                                         ASSERT(end >= base);
4832
4833 #if defined(sun)
4834                                         val = ip6._S6_un._S6_u8[i];
4835 #else
4836                                         val = ip6.__u6_addr.__u6_addr8[i];
4837 #endif
4838
4839                                         if (val == 0) {
4840                                                 *end-- = '0';
4841                                         } else {
4842                                                 for (; val; val /= 10) {
4843                                                         *end-- = '0' + val % 10;
4844                                                 }
4845                                         }
4846
4847                                         if (i > DTRACE_V4MAPPED_OFFSET)
4848                                                 *end-- = '.';
4849                                 }
4850
4851                                 if (subr == DIF_SUBR_INET_NTOA6)
4852                                         goto inetout;
4853
4854                                 /*
4855                                  * Set v6end to skip the IPv4 address that
4856                                  * we have already stringified.
4857                                  */
4858                                 v6end = 10;
4859                         }
4860
4861                         /*
4862                          * Build the IPv6 string by working through the
4863                          * address in reverse.
4864                          */
4865                         for (i = v6end; i >= 0; i -= 2) {
4866                                 ASSERT(end >= base);
4867
4868                                 if (i == firstzero + numzero - 2) {
4869                                         *end-- = ':';
4870                                         *end-- = ':';
4871                                         i -= numzero - 2;
4872                                         continue;
4873                                 }
4874
4875                                 if (i < 14 && i != firstzero - 2)
4876                                         *end-- = ':';
4877
4878 #if defined(sun)
4879                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4880                                     ip6._S6_un._S6_u8[i + 1];
4881 #else
4882                                 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4883                                     ip6.__u6_addr.__u6_addr8[i + 1];
4884 #endif
4885
4886                                 if (val == 0) {
4887                                         *end-- = '0';
4888                                 } else {
4889                                         for (; val; val /= 16) {
4890                                                 *end-- = digits[val % 16];
4891                                         }
4892                                 }
4893                         }
4894                         ASSERT(end + 1 >= base);
4895
4896                 } else {
4897                         /*
4898                          * The user didn't use AH_INET or AH_INET6.
4899                          */
4900                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4901                         regs[rd] = 0;
4902                         break;
4903                 }
4904
4905 inetout:        regs[rd] = (uintptr_t)end + 1;
4906                 mstate->dtms_scratch_ptr += size;
4907                 break;
4908         }
4909
4910         case DIF_SUBR_MEMREF: {
4911                 uintptr_t size = 2 * sizeof(uintptr_t);
4912                 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4913                 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4914
4915                 /* address and length */
4916                 memref[0] = tupregs[0].dttk_value;
4917                 memref[1] = tupregs[1].dttk_value;
4918
4919                 regs[rd] = (uintptr_t) memref;
4920                 mstate->dtms_scratch_ptr += scratch_size;
4921                 break;
4922         }
4923
4924         case DIF_SUBR_TYPEREF: {
4925                 uintptr_t size = 4 * sizeof(uintptr_t);
4926                 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4927                 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4928
4929                 /* address, num_elements, type_str, type_len */
4930                 typeref[0] = tupregs[0].dttk_value;
4931                 typeref[1] = tupregs[1].dttk_value;
4932                 typeref[2] = tupregs[2].dttk_value;
4933                 typeref[3] = tupregs[3].dttk_value;
4934
4935                 regs[rd] = (uintptr_t) typeref;
4936                 mstate->dtms_scratch_ptr += scratch_size;
4937                 break;
4938         }
4939         }
4940 }
4941
4942 /*
4943  * Emulate the execution of DTrace IR instructions specified by the given
4944  * DIF object.  This function is deliberately void of assertions as all of
4945  * the necessary checks are handled by a call to dtrace_difo_validate().
4946  */
4947 static uint64_t
4948 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4949     dtrace_vstate_t *vstate, dtrace_state_t *state)
4950 {
4951         const dif_instr_t *text = difo->dtdo_buf;
4952         const uint_t textlen = difo->dtdo_len;
4953         const char *strtab = difo->dtdo_strtab;
4954         const uint64_t *inttab = difo->dtdo_inttab;
4955
4956         uint64_t rval = 0;
4957         dtrace_statvar_t *svar;
4958         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4959         dtrace_difv_t *v;
4960         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4961         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4962
4963         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4964         uint64_t regs[DIF_DIR_NREGS];
4965         uint64_t *tmp;
4966
4967         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4968         int64_t cc_r;
4969         uint_t pc = 0, id, opc = 0;
4970         uint8_t ttop = 0;
4971         dif_instr_t instr;
4972         uint_t r1, r2, rd;
4973
4974         /*
4975          * We stash the current DIF object into the machine state: we need it
4976          * for subsequent access checking.
4977          */
4978         mstate->dtms_difo = difo;
4979
4980         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4981
4982         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4983                 opc = pc;
4984
4985                 instr = text[pc++];
4986                 r1 = DIF_INSTR_R1(instr);
4987                 r2 = DIF_INSTR_R2(instr);
4988                 rd = DIF_INSTR_RD(instr);
4989
4990                 switch (DIF_INSTR_OP(instr)) {
4991                 case DIF_OP_OR:
4992                         regs[rd] = regs[r1] | regs[r2];
4993                         break;
4994                 case DIF_OP_XOR:
4995                         regs[rd] = regs[r1] ^ regs[r2];
4996                         break;
4997                 case DIF_OP_AND:
4998                         regs[rd] = regs[r1] & regs[r2];
4999                         break;
5000                 case DIF_OP_SLL:
5001                         regs[rd] = regs[r1] << regs[r2];
5002                         break;
5003                 case DIF_OP_SRL:
5004                         regs[rd] = regs[r1] >> regs[r2];
5005                         break;
5006                 case DIF_OP_SUB:
5007                         regs[rd] = regs[r1] - regs[r2];
5008                         break;
5009                 case DIF_OP_ADD:
5010                         regs[rd] = regs[r1] + regs[r2];
5011                         break;
5012                 case DIF_OP_MUL:
5013                         regs[rd] = regs[r1] * regs[r2];
5014                         break;
5015                 case DIF_OP_SDIV:
5016                         if (regs[r2] == 0) {
5017                                 regs[rd] = 0;
5018                                 *flags |= CPU_DTRACE_DIVZERO;
5019                         } else {
5020                                 regs[rd] = (int64_t)regs[r1] /
5021                                     (int64_t)regs[r2];
5022                         }
5023                         break;
5024
5025                 case DIF_OP_UDIV:
5026                         if (regs[r2] == 0) {
5027                                 regs[rd] = 0;
5028                                 *flags |= CPU_DTRACE_DIVZERO;
5029                         } else {
5030                                 regs[rd] = regs[r1] / regs[r2];
5031                         }
5032                         break;
5033
5034                 case DIF_OP_SREM:
5035                         if (regs[r2] == 0) {
5036                                 regs[rd] = 0;
5037                                 *flags |= CPU_DTRACE_DIVZERO;
5038                         } else {
5039                                 regs[rd] = (int64_t)regs[r1] %
5040                                     (int64_t)regs[r2];
5041                         }
5042                         break;
5043
5044                 case DIF_OP_UREM:
5045                         if (regs[r2] == 0) {
5046                                 regs[rd] = 0;
5047                                 *flags |= CPU_DTRACE_DIVZERO;
5048                         } else {
5049                                 regs[rd] = regs[r1] % regs[r2];
5050                         }
5051                         break;
5052
5053                 case DIF_OP_NOT:
5054                         regs[rd] = ~regs[r1];
5055                         break;
5056                 case DIF_OP_MOV:
5057                         regs[rd] = regs[r1];
5058                         break;
5059                 case DIF_OP_CMP:
5060                         cc_r = regs[r1] - regs[r2];
5061                         cc_n = cc_r < 0;
5062                         cc_z = cc_r == 0;
5063                         cc_v = 0;
5064                         cc_c = regs[r1] < regs[r2];
5065                         break;
5066                 case DIF_OP_TST:
5067                         cc_n = cc_v = cc_c = 0;
5068                         cc_z = regs[r1] == 0;
5069                         break;
5070                 case DIF_OP_BA:
5071                         pc = DIF_INSTR_LABEL(instr);
5072                         break;
5073                 case DIF_OP_BE:
5074                         if (cc_z)
5075                                 pc = DIF_INSTR_LABEL(instr);
5076                         break;
5077                 case DIF_OP_BNE:
5078                         if (cc_z == 0)
5079                                 pc = DIF_INSTR_LABEL(instr);
5080                         break;
5081                 case DIF_OP_BG:
5082                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5083                                 pc = DIF_INSTR_LABEL(instr);
5084                         break;
5085                 case DIF_OP_BGU:
5086                         if ((cc_c | cc_z) == 0)
5087                                 pc = DIF_INSTR_LABEL(instr);
5088                         break;
5089                 case DIF_OP_BGE:
5090                         if ((cc_n ^ cc_v) == 0)
5091                                 pc = DIF_INSTR_LABEL(instr);
5092                         break;
5093                 case DIF_OP_BGEU:
5094                         if (cc_c == 0)
5095                                 pc = DIF_INSTR_LABEL(instr);
5096                         break;
5097                 case DIF_OP_BL:
5098                         if (cc_n ^ cc_v)
5099                                 pc = DIF_INSTR_LABEL(instr);
5100                         break;
5101                 case DIF_OP_BLU:
5102                         if (cc_c)
5103                                 pc = DIF_INSTR_LABEL(instr);
5104                         break;
5105                 case DIF_OP_BLE:
5106                         if (cc_z | (cc_n ^ cc_v))
5107                                 pc = DIF_INSTR_LABEL(instr);
5108                         break;
5109                 case DIF_OP_BLEU:
5110                         if (cc_c | cc_z)
5111                                 pc = DIF_INSTR_LABEL(instr);
5112                         break;
5113                 case DIF_OP_RLDSB:
5114                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5115                                 *flags |= CPU_DTRACE_KPRIV;
5116                                 *illval = regs[r1];
5117                                 break;
5118                         }
5119                         /*FALLTHROUGH*/
5120                 case DIF_OP_LDSB:
5121                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5122                         break;
5123                 case DIF_OP_RLDSH:
5124                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5125                                 *flags |= CPU_DTRACE_KPRIV;
5126                                 *illval = regs[r1];
5127                                 break;
5128                         }
5129                         /*FALLTHROUGH*/
5130                 case DIF_OP_LDSH:
5131                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5132                         break;
5133                 case DIF_OP_RLDSW:
5134                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5135                                 *flags |= CPU_DTRACE_KPRIV;
5136                                 *illval = regs[r1];
5137                                 break;
5138                         }
5139                         /*FALLTHROUGH*/
5140                 case DIF_OP_LDSW:
5141                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5142                         break;
5143                 case DIF_OP_RLDUB:
5144                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5145                                 *flags |= CPU_DTRACE_KPRIV;
5146                                 *illval = regs[r1];
5147                                 break;
5148                         }
5149                         /*FALLTHROUGH*/
5150                 case DIF_OP_LDUB:
5151                         regs[rd] = dtrace_load8(regs[r1]);
5152                         break;
5153                 case DIF_OP_RLDUH:
5154                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5155                                 *flags |= CPU_DTRACE_KPRIV;
5156                                 *illval = regs[r1];
5157                                 break;
5158                         }
5159                         /*FALLTHROUGH*/
5160                 case DIF_OP_LDUH:
5161                         regs[rd] = dtrace_load16(regs[r1]);
5162                         break;
5163                 case DIF_OP_RLDUW:
5164                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5165                                 *flags |= CPU_DTRACE_KPRIV;
5166                                 *illval = regs[r1];
5167                                 break;
5168                         }
5169                         /*FALLTHROUGH*/
5170                 case DIF_OP_LDUW:
5171                         regs[rd] = dtrace_load32(regs[r1]);
5172                         break;
5173                 case DIF_OP_RLDX:
5174                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5175                                 *flags |= CPU_DTRACE_KPRIV;
5176                                 *illval = regs[r1];
5177                                 break;
5178                         }
5179                         /*FALLTHROUGH*/
5180                 case DIF_OP_LDX:
5181                         regs[rd] = dtrace_load64(regs[r1]);
5182                         break;
5183                 case DIF_OP_ULDSB:
5184                         regs[rd] = (int8_t)
5185                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5186                         break;
5187                 case DIF_OP_ULDSH:
5188                         regs[rd] = (int16_t)
5189                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5190                         break;
5191                 case DIF_OP_ULDSW:
5192                         regs[rd] = (int32_t)
5193                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5194                         break;
5195                 case DIF_OP_ULDUB:
5196                         regs[rd] =
5197                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5198                         break;
5199                 case DIF_OP_ULDUH:
5200                         regs[rd] =
5201                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5202                         break;
5203                 case DIF_OP_ULDUW:
5204                         regs[rd] =
5205                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5206                         break;
5207                 case DIF_OP_ULDX:
5208                         regs[rd] =
5209                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5210                         break;
5211                 case DIF_OP_RET:
5212                         rval = regs[rd];
5213                         pc = textlen;
5214                         break;
5215                 case DIF_OP_NOP:
5216                         break;
5217                 case DIF_OP_SETX:
5218                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5219                         break;
5220                 case DIF_OP_SETS:
5221                         regs[rd] = (uint64_t)(uintptr_t)
5222                             (strtab + DIF_INSTR_STRING(instr));
5223                         break;
5224                 case DIF_OP_SCMP: {
5225                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5226                         uintptr_t s1 = regs[r1];
5227                         uintptr_t s2 = regs[r2];
5228
5229                         if (s1 != 0 &&
5230                             !dtrace_strcanload(s1, sz, mstate, vstate))
5231                                 break;
5232                         if (s2 != 0 &&
5233                             !dtrace_strcanload(s2, sz, mstate, vstate))
5234                                 break;
5235
5236                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5237
5238                         cc_n = cc_r < 0;
5239                         cc_z = cc_r == 0;
5240                         cc_v = cc_c = 0;
5241                         break;
5242                 }
5243                 case DIF_OP_LDGA:
5244                         regs[rd] = dtrace_dif_variable(mstate, state,
5245                             r1, regs[r2]);
5246                         break;
5247                 case DIF_OP_LDGS:
5248                         id = DIF_INSTR_VAR(instr);
5249
5250                         if (id >= DIF_VAR_OTHER_UBASE) {
5251                                 uintptr_t a;
5252
5253                                 id -= DIF_VAR_OTHER_UBASE;
5254                                 svar = vstate->dtvs_globals[id];
5255                                 ASSERT(svar != NULL);
5256                                 v = &svar->dtsv_var;
5257
5258                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5259                                         regs[rd] = svar->dtsv_data;
5260                                         break;
5261                                 }
5262
5263                                 a = (uintptr_t)svar->dtsv_data;
5264
5265                                 if (*(uint8_t *)a == UINT8_MAX) {
5266                                         /*
5267                                          * If the 0th byte is set to UINT8_MAX
5268                                          * then this is to be treated as a
5269                                          * reference to a NULL variable.
5270                                          */
5271                                         regs[rd] = 0;
5272                                 } else {
5273                                         regs[rd] = a + sizeof (uint64_t);
5274                                 }
5275
5276                                 break;
5277                         }
5278
5279                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5280                         break;
5281
5282                 case DIF_OP_STGS:
5283                         id = DIF_INSTR_VAR(instr);
5284
5285                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5286                         id -= DIF_VAR_OTHER_UBASE;
5287
5288                         svar = vstate->dtvs_globals[id];
5289                         ASSERT(svar != NULL);
5290                         v = &svar->dtsv_var;
5291
5292                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5293                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5294
5295                                 ASSERT(a != 0);
5296                                 ASSERT(svar->dtsv_size != 0);
5297
5298                                 if (regs[rd] == 0) {
5299                                         *(uint8_t *)a = UINT8_MAX;
5300                                         break;
5301                                 } else {
5302                                         *(uint8_t *)a = 0;
5303                                         a += sizeof (uint64_t);
5304                                 }
5305                                 if (!dtrace_vcanload(
5306                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5307                                     mstate, vstate))
5308                                         break;
5309
5310                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5311                                     (void *)a, &v->dtdv_type);
5312                                 break;
5313                         }
5314
5315                         svar->dtsv_data = regs[rd];
5316                         break;
5317
5318                 case DIF_OP_LDTA:
5319                         /*
5320                          * There are no DTrace built-in thread-local arrays at
5321                          * present.  This opcode is saved for future work.
5322                          */
5323                         *flags |= CPU_DTRACE_ILLOP;
5324                         regs[rd] = 0;
5325                         break;
5326
5327                 case DIF_OP_LDLS:
5328                         id = DIF_INSTR_VAR(instr);
5329
5330                         if (id < DIF_VAR_OTHER_UBASE) {
5331                                 /*
5332                                  * For now, this has no meaning.
5333                                  */
5334                                 regs[rd] = 0;
5335                                 break;
5336                         }
5337
5338                         id -= DIF_VAR_OTHER_UBASE;
5339
5340                         ASSERT(id < vstate->dtvs_nlocals);
5341                         ASSERT(vstate->dtvs_locals != NULL);
5342
5343                         svar = vstate->dtvs_locals[id];
5344                         ASSERT(svar != NULL);
5345                         v = &svar->dtsv_var;
5346
5347                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5348                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5349                                 size_t sz = v->dtdv_type.dtdt_size;
5350
5351                                 sz += sizeof (uint64_t);
5352                                 ASSERT(svar->dtsv_size == NCPU * sz);
5353                                 a += curcpu * sz;
5354
5355                                 if (*(uint8_t *)a == UINT8_MAX) {
5356                                         /*
5357                                          * If the 0th byte is set to UINT8_MAX
5358                                          * then this is to be treated as a
5359                                          * reference to a NULL variable.
5360                                          */
5361                                         regs[rd] = 0;
5362                                 } else {
5363                                         regs[rd] = a + sizeof (uint64_t);
5364                                 }
5365
5366                                 break;
5367                         }
5368
5369                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5370                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5371                         regs[rd] = tmp[curcpu];
5372                         break;
5373
5374                 case DIF_OP_STLS:
5375                         id = DIF_INSTR_VAR(instr);
5376
5377                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5378                         id -= DIF_VAR_OTHER_UBASE;
5379                         ASSERT(id < vstate->dtvs_nlocals);
5380
5381                         ASSERT(vstate->dtvs_locals != NULL);
5382                         svar = vstate->dtvs_locals[id];
5383                         ASSERT(svar != NULL);
5384                         v = &svar->dtsv_var;
5385
5386                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5387                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5388                                 size_t sz = v->dtdv_type.dtdt_size;
5389
5390                                 sz += sizeof (uint64_t);
5391                                 ASSERT(svar->dtsv_size == NCPU * sz);
5392                                 a += curcpu * sz;
5393
5394                                 if (regs[rd] == 0) {
5395                                         *(uint8_t *)a = UINT8_MAX;
5396                                         break;
5397                                 } else {
5398                                         *(uint8_t *)a = 0;
5399                                         a += sizeof (uint64_t);
5400                                 }
5401
5402                                 if (!dtrace_vcanload(
5403                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5404                                     mstate, vstate))
5405                                         break;
5406
5407                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5408                                     (void *)a, &v->dtdv_type);
5409                                 break;
5410                         }
5411
5412                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5413                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5414                         tmp[curcpu] = regs[rd];
5415                         break;
5416
5417                 case DIF_OP_LDTS: {
5418                         dtrace_dynvar_t *dvar;
5419                         dtrace_key_t *key;
5420
5421                         id = DIF_INSTR_VAR(instr);
5422                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5423                         id -= DIF_VAR_OTHER_UBASE;
5424                         v = &vstate->dtvs_tlocals[id];
5425
5426                         key = &tupregs[DIF_DTR_NREGS];
5427                         key[0].dttk_value = (uint64_t)id;
5428                         key[0].dttk_size = 0;
5429                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5430                         key[1].dttk_size = 0;
5431
5432                         dvar = dtrace_dynvar(dstate, 2, key,
5433                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5434                             mstate, vstate);
5435
5436                         if (dvar == NULL) {
5437                                 regs[rd] = 0;
5438                                 break;
5439                         }
5440
5441                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5442                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5443                         } else {
5444                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5445                         }
5446
5447                         break;
5448                 }
5449
5450                 case DIF_OP_STTS: {
5451                         dtrace_dynvar_t *dvar;
5452                         dtrace_key_t *key;
5453
5454                         id = DIF_INSTR_VAR(instr);
5455                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5456                         id -= DIF_VAR_OTHER_UBASE;
5457
5458                         key = &tupregs[DIF_DTR_NREGS];
5459                         key[0].dttk_value = (uint64_t)id;
5460                         key[0].dttk_size = 0;
5461                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5462                         key[1].dttk_size = 0;
5463                         v = &vstate->dtvs_tlocals[id];
5464
5465                         dvar = dtrace_dynvar(dstate, 2, key,
5466                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5467                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5468                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5469                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5470
5471                         /*
5472                          * Given that we're storing to thread-local data,
5473                          * we need to flush our predicate cache.
5474                          */
5475                         curthread->t_predcache = 0;
5476
5477                         if (dvar == NULL)
5478                                 break;
5479
5480                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5481                                 if (!dtrace_vcanload(
5482                                     (void *)(uintptr_t)regs[rd],
5483                                     &v->dtdv_type, mstate, vstate))
5484                                         break;
5485
5486                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5487                                     dvar->dtdv_data, &v->dtdv_type);
5488                         } else {
5489                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5490                         }
5491
5492                         break;
5493                 }
5494
5495                 case DIF_OP_SRA:
5496                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5497                         break;
5498
5499                 case DIF_OP_CALL:
5500                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5501                             regs, tupregs, ttop, mstate, state);
5502                         break;
5503
5504                 case DIF_OP_PUSHTR:
5505                         if (ttop == DIF_DTR_NREGS) {
5506                                 *flags |= CPU_DTRACE_TUPOFLOW;
5507                                 break;
5508                         }
5509
5510                         if (r1 == DIF_TYPE_STRING) {
5511                                 /*
5512                                  * If this is a string type and the size is 0,
5513                                  * we'll use the system-wide default string
5514                                  * size.  Note that we are _not_ looking at
5515                                  * the value of the DTRACEOPT_STRSIZE option;
5516                                  * had this been set, we would expect to have
5517                                  * a non-zero size value in the "pushtr".
5518                                  */
5519                                 tupregs[ttop].dttk_size =
5520                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5521                                     regs[r2] ? regs[r2] :
5522                                     dtrace_strsize_default) + 1;
5523                         } else {
5524                                 tupregs[ttop].dttk_size = regs[r2];
5525                         }
5526
5527                         tupregs[ttop++].dttk_value = regs[rd];
5528                         break;
5529
5530                 case DIF_OP_PUSHTV:
5531                         if (ttop == DIF_DTR_NREGS) {
5532                                 *flags |= CPU_DTRACE_TUPOFLOW;
5533                                 break;
5534                         }
5535
5536                         tupregs[ttop].dttk_value = regs[rd];
5537                         tupregs[ttop++].dttk_size = 0;
5538                         break;
5539
5540                 case DIF_OP_POPTS:
5541                         if (ttop != 0)
5542                                 ttop--;
5543                         break;
5544
5545                 case DIF_OP_FLUSHTS:
5546                         ttop = 0;
5547                         break;
5548
5549                 case DIF_OP_LDGAA:
5550                 case DIF_OP_LDTAA: {
5551                         dtrace_dynvar_t *dvar;
5552                         dtrace_key_t *key = tupregs;
5553                         uint_t nkeys = ttop;
5554
5555                         id = DIF_INSTR_VAR(instr);
5556                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5557                         id -= DIF_VAR_OTHER_UBASE;
5558
5559                         key[nkeys].dttk_value = (uint64_t)id;
5560                         key[nkeys++].dttk_size = 0;
5561
5562                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5563                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5564                                 key[nkeys++].dttk_size = 0;
5565                                 v = &vstate->dtvs_tlocals[id];
5566                         } else {
5567                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5568                         }
5569
5570                         dvar = dtrace_dynvar(dstate, nkeys, key,
5571                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5572                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5573                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5574
5575                         if (dvar == NULL) {
5576                                 regs[rd] = 0;
5577                                 break;
5578                         }
5579
5580                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5581                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5582                         } else {
5583                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5584                         }
5585
5586                         break;
5587                 }
5588
5589                 case DIF_OP_STGAA:
5590                 case DIF_OP_STTAA: {
5591                         dtrace_dynvar_t *dvar;
5592                         dtrace_key_t *key = tupregs;
5593                         uint_t nkeys = ttop;
5594
5595                         id = DIF_INSTR_VAR(instr);
5596                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5597                         id -= DIF_VAR_OTHER_UBASE;
5598
5599                         key[nkeys].dttk_value = (uint64_t)id;
5600                         key[nkeys++].dttk_size = 0;
5601
5602                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5603                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5604                                 key[nkeys++].dttk_size = 0;
5605                                 v = &vstate->dtvs_tlocals[id];
5606                         } else {
5607                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5608                         }
5609
5610                         dvar = dtrace_dynvar(dstate, nkeys, key,
5611                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5612                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5613                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5614                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5615
5616                         if (dvar == NULL)
5617                                 break;
5618
5619                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5620                                 if (!dtrace_vcanload(
5621                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5622                                     mstate, vstate))
5623                                         break;
5624
5625                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5626                                     dvar->dtdv_data, &v->dtdv_type);
5627                         } else {
5628                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5629                         }
5630
5631                         break;
5632                 }
5633
5634                 case DIF_OP_ALLOCS: {
5635                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5636                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5637
5638                         /*
5639                          * Rounding up the user allocation size could have
5640                          * overflowed large, bogus allocations (like -1ULL) to
5641                          * 0.
5642                          */
5643                         if (size < regs[r1] ||
5644                             !DTRACE_INSCRATCH(mstate, size)) {
5645                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5646                                 regs[rd] = 0;
5647                                 break;
5648                         }
5649
5650                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5651                         mstate->dtms_scratch_ptr += size;
5652                         regs[rd] = ptr;
5653                         break;
5654                 }
5655
5656                 case DIF_OP_COPYS:
5657                         if (!dtrace_canstore(regs[rd], regs[r2],
5658                             mstate, vstate)) {
5659                                 *flags |= CPU_DTRACE_BADADDR;
5660                                 *illval = regs[rd];
5661                                 break;
5662                         }
5663
5664                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5665                                 break;
5666
5667                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5668                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5669                         break;
5670
5671                 case DIF_OP_STB:
5672                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5673                                 *flags |= CPU_DTRACE_BADADDR;
5674                                 *illval = regs[rd];
5675                                 break;
5676                         }
5677                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5678                         break;
5679
5680                 case DIF_OP_STH:
5681                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5682                                 *flags |= CPU_DTRACE_BADADDR;
5683                                 *illval = regs[rd];
5684                                 break;
5685                         }
5686                         if (regs[rd] & 1) {
5687                                 *flags |= CPU_DTRACE_BADALIGN;
5688                                 *illval = regs[rd];
5689                                 break;
5690                         }
5691                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5692                         break;
5693
5694                 case DIF_OP_STW:
5695                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5696                                 *flags |= CPU_DTRACE_BADADDR;
5697                                 *illval = regs[rd];
5698                                 break;
5699                         }
5700                         if (regs[rd] & 3) {
5701                                 *flags |= CPU_DTRACE_BADALIGN;
5702                                 *illval = regs[rd];
5703                                 break;
5704                         }
5705                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5706                         break;
5707
5708                 case DIF_OP_STX:
5709                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5710                                 *flags |= CPU_DTRACE_BADADDR;
5711                                 *illval = regs[rd];
5712                                 break;
5713                         }
5714                         if (regs[rd] & 7) {
5715                                 *flags |= CPU_DTRACE_BADALIGN;
5716                                 *illval = regs[rd];
5717                                 break;
5718                         }
5719                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5720                         break;
5721                 }
5722         }
5723
5724         if (!(*flags & CPU_DTRACE_FAULT))
5725                 return (rval);
5726
5727         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5728         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5729
5730         return (0);
5731 }
5732
5733 static void
5734 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5735 {
5736         dtrace_probe_t *probe = ecb->dte_probe;
5737         dtrace_provider_t *prov = probe->dtpr_provider;
5738         char c[DTRACE_FULLNAMELEN + 80], *str;
5739         char *msg = "dtrace: breakpoint action at probe ";
5740         char *ecbmsg = " (ecb ";
5741         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5742         uintptr_t val = (uintptr_t)ecb;
5743         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5744
5745         if (dtrace_destructive_disallow)
5746                 return;
5747
5748         /*
5749          * It's impossible to be taking action on the NULL probe.
5750          */
5751         ASSERT(probe != NULL);
5752
5753         /*
5754          * This is a poor man's (destitute man's?) sprintf():  we want to
5755          * print the provider name, module name, function name and name of
5756          * the probe, along with the hex address of the ECB with the breakpoint
5757          * action -- all of which we must place in the character buffer by
5758          * hand.
5759          */
5760         while (*msg != '\0')
5761                 c[i++] = *msg++;
5762
5763         for (str = prov->dtpv_name; *str != '\0'; str++)
5764                 c[i++] = *str;
5765         c[i++] = ':';
5766
5767         for (str = probe->dtpr_mod; *str != '\0'; str++)
5768                 c[i++] = *str;
5769         c[i++] = ':';
5770
5771         for (str = probe->dtpr_func; *str != '\0'; str++)
5772                 c[i++] = *str;
5773         c[i++] = ':';
5774
5775         for (str = probe->dtpr_name; *str != '\0'; str++)
5776                 c[i++] = *str;
5777
5778         while (*ecbmsg != '\0')
5779                 c[i++] = *ecbmsg++;
5780
5781         while (shift >= 0) {
5782                 mask = (uintptr_t)0xf << shift;
5783
5784                 if (val >= ((uintptr_t)1 << shift))
5785                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5786                 shift -= 4;
5787         }
5788
5789         c[i++] = ')';
5790         c[i] = '\0';
5791
5792 #if defined(sun)
5793         debug_enter(c);
5794 #else
5795         kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5796 #endif
5797 }
5798
5799 static void
5800 dtrace_action_panic(dtrace_ecb_t *ecb)
5801 {
5802         dtrace_probe_t *probe = ecb->dte_probe;
5803
5804         /*
5805          * It's impossible to be taking action on the NULL probe.
5806          */
5807         ASSERT(probe != NULL);
5808
5809         if (dtrace_destructive_disallow)
5810                 return;
5811
5812         if (dtrace_panicked != NULL)
5813                 return;
5814
5815         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5816                 return;
5817
5818         /*
5819          * We won the right to panic.  (We want to be sure that only one
5820          * thread calls panic() from dtrace_probe(), and that panic() is
5821          * called exactly once.)
5822          */
5823         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5824             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5825             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5826 }
5827
5828 static void
5829 dtrace_action_raise(uint64_t sig)
5830 {
5831         if (dtrace_destructive_disallow)
5832                 return;
5833
5834         if (sig >= NSIG) {
5835                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5836                 return;
5837         }
5838
5839 #if defined(sun)
5840         /*
5841          * raise() has a queue depth of 1 -- we ignore all subsequent
5842          * invocations of the raise() action.
5843          */
5844         if (curthread->t_dtrace_sig == 0)
5845                 curthread->t_dtrace_sig = (uint8_t)sig;
5846
5847         curthread->t_sig_check = 1;
5848         aston(curthread);
5849 #else
5850         struct proc *p = curproc;
5851         PROC_LOCK(p);
5852         kern_psignal(p, sig);
5853         PROC_UNLOCK(p);
5854 #endif
5855 }
5856
5857 static void
5858 dtrace_action_stop(void)
5859 {
5860         if (dtrace_destructive_disallow)
5861                 return;
5862
5863 #if defined(sun)
5864         if (!curthread->t_dtrace_stop) {
5865                 curthread->t_dtrace_stop = 1;
5866                 curthread->t_sig_check = 1;
5867                 aston(curthread);
5868         }
5869 #else
5870         struct proc *p = curproc;
5871         PROC_LOCK(p);
5872         kern_psignal(p, SIGSTOP);
5873         PROC_UNLOCK(p);
5874 #endif
5875 }
5876
5877 static void
5878 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5879 {
5880         hrtime_t now;
5881         volatile uint16_t *flags;
5882 #if defined(sun)
5883         cpu_t *cpu = CPU;
5884 #else
5885         cpu_t *cpu = &solaris_cpu[curcpu];
5886 #endif
5887
5888         if (dtrace_destructive_disallow)
5889                 return;
5890
5891         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5892
5893         now = dtrace_gethrtime();
5894
5895         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5896                 /*
5897                  * We need to advance the mark to the current time.
5898                  */
5899                 cpu->cpu_dtrace_chillmark = now;
5900                 cpu->cpu_dtrace_chilled = 0;
5901         }
5902
5903         /*
5904          * Now check to see if the requested chill time would take us over
5905          * the maximum amount of time allowed in the chill interval.  (Or
5906          * worse, if the calculation itself induces overflow.)
5907          */
5908         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5909             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5910                 *flags |= CPU_DTRACE_ILLOP;
5911                 return;
5912         }
5913
5914         while (dtrace_gethrtime() - now < val)
5915                 continue;
5916
5917         /*
5918          * Normally, we assure that the value of the variable "timestamp" does
5919          * not change within an ECB.  The presence of chill() represents an
5920          * exception to this rule, however.
5921          */
5922         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5923         cpu->cpu_dtrace_chilled += val;
5924 }
5925
5926 static void
5927 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5928     uint64_t *buf, uint64_t arg)
5929 {
5930         int nframes = DTRACE_USTACK_NFRAMES(arg);
5931         int strsize = DTRACE_USTACK_STRSIZE(arg);
5932         uint64_t *pcs = &buf[1], *fps;
5933         char *str = (char *)&pcs[nframes];
5934         int size, offs = 0, i, j;
5935         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5936         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5937         char *sym;
5938
5939         /*
5940          * Should be taking a faster path if string space has not been
5941          * allocated.
5942          */
5943         ASSERT(strsize != 0);
5944
5945         /*
5946          * We will first allocate some temporary space for the frame pointers.
5947          */
5948         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5949         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5950             (nframes * sizeof (uint64_t));
5951
5952         if (!DTRACE_INSCRATCH(mstate, size)) {
5953                 /*
5954                  * Not enough room for our frame pointers -- need to indicate
5955                  * that we ran out of scratch space.
5956                  */
5957                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5958                 return;
5959         }
5960
5961         mstate->dtms_scratch_ptr += size;
5962         saved = mstate->dtms_scratch_ptr;
5963
5964         /*
5965          * Now get a stack with both program counters and frame pointers.
5966          */
5967         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5968         dtrace_getufpstack(buf, fps, nframes + 1);
5969         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5970
5971         /*
5972          * If that faulted, we're cooked.
5973          */
5974         if (*flags & CPU_DTRACE_FAULT)
5975                 goto out;
5976
5977         /*
5978          * Now we want to walk up the stack, calling the USTACK helper.  For
5979          * each iteration, we restore the scratch pointer.
5980          */
5981         for (i = 0; i < nframes; i++) {
5982                 mstate->dtms_scratch_ptr = saved;
5983
5984                 if (offs >= strsize)
5985                         break;
5986
5987                 sym = (char *)(uintptr_t)dtrace_helper(
5988                     DTRACE_HELPER_ACTION_USTACK,
5989                     mstate, state, pcs[i], fps[i]);
5990
5991                 /*
5992                  * If we faulted while running the helper, we're going to
5993                  * clear the fault and null out the corresponding string.
5994                  */
5995                 if (*flags & CPU_DTRACE_FAULT) {
5996                         *flags &= ~CPU_DTRACE_FAULT;
5997                         str[offs++] = '\0';
5998                         continue;
5999                 }
6000
6001                 if (sym == NULL) {
6002                         str[offs++] = '\0';
6003                         continue;
6004                 }
6005
6006                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6007
6008                 /*
6009                  * Now copy in the string that the helper returned to us.
6010                  */
6011                 for (j = 0; offs + j < strsize; j++) {
6012                         if ((str[offs + j] = sym[j]) == '\0')
6013                                 break;
6014                 }
6015
6016                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6017
6018                 offs += j + 1;
6019         }
6020
6021         if (offs >= strsize) {
6022                 /*
6023                  * If we didn't have room for all of the strings, we don't
6024                  * abort processing -- this needn't be a fatal error -- but we
6025                  * still want to increment a counter (dts_stkstroverflows) to
6026                  * allow this condition to be warned about.  (If this is from
6027                  * a jstack() action, it is easily tuned via jstackstrsize.)
6028                  */
6029                 dtrace_error(&state->dts_stkstroverflows);
6030         }
6031
6032         while (offs < strsize)
6033                 str[offs++] = '\0';
6034
6035 out:
6036         mstate->dtms_scratch_ptr = old;
6037 }
6038
6039 /*
6040  * If you're looking for the epicenter of DTrace, you just found it.  This
6041  * is the function called by the provider to fire a probe -- from which all
6042  * subsequent probe-context DTrace activity emanates.
6043  */
6044 void
6045 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6046     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6047 {
6048         processorid_t cpuid;
6049         dtrace_icookie_t cookie;
6050         dtrace_probe_t *probe;
6051         dtrace_mstate_t mstate;
6052         dtrace_ecb_t *ecb;
6053         dtrace_action_t *act;
6054         intptr_t offs;
6055         size_t size;
6056         int vtime, onintr;
6057         volatile uint16_t *flags;
6058         hrtime_t now;
6059
6060         if (panicstr != NULL)
6061                 return;
6062
6063 #if defined(sun)
6064         /*
6065          * Kick out immediately if this CPU is still being born (in which case
6066          * curthread will be set to -1) or the current thread can't allow
6067          * probes in its current context.
6068          */
6069         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6070                 return;
6071 #endif
6072
6073         cookie = dtrace_interrupt_disable();
6074         probe = dtrace_probes[id - 1];
6075         cpuid = curcpu;
6076         onintr = CPU_ON_INTR(CPU);
6077
6078         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6079             probe->dtpr_predcache == curthread->t_predcache) {
6080                 /*
6081                  * We have hit in the predicate cache; we know that
6082                  * this predicate would evaluate to be false.
6083                  */
6084                 dtrace_interrupt_enable(cookie);
6085                 return;
6086         }
6087
6088 #if defined(sun)
6089         if (panic_quiesce) {
6090 #else
6091         if (panicstr != NULL) {
6092 #endif
6093                 /*
6094                  * We don't trace anything if we're panicking.
6095                  */
6096                 dtrace_interrupt_enable(cookie);
6097                 return;
6098         }
6099
6100         now = dtrace_gethrtime();
6101         vtime = dtrace_vtime_references != 0;
6102
6103         if (vtime && curthread->t_dtrace_start)
6104                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6105
6106         mstate.dtms_difo = NULL;
6107         mstate.dtms_probe = probe;
6108         mstate.dtms_strtok = 0;
6109         mstate.dtms_arg[0] = arg0;
6110         mstate.dtms_arg[1] = arg1;
6111         mstate.dtms_arg[2] = arg2;
6112         mstate.dtms_arg[3] = arg3;
6113         mstate.dtms_arg[4] = arg4;
6114
6115         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6116
6117         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6118                 dtrace_predicate_t *pred = ecb->dte_predicate;
6119                 dtrace_state_t *state = ecb->dte_state;
6120                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6121                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6122                 dtrace_vstate_t *vstate = &state->dts_vstate;
6123                 dtrace_provider_t *prov = probe->dtpr_provider;
6124                 uint64_t tracememsize = 0;
6125                 int committed = 0;
6126                 caddr_t tomax;
6127
6128                 /*
6129                  * A little subtlety with the following (seemingly innocuous)
6130                  * declaration of the automatic 'val':  by looking at the
6131                  * code, you might think that it could be declared in the
6132                  * action processing loop, below.  (That is, it's only used in
6133                  * the action processing loop.)  However, it must be declared
6134                  * out of that scope because in the case of DIF expression
6135                  * arguments to aggregating actions, one iteration of the
6136                  * action loop will use the last iteration's value.
6137                  */
6138                 uint64_t val = 0;
6139
6140                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6141                 *flags &= ~CPU_DTRACE_ERROR;
6142
6143                 if (prov == dtrace_provider) {
6144                         /*
6145                          * If dtrace itself is the provider of this probe,
6146                          * we're only going to continue processing the ECB if
6147                          * arg0 (the dtrace_state_t) is equal to the ECB's
6148                          * creating state.  (This prevents disjoint consumers
6149                          * from seeing one another's metaprobes.)
6150                          */
6151                         if (arg0 != (uint64_t)(uintptr_t)state)
6152                                 continue;
6153                 }
6154
6155                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6156                         /*
6157                          * We're not currently active.  If our provider isn't
6158                          * the dtrace pseudo provider, we're not interested.
6159                          */
6160                         if (prov != dtrace_provider)
6161                                 continue;
6162
6163                         /*
6164                          * Now we must further check if we are in the BEGIN
6165                          * probe.  If we are, we will only continue processing
6166                          * if we're still in WARMUP -- if one BEGIN enabling
6167                          * has invoked the exit() action, we don't want to
6168                          * evaluate subsequent BEGIN enablings.
6169                          */
6170                         if (probe->dtpr_id == dtrace_probeid_begin &&
6171                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6172                                 ASSERT(state->dts_activity ==
6173                                     DTRACE_ACTIVITY_DRAINING);
6174                                 continue;
6175                         }
6176                 }
6177
6178                 if (ecb->dte_cond) {
6179                         /*
6180                          * If the dte_cond bits indicate that this
6181                          * consumer is only allowed to see user-mode firings
6182                          * of this probe, call the provider's dtps_usermode()
6183                          * entry point to check that the probe was fired
6184                          * while in a user context. Skip this ECB if that's
6185                          * not the case.
6186                          */
6187                         if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6188                             prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6189                             probe->dtpr_id, probe->dtpr_arg) == 0)
6190                                 continue;
6191
6192 #if defined(sun)
6193                         /*
6194                          * This is more subtle than it looks. We have to be
6195                          * absolutely certain that CRED() isn't going to
6196                          * change out from under us so it's only legit to
6197                          * examine that structure if we're in constrained
6198                          * situations. Currently, the only times we'll this
6199                          * check is if a non-super-user has enabled the
6200                          * profile or syscall providers -- providers that
6201                          * allow visibility of all processes. For the
6202                          * profile case, the check above will ensure that
6203                          * we're examining a user context.
6204                          */
6205                         if (ecb->dte_cond & DTRACE_COND_OWNER) {
6206                                 cred_t *cr;
6207                                 cred_t *s_cr =
6208                                     ecb->dte_state->dts_cred.dcr_cred;
6209                                 proc_t *proc;
6210
6211                                 ASSERT(s_cr != NULL);
6212
6213                                 if ((cr = CRED()) == NULL ||
6214                                     s_cr->cr_uid != cr->cr_uid ||
6215                                     s_cr->cr_uid != cr->cr_ruid ||
6216                                     s_cr->cr_uid != cr->cr_suid ||
6217                                     s_cr->cr_gid != cr->cr_gid ||
6218                                     s_cr->cr_gid != cr->cr_rgid ||
6219                                     s_cr->cr_gid != cr->cr_sgid ||
6220                                     (proc = ttoproc(curthread)) == NULL ||
6221                                     (proc->p_flag & SNOCD))
6222                                         continue;
6223                         }
6224
6225                         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6226                                 cred_t *cr;
6227                                 cred_t *s_cr =
6228                                     ecb->dte_state->dts_cred.dcr_cred;
6229
6230                                 ASSERT(s_cr != NULL);
6231
6232                                 if ((cr = CRED()) == NULL ||
6233                                     s_cr->cr_zone->zone_id !=
6234                                     cr->cr_zone->zone_id)
6235                                         continue;
6236                         }
6237 #endif
6238                 }
6239
6240                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6241                         /*
6242                          * We seem to be dead.  Unless we (a) have kernel
6243                          * destructive permissions (b) have explicitly enabled
6244                          * destructive actions and (c) destructive actions have
6245                          * not been disabled, we're going to transition into
6246                          * the KILLED state, from which no further processing
6247                          * on this state will be performed.
6248                          */
6249                         if (!dtrace_priv_kernel_destructive(state) ||
6250                             !state->dts_cred.dcr_destructive ||
6251                             dtrace_destructive_disallow) {
6252                                 void *activity = &state->dts_activity;
6253                                 dtrace_activity_t current;
6254
6255                                 do {
6256                                         current = state->dts_activity;
6257                                 } while (dtrace_cas32(activity, current,
6258                                     DTRACE_ACTIVITY_KILLED) != current);
6259
6260                                 continue;
6261                         }
6262                 }
6263
6264                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6265                     ecb->dte_alignment, state, &mstate)) < 0)
6266                         continue;
6267
6268                 tomax = buf->dtb_tomax;
6269                 ASSERT(tomax != NULL);
6270
6271                 if (ecb->dte_size != 0) {
6272                         dtrace_rechdr_t dtrh;
6273                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6274                                 mstate.dtms_timestamp = dtrace_gethrtime();
6275                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6276                         }
6277                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6278                         dtrh.dtrh_epid = ecb->dte_epid;
6279                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6280                             mstate.dtms_timestamp);
6281                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6282                 }
6283
6284                 mstate.dtms_epid = ecb->dte_epid;
6285                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6286
6287                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6288                         mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6289                 else
6290                         mstate.dtms_access = 0;
6291
6292                 if (pred != NULL) {
6293                         dtrace_difo_t *dp = pred->dtp_difo;
6294                         int rval;
6295
6296                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6297
6298                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6299                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6300
6301                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6302                                         /*
6303                                          * Update the predicate cache...
6304                                          */
6305                                         ASSERT(cid == pred->dtp_cacheid);
6306                                         curthread->t_predcache = cid;
6307                                 }
6308
6309                                 continue;
6310                         }
6311                 }
6312
6313                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6314                     act != NULL; act = act->dta_next) {
6315                         size_t valoffs;
6316                         dtrace_difo_t *dp;
6317                         dtrace_recdesc_t *rec = &act->dta_rec;
6318
6319                         size = rec->dtrd_size;
6320                         valoffs = offs + rec->dtrd_offset;
6321
6322                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6323                                 uint64_t v = 0xbad;
6324                                 dtrace_aggregation_t *agg;
6325
6326                                 agg = (dtrace_aggregation_t *)act;
6327
6328                                 if ((dp = act->dta_difo) != NULL)
6329                                         v = dtrace_dif_emulate(dp,
6330                                             &mstate, vstate, state);
6331
6332                                 if (*flags & CPU_DTRACE_ERROR)
6333                                         continue;
6334
6335                                 /*
6336                                  * Note that we always pass the expression
6337                                  * value from the previous iteration of the
6338                                  * action loop.  This value will only be used
6339                                  * if there is an expression argument to the
6340                                  * aggregating action, denoted by the
6341                                  * dtag_hasarg field.
6342                                  */
6343                                 dtrace_aggregate(agg, buf,
6344                                     offs, aggbuf, v, val);
6345                                 continue;
6346                         }
6347
6348                         switch (act->dta_kind) {
6349                         case DTRACEACT_STOP:
6350                                 if (dtrace_priv_proc_destructive(state))
6351                                         dtrace_action_stop();
6352                                 continue;
6353
6354                         case DTRACEACT_BREAKPOINT:
6355                                 if (dtrace_priv_kernel_destructive(state))
6356                                         dtrace_action_breakpoint(ecb);
6357                                 continue;
6358
6359                         case DTRACEACT_PANIC:
6360                                 if (dtrace_priv_kernel_destructive(state))
6361                                         dtrace_action_panic(ecb);
6362                                 continue;
6363
6364                         case DTRACEACT_STACK:
6365                                 if (!dtrace_priv_kernel(state))
6366                                         continue;
6367
6368                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6369                                     size / sizeof (pc_t), probe->dtpr_aframes,
6370                                     DTRACE_ANCHORED(probe) ? NULL :
6371                                     (uint32_t *)arg0);
6372                                 continue;
6373
6374                         case DTRACEACT_JSTACK:
6375                         case DTRACEACT_USTACK:
6376                                 if (!dtrace_priv_proc(state))
6377                                         continue;
6378
6379                                 /*
6380                                  * See comment in DIF_VAR_PID.
6381                                  */
6382                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6383                                     CPU_ON_INTR(CPU)) {
6384                                         int depth = DTRACE_USTACK_NFRAMES(
6385                                             rec->dtrd_arg) + 1;
6386
6387                                         dtrace_bzero((void *)(tomax + valoffs),
6388                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6389                                             + depth * sizeof (uint64_t));
6390
6391                                         continue;
6392                                 }
6393
6394                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6395                                     curproc->p_dtrace_helpers != NULL) {
6396                                         /*
6397                                          * This is the slow path -- we have
6398                                          * allocated string space, and we're
6399                                          * getting the stack of a process that
6400                                          * has helpers.  Call into a separate
6401                                          * routine to perform this processing.
6402                                          */
6403                                         dtrace_action_ustack(&mstate, state,
6404                                             (uint64_t *)(tomax + valoffs),
6405                                             rec->dtrd_arg);
6406                                         continue;
6407                                 }
6408
6409                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6410                                 dtrace_getupcstack((uint64_t *)
6411                                     (tomax + valoffs),
6412                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6413                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6414                                 continue;
6415
6416                         default:
6417                                 break;
6418                         }
6419
6420                         dp = act->dta_difo;
6421                         ASSERT(dp != NULL);
6422
6423                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6424
6425                         if (*flags & CPU_DTRACE_ERROR)
6426                                 continue;
6427
6428                         switch (act->dta_kind) {
6429                         case DTRACEACT_SPECULATE: {
6430                                 dtrace_rechdr_t *dtrh;
6431
6432                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6433                                 buf = dtrace_speculation_buffer(state,
6434                                     cpuid, val);
6435
6436                                 if (buf == NULL) {
6437                                         *flags |= CPU_DTRACE_DROP;
6438                                         continue;
6439                                 }
6440
6441                                 offs = dtrace_buffer_reserve(buf,
6442                                     ecb->dte_needed, ecb->dte_alignment,
6443                                     state, NULL);
6444
6445                                 if (offs < 0) {
6446                                         *flags |= CPU_DTRACE_DROP;
6447                                         continue;
6448                                 }
6449
6450                                 tomax = buf->dtb_tomax;
6451                                 ASSERT(tomax != NULL);
6452
6453                                 if (ecb->dte_size == 0)
6454                                         continue;
6455
6456                                 ASSERT3U(ecb->dte_size, >=,
6457                                     sizeof (dtrace_rechdr_t));
6458                                 dtrh = ((void *)(tomax + offs));
6459                                 dtrh->dtrh_epid = ecb->dte_epid;
6460                                 /*
6461                                  * When the speculation is committed, all of
6462                                  * the records in the speculative buffer will
6463                                  * have their timestamps set to the commit
6464                                  * time.  Until then, it is set to a sentinel
6465                                  * value, for debugability.
6466                                  */
6467                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6468                                 continue;
6469                         }
6470
6471                         case DTRACEACT_PRINTM: {
6472                                 /* The DIF returns a 'memref'. */
6473                                 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6474
6475                                 /* Get the size from the memref. */
6476                                 size = memref[1];
6477
6478                                 /*
6479                                  * Check if the size exceeds the allocated
6480                                  * buffer size.
6481                                  */
6482                                 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6483                                         /* Flag a drop! */
6484                                         *flags |= CPU_DTRACE_DROP;
6485                                         continue;
6486                                 }
6487
6488                                 /* Store the size in the buffer first. */
6489                                 DTRACE_STORE(uintptr_t, tomax,
6490                                     valoffs, size);
6491
6492                                 /*
6493                                  * Offset the buffer address to the start
6494                                  * of the data.
6495                                  */
6496                                 valoffs += sizeof(uintptr_t);
6497
6498                                 /*
6499                                  * Reset to the memory address rather than
6500                                  * the memref array, then let the BYREF
6501                                  * code below do the work to store the 
6502                                  * memory data in the buffer.
6503                                  */
6504                                 val = memref[0];
6505                                 break;
6506                         }
6507
6508                         case DTRACEACT_PRINTT: {
6509                                 /* The DIF returns a 'typeref'. */
6510                                 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6511                                 char c = '\0' + 1;
6512                                 size_t s;
6513
6514                                 /*
6515                                  * Get the type string length and round it
6516                                  * up so that the data that follows is
6517                                  * aligned for easy access.
6518                                  */
6519                                 size_t typs = strlen((char *) typeref[2]) + 1;
6520                                 typs = roundup(typs,  sizeof(uintptr_t));
6521
6522                                 /*
6523                                  *Get the size from the typeref using the
6524                                  * number of elements and the type size.
6525                                  */
6526                                 size = typeref[1] * typeref[3];
6527
6528                                 /*
6529                                  * Check if the size exceeds the allocated
6530                                  * buffer size.
6531                                  */
6532                                 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6533                                         /* Flag a drop! */
6534                                         *flags |= CPU_DTRACE_DROP;
6535                                 
6536                                 }
6537
6538                                 /* Store the size in the buffer first. */
6539                                 DTRACE_STORE(uintptr_t, tomax,
6540                                     valoffs, size);
6541                                 valoffs += sizeof(uintptr_t);
6542
6543                                 /* Store the type size in the buffer. */
6544                                 DTRACE_STORE(uintptr_t, tomax,
6545                                     valoffs, typeref[3]);
6546                                 valoffs += sizeof(uintptr_t);
6547
6548                                 val = typeref[2];
6549
6550                                 for (s = 0; s < typs; s++) {
6551                                         if (c != '\0')
6552                                                 c = dtrace_load8(val++);
6553
6554                                         DTRACE_STORE(uint8_t, tomax,
6555                                             valoffs++, c);
6556                                 }
6557
6558                                 /*
6559                                  * Reset to the memory address rather than
6560                                  * the typeref array, then let the BYREF
6561                                  * code below do the work to store the 
6562                                  * memory data in the buffer.
6563                                  */
6564                                 val = typeref[0];
6565                                 break;
6566                         }
6567
6568                         case DTRACEACT_CHILL:
6569                                 if (dtrace_priv_kernel_destructive(state))
6570                                         dtrace_action_chill(&mstate, val);
6571                                 continue;
6572
6573                         case DTRACEACT_RAISE:
6574                                 if (dtrace_priv_proc_destructive(state))
6575                                         dtrace_action_raise(val);
6576                                 continue;
6577
6578                         case DTRACEACT_COMMIT:
6579                                 ASSERT(!committed);
6580
6581                                 /*
6582                                  * We need to commit our buffer state.
6583                                  */
6584                                 if (ecb->dte_size)
6585                                         buf->dtb_offset = offs + ecb->dte_size;
6586                                 buf = &state->dts_buffer[cpuid];
6587                                 dtrace_speculation_commit(state, cpuid, val);
6588                                 committed = 1;
6589                                 continue;
6590
6591                         case DTRACEACT_DISCARD:
6592                                 dtrace_speculation_discard(state, cpuid, val);
6593                                 continue;
6594
6595                         case DTRACEACT_DIFEXPR:
6596                         case DTRACEACT_LIBACT:
6597                         case DTRACEACT_PRINTF:
6598                         case DTRACEACT_PRINTA:
6599                         case DTRACEACT_SYSTEM:
6600                         case DTRACEACT_FREOPEN:
6601                         case DTRACEACT_TRACEMEM:
6602                                 break;
6603
6604                         case DTRACEACT_TRACEMEM_DYNSIZE:
6605                                 tracememsize = val;
6606                                 break;
6607
6608                         case DTRACEACT_SYM:
6609                         case DTRACEACT_MOD:
6610                                 if (!dtrace_priv_kernel(state))
6611                                         continue;
6612                                 break;
6613
6614                         case DTRACEACT_USYM:
6615                         case DTRACEACT_UMOD:
6616                         case DTRACEACT_UADDR: {
6617 #if defined(sun)
6618                                 struct pid *pid = curthread->t_procp->p_pidp;
6619 #endif
6620
6621                                 if (!dtrace_priv_proc(state))
6622                                         continue;
6623
6624                                 DTRACE_STORE(uint64_t, tomax,
6625 #if defined(sun)
6626                                     valoffs, (uint64_t)pid->pid_id);
6627 #else
6628                                     valoffs, (uint64_t) curproc->p_pid);
6629 #endif
6630                                 DTRACE_STORE(uint64_t, tomax,
6631                                     valoffs + sizeof (uint64_t), val);
6632
6633                                 continue;
6634                         }
6635
6636                         case DTRACEACT_EXIT: {
6637                                 /*
6638                                  * For the exit action, we are going to attempt
6639                                  * to atomically set our activity to be
6640                                  * draining.  If this fails (either because
6641                                  * another CPU has beat us to the exit action,
6642                                  * or because our current activity is something
6643                                  * other than ACTIVE or WARMUP), we will
6644                                  * continue.  This assures that the exit action
6645                                  * can be successfully recorded at most once
6646                                  * when we're in the ACTIVE state.  If we're
6647                                  * encountering the exit() action while in
6648                                  * COOLDOWN, however, we want to honor the new
6649                                  * status code.  (We know that we're the only
6650                                  * thread in COOLDOWN, so there is no race.)
6651                                  */
6652                                 void *activity = &state->dts_activity;
6653                                 dtrace_activity_t current = state->dts_activity;
6654
6655                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6656                                         break;
6657
6658                                 if (current != DTRACE_ACTIVITY_WARMUP)
6659                                         current = DTRACE_ACTIVITY_ACTIVE;
6660
6661                                 if (dtrace_cas32(activity, current,
6662                                     DTRACE_ACTIVITY_DRAINING) != current) {
6663                                         *flags |= CPU_DTRACE_DROP;
6664                                         continue;
6665                                 }
6666
6667                                 break;
6668                         }
6669
6670                         default:
6671                                 ASSERT(0);
6672                         }
6673
6674                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6675                                 uintptr_t end = valoffs + size;
6676
6677                                 if (tracememsize != 0 &&
6678                                     valoffs + tracememsize < end) {
6679                                         end = valoffs + tracememsize;
6680                                         tracememsize = 0;
6681                                 }
6682
6683                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6684                                     &dp->dtdo_rtype, &mstate, vstate))
6685                                         continue;
6686
6687                                 /*
6688                                  * If this is a string, we're going to only
6689                                  * load until we find the zero byte -- after
6690                                  * which we'll store zero bytes.
6691                                  */
6692                                 if (dp->dtdo_rtype.dtdt_kind ==
6693                                     DIF_TYPE_STRING) {
6694                                         char c = '\0' + 1;
6695                                         int intuple = act->dta_intuple;
6696                                         size_t s;
6697
6698                                         for (s = 0; s < size; s++) {
6699                                                 if (c != '\0')
6700                                                         c = dtrace_load8(val++);
6701
6702                                                 DTRACE_STORE(uint8_t, tomax,
6703                                                     valoffs++, c);
6704
6705                                                 if (c == '\0' && intuple)
6706                                                         break;
6707                                         }
6708
6709                                         continue;
6710                                 }
6711
6712                                 while (valoffs < end) {
6713                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6714                                             dtrace_load8(val++));
6715                                 }
6716
6717                                 continue;
6718                         }
6719
6720                         switch (size) {
6721                         case 0:
6722                                 break;
6723
6724                         case sizeof (uint8_t):
6725                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6726                                 break;
6727                         case sizeof (uint16_t):
6728                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6729                                 break;
6730                         case sizeof (uint32_t):
6731                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6732                                 break;
6733                         case sizeof (uint64_t):
6734                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6735                                 break;
6736                         default:
6737                                 /*
6738                                  * Any other size should have been returned by
6739                                  * reference, not by value.
6740                                  */
6741                                 ASSERT(0);
6742                                 break;
6743                         }
6744                 }
6745
6746                 if (*flags & CPU_DTRACE_DROP)
6747                         continue;
6748
6749                 if (*flags & CPU_DTRACE_FAULT) {
6750                         int ndx;
6751                         dtrace_action_t *err;
6752
6753                         buf->dtb_errors++;
6754
6755                         if (probe->dtpr_id == dtrace_probeid_error) {
6756                                 /*
6757                                  * There's nothing we can do -- we had an
6758                                  * error on the error probe.  We bump an
6759                                  * error counter to at least indicate that
6760                                  * this condition happened.
6761                                  */
6762                                 dtrace_error(&state->dts_dblerrors);
6763                                 continue;
6764                         }
6765
6766                         if (vtime) {
6767                                 /*
6768                                  * Before recursing on dtrace_probe(), we
6769                                  * need to explicitly clear out our start
6770                                  * time to prevent it from being accumulated
6771                                  * into t_dtrace_vtime.
6772                                  */
6773                                 curthread->t_dtrace_start = 0;
6774                         }
6775
6776                         /*
6777                          * Iterate over the actions to figure out which action
6778                          * we were processing when we experienced the error.
6779                          * Note that act points _past_ the faulting action; if
6780                          * act is ecb->dte_action, the fault was in the
6781                          * predicate, if it's ecb->dte_action->dta_next it's
6782                          * in action #1, and so on.
6783                          */
6784                         for (err = ecb->dte_action, ndx = 0;
6785                             err != act; err = err->dta_next, ndx++)
6786                                 continue;
6787
6788                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6789                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6790                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6791                             cpu_core[cpuid].cpuc_dtrace_illval);
6792
6793                         continue;
6794                 }
6795
6796                 if (!committed)
6797                         buf->dtb_offset = offs + ecb->dte_size;
6798         }
6799
6800         if (vtime)
6801                 curthread->t_dtrace_start = dtrace_gethrtime();
6802
6803         dtrace_interrupt_enable(cookie);
6804 }
6805
6806 /*
6807  * DTrace Probe Hashing Functions
6808  *
6809  * The functions in this section (and indeed, the functions in remaining
6810  * sections) are not _called_ from probe context.  (Any exceptions to this are
6811  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6812  * DTrace framework to look-up probes in, add probes to and remove probes from
6813  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6814  * probe tuple -- allowing for fast lookups, regardless of what was
6815  * specified.)
6816  */
6817 static uint_t
6818 dtrace_hash_str(const char *p)
6819 {
6820         unsigned int g;
6821         uint_t hval = 0;
6822
6823         while (*p) {
6824                 hval = (hval << 4) + *p++;
6825                 if ((g = (hval & 0xf0000000)) != 0)
6826                         hval ^= g >> 24;
6827                 hval &= ~g;
6828         }
6829         return (hval);
6830 }
6831
6832 static dtrace_hash_t *
6833 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6834 {
6835         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6836
6837         hash->dth_stroffs = stroffs;
6838         hash->dth_nextoffs = nextoffs;
6839         hash->dth_prevoffs = prevoffs;
6840
6841         hash->dth_size = 1;
6842         hash->dth_mask = hash->dth_size - 1;
6843
6844         hash->dth_tab = kmem_zalloc(hash->dth_size *
6845             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6846
6847         return (hash);
6848 }
6849
6850 static void
6851 dtrace_hash_destroy(dtrace_hash_t *hash)
6852 {
6853 #ifdef DEBUG
6854         int i;
6855
6856         for (i = 0; i < hash->dth_size; i++)
6857                 ASSERT(hash->dth_tab[i] == NULL);
6858 #endif
6859
6860         kmem_free(hash->dth_tab,
6861             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6862         kmem_free(hash, sizeof (dtrace_hash_t));
6863 }
6864
6865 static void
6866 dtrace_hash_resize(dtrace_hash_t *hash)
6867 {
6868         int size = hash->dth_size, i, ndx;
6869         int new_size = hash->dth_size << 1;
6870         int new_mask = new_size - 1;
6871         dtrace_hashbucket_t **new_tab, *bucket, *next;
6872
6873         ASSERT((new_size & new_mask) == 0);
6874
6875         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6876
6877         for (i = 0; i < size; i++) {
6878                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6879                         dtrace_probe_t *probe = bucket->dthb_chain;
6880
6881                         ASSERT(probe != NULL);
6882                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6883
6884                         next = bucket->dthb_next;
6885                         bucket->dthb_next = new_tab[ndx];
6886                         new_tab[ndx] = bucket;
6887                 }
6888         }
6889
6890         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6891         hash->dth_tab = new_tab;
6892         hash->dth_size = new_size;
6893         hash->dth_mask = new_mask;
6894 }
6895
6896 static void
6897 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6898 {
6899         int hashval = DTRACE_HASHSTR(hash, new);
6900         int ndx = hashval & hash->dth_mask;
6901         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6902         dtrace_probe_t **nextp, **prevp;
6903
6904         for (; bucket != NULL; bucket = bucket->dthb_next) {
6905                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6906                         goto add;
6907         }
6908
6909         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6910                 dtrace_hash_resize(hash);
6911                 dtrace_hash_add(hash, new);
6912                 return;
6913         }
6914
6915         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6916         bucket->dthb_next = hash->dth_tab[ndx];
6917         hash->dth_tab[ndx] = bucket;
6918         hash->dth_nbuckets++;
6919
6920 add:
6921         nextp = DTRACE_HASHNEXT(hash, new);
6922         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6923         *nextp = bucket->dthb_chain;
6924
6925         if (bucket->dthb_chain != NULL) {
6926                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6927                 ASSERT(*prevp == NULL);
6928                 *prevp = new;
6929         }
6930
6931         bucket->dthb_chain = new;
6932         bucket->dthb_len++;
6933 }
6934
6935 static dtrace_probe_t *
6936 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6937 {
6938         int hashval = DTRACE_HASHSTR(hash, template);
6939         int ndx = hashval & hash->dth_mask;
6940         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6941
6942         for (; bucket != NULL; bucket = bucket->dthb_next) {
6943                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6944                         return (bucket->dthb_chain);
6945         }
6946
6947         return (NULL);
6948 }
6949
6950 static int
6951 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6952 {
6953         int hashval = DTRACE_HASHSTR(hash, template);
6954         int ndx = hashval & hash->dth_mask;
6955         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6956
6957         for (; bucket != NULL; bucket = bucket->dthb_next) {
6958                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6959                         return (bucket->dthb_len);
6960         }
6961
6962         return (0);
6963 }
6964
6965 static void
6966 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6967 {
6968         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6969         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6970
6971         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6972         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6973
6974         /*
6975          * Find the bucket that we're removing this probe from.
6976          */
6977         for (; bucket != NULL; bucket = bucket->dthb_next) {
6978                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6979                         break;
6980         }
6981
6982         ASSERT(bucket != NULL);
6983
6984         if (*prevp == NULL) {
6985                 if (*nextp == NULL) {
6986                         /*
6987                          * The removed probe was the only probe on this
6988                          * bucket; we need to remove the bucket.
6989                          */
6990                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6991
6992                         ASSERT(bucket->dthb_chain == probe);
6993                         ASSERT(b != NULL);
6994
6995                         if (b == bucket) {
6996                                 hash->dth_tab[ndx] = bucket->dthb_next;
6997                         } else {
6998                                 while (b->dthb_next != bucket)
6999                                         b = b->dthb_next;
7000                                 b->dthb_next = bucket->dthb_next;
7001                         }
7002
7003                         ASSERT(hash->dth_nbuckets > 0);
7004                         hash->dth_nbuckets--;
7005                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7006                         return;
7007                 }
7008
7009                 bucket->dthb_chain = *nextp;
7010         } else {
7011                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7012         }
7013
7014         if (*nextp != NULL)
7015                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7016 }
7017
7018 /*
7019  * DTrace Utility Functions
7020  *
7021  * These are random utility functions that are _not_ called from probe context.
7022  */
7023 static int
7024 dtrace_badattr(const dtrace_attribute_t *a)
7025 {
7026         return (a->dtat_name > DTRACE_STABILITY_MAX ||
7027             a->dtat_data > DTRACE_STABILITY_MAX ||
7028             a->dtat_class > DTRACE_CLASS_MAX);
7029 }
7030
7031 /*
7032  * Return a duplicate copy of a string.  If the specified string is NULL,
7033  * this function returns a zero-length string.
7034  */
7035 static char *
7036 dtrace_strdup(const char *str)
7037 {
7038         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7039
7040         if (str != NULL)
7041                 (void) strcpy(new, str);
7042
7043         return (new);
7044 }
7045
7046 #define DTRACE_ISALPHA(c)       \
7047         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7048
7049 static int
7050 dtrace_badname(const char *s)
7051 {
7052         char c;
7053
7054         if (s == NULL || (c = *s++) == '\0')
7055                 return (0);
7056
7057         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7058                 return (1);
7059
7060         while ((c = *s++) != '\0') {
7061                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7062                     c != '-' && c != '_' && c != '.' && c != '`')
7063                         return (1);
7064         }
7065
7066         return (0);
7067 }
7068
7069 static void
7070 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7071 {
7072         uint32_t priv;
7073
7074 #if defined(sun)
7075         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7076                 /*
7077                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7078                  */
7079                 priv = DTRACE_PRIV_ALL;
7080         } else {
7081                 *uidp = crgetuid(cr);
7082                 *zoneidp = crgetzoneid(cr);
7083
7084                 priv = 0;
7085                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7086                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7087                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7088                         priv |= DTRACE_PRIV_USER;
7089                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7090                         priv |= DTRACE_PRIV_PROC;
7091                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7092                         priv |= DTRACE_PRIV_OWNER;
7093                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7094                         priv |= DTRACE_PRIV_ZONEOWNER;
7095         }
7096 #else
7097         priv = DTRACE_PRIV_ALL;
7098 #endif
7099
7100         *privp = priv;
7101 }
7102
7103 #ifdef DTRACE_ERRDEBUG
7104 static void
7105 dtrace_errdebug(const char *str)
7106 {
7107         int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7108         int occupied = 0;
7109
7110         mutex_enter(&dtrace_errlock);
7111         dtrace_errlast = str;
7112         dtrace_errthread = curthread;
7113
7114         while (occupied++ < DTRACE_ERRHASHSZ) {
7115                 if (dtrace_errhash[hval].dter_msg == str) {
7116                         dtrace_errhash[hval].dter_count++;
7117                         goto out;
7118                 }
7119
7120                 if (dtrace_errhash[hval].dter_msg != NULL) {
7121                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7122                         continue;
7123                 }
7124
7125                 dtrace_errhash[hval].dter_msg = str;
7126                 dtrace_errhash[hval].dter_count = 1;
7127                 goto out;
7128         }
7129
7130         panic("dtrace: undersized error hash");
7131 out:
7132         mutex_exit(&dtrace_errlock);
7133 }
7134 #endif
7135
7136 /*
7137  * DTrace Matching Functions
7138  *
7139  * These functions are used to match groups of probes, given some elements of
7140  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7141  */
7142 static int
7143 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7144     zoneid_t zoneid)
7145 {
7146         if (priv != DTRACE_PRIV_ALL) {
7147                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7148                 uint32_t match = priv & ppriv;
7149
7150                 /*
7151                  * No PRIV_DTRACE_* privileges...
7152                  */
7153                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7154                     DTRACE_PRIV_KERNEL)) == 0)
7155                         return (0);
7156
7157                 /*
7158                  * No matching bits, but there were bits to match...
7159                  */
7160                 if (match == 0 && ppriv != 0)
7161                         return (0);
7162
7163                 /*
7164                  * Need to have permissions to the process, but don't...
7165                  */
7166                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7167                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7168                         return (0);
7169                 }
7170
7171                 /*
7172                  * Need to be in the same zone unless we possess the
7173                  * privilege to examine all zones.
7174                  */
7175                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7176                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7177                         return (0);
7178                 }
7179         }
7180
7181         return (1);
7182 }
7183
7184 /*
7185  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7186  * consists of input pattern strings and an ops-vector to evaluate them.
7187  * This function returns >0 for match, 0 for no match, and <0 for error.
7188  */
7189 static int
7190 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7191     uint32_t priv, uid_t uid, zoneid_t zoneid)
7192 {
7193         dtrace_provider_t *pvp = prp->dtpr_provider;
7194         int rv;
7195
7196         if (pvp->dtpv_defunct)
7197                 return (0);
7198
7199         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7200                 return (rv);
7201
7202         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7203                 return (rv);
7204
7205         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7206                 return (rv);
7207
7208         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7209                 return (rv);
7210
7211         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7212                 return (0);
7213
7214         return (rv);
7215 }
7216
7217 /*
7218  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7219  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7220  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7221  * In addition, all of the recursion cases except for '*' matching have been
7222  * unwound.  For '*', we still implement recursive evaluation, but a depth
7223  * counter is maintained and matching is aborted if we recurse too deep.
7224  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7225  */
7226 static int
7227 dtrace_match_glob(const char *s, const char *p, int depth)
7228 {
7229         const char *olds;
7230         char s1, c;
7231         int gs;
7232
7233         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7234                 return (-1);
7235
7236         if (s == NULL)
7237                 s = ""; /* treat NULL as empty string */
7238
7239 top:
7240         olds = s;
7241         s1 = *s++;
7242
7243         if (p == NULL)
7244                 return (0);
7245
7246         if ((c = *p++) == '\0')
7247                 return (s1 == '\0');
7248
7249         switch (c) {
7250         case '[': {
7251                 int ok = 0, notflag = 0;
7252                 char lc = '\0';
7253
7254                 if (s1 == '\0')
7255                         return (0);
7256
7257                 if (*p == '!') {
7258                         notflag = 1;
7259                         p++;
7260                 }
7261
7262                 if ((c = *p++) == '\0')
7263                         return (0);
7264
7265                 do {
7266                         if (c == '-' && lc != '\0' && *p != ']') {
7267                                 if ((c = *p++) == '\0')
7268                                         return (0);
7269                                 if (c == '\\' && (c = *p++) == '\0')
7270                                         return (0);
7271
7272                                 if (notflag) {
7273                                         if (s1 < lc || s1 > c)
7274                                                 ok++;
7275                                         else
7276                                                 return (0);
7277                                 } else if (lc <= s1 && s1 <= c)
7278                                         ok++;
7279
7280                         } else if (c == '\\' && (c = *p++) == '\0')
7281                                 return (0);
7282
7283                         lc = c; /* save left-hand 'c' for next iteration */
7284
7285                         if (notflag) {
7286                                 if (s1 != c)
7287                                         ok++;
7288                                 else
7289                                         return (0);
7290                         } else if (s1 == c)
7291                                 ok++;
7292
7293                         if ((c = *p++) == '\0')
7294                                 return (0);
7295
7296                 } while (c != ']');
7297
7298                 if (ok)
7299                         goto top;
7300
7301                 return (0);
7302         }
7303
7304         case '\\':
7305                 if ((c = *p++) == '\0')
7306                         return (0);
7307                 /*FALLTHRU*/
7308
7309         default:
7310                 if (c != s1)
7311                         return (0);
7312                 /*FALLTHRU*/
7313
7314         case '?':
7315                 if (s1 != '\0')
7316                         goto top;
7317                 return (0);
7318
7319         case '*':
7320                 while (*p == '*')
7321                         p++; /* consecutive *'s are identical to a single one */
7322
7323                 if (*p == '\0')
7324                         return (1);
7325
7326                 for (s = olds; *s != '\0'; s++) {
7327                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7328                                 return (gs);
7329                 }
7330
7331                 return (0);
7332         }
7333 }
7334
7335 /*ARGSUSED*/
7336 static int
7337 dtrace_match_string(const char *s, const char *p, int depth)
7338 {
7339         return (s != NULL && strcmp(s, p) == 0);
7340 }
7341
7342 /*ARGSUSED*/
7343 static int
7344 dtrace_match_nul(const char *s, const char *p, int depth)
7345 {
7346         return (1); /* always match the empty pattern */
7347 }
7348
7349 /*ARGSUSED*/
7350 static int
7351 dtrace_match_nonzero(const char *s, const char *p, int depth)
7352 {
7353         return (s != NULL && s[0] != '\0');
7354 }
7355
7356 static int
7357 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7358     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7359 {
7360         dtrace_probe_t template, *probe;
7361         dtrace_hash_t *hash = NULL;
7362         int len, best = INT_MAX, nmatched = 0;
7363         dtrace_id_t i;
7364
7365         ASSERT(MUTEX_HELD(&dtrace_lock));
7366
7367         /*
7368          * If the probe ID is specified in the key, just lookup by ID and
7369          * invoke the match callback once if a matching probe is found.
7370          */
7371         if (pkp->dtpk_id != DTRACE_IDNONE) {
7372                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7373                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7374                         (void) (*matched)(probe, arg);
7375                         nmatched++;
7376                 }
7377                 return (nmatched);
7378         }
7379
7380         template.dtpr_mod = (char *)pkp->dtpk_mod;
7381         template.dtpr_func = (char *)pkp->dtpk_func;
7382         template.dtpr_name = (char *)pkp->dtpk_name;
7383
7384         /*
7385          * We want to find the most distinct of the module name, function
7386          * name, and name.  So for each one that is not a glob pattern or
7387          * empty string, we perform a lookup in the corresponding hash and
7388          * use the hash table with the fewest collisions to do our search.
7389          */
7390         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7391             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7392                 best = len;
7393                 hash = dtrace_bymod;
7394         }
7395
7396         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7397             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7398                 best = len;
7399                 hash = dtrace_byfunc;
7400         }
7401
7402         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7403             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7404                 best = len;
7405                 hash = dtrace_byname;
7406         }
7407
7408         /*
7409          * If we did not select a hash table, iterate over every probe and
7410          * invoke our callback for each one that matches our input probe key.
7411          */
7412         if (hash == NULL) {
7413                 for (i = 0; i < dtrace_nprobes; i++) {
7414                         if ((probe = dtrace_probes[i]) == NULL ||
7415                             dtrace_match_probe(probe, pkp, priv, uid,
7416                             zoneid) <= 0)
7417                                 continue;
7418
7419                         nmatched++;
7420
7421                         if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7422                                 break;
7423                 }
7424
7425                 return (nmatched);
7426         }
7427
7428         /*
7429          * If we selected a hash table, iterate over each probe of the same key
7430          * name and invoke the callback for every probe that matches the other
7431          * attributes of our input probe key.
7432          */
7433         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7434             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7435
7436                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7437                         continue;
7438
7439                 nmatched++;
7440
7441                 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7442                         break;
7443         }
7444
7445         return (nmatched);
7446 }
7447
7448 /*
7449  * Return the function pointer dtrace_probecmp() should use to compare the
7450  * specified pattern with a string.  For NULL or empty patterns, we select
7451  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7452  * For non-empty non-glob strings, we use dtrace_match_string().
7453  */
7454 static dtrace_probekey_f *
7455 dtrace_probekey_func(const char *p)
7456 {
7457         char c;
7458
7459         if (p == NULL || *p == '\0')
7460                 return (&dtrace_match_nul);
7461
7462         while ((c = *p++) != '\0') {
7463                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7464                         return (&dtrace_match_glob);
7465         }
7466
7467         return (&dtrace_match_string);
7468 }
7469
7470 /*
7471  * Build a probe comparison key for use with dtrace_match_probe() from the
7472  * given probe description.  By convention, a null key only matches anchored
7473  * probes: if each field is the empty string, reset dtpk_fmatch to
7474  * dtrace_match_nonzero().
7475  */
7476 static void
7477 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7478 {
7479         pkp->dtpk_prov = pdp->dtpd_provider;
7480         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7481
7482         pkp->dtpk_mod = pdp->dtpd_mod;
7483         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7484
7485         pkp->dtpk_func = pdp->dtpd_func;
7486         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7487
7488         pkp->dtpk_name = pdp->dtpd_name;
7489         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7490
7491         pkp->dtpk_id = pdp->dtpd_id;
7492
7493         if (pkp->dtpk_id == DTRACE_IDNONE &&
7494             pkp->dtpk_pmatch == &dtrace_match_nul &&
7495             pkp->dtpk_mmatch == &dtrace_match_nul &&
7496             pkp->dtpk_fmatch == &dtrace_match_nul &&
7497             pkp->dtpk_nmatch == &dtrace_match_nul)
7498                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7499 }
7500
7501 /*
7502  * DTrace Provider-to-Framework API Functions
7503  *
7504  * These functions implement much of the Provider-to-Framework API, as
7505  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7506  * the functions in the API for probe management (found below), and
7507  * dtrace_probe() itself (found above).
7508  */
7509
7510 /*
7511  * Register the calling provider with the DTrace framework.  This should
7512  * generally be called by DTrace providers in their attach(9E) entry point.
7513  */
7514 int
7515 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7516     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7517 {
7518         dtrace_provider_t *provider;
7519
7520         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7521                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7522                     "arguments", name ? name : "<NULL>");
7523                 return (EINVAL);
7524         }
7525
7526         if (name[0] == '\0' || dtrace_badname(name)) {
7527                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7528                     "provider name", name);
7529                 return (EINVAL);
7530         }
7531
7532         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7533             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7534             pops->dtps_destroy == NULL ||
7535             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7536                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7537                     "provider ops", name);
7538                 return (EINVAL);
7539         }
7540
7541         if (dtrace_badattr(&pap->dtpa_provider) ||
7542             dtrace_badattr(&pap->dtpa_mod) ||
7543             dtrace_badattr(&pap->dtpa_func) ||
7544             dtrace_badattr(&pap->dtpa_name) ||
7545             dtrace_badattr(&pap->dtpa_args)) {
7546                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7547                     "provider attributes", name);
7548                 return (EINVAL);
7549         }
7550
7551         if (priv & ~DTRACE_PRIV_ALL) {
7552                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7553                     "privilege attributes", name);
7554                 return (EINVAL);
7555         }
7556
7557         if ((priv & DTRACE_PRIV_KERNEL) &&
7558             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7559             pops->dtps_usermode == NULL) {
7560                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7561                     "dtps_usermode() op for given privilege attributes", name);
7562                 return (EINVAL);
7563         }
7564
7565         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7566         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7567         (void) strcpy(provider->dtpv_name, name);
7568
7569         provider->dtpv_attr = *pap;
7570         provider->dtpv_priv.dtpp_flags = priv;
7571         if (cr != NULL) {
7572                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7573                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7574         }
7575         provider->dtpv_pops = *pops;
7576
7577         if (pops->dtps_provide == NULL) {
7578                 ASSERT(pops->dtps_provide_module != NULL);
7579                 provider->dtpv_pops.dtps_provide =
7580                     (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7581         }
7582
7583         if (pops->dtps_provide_module == NULL) {
7584                 ASSERT(pops->dtps_provide != NULL);
7585                 provider->dtpv_pops.dtps_provide_module =
7586                     (void (*)(void *, modctl_t *))dtrace_nullop;
7587         }
7588
7589         if (pops->dtps_suspend == NULL) {
7590                 ASSERT(pops->dtps_resume == NULL);
7591                 provider->dtpv_pops.dtps_suspend =
7592                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7593                 provider->dtpv_pops.dtps_resume =
7594                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7595         }
7596
7597         provider->dtpv_arg = arg;
7598         *idp = (dtrace_provider_id_t)provider;
7599
7600         if (pops == &dtrace_provider_ops) {
7601                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7602                 ASSERT(MUTEX_HELD(&dtrace_lock));
7603                 ASSERT(dtrace_anon.dta_enabling == NULL);
7604
7605                 /*
7606                  * We make sure that the DTrace provider is at the head of
7607                  * the provider chain.
7608                  */
7609                 provider->dtpv_next = dtrace_provider;
7610                 dtrace_provider = provider;
7611                 return (0);
7612         }
7613
7614         mutex_enter(&dtrace_provider_lock);
7615         mutex_enter(&dtrace_lock);
7616
7617         /*
7618          * If there is at least one provider registered, we'll add this
7619          * provider after the first provider.
7620          */
7621         if (dtrace_provider != NULL) {
7622                 provider->dtpv_next = dtrace_provider->dtpv_next;
7623                 dtrace_provider->dtpv_next = provider;
7624         } else {
7625                 dtrace_provider = provider;
7626         }
7627
7628         if (dtrace_retained != NULL) {
7629                 dtrace_enabling_provide(provider);
7630
7631                 /*
7632                  * Now we need to call dtrace_enabling_matchall() -- which
7633                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7634                  * to drop all of our locks before calling into it...
7635                  */
7636                 mutex_exit(&dtrace_lock);
7637                 mutex_exit(&dtrace_provider_lock);
7638                 dtrace_enabling_matchall();
7639
7640                 return (0);
7641         }
7642
7643         mutex_exit(&dtrace_lock);
7644         mutex_exit(&dtrace_provider_lock);
7645
7646         return (0);
7647 }
7648
7649 /*
7650  * Unregister the specified provider from the DTrace framework.  This should
7651  * generally be called by DTrace providers in their detach(9E) entry point.
7652  */
7653 int
7654 dtrace_unregister(dtrace_provider_id_t id)
7655 {
7656         dtrace_provider_t *old = (dtrace_provider_t *)id;
7657         dtrace_provider_t *prev = NULL;
7658         int i, self = 0, noreap = 0;
7659         dtrace_probe_t *probe, *first = NULL;
7660
7661         if (old->dtpv_pops.dtps_enable ==
7662             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7663                 /*
7664                  * If DTrace itself is the provider, we're called with locks
7665                  * already held.
7666                  */
7667                 ASSERT(old == dtrace_provider);
7668 #if defined(sun)
7669                 ASSERT(dtrace_devi != NULL);
7670 #endif
7671                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7672                 ASSERT(MUTEX_HELD(&dtrace_lock));
7673                 self = 1;
7674
7675                 if (dtrace_provider->dtpv_next != NULL) {
7676                         /*
7677                          * There's another provider here; return failure.
7678                          */
7679                         return (EBUSY);
7680                 }
7681         } else {
7682                 mutex_enter(&dtrace_provider_lock);
7683 #if defined(sun)
7684                 mutex_enter(&mod_lock);
7685 #endif
7686                 mutex_enter(&dtrace_lock);
7687         }
7688
7689         /*
7690          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7691          * probes, we refuse to let providers slither away, unless this
7692          * provider has already been explicitly invalidated.
7693          */
7694         if (!old->dtpv_defunct &&
7695             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7696             dtrace_anon.dta_state->dts_necbs > 0))) {
7697                 if (!self) {
7698                         mutex_exit(&dtrace_lock);
7699 #if defined(sun)
7700                         mutex_exit(&mod_lock);
7701 #endif
7702                         mutex_exit(&dtrace_provider_lock);
7703                 }
7704                 return (EBUSY);
7705         }
7706
7707         /*
7708          * Attempt to destroy the probes associated with this provider.
7709          */
7710         for (i = 0; i < dtrace_nprobes; i++) {
7711                 if ((probe = dtrace_probes[i]) == NULL)
7712                         continue;
7713
7714                 if (probe->dtpr_provider != old)
7715                         continue;
7716
7717                 if (probe->dtpr_ecb == NULL)
7718                         continue;
7719
7720                 /*
7721                  * If we are trying to unregister a defunct provider, and the
7722                  * provider was made defunct within the interval dictated by
7723                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7724                  * attempt to reap our enablings.  To denote that the provider
7725                  * should reattempt to unregister itself at some point in the
7726                  * future, we will return a differentiable error code (EAGAIN
7727                  * instead of EBUSY) in this case.
7728                  */
7729                 if (dtrace_gethrtime() - old->dtpv_defunct >
7730                     dtrace_unregister_defunct_reap)
7731                         noreap = 1;
7732
7733                 if (!self) {
7734                         mutex_exit(&dtrace_lock);
7735 #if defined(sun)
7736                         mutex_exit(&mod_lock);
7737 #endif
7738                         mutex_exit(&dtrace_provider_lock);
7739                 }
7740
7741                 if (noreap)
7742                         return (EBUSY);
7743
7744                 (void) taskq_dispatch(dtrace_taskq,
7745                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7746
7747                 return (EAGAIN);
7748         }
7749
7750         /*
7751          * All of the probes for this provider are disabled; we can safely
7752          * remove all of them from their hash chains and from the probe array.
7753          */
7754         for (i = 0; i < dtrace_nprobes; i++) {
7755                 if ((probe = dtrace_probes[i]) == NULL)
7756                         continue;
7757
7758                 if (probe->dtpr_provider != old)
7759                         continue;
7760
7761                 dtrace_probes[i] = NULL;
7762
7763                 dtrace_hash_remove(dtrace_bymod, probe);
7764                 dtrace_hash_remove(dtrace_byfunc, probe);
7765                 dtrace_hash_remove(dtrace_byname, probe);
7766
7767                 if (first == NULL) {
7768                         first = probe;
7769                         probe->dtpr_nextmod = NULL;
7770                 } else {
7771                         probe->dtpr_nextmod = first;
7772                         first = probe;
7773                 }
7774         }
7775
7776         /*
7777          * The provider's probes have been removed from the hash chains and
7778          * from the probe array.  Now issue a dtrace_sync() to be sure that
7779          * everyone has cleared out from any probe array processing.
7780          */
7781         dtrace_sync();
7782
7783         for (probe = first; probe != NULL; probe = first) {
7784                 first = probe->dtpr_nextmod;
7785
7786                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7787                     probe->dtpr_arg);
7788                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7789                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7790                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7791 #if defined(sun)
7792                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7793 #else
7794                 free_unr(dtrace_arena, probe->dtpr_id);
7795 #endif
7796                 kmem_free(probe, sizeof (dtrace_probe_t));
7797         }
7798
7799         if ((prev = dtrace_provider) == old) {
7800 #if defined(sun)
7801                 ASSERT(self || dtrace_devi == NULL);
7802                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7803 #endif
7804                 dtrace_provider = old->dtpv_next;
7805         } else {
7806                 while (prev != NULL && prev->dtpv_next != old)
7807                         prev = prev->dtpv_next;
7808
7809                 if (prev == NULL) {
7810                         panic("attempt to unregister non-existent "
7811                             "dtrace provider %p\n", (void *)id);
7812                 }
7813
7814                 prev->dtpv_next = old->dtpv_next;
7815         }
7816
7817         if (!self) {
7818                 mutex_exit(&dtrace_lock);
7819 #if defined(sun)
7820                 mutex_exit(&mod_lock);
7821 #endif
7822                 mutex_exit(&dtrace_provider_lock);
7823         }
7824
7825         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7826         kmem_free(old, sizeof (dtrace_provider_t));
7827
7828         return (0);
7829 }
7830
7831 /*
7832  * Invalidate the specified provider.  All subsequent probe lookups for the
7833  * specified provider will fail, but its probes will not be removed.
7834  */
7835 void
7836 dtrace_invalidate(dtrace_provider_id_t id)
7837 {
7838         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7839
7840         ASSERT(pvp->dtpv_pops.dtps_enable !=
7841             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7842
7843         mutex_enter(&dtrace_provider_lock);
7844         mutex_enter(&dtrace_lock);
7845
7846         pvp->dtpv_defunct = dtrace_gethrtime();
7847
7848         mutex_exit(&dtrace_lock);
7849         mutex_exit(&dtrace_provider_lock);
7850 }
7851
7852 /*
7853  * Indicate whether or not DTrace has attached.
7854  */
7855 int
7856 dtrace_attached(void)
7857 {
7858         /*
7859          * dtrace_provider will be non-NULL iff the DTrace driver has
7860          * attached.  (It's non-NULL because DTrace is always itself a
7861          * provider.)
7862          */
7863         return (dtrace_provider != NULL);
7864 }
7865
7866 /*
7867  * Remove all the unenabled probes for the given provider.  This function is
7868  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7869  * -- just as many of its associated probes as it can.
7870  */
7871 int
7872 dtrace_condense(dtrace_provider_id_t id)
7873 {
7874         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7875         int i;
7876         dtrace_probe_t *probe;
7877
7878         /*
7879          * Make sure this isn't the dtrace provider itself.
7880          */
7881         ASSERT(prov->dtpv_pops.dtps_enable !=
7882             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7883
7884         mutex_enter(&dtrace_provider_lock);
7885         mutex_enter(&dtrace_lock);
7886
7887         /*
7888          * Attempt to destroy the probes associated with this provider.
7889          */
7890         for (i = 0; i < dtrace_nprobes; i++) {
7891                 if ((probe = dtrace_probes[i]) == NULL)
7892                         continue;
7893
7894                 if (probe->dtpr_provider != prov)
7895                         continue;
7896
7897                 if (probe->dtpr_ecb != NULL)
7898                         continue;
7899
7900                 dtrace_probes[i] = NULL;
7901
7902                 dtrace_hash_remove(dtrace_bymod, probe);
7903                 dtrace_hash_remove(dtrace_byfunc, probe);
7904                 dtrace_hash_remove(dtrace_byname, probe);
7905
7906                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7907                     probe->dtpr_arg);
7908                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7909                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7910                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7911                 kmem_free(probe, sizeof (dtrace_probe_t));
7912 #if defined(sun)
7913                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7914 #else
7915                 free_unr(dtrace_arena, i + 1);
7916 #endif
7917         }
7918
7919         mutex_exit(&dtrace_lock);
7920         mutex_exit(&dtrace_provider_lock);
7921
7922         return (0);
7923 }
7924
7925 /*
7926  * DTrace Probe Management Functions
7927  *
7928  * The functions in this section perform the DTrace probe management,
7929  * including functions to create probes, look-up probes, and call into the
7930  * providers to request that probes be provided.  Some of these functions are
7931  * in the Provider-to-Framework API; these functions can be identified by the
7932  * fact that they are not declared "static".
7933  */
7934
7935 /*
7936  * Create a probe with the specified module name, function name, and name.
7937  */
7938 dtrace_id_t
7939 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7940     const char *func, const char *name, int aframes, void *arg)
7941 {
7942         dtrace_probe_t *probe, **probes;
7943         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7944         dtrace_id_t id;
7945
7946         if (provider == dtrace_provider) {
7947                 ASSERT(MUTEX_HELD(&dtrace_lock));
7948         } else {
7949                 mutex_enter(&dtrace_lock);
7950         }
7951
7952 #if defined(sun)
7953         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7954             VM_BESTFIT | VM_SLEEP);
7955 #else
7956         id = alloc_unr(dtrace_arena);
7957 #endif
7958         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7959
7960         probe->dtpr_id = id;
7961         probe->dtpr_gen = dtrace_probegen++;
7962         probe->dtpr_mod = dtrace_strdup(mod);
7963         probe->dtpr_func = dtrace_strdup(func);
7964         probe->dtpr_name = dtrace_strdup(name);
7965         probe->dtpr_arg = arg;
7966         probe->dtpr_aframes = aframes;
7967         probe->dtpr_provider = provider;
7968
7969         dtrace_hash_add(dtrace_bymod, probe);
7970         dtrace_hash_add(dtrace_byfunc, probe);
7971         dtrace_hash_add(dtrace_byname, probe);
7972
7973         if (id - 1 >= dtrace_nprobes) {
7974                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7975                 size_t nsize = osize << 1;
7976
7977                 if (nsize == 0) {
7978                         ASSERT(osize == 0);
7979                         ASSERT(dtrace_probes == NULL);
7980                         nsize = sizeof (dtrace_probe_t *);
7981                 }
7982
7983                 probes = kmem_zalloc(nsize, KM_SLEEP);
7984
7985                 if (dtrace_probes == NULL) {
7986                         ASSERT(osize == 0);
7987                         dtrace_probes = probes;
7988                         dtrace_nprobes = 1;
7989                 } else {
7990                         dtrace_probe_t **oprobes = dtrace_probes;
7991
7992                         bcopy(oprobes, probes, osize);
7993                         dtrace_membar_producer();
7994                         dtrace_probes = probes;
7995
7996                         dtrace_sync();
7997
7998                         /*
7999                          * All CPUs are now seeing the new probes array; we can
8000                          * safely free the old array.
8001                          */
8002                         kmem_free(oprobes, osize);
8003                         dtrace_nprobes <<= 1;
8004                 }
8005
8006                 ASSERT(id - 1 < dtrace_nprobes);
8007         }
8008
8009         ASSERT(dtrace_probes[id - 1] == NULL);
8010         dtrace_probes[id - 1] = probe;
8011
8012         if (provider != dtrace_provider)
8013                 mutex_exit(&dtrace_lock);
8014
8015         return (id);
8016 }
8017
8018 static dtrace_probe_t *
8019 dtrace_probe_lookup_id(dtrace_id_t id)
8020 {
8021         ASSERT(MUTEX_HELD(&dtrace_lock));
8022
8023         if (id == 0 || id > dtrace_nprobes)
8024                 return (NULL);
8025
8026         return (dtrace_probes[id - 1]);
8027 }
8028
8029 static int
8030 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8031 {
8032         *((dtrace_id_t *)arg) = probe->dtpr_id;
8033
8034         return (DTRACE_MATCH_DONE);
8035 }
8036
8037 /*
8038  * Look up a probe based on provider and one or more of module name, function
8039  * name and probe name.
8040  */
8041 dtrace_id_t
8042 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8043     char *func, char *name)
8044 {
8045         dtrace_probekey_t pkey;
8046         dtrace_id_t id;
8047         int match;
8048
8049         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8050         pkey.dtpk_pmatch = &dtrace_match_string;
8051         pkey.dtpk_mod = mod;
8052         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8053         pkey.dtpk_func = func;
8054         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8055         pkey.dtpk_name = name;
8056         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8057         pkey.dtpk_id = DTRACE_IDNONE;
8058
8059         mutex_enter(&dtrace_lock);
8060         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8061             dtrace_probe_lookup_match, &id);
8062         mutex_exit(&dtrace_lock);
8063
8064         ASSERT(match == 1 || match == 0);
8065         return (match ? id : 0);
8066 }
8067
8068 /*
8069  * Returns the probe argument associated with the specified probe.
8070  */
8071 void *
8072 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8073 {
8074         dtrace_probe_t *probe;
8075         void *rval = NULL;
8076
8077         mutex_enter(&dtrace_lock);
8078
8079         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8080             probe->dtpr_provider == (dtrace_provider_t *)id)
8081                 rval = probe->dtpr_arg;
8082
8083         mutex_exit(&dtrace_lock);
8084
8085         return (rval);
8086 }
8087
8088 /*
8089  * Copy a probe into a probe description.
8090  */
8091 static void
8092 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8093 {
8094         bzero(pdp, sizeof (dtrace_probedesc_t));
8095         pdp->dtpd_id = prp->dtpr_id;
8096
8097         (void) strncpy(pdp->dtpd_provider,
8098             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8099
8100         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8101         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8102         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8103 }
8104
8105 /*
8106  * Called to indicate that a probe -- or probes -- should be provided by a
8107  * specfied provider.  If the specified description is NULL, the provider will
8108  * be told to provide all of its probes.  (This is done whenever a new
8109  * consumer comes along, or whenever a retained enabling is to be matched.) If
8110  * the specified description is non-NULL, the provider is given the
8111  * opportunity to dynamically provide the specified probe, allowing providers
8112  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8113  * probes.)  If the provider is NULL, the operations will be applied to all
8114  * providers; if the provider is non-NULL the operations will only be applied
8115  * to the specified provider.  The dtrace_provider_lock must be held, and the
8116  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8117  * will need to grab the dtrace_lock when it reenters the framework through
8118  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8119  */
8120 static void
8121 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8122 {
8123 #if defined(sun)
8124         modctl_t *ctl;
8125 #endif
8126         int all = 0;
8127
8128         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8129
8130         if (prv == NULL) {
8131                 all = 1;
8132                 prv = dtrace_provider;
8133         }
8134
8135         do {
8136                 /*
8137                  * First, call the blanket provide operation.
8138                  */
8139                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8140
8141 #if defined(sun)
8142                 /*
8143                  * Now call the per-module provide operation.  We will grab
8144                  * mod_lock to prevent the list from being modified.  Note
8145                  * that this also prevents the mod_busy bits from changing.
8146                  * (mod_busy can only be changed with mod_lock held.)
8147                  */
8148                 mutex_enter(&mod_lock);
8149
8150                 ctl = &modules;
8151                 do {
8152                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8153                                 continue;
8154
8155                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8156
8157                 } while ((ctl = ctl->mod_next) != &modules);
8158
8159                 mutex_exit(&mod_lock);
8160 #endif
8161         } while (all && (prv = prv->dtpv_next) != NULL);
8162 }
8163
8164 #if defined(sun)
8165 /*
8166  * Iterate over each probe, and call the Framework-to-Provider API function
8167  * denoted by offs.
8168  */
8169 static void
8170 dtrace_probe_foreach(uintptr_t offs)
8171 {
8172         dtrace_provider_t *prov;
8173         void (*func)(void *, dtrace_id_t, void *);
8174         dtrace_probe_t *probe;
8175         dtrace_icookie_t cookie;
8176         int i;
8177
8178         /*
8179          * We disable interrupts to walk through the probe array.  This is
8180          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8181          * won't see stale data.
8182          */
8183         cookie = dtrace_interrupt_disable();
8184
8185         for (i = 0; i < dtrace_nprobes; i++) {
8186                 if ((probe = dtrace_probes[i]) == NULL)
8187                         continue;
8188
8189                 if (probe->dtpr_ecb == NULL) {
8190                         /*
8191                          * This probe isn't enabled -- don't call the function.
8192                          */
8193                         continue;
8194                 }
8195
8196                 prov = probe->dtpr_provider;
8197                 func = *((void(**)(void *, dtrace_id_t, void *))
8198                     ((uintptr_t)&prov->dtpv_pops + offs));
8199
8200                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8201         }
8202
8203         dtrace_interrupt_enable(cookie);
8204 }
8205 #endif
8206
8207 static int
8208 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8209 {
8210         dtrace_probekey_t pkey;
8211         uint32_t priv;
8212         uid_t uid;
8213         zoneid_t zoneid;
8214
8215         ASSERT(MUTEX_HELD(&dtrace_lock));
8216         dtrace_ecb_create_cache = NULL;
8217
8218         if (desc == NULL) {
8219                 /*
8220                  * If we're passed a NULL description, we're being asked to
8221                  * create an ECB with a NULL probe.
8222                  */
8223                 (void) dtrace_ecb_create_enable(NULL, enab);
8224                 return (0);
8225         }
8226
8227         dtrace_probekey(desc, &pkey);
8228         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8229             &priv, &uid, &zoneid);
8230
8231         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8232             enab));
8233 }
8234
8235 /*
8236  * DTrace Helper Provider Functions
8237  */
8238 static void
8239 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8240 {
8241         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8242         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8243         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8244 }
8245
8246 static void
8247 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8248     const dof_provider_t *dofprov, char *strtab)
8249 {
8250         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8251         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8252             dofprov->dofpv_provattr);
8253         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8254             dofprov->dofpv_modattr);
8255         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8256             dofprov->dofpv_funcattr);
8257         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8258             dofprov->dofpv_nameattr);
8259         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8260             dofprov->dofpv_argsattr);
8261 }
8262
8263 static void
8264 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8265 {
8266         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8267         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8268         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8269         dof_provider_t *provider;
8270         dof_probe_t *probe;
8271         uint32_t *off, *enoff;
8272         uint8_t *arg;
8273         char *strtab;
8274         uint_t i, nprobes;
8275         dtrace_helper_provdesc_t dhpv;
8276         dtrace_helper_probedesc_t dhpb;
8277         dtrace_meta_t *meta = dtrace_meta_pid;
8278         dtrace_mops_t *mops = &meta->dtm_mops;
8279         void *parg;
8280
8281         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8282         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8283             provider->dofpv_strtab * dof->dofh_secsize);
8284         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8285             provider->dofpv_probes * dof->dofh_secsize);
8286         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8287             provider->dofpv_prargs * dof->dofh_secsize);
8288         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8289             provider->dofpv_proffs * dof->dofh_secsize);
8290
8291         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8292         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8293         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8294         enoff = NULL;
8295
8296         /*
8297          * See dtrace_helper_provider_validate().
8298          */
8299         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8300             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8301                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8302                     provider->dofpv_prenoffs * dof->dofh_secsize);
8303                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8304         }
8305
8306         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8307
8308         /*
8309          * Create the provider.
8310          */
8311         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8312
8313         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8314                 return;
8315
8316         meta->dtm_count++;
8317
8318         /*
8319          * Create the probes.
8320          */
8321         for (i = 0; i < nprobes; i++) {
8322                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8323                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8324
8325                 dhpb.dthpb_mod = dhp->dofhp_mod;
8326                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8327                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8328                 dhpb.dthpb_base = probe->dofpr_addr;
8329                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8330                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8331                 if (enoff != NULL) {
8332                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8333                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8334                 } else {
8335                         dhpb.dthpb_enoffs = NULL;
8336                         dhpb.dthpb_nenoffs = 0;
8337                 }
8338                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8339                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8340                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8341                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8342                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8343
8344                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8345         }
8346 }
8347
8348 static void
8349 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8350 {
8351         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8352         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8353         int i;
8354
8355         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8356
8357         for (i = 0; i < dof->dofh_secnum; i++) {
8358                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8359                     dof->dofh_secoff + i * dof->dofh_secsize);
8360
8361                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8362                         continue;
8363
8364                 dtrace_helper_provide_one(dhp, sec, pid);
8365         }
8366
8367         /*
8368          * We may have just created probes, so we must now rematch against
8369          * any retained enablings.  Note that this call will acquire both
8370          * cpu_lock and dtrace_lock; the fact that we are holding
8371          * dtrace_meta_lock now is what defines the ordering with respect to
8372          * these three locks.
8373          */
8374         dtrace_enabling_matchall();
8375 }
8376
8377 static void
8378 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8379 {
8380         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8381         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8382         dof_sec_t *str_sec;
8383         dof_provider_t *provider;
8384         char *strtab;
8385         dtrace_helper_provdesc_t dhpv;
8386         dtrace_meta_t *meta = dtrace_meta_pid;
8387         dtrace_mops_t *mops = &meta->dtm_mops;
8388
8389         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8390         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8391             provider->dofpv_strtab * dof->dofh_secsize);
8392
8393         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8394
8395         /*
8396          * Create the provider.
8397          */
8398         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8399
8400         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8401
8402         meta->dtm_count--;
8403 }
8404
8405 static void
8406 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8407 {
8408         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8409         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8410         int i;
8411
8412         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8413
8414         for (i = 0; i < dof->dofh_secnum; i++) {
8415                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8416                     dof->dofh_secoff + i * dof->dofh_secsize);
8417
8418                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8419                         continue;
8420
8421                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8422         }
8423 }
8424
8425 /*
8426  * DTrace Meta Provider-to-Framework API Functions
8427  *
8428  * These functions implement the Meta Provider-to-Framework API, as described
8429  * in <sys/dtrace.h>.
8430  */
8431 int
8432 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8433     dtrace_meta_provider_id_t *idp)
8434 {
8435         dtrace_meta_t *meta;
8436         dtrace_helpers_t *help, *next;
8437         int i;
8438
8439         *idp = DTRACE_METAPROVNONE;
8440
8441         /*
8442          * We strictly don't need the name, but we hold onto it for
8443          * debuggability. All hail error queues!
8444          */
8445         if (name == NULL) {
8446                 cmn_err(CE_WARN, "failed to register meta-provider: "
8447                     "invalid name");
8448                 return (EINVAL);
8449         }
8450
8451         if (mops == NULL ||
8452             mops->dtms_create_probe == NULL ||
8453             mops->dtms_provide_pid == NULL ||
8454             mops->dtms_remove_pid == NULL) {
8455                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8456                     "invalid ops", name);
8457                 return (EINVAL);
8458         }
8459
8460         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8461         meta->dtm_mops = *mops;
8462         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8463         (void) strcpy(meta->dtm_name, name);
8464         meta->dtm_arg = arg;
8465
8466         mutex_enter(&dtrace_meta_lock);
8467         mutex_enter(&dtrace_lock);
8468
8469         if (dtrace_meta_pid != NULL) {
8470                 mutex_exit(&dtrace_lock);
8471                 mutex_exit(&dtrace_meta_lock);
8472                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8473                     "user-land meta-provider exists", name);
8474                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8475                 kmem_free(meta, sizeof (dtrace_meta_t));
8476                 return (EINVAL);
8477         }
8478
8479         dtrace_meta_pid = meta;
8480         *idp = (dtrace_meta_provider_id_t)meta;
8481
8482         /*
8483          * If there are providers and probes ready to go, pass them
8484          * off to the new meta provider now.
8485          */
8486
8487         help = dtrace_deferred_pid;
8488         dtrace_deferred_pid = NULL;
8489
8490         mutex_exit(&dtrace_lock);
8491
8492         while (help != NULL) {
8493                 for (i = 0; i < help->dthps_nprovs; i++) {
8494                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8495                             help->dthps_pid);
8496                 }
8497
8498                 next = help->dthps_next;
8499                 help->dthps_next = NULL;
8500                 help->dthps_prev = NULL;
8501                 help->dthps_deferred = 0;
8502                 help = next;
8503         }
8504
8505         mutex_exit(&dtrace_meta_lock);
8506
8507         return (0);
8508 }
8509
8510 int
8511 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8512 {
8513         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8514
8515         mutex_enter(&dtrace_meta_lock);
8516         mutex_enter(&dtrace_lock);
8517
8518         if (old == dtrace_meta_pid) {
8519                 pp = &dtrace_meta_pid;
8520         } else {
8521                 panic("attempt to unregister non-existent "
8522                     "dtrace meta-provider %p\n", (void *)old);
8523         }
8524
8525         if (old->dtm_count != 0) {
8526                 mutex_exit(&dtrace_lock);
8527                 mutex_exit(&dtrace_meta_lock);
8528                 return (EBUSY);
8529         }
8530
8531         *pp = NULL;
8532
8533         mutex_exit(&dtrace_lock);
8534         mutex_exit(&dtrace_meta_lock);
8535
8536         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8537         kmem_free(old, sizeof (dtrace_meta_t));
8538
8539         return (0);
8540 }
8541
8542
8543 /*
8544  * DTrace DIF Object Functions
8545  */
8546 static int
8547 dtrace_difo_err(uint_t pc, const char *format, ...)
8548 {
8549         if (dtrace_err_verbose) {
8550                 va_list alist;
8551
8552                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8553                 va_start(alist, format);
8554                 (void) vuprintf(format, alist);
8555                 va_end(alist);
8556         }
8557
8558 #ifdef DTRACE_ERRDEBUG
8559         dtrace_errdebug(format);
8560 #endif
8561         return (1);
8562 }
8563
8564 /*
8565  * Validate a DTrace DIF object by checking the IR instructions.  The following
8566  * rules are currently enforced by dtrace_difo_validate():
8567  *
8568  * 1. Each instruction must have a valid opcode
8569  * 2. Each register, string, variable, or subroutine reference must be valid
8570  * 3. No instruction can modify register %r0 (must be zero)
8571  * 4. All instruction reserved bits must be set to zero
8572  * 5. The last instruction must be a "ret" instruction
8573  * 6. All branch targets must reference a valid instruction _after_ the branch
8574  */
8575 static int
8576 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8577     cred_t *cr)
8578 {
8579         int err = 0, i;
8580         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8581         int kcheckload;
8582         uint_t pc;
8583
8584         kcheckload = cr == NULL ||
8585             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8586
8587         dp->dtdo_destructive = 0;
8588
8589         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8590                 dif_instr_t instr = dp->dtdo_buf[pc];
8591
8592                 uint_t r1 = DIF_INSTR_R1(instr);
8593                 uint_t r2 = DIF_INSTR_R2(instr);
8594                 uint_t rd = DIF_INSTR_RD(instr);
8595                 uint_t rs = DIF_INSTR_RS(instr);
8596                 uint_t label = DIF_INSTR_LABEL(instr);
8597                 uint_t v = DIF_INSTR_VAR(instr);
8598                 uint_t subr = DIF_INSTR_SUBR(instr);
8599                 uint_t type = DIF_INSTR_TYPE(instr);
8600                 uint_t op = DIF_INSTR_OP(instr);
8601
8602                 switch (op) {
8603                 case DIF_OP_OR:
8604                 case DIF_OP_XOR:
8605                 case DIF_OP_AND:
8606                 case DIF_OP_SLL:
8607                 case DIF_OP_SRL:
8608                 case DIF_OP_SRA:
8609                 case DIF_OP_SUB:
8610                 case DIF_OP_ADD:
8611                 case DIF_OP_MUL:
8612                 case DIF_OP_SDIV:
8613                 case DIF_OP_UDIV:
8614                 case DIF_OP_SREM:
8615                 case DIF_OP_UREM:
8616                 case DIF_OP_COPYS:
8617                         if (r1 >= nregs)
8618                                 err += efunc(pc, "invalid register %u\n", r1);
8619                         if (r2 >= nregs)
8620                                 err += efunc(pc, "invalid register %u\n", r2);
8621                         if (rd >= nregs)
8622                                 err += efunc(pc, "invalid register %u\n", rd);
8623                         if (rd == 0)
8624                                 err += efunc(pc, "cannot write to %r0\n");
8625                         break;
8626                 case DIF_OP_NOT:
8627                 case DIF_OP_MOV:
8628                 case DIF_OP_ALLOCS:
8629                         if (r1 >= nregs)
8630                                 err += efunc(pc, "invalid register %u\n", r1);
8631                         if (r2 != 0)
8632                                 err += efunc(pc, "non-zero reserved bits\n");
8633                         if (rd >= nregs)
8634                                 err += efunc(pc, "invalid register %u\n", rd);
8635                         if (rd == 0)
8636                                 err += efunc(pc, "cannot write to %r0\n");
8637                         break;
8638                 case DIF_OP_LDSB:
8639                 case DIF_OP_LDSH:
8640                 case DIF_OP_LDSW:
8641                 case DIF_OP_LDUB:
8642                 case DIF_OP_LDUH:
8643                 case DIF_OP_LDUW:
8644                 case DIF_OP_LDX:
8645                         if (r1 >= nregs)
8646                                 err += efunc(pc, "invalid register %u\n", r1);
8647                         if (r2 != 0)
8648                                 err += efunc(pc, "non-zero reserved bits\n");
8649                         if (rd >= nregs)
8650                                 err += efunc(pc, "invalid register %u\n", rd);
8651                         if (rd == 0)
8652                                 err += efunc(pc, "cannot write to %r0\n");
8653                         if (kcheckload)
8654                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8655                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8656                         break;
8657                 case DIF_OP_RLDSB:
8658                 case DIF_OP_RLDSH:
8659                 case DIF_OP_RLDSW:
8660                 case DIF_OP_RLDUB:
8661                 case DIF_OP_RLDUH:
8662                 case DIF_OP_RLDUW:
8663                 case DIF_OP_RLDX:
8664                         if (r1 >= nregs)
8665                                 err += efunc(pc, "invalid register %u\n", r1);
8666                         if (r2 != 0)
8667                                 err += efunc(pc, "non-zero reserved bits\n");
8668                         if (rd >= nregs)
8669                                 err += efunc(pc, "invalid register %u\n", rd);
8670                         if (rd == 0)
8671                                 err += efunc(pc, "cannot write to %r0\n");
8672                         break;
8673                 case DIF_OP_ULDSB:
8674                 case DIF_OP_ULDSH:
8675                 case DIF_OP_ULDSW:
8676                 case DIF_OP_ULDUB:
8677                 case DIF_OP_ULDUH:
8678                 case DIF_OP_ULDUW:
8679                 case DIF_OP_ULDX:
8680                         if (r1 >= nregs)
8681                                 err += efunc(pc, "invalid register %u\n", r1);
8682                         if (r2 != 0)
8683                                 err += efunc(pc, "non-zero reserved bits\n");
8684                         if (rd >= nregs)
8685                                 err += efunc(pc, "invalid register %u\n", rd);
8686                         if (rd == 0)
8687                                 err += efunc(pc, "cannot write to %r0\n");
8688                         break;
8689                 case DIF_OP_STB:
8690                 case DIF_OP_STH:
8691                 case DIF_OP_STW:
8692                 case DIF_OP_STX:
8693                         if (r1 >= nregs)
8694                                 err += efunc(pc, "invalid register %u\n", r1);
8695                         if (r2 != 0)
8696                                 err += efunc(pc, "non-zero reserved bits\n");
8697                         if (rd >= nregs)
8698                                 err += efunc(pc, "invalid register %u\n", rd);
8699                         if (rd == 0)
8700                                 err += efunc(pc, "cannot write to 0 address\n");
8701                         break;
8702                 case DIF_OP_CMP:
8703                 case DIF_OP_SCMP:
8704                         if (r1 >= nregs)
8705                                 err += efunc(pc, "invalid register %u\n", r1);
8706                         if (r2 >= nregs)
8707                                 err += efunc(pc, "invalid register %u\n", r2);
8708                         if (rd != 0)
8709                                 err += efunc(pc, "non-zero reserved bits\n");
8710                         break;
8711                 case DIF_OP_TST:
8712                         if (r1 >= nregs)
8713                                 err += efunc(pc, "invalid register %u\n", r1);
8714                         if (r2 != 0 || rd != 0)
8715                                 err += efunc(pc, "non-zero reserved bits\n");
8716                         break;
8717                 case DIF_OP_BA:
8718                 case DIF_OP_BE:
8719                 case DIF_OP_BNE:
8720                 case DIF_OP_BG:
8721                 case DIF_OP_BGU:
8722                 case DIF_OP_BGE:
8723                 case DIF_OP_BGEU:
8724                 case DIF_OP_BL:
8725                 case DIF_OP_BLU:
8726                 case DIF_OP_BLE:
8727                 case DIF_OP_BLEU:
8728                         if (label >= dp->dtdo_len) {
8729                                 err += efunc(pc, "invalid branch target %u\n",
8730                                     label);
8731                         }
8732                         if (label <= pc) {
8733                                 err += efunc(pc, "backward branch to %u\n",
8734                                     label);
8735                         }
8736                         break;
8737                 case DIF_OP_RET:
8738                         if (r1 != 0 || r2 != 0)
8739                                 err += efunc(pc, "non-zero reserved bits\n");
8740                         if (rd >= nregs)
8741                                 err += efunc(pc, "invalid register %u\n", rd);
8742                         break;
8743                 case DIF_OP_NOP:
8744                 case DIF_OP_POPTS:
8745                 case DIF_OP_FLUSHTS:
8746                         if (r1 != 0 || r2 != 0 || rd != 0)
8747                                 err += efunc(pc, "non-zero reserved bits\n");
8748                         break;
8749                 case DIF_OP_SETX:
8750                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8751                                 err += efunc(pc, "invalid integer ref %u\n",
8752                                     DIF_INSTR_INTEGER(instr));
8753                         }
8754                         if (rd >= nregs)
8755                                 err += efunc(pc, "invalid register %u\n", rd);
8756                         if (rd == 0)
8757                                 err += efunc(pc, "cannot write to %r0\n");
8758                         break;
8759                 case DIF_OP_SETS:
8760                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8761                                 err += efunc(pc, "invalid string ref %u\n",
8762                                     DIF_INSTR_STRING(instr));
8763                         }
8764                         if (rd >= nregs)
8765                                 err += efunc(pc, "invalid register %u\n", rd);
8766                         if (rd == 0)
8767                                 err += efunc(pc, "cannot write to %r0\n");
8768                         break;
8769                 case DIF_OP_LDGA:
8770                 case DIF_OP_LDTA:
8771                         if (r1 > DIF_VAR_ARRAY_MAX)
8772                                 err += efunc(pc, "invalid array %u\n", r1);
8773                         if (r2 >= nregs)
8774                                 err += efunc(pc, "invalid register %u\n", r2);
8775                         if (rd >= nregs)
8776                                 err += efunc(pc, "invalid register %u\n", rd);
8777                         if (rd == 0)
8778                                 err += efunc(pc, "cannot write to %r0\n");
8779                         break;
8780                 case DIF_OP_LDGS:
8781                 case DIF_OP_LDTS:
8782                 case DIF_OP_LDLS:
8783                 case DIF_OP_LDGAA:
8784                 case DIF_OP_LDTAA:
8785                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8786                                 err += efunc(pc, "invalid variable %u\n", v);
8787                         if (rd >= nregs)
8788                                 err += efunc(pc, "invalid register %u\n", rd);
8789                         if (rd == 0)
8790                                 err += efunc(pc, "cannot write to %r0\n");
8791                         break;
8792                 case DIF_OP_STGS:
8793                 case DIF_OP_STTS:
8794                 case DIF_OP_STLS:
8795                 case DIF_OP_STGAA:
8796                 case DIF_OP_STTAA:
8797                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8798                                 err += efunc(pc, "invalid variable %u\n", v);
8799                         if (rs >= nregs)
8800                                 err += efunc(pc, "invalid register %u\n", rd);
8801                         break;
8802                 case DIF_OP_CALL:
8803                         if (subr > DIF_SUBR_MAX)
8804                                 err += efunc(pc, "invalid subr %u\n", subr);
8805                         if (rd >= nregs)
8806                                 err += efunc(pc, "invalid register %u\n", rd);
8807                         if (rd == 0)
8808                                 err += efunc(pc, "cannot write to %r0\n");
8809
8810                         if (subr == DIF_SUBR_COPYOUT ||
8811                             subr == DIF_SUBR_COPYOUTSTR) {
8812                                 dp->dtdo_destructive = 1;
8813                         }
8814                         break;
8815                 case DIF_OP_PUSHTR:
8816                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8817                                 err += efunc(pc, "invalid ref type %u\n", type);
8818                         if (r2 >= nregs)
8819                                 err += efunc(pc, "invalid register %u\n", r2);
8820                         if (rs >= nregs)
8821                                 err += efunc(pc, "invalid register %u\n", rs);
8822                         break;
8823                 case DIF_OP_PUSHTV:
8824                         if (type != DIF_TYPE_CTF)
8825                                 err += efunc(pc, "invalid val type %u\n", type);
8826                         if (r2 >= nregs)
8827                                 err += efunc(pc, "invalid register %u\n", r2);
8828                         if (rs >= nregs)
8829                                 err += efunc(pc, "invalid register %u\n", rs);
8830                         break;
8831                 default:
8832                         err += efunc(pc, "invalid opcode %u\n",
8833                             DIF_INSTR_OP(instr));
8834                 }
8835         }
8836
8837         if (dp->dtdo_len != 0 &&
8838             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8839                 err += efunc(dp->dtdo_len - 1,
8840                     "expected 'ret' as last DIF instruction\n");
8841         }
8842
8843         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8844                 /*
8845                  * If we're not returning by reference, the size must be either
8846                  * 0 or the size of one of the base types.
8847                  */
8848                 switch (dp->dtdo_rtype.dtdt_size) {
8849                 case 0:
8850                 case sizeof (uint8_t):
8851                 case sizeof (uint16_t):
8852                 case sizeof (uint32_t):
8853                 case sizeof (uint64_t):
8854                         break;
8855
8856                 default:
8857                         err += efunc(dp->dtdo_len - 1, "bad return size");
8858                 }
8859         }
8860
8861         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8862                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8863                 dtrace_diftype_t *vt, *et;
8864                 uint_t id, ndx;
8865
8866                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8867                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8868                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8869                         err += efunc(i, "unrecognized variable scope %d\n",
8870                             v->dtdv_scope);
8871                         break;
8872                 }
8873
8874                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8875                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8876                         err += efunc(i, "unrecognized variable type %d\n",
8877                             v->dtdv_kind);
8878                         break;
8879                 }
8880
8881                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8882                         err += efunc(i, "%d exceeds variable id limit\n", id);
8883                         break;
8884                 }
8885
8886                 if (id < DIF_VAR_OTHER_UBASE)
8887                         continue;
8888
8889                 /*
8890                  * For user-defined variables, we need to check that this
8891                  * definition is identical to any previous definition that we
8892                  * encountered.
8893                  */
8894                 ndx = id - DIF_VAR_OTHER_UBASE;
8895
8896                 switch (v->dtdv_scope) {
8897                 case DIFV_SCOPE_GLOBAL:
8898                         if (ndx < vstate->dtvs_nglobals) {
8899                                 dtrace_statvar_t *svar;
8900
8901                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8902                                         existing = &svar->dtsv_var;
8903                         }
8904
8905                         break;
8906
8907                 case DIFV_SCOPE_THREAD:
8908                         if (ndx < vstate->dtvs_ntlocals)
8909                                 existing = &vstate->dtvs_tlocals[ndx];
8910                         break;
8911
8912                 case DIFV_SCOPE_LOCAL:
8913                         if (ndx < vstate->dtvs_nlocals) {
8914                                 dtrace_statvar_t *svar;
8915
8916                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8917                                         existing = &svar->dtsv_var;
8918                         }
8919
8920                         break;
8921                 }
8922
8923                 vt = &v->dtdv_type;
8924
8925                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8926                         if (vt->dtdt_size == 0) {
8927                                 err += efunc(i, "zero-sized variable\n");
8928                                 break;
8929                         }
8930
8931                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8932                             vt->dtdt_size > dtrace_global_maxsize) {
8933                                 err += efunc(i, "oversized by-ref global\n");
8934                                 break;
8935                         }
8936                 }
8937
8938                 if (existing == NULL || existing->dtdv_id == 0)
8939                         continue;
8940
8941                 ASSERT(existing->dtdv_id == v->dtdv_id);
8942                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8943
8944                 if (existing->dtdv_kind != v->dtdv_kind)
8945                         err += efunc(i, "%d changed variable kind\n", id);
8946
8947                 et = &existing->dtdv_type;
8948
8949                 if (vt->dtdt_flags != et->dtdt_flags) {
8950                         err += efunc(i, "%d changed variable type flags\n", id);
8951                         break;
8952                 }
8953
8954                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8955                         err += efunc(i, "%d changed variable type size\n", id);
8956                         break;
8957                 }
8958         }
8959
8960         return (err);
8961 }
8962
8963 /*
8964  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8965  * are much more constrained than normal DIFOs.  Specifically, they may
8966  * not:
8967  *
8968  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8969  *    miscellaneous string routines
8970  * 2. Access DTrace variables other than the args[] array, and the
8971  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8972  * 3. Have thread-local variables.
8973  * 4. Have dynamic variables.
8974  */
8975 static int
8976 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8977 {
8978         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8979         int err = 0;
8980         uint_t pc;
8981
8982         for (pc = 0; pc < dp->dtdo_len; pc++) {
8983                 dif_instr_t instr = dp->dtdo_buf[pc];
8984
8985                 uint_t v = DIF_INSTR_VAR(instr);
8986                 uint_t subr = DIF_INSTR_SUBR(instr);
8987                 uint_t op = DIF_INSTR_OP(instr);
8988
8989                 switch (op) {
8990                 case DIF_OP_OR:
8991                 case DIF_OP_XOR:
8992                 case DIF_OP_AND:
8993                 case DIF_OP_SLL:
8994                 case DIF_OP_SRL:
8995                 case DIF_OP_SRA:
8996                 case DIF_OP_SUB:
8997                 case DIF_OP_ADD:
8998                 case DIF_OP_MUL:
8999                 case DIF_OP_SDIV:
9000                 case DIF_OP_UDIV:
9001                 case DIF_OP_SREM:
9002                 case DIF_OP_UREM:
9003                 case DIF_OP_COPYS:
9004                 case DIF_OP_NOT:
9005                 case DIF_OP_MOV:
9006                 case DIF_OP_RLDSB:
9007                 case DIF_OP_RLDSH:
9008                 case DIF_OP_RLDSW:
9009                 case DIF_OP_RLDUB:
9010                 case DIF_OP_RLDUH:
9011                 case DIF_OP_RLDUW:
9012                 case DIF_OP_RLDX:
9013                 case DIF_OP_ULDSB:
9014                 case DIF_OP_ULDSH:
9015                 case DIF_OP_ULDSW:
9016                 case DIF_OP_ULDUB:
9017                 case DIF_OP_ULDUH:
9018                 case DIF_OP_ULDUW:
9019                 case DIF_OP_ULDX:
9020                 case DIF_OP_STB:
9021                 case DIF_OP_STH:
9022                 case DIF_OP_STW:
9023                 case DIF_OP_STX:
9024                 case DIF_OP_ALLOCS:
9025                 case DIF_OP_CMP:
9026                 case DIF_OP_SCMP:
9027                 case DIF_OP_TST:
9028                 case DIF_OP_BA:
9029                 case DIF_OP_BE:
9030                 case DIF_OP_BNE:
9031                 case DIF_OP_BG:
9032                 case DIF_OP_BGU:
9033                 case DIF_OP_BGE:
9034                 case DIF_OP_BGEU:
9035                 case DIF_OP_BL:
9036                 case DIF_OP_BLU:
9037                 case DIF_OP_BLE:
9038                 case DIF_OP_BLEU:
9039                 case DIF_OP_RET:
9040                 case DIF_OP_NOP:
9041                 case DIF_OP_POPTS:
9042                 case DIF_OP_FLUSHTS:
9043                 case DIF_OP_SETX:
9044                 case DIF_OP_SETS:
9045                 case DIF_OP_LDGA:
9046                 case DIF_OP_LDLS:
9047                 case DIF_OP_STGS:
9048                 case DIF_OP_STLS:
9049                 case DIF_OP_PUSHTR:
9050                 case DIF_OP_PUSHTV:
9051                         break;
9052
9053                 case DIF_OP_LDGS:
9054                         if (v >= DIF_VAR_OTHER_UBASE)
9055                                 break;
9056
9057                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9058                                 break;
9059
9060                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9061                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9062                             v == DIF_VAR_EXECARGS ||
9063                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9064                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9065                                 break;
9066
9067                         err += efunc(pc, "illegal variable %u\n", v);
9068                         break;
9069
9070                 case DIF_OP_LDTA:
9071                 case DIF_OP_LDTS:
9072                 case DIF_OP_LDGAA:
9073                 case DIF_OP_LDTAA:
9074                         err += efunc(pc, "illegal dynamic variable load\n");
9075                         break;
9076
9077                 case DIF_OP_STTS:
9078                 case DIF_OP_STGAA:
9079                 case DIF_OP_STTAA:
9080                         err += efunc(pc, "illegal dynamic variable store\n");
9081                         break;
9082
9083                 case DIF_OP_CALL:
9084                         if (subr == DIF_SUBR_ALLOCA ||
9085                             subr == DIF_SUBR_BCOPY ||
9086                             subr == DIF_SUBR_COPYIN ||
9087                             subr == DIF_SUBR_COPYINTO ||
9088                             subr == DIF_SUBR_COPYINSTR ||
9089                             subr == DIF_SUBR_INDEX ||
9090                             subr == DIF_SUBR_INET_NTOA ||
9091                             subr == DIF_SUBR_INET_NTOA6 ||
9092                             subr == DIF_SUBR_INET_NTOP ||
9093                             subr == DIF_SUBR_LLTOSTR ||
9094                             subr == DIF_SUBR_RINDEX ||
9095                             subr == DIF_SUBR_STRCHR ||
9096                             subr == DIF_SUBR_STRJOIN ||
9097                             subr == DIF_SUBR_STRRCHR ||
9098                             subr == DIF_SUBR_STRSTR ||
9099                             subr == DIF_SUBR_HTONS ||
9100                             subr == DIF_SUBR_HTONL ||
9101                             subr == DIF_SUBR_HTONLL ||
9102                             subr == DIF_SUBR_NTOHS ||
9103                             subr == DIF_SUBR_NTOHL ||
9104                             subr == DIF_SUBR_NTOHLL ||
9105                             subr == DIF_SUBR_MEMREF ||
9106                             subr == DIF_SUBR_TYPEREF)
9107                                 break;
9108
9109                         err += efunc(pc, "invalid subr %u\n", subr);
9110                         break;
9111
9112                 default:
9113                         err += efunc(pc, "invalid opcode %u\n",
9114                             DIF_INSTR_OP(instr));
9115                 }
9116         }
9117
9118         return (err);
9119 }
9120
9121 /*
9122  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9123  * basis; 0 if not.
9124  */
9125 static int
9126 dtrace_difo_cacheable(dtrace_difo_t *dp)
9127 {
9128         int i;
9129
9130         if (dp == NULL)
9131                 return (0);
9132
9133         for (i = 0; i < dp->dtdo_varlen; i++) {
9134                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9135
9136                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9137                         continue;
9138
9139                 switch (v->dtdv_id) {
9140                 case DIF_VAR_CURTHREAD:
9141                 case DIF_VAR_PID:
9142                 case DIF_VAR_TID:
9143                 case DIF_VAR_EXECARGS:
9144                 case DIF_VAR_EXECNAME:
9145                 case DIF_VAR_ZONENAME:
9146                         break;
9147
9148                 default:
9149                         return (0);
9150                 }
9151         }
9152
9153         /*
9154          * This DIF object may be cacheable.  Now we need to look for any
9155          * array loading instructions, any memory loading instructions, or
9156          * any stores to thread-local variables.
9157          */
9158         for (i = 0; i < dp->dtdo_len; i++) {
9159                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9160
9161                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9162                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9163                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9164                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9165                         return (0);
9166         }
9167
9168         return (1);
9169 }
9170
9171 static void
9172 dtrace_difo_hold(dtrace_difo_t *dp)
9173 {
9174         int i;
9175
9176         ASSERT(MUTEX_HELD(&dtrace_lock));
9177
9178         dp->dtdo_refcnt++;
9179         ASSERT(dp->dtdo_refcnt != 0);
9180
9181         /*
9182          * We need to check this DIF object for references to the variable
9183          * DIF_VAR_VTIMESTAMP.
9184          */
9185         for (i = 0; i < dp->dtdo_varlen; i++) {
9186                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9187
9188                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9189                         continue;
9190
9191                 if (dtrace_vtime_references++ == 0)
9192                         dtrace_vtime_enable();
9193         }
9194 }
9195
9196 /*
9197  * This routine calculates the dynamic variable chunksize for a given DIF
9198  * object.  The calculation is not fool-proof, and can probably be tricked by
9199  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9200  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9201  * if a dynamic variable size exceeds the chunksize.
9202  */
9203 static void
9204 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9205 {
9206         uint64_t sval = 0;
9207         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9208         const dif_instr_t *text = dp->dtdo_buf;
9209         uint_t pc, srd = 0;
9210         uint_t ttop = 0;
9211         size_t size, ksize;
9212         uint_t id, i;
9213
9214         for (pc = 0; pc < dp->dtdo_len; pc++) {
9215                 dif_instr_t instr = text[pc];
9216                 uint_t op = DIF_INSTR_OP(instr);
9217                 uint_t rd = DIF_INSTR_RD(instr);
9218                 uint_t r1 = DIF_INSTR_R1(instr);
9219                 uint_t nkeys = 0;
9220                 uchar_t scope = 0;
9221
9222                 dtrace_key_t *key = tupregs;
9223
9224                 switch (op) {
9225                 case DIF_OP_SETX:
9226                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9227                         srd = rd;
9228                         continue;
9229
9230                 case DIF_OP_STTS:
9231                         key = &tupregs[DIF_DTR_NREGS];
9232                         key[0].dttk_size = 0;
9233                         key[1].dttk_size = 0;
9234                         nkeys = 2;
9235                         scope = DIFV_SCOPE_THREAD;
9236                         break;
9237
9238                 case DIF_OP_STGAA:
9239                 case DIF_OP_STTAA:
9240                         nkeys = ttop;
9241
9242                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9243                                 key[nkeys++].dttk_size = 0;
9244
9245                         key[nkeys++].dttk_size = 0;
9246
9247                         if (op == DIF_OP_STTAA) {
9248                                 scope = DIFV_SCOPE_THREAD;
9249                         } else {
9250                                 scope = DIFV_SCOPE_GLOBAL;
9251                         }
9252
9253                         break;
9254
9255                 case DIF_OP_PUSHTR:
9256                         if (ttop == DIF_DTR_NREGS)
9257                                 return;
9258
9259                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9260                                 /*
9261                                  * If the register for the size of the "pushtr"
9262                                  * is %r0 (or the value is 0) and the type is
9263                                  * a string, we'll use the system-wide default
9264                                  * string size.
9265                                  */
9266                                 tupregs[ttop++].dttk_size =
9267                                     dtrace_strsize_default;
9268                         } else {
9269                                 if (srd == 0)
9270                                         return;
9271
9272                                 tupregs[ttop++].dttk_size = sval;
9273                         }
9274
9275                         break;
9276
9277                 case DIF_OP_PUSHTV:
9278                         if (ttop == DIF_DTR_NREGS)
9279                                 return;
9280
9281                         tupregs[ttop++].dttk_size = 0;
9282                         break;
9283
9284                 case DIF_OP_FLUSHTS:
9285                         ttop = 0;
9286                         break;
9287
9288                 case DIF_OP_POPTS:
9289                         if (ttop != 0)
9290                                 ttop--;
9291                         break;
9292                 }
9293
9294                 sval = 0;
9295                 srd = 0;
9296
9297                 if (nkeys == 0)
9298                         continue;
9299
9300                 /*
9301                  * We have a dynamic variable allocation; calculate its size.
9302                  */
9303                 for (ksize = 0, i = 0; i < nkeys; i++)
9304                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9305
9306                 size = sizeof (dtrace_dynvar_t);
9307                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9308                 size += ksize;
9309
9310                 /*
9311                  * Now we need to determine the size of the stored data.
9312                  */
9313                 id = DIF_INSTR_VAR(instr);
9314
9315                 for (i = 0; i < dp->dtdo_varlen; i++) {
9316                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9317
9318                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9319                                 size += v->dtdv_type.dtdt_size;
9320                                 break;
9321                         }
9322                 }
9323
9324                 if (i == dp->dtdo_varlen)
9325                         return;
9326
9327                 /*
9328                  * We have the size.  If this is larger than the chunk size
9329                  * for our dynamic variable state, reset the chunk size.
9330                  */
9331                 size = P2ROUNDUP(size, sizeof (uint64_t));
9332
9333                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9334                         vstate->dtvs_dynvars.dtds_chunksize = size;
9335         }
9336 }
9337
9338 static void
9339 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9340 {
9341         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9342         uint_t id;
9343
9344         ASSERT(MUTEX_HELD(&dtrace_lock));
9345         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9346
9347         for (i = 0; i < dp->dtdo_varlen; i++) {
9348                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9349                 dtrace_statvar_t *svar, ***svarp = NULL;
9350                 size_t dsize = 0;
9351                 uint8_t scope = v->dtdv_scope;
9352                 int *np = NULL;
9353
9354                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9355                         continue;
9356
9357                 id -= DIF_VAR_OTHER_UBASE;
9358
9359                 switch (scope) {
9360                 case DIFV_SCOPE_THREAD:
9361                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9362                                 dtrace_difv_t *tlocals;
9363
9364                                 if ((ntlocals = (otlocals << 1)) == 0)
9365                                         ntlocals = 1;
9366
9367                                 osz = otlocals * sizeof (dtrace_difv_t);
9368                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9369
9370                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9371
9372                                 if (osz != 0) {
9373                                         bcopy(vstate->dtvs_tlocals,
9374                                             tlocals, osz);
9375                                         kmem_free(vstate->dtvs_tlocals, osz);
9376                                 }
9377
9378                                 vstate->dtvs_tlocals = tlocals;
9379                                 vstate->dtvs_ntlocals = ntlocals;
9380                         }
9381
9382                         vstate->dtvs_tlocals[id] = *v;
9383                         continue;
9384
9385                 case DIFV_SCOPE_LOCAL:
9386                         np = &vstate->dtvs_nlocals;
9387                         svarp = &vstate->dtvs_locals;
9388
9389                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9390                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9391                                     sizeof (uint64_t));
9392                         else
9393                                 dsize = NCPU * sizeof (uint64_t);
9394
9395                         break;
9396
9397                 case DIFV_SCOPE_GLOBAL:
9398                         np = &vstate->dtvs_nglobals;
9399                         svarp = &vstate->dtvs_globals;
9400
9401                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9402                                 dsize = v->dtdv_type.dtdt_size +
9403                                     sizeof (uint64_t);
9404
9405                         break;
9406
9407                 default:
9408                         ASSERT(0);
9409                 }
9410
9411                 while (id >= (oldsvars = *np)) {
9412                         dtrace_statvar_t **statics;
9413                         int newsvars, oldsize, newsize;
9414
9415                         if ((newsvars = (oldsvars << 1)) == 0)
9416                                 newsvars = 1;
9417
9418                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9419                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9420
9421                         statics = kmem_zalloc(newsize, KM_SLEEP);
9422
9423                         if (oldsize != 0) {
9424                                 bcopy(*svarp, statics, oldsize);
9425                                 kmem_free(*svarp, oldsize);
9426                         }
9427
9428                         *svarp = statics;
9429                         *np = newsvars;
9430                 }
9431
9432                 if ((svar = (*svarp)[id]) == NULL) {
9433                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9434                         svar->dtsv_var = *v;
9435
9436                         if ((svar->dtsv_size = dsize) != 0) {
9437                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9438                                     kmem_zalloc(dsize, KM_SLEEP);
9439                         }
9440
9441                         (*svarp)[id] = svar;
9442                 }
9443
9444                 svar->dtsv_refcnt++;
9445         }
9446
9447         dtrace_difo_chunksize(dp, vstate);
9448         dtrace_difo_hold(dp);
9449 }
9450
9451 static dtrace_difo_t *
9452 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9453 {
9454         dtrace_difo_t *new;
9455         size_t sz;
9456
9457         ASSERT(dp->dtdo_buf != NULL);
9458         ASSERT(dp->dtdo_refcnt != 0);
9459
9460         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9461
9462         ASSERT(dp->dtdo_buf != NULL);
9463         sz = dp->dtdo_len * sizeof (dif_instr_t);
9464         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9465         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9466         new->dtdo_len = dp->dtdo_len;
9467
9468         if (dp->dtdo_strtab != NULL) {
9469                 ASSERT(dp->dtdo_strlen != 0);
9470                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9471                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9472                 new->dtdo_strlen = dp->dtdo_strlen;
9473         }
9474
9475         if (dp->dtdo_inttab != NULL) {
9476                 ASSERT(dp->dtdo_intlen != 0);
9477                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9478                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9479                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9480                 new->dtdo_intlen = dp->dtdo_intlen;
9481         }
9482
9483         if (dp->dtdo_vartab != NULL) {
9484                 ASSERT(dp->dtdo_varlen != 0);
9485                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9486                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9487                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9488                 new->dtdo_varlen = dp->dtdo_varlen;
9489         }
9490
9491         dtrace_difo_init(new, vstate);
9492         return (new);
9493 }
9494
9495 static void
9496 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9497 {
9498         int i;
9499
9500         ASSERT(dp->dtdo_refcnt == 0);
9501
9502         for (i = 0; i < dp->dtdo_varlen; i++) {
9503                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9504                 dtrace_statvar_t *svar, **svarp = NULL;
9505                 uint_t id;
9506                 uint8_t scope = v->dtdv_scope;
9507                 int *np = NULL;
9508
9509                 switch (scope) {
9510                 case DIFV_SCOPE_THREAD:
9511                         continue;
9512
9513                 case DIFV_SCOPE_LOCAL:
9514                         np = &vstate->dtvs_nlocals;
9515                         svarp = vstate->dtvs_locals;
9516                         break;
9517
9518                 case DIFV_SCOPE_GLOBAL:
9519                         np = &vstate->dtvs_nglobals;
9520                         svarp = vstate->dtvs_globals;
9521                         break;
9522
9523                 default:
9524                         ASSERT(0);
9525                 }
9526
9527                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9528                         continue;
9529
9530                 id -= DIF_VAR_OTHER_UBASE;
9531                 ASSERT(id < *np);
9532
9533                 svar = svarp[id];
9534                 ASSERT(svar != NULL);
9535                 ASSERT(svar->dtsv_refcnt > 0);
9536
9537                 if (--svar->dtsv_refcnt > 0)
9538                         continue;
9539
9540                 if (svar->dtsv_size != 0) {
9541                         ASSERT(svar->dtsv_data != 0);
9542                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9543                             svar->dtsv_size);
9544                 }
9545
9546                 kmem_free(svar, sizeof (dtrace_statvar_t));
9547                 svarp[id] = NULL;
9548         }
9549
9550         if (dp->dtdo_buf != NULL)
9551                 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9552         if (dp->dtdo_inttab != NULL)
9553                 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9554         if (dp->dtdo_strtab != NULL)
9555                 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9556         if (dp->dtdo_vartab != NULL)
9557                 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9558
9559         kmem_free(dp, sizeof (dtrace_difo_t));
9560 }
9561
9562 static void
9563 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9564 {
9565         int i;
9566
9567         ASSERT(MUTEX_HELD(&dtrace_lock));
9568         ASSERT(dp->dtdo_refcnt != 0);
9569
9570         for (i = 0; i < dp->dtdo_varlen; i++) {
9571                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9572
9573                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9574                         continue;
9575
9576                 ASSERT(dtrace_vtime_references > 0);
9577                 if (--dtrace_vtime_references == 0)
9578                         dtrace_vtime_disable();
9579         }
9580
9581         if (--dp->dtdo_refcnt == 0)
9582                 dtrace_difo_destroy(dp, vstate);
9583 }
9584
9585 /*
9586  * DTrace Format Functions
9587  */
9588 static uint16_t
9589 dtrace_format_add(dtrace_state_t *state, char *str)
9590 {
9591         char *fmt, **new;
9592         uint16_t ndx, len = strlen(str) + 1;
9593
9594         fmt = kmem_zalloc(len, KM_SLEEP);
9595         bcopy(str, fmt, len);
9596
9597         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9598                 if (state->dts_formats[ndx] == NULL) {
9599                         state->dts_formats[ndx] = fmt;
9600                         return (ndx + 1);
9601                 }
9602         }
9603
9604         if (state->dts_nformats == USHRT_MAX) {
9605                 /*
9606                  * This is only likely if a denial-of-service attack is being
9607                  * attempted.  As such, it's okay to fail silently here.
9608                  */
9609                 kmem_free(fmt, len);
9610                 return (0);
9611         }
9612
9613         /*
9614          * For simplicity, we always resize the formats array to be exactly the
9615          * number of formats.
9616          */
9617         ndx = state->dts_nformats++;
9618         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9619
9620         if (state->dts_formats != NULL) {
9621                 ASSERT(ndx != 0);
9622                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9623                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9624         }
9625
9626         state->dts_formats = new;
9627         state->dts_formats[ndx] = fmt;
9628
9629         return (ndx + 1);
9630 }
9631
9632 static void
9633 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9634 {
9635         char *fmt;
9636
9637         ASSERT(state->dts_formats != NULL);
9638         ASSERT(format <= state->dts_nformats);
9639         ASSERT(state->dts_formats[format - 1] != NULL);
9640
9641         fmt = state->dts_formats[format - 1];
9642         kmem_free(fmt, strlen(fmt) + 1);
9643         state->dts_formats[format - 1] = NULL;
9644 }
9645
9646 static void
9647 dtrace_format_destroy(dtrace_state_t *state)
9648 {
9649         int i;
9650
9651         if (state->dts_nformats == 0) {
9652                 ASSERT(state->dts_formats == NULL);
9653                 return;
9654         }
9655
9656         ASSERT(state->dts_formats != NULL);
9657
9658         for (i = 0; i < state->dts_nformats; i++) {
9659                 char *fmt = state->dts_formats[i];
9660
9661                 if (fmt == NULL)
9662                         continue;
9663
9664                 kmem_free(fmt, strlen(fmt) + 1);
9665         }
9666
9667         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9668         state->dts_nformats = 0;
9669         state->dts_formats = NULL;
9670 }
9671
9672 /*
9673  * DTrace Predicate Functions
9674  */
9675 static dtrace_predicate_t *
9676 dtrace_predicate_create(dtrace_difo_t *dp)
9677 {
9678         dtrace_predicate_t *pred;
9679
9680         ASSERT(MUTEX_HELD(&dtrace_lock));
9681         ASSERT(dp->dtdo_refcnt != 0);
9682
9683         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9684         pred->dtp_difo = dp;
9685         pred->dtp_refcnt = 1;
9686
9687         if (!dtrace_difo_cacheable(dp))
9688                 return (pred);
9689
9690         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9691                 /*
9692                  * This is only theoretically possible -- we have had 2^32
9693                  * cacheable predicates on this machine.  We cannot allow any
9694                  * more predicates to become cacheable:  as unlikely as it is,
9695                  * there may be a thread caching a (now stale) predicate cache
9696                  * ID. (N.B.: the temptation is being successfully resisted to
9697                  * have this cmn_err() "Holy shit -- we executed this code!")
9698                  */
9699                 return (pred);
9700         }
9701
9702         pred->dtp_cacheid = dtrace_predcache_id++;
9703
9704         return (pred);
9705 }
9706
9707 static void
9708 dtrace_predicate_hold(dtrace_predicate_t *pred)
9709 {
9710         ASSERT(MUTEX_HELD(&dtrace_lock));
9711         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9712         ASSERT(pred->dtp_refcnt > 0);
9713
9714         pred->dtp_refcnt++;
9715 }
9716
9717 static void
9718 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9719 {
9720         dtrace_difo_t *dp = pred->dtp_difo;
9721
9722         ASSERT(MUTEX_HELD(&dtrace_lock));
9723         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9724         ASSERT(pred->dtp_refcnt > 0);
9725
9726         if (--pred->dtp_refcnt == 0) {
9727                 dtrace_difo_release(pred->dtp_difo, vstate);
9728                 kmem_free(pred, sizeof (dtrace_predicate_t));
9729         }
9730 }
9731
9732 /*
9733  * DTrace Action Description Functions
9734  */
9735 static dtrace_actdesc_t *
9736 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9737     uint64_t uarg, uint64_t arg)
9738 {
9739         dtrace_actdesc_t *act;
9740
9741 #if defined(sun)
9742         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9743             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9744 #endif
9745
9746         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9747         act->dtad_kind = kind;
9748         act->dtad_ntuple = ntuple;
9749         act->dtad_uarg = uarg;
9750         act->dtad_arg = arg;
9751         act->dtad_refcnt = 1;
9752
9753         return (act);
9754 }
9755
9756 static void
9757 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9758 {
9759         ASSERT(act->dtad_refcnt >= 1);
9760         act->dtad_refcnt++;
9761 }
9762
9763 static void
9764 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9765 {
9766         dtrace_actkind_t kind = act->dtad_kind;
9767         dtrace_difo_t *dp;
9768
9769         ASSERT(act->dtad_refcnt >= 1);
9770
9771         if (--act->dtad_refcnt != 0)
9772                 return;
9773
9774         if ((dp = act->dtad_difo) != NULL)
9775                 dtrace_difo_release(dp, vstate);
9776
9777         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9778                 char *str = (char *)(uintptr_t)act->dtad_arg;
9779
9780 #if defined(sun)
9781                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9782                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9783 #endif
9784
9785                 if (str != NULL)
9786                         kmem_free(str, strlen(str) + 1);
9787         }
9788
9789         kmem_free(act, sizeof (dtrace_actdesc_t));
9790 }
9791
9792 /*
9793  * DTrace ECB Functions
9794  */
9795 static dtrace_ecb_t *
9796 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9797 {
9798         dtrace_ecb_t *ecb;
9799         dtrace_epid_t epid;
9800
9801         ASSERT(MUTEX_HELD(&dtrace_lock));
9802
9803         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9804         ecb->dte_predicate = NULL;
9805         ecb->dte_probe = probe;
9806
9807         /*
9808          * The default size is the size of the default action: recording
9809          * the header.
9810          */
9811         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9812         ecb->dte_alignment = sizeof (dtrace_epid_t);
9813
9814         epid = state->dts_epid++;
9815
9816         if (epid - 1 >= state->dts_necbs) {
9817                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9818                 int necbs = state->dts_necbs << 1;
9819
9820                 ASSERT(epid == state->dts_necbs + 1);
9821
9822                 if (necbs == 0) {
9823                         ASSERT(oecbs == NULL);
9824                         necbs = 1;
9825                 }
9826
9827                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9828
9829                 if (oecbs != NULL)
9830                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9831
9832                 dtrace_membar_producer();
9833                 state->dts_ecbs = ecbs;
9834
9835                 if (oecbs != NULL) {
9836                         /*
9837                          * If this state is active, we must dtrace_sync()
9838                          * before we can free the old dts_ecbs array:  we're
9839                          * coming in hot, and there may be active ring
9840                          * buffer processing (which indexes into the dts_ecbs
9841                          * array) on another CPU.
9842                          */
9843                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9844                                 dtrace_sync();
9845
9846                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9847                 }
9848
9849                 dtrace_membar_producer();
9850                 state->dts_necbs = necbs;
9851         }
9852
9853         ecb->dte_state = state;
9854
9855         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9856         dtrace_membar_producer();
9857         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9858
9859         return (ecb);
9860 }
9861
9862 static void
9863 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9864 {
9865         dtrace_probe_t *probe = ecb->dte_probe;
9866
9867         ASSERT(MUTEX_HELD(&cpu_lock));
9868         ASSERT(MUTEX_HELD(&dtrace_lock));
9869         ASSERT(ecb->dte_next == NULL);
9870
9871         if (probe == NULL) {
9872                 /*
9873                  * This is the NULL probe -- there's nothing to do.
9874                  */
9875                 return;
9876         }
9877
9878         if (probe->dtpr_ecb == NULL) {
9879                 dtrace_provider_t *prov = probe->dtpr_provider;
9880
9881                 /*
9882                  * We're the first ECB on this probe.
9883                  */
9884                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9885
9886                 if (ecb->dte_predicate != NULL)
9887                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9888
9889                 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9890                     probe->dtpr_id, probe->dtpr_arg);
9891         } else {
9892                 /*
9893                  * This probe is already active.  Swing the last pointer to
9894                  * point to the new ECB, and issue a dtrace_sync() to assure
9895                  * that all CPUs have seen the change.
9896                  */
9897                 ASSERT(probe->dtpr_ecb_last != NULL);
9898                 probe->dtpr_ecb_last->dte_next = ecb;
9899                 probe->dtpr_ecb_last = ecb;
9900                 probe->dtpr_predcache = 0;
9901
9902                 dtrace_sync();
9903         }
9904 }
9905
9906 static void
9907 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9908 {
9909         dtrace_action_t *act;
9910         uint32_t curneeded = UINT32_MAX;
9911         uint32_t aggbase = UINT32_MAX;
9912
9913         /*
9914          * If we record anything, we always record the dtrace_rechdr_t.  (And
9915          * we always record it first.)
9916          */
9917         ecb->dte_size = sizeof (dtrace_rechdr_t);
9918         ecb->dte_alignment = sizeof (dtrace_epid_t);
9919
9920         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9921                 dtrace_recdesc_t *rec = &act->dta_rec;
9922                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9923
9924                 ecb->dte_alignment = MAX(ecb->dte_alignment,
9925                     rec->dtrd_alignment);
9926
9927                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9928                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9929
9930                         ASSERT(rec->dtrd_size != 0);
9931                         ASSERT(agg->dtag_first != NULL);
9932                         ASSERT(act->dta_prev->dta_intuple);
9933                         ASSERT(aggbase != UINT32_MAX);
9934                         ASSERT(curneeded != UINT32_MAX);
9935
9936                         agg->dtag_base = aggbase;
9937
9938                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9939                         rec->dtrd_offset = curneeded;
9940                         curneeded += rec->dtrd_size;
9941                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9942
9943                         aggbase = UINT32_MAX;
9944                         curneeded = UINT32_MAX;
9945                 } else if (act->dta_intuple) {
9946                         if (curneeded == UINT32_MAX) {
9947                                 /*
9948                                  * This is the first record in a tuple.  Align
9949                                  * curneeded to be at offset 4 in an 8-byte
9950                                  * aligned block.
9951                                  */
9952                                 ASSERT(act->dta_prev == NULL ||
9953                                     !act->dta_prev->dta_intuple);
9954                                 ASSERT3U(aggbase, ==, UINT32_MAX);
9955                                 curneeded = P2PHASEUP(ecb->dte_size,
9956                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
9957
9958                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
9959                                 ASSERT(IS_P2ALIGNED(aggbase,
9960                                     sizeof (uint64_t)));
9961                         }
9962                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9963                         rec->dtrd_offset = curneeded;
9964                         curneeded += rec->dtrd_size;
9965                 } else {
9966                         /* tuples must be followed by an aggregation */
9967                         ASSERT(act->dta_prev == NULL ||
9968                             !act->dta_prev->dta_intuple);
9969
9970                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9971                             rec->dtrd_alignment);
9972                         rec->dtrd_offset = ecb->dte_size;
9973                         ecb->dte_size += rec->dtrd_size;
9974                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9975                 }
9976         }
9977
9978         if ((act = ecb->dte_action) != NULL &&
9979             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9980             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9981                 /*
9982                  * If the size is still sizeof (dtrace_rechdr_t), then all
9983                  * actions store no data; set the size to 0.
9984                  */
9985                 ecb->dte_size = 0;
9986         }
9987
9988         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9989         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9990         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9991             ecb->dte_needed);
9992 }
9993
9994 static dtrace_action_t *
9995 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9996 {
9997         dtrace_aggregation_t *agg;
9998         size_t size = sizeof (uint64_t);
9999         int ntuple = desc->dtad_ntuple;
10000         dtrace_action_t *act;
10001         dtrace_recdesc_t *frec;
10002         dtrace_aggid_t aggid;
10003         dtrace_state_t *state = ecb->dte_state;
10004
10005         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10006         agg->dtag_ecb = ecb;
10007
10008         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10009
10010         switch (desc->dtad_kind) {
10011         case DTRACEAGG_MIN:
10012                 agg->dtag_initial = INT64_MAX;
10013                 agg->dtag_aggregate = dtrace_aggregate_min;
10014                 break;
10015
10016         case DTRACEAGG_MAX:
10017                 agg->dtag_initial = INT64_MIN;
10018                 agg->dtag_aggregate = dtrace_aggregate_max;
10019                 break;
10020
10021         case DTRACEAGG_COUNT:
10022                 agg->dtag_aggregate = dtrace_aggregate_count;
10023                 break;
10024
10025         case DTRACEAGG_QUANTIZE:
10026                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10027                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10028                     sizeof (uint64_t);
10029                 break;
10030
10031         case DTRACEAGG_LQUANTIZE: {
10032                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10033                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10034
10035                 agg->dtag_initial = desc->dtad_arg;
10036                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10037
10038                 if (step == 0 || levels == 0)
10039                         goto err;
10040
10041                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10042                 break;
10043         }
10044
10045         case DTRACEAGG_LLQUANTIZE: {
10046                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10047                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10048                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10049                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10050                 int64_t v;
10051
10052                 agg->dtag_initial = desc->dtad_arg;
10053                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10054
10055                 if (factor < 2 || low >= high || nsteps < factor)
10056                         goto err;
10057
10058                 /*
10059                  * Now check that the number of steps evenly divides a power
10060                  * of the factor.  (This assures both integer bucket size and
10061                  * linearity within each magnitude.)
10062                  */
10063                 for (v = factor; v < nsteps; v *= factor)
10064                         continue;
10065
10066                 if ((v % nsteps) || (nsteps % factor))
10067                         goto err;
10068
10069                 size = (dtrace_aggregate_llquantize_bucket(factor,
10070                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10071                 break;
10072         }
10073
10074         case DTRACEAGG_AVG:
10075                 agg->dtag_aggregate = dtrace_aggregate_avg;
10076                 size = sizeof (uint64_t) * 2;
10077                 break;
10078
10079         case DTRACEAGG_STDDEV:
10080                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10081                 size = sizeof (uint64_t) * 4;
10082                 break;
10083
10084         case DTRACEAGG_SUM:
10085                 agg->dtag_aggregate = dtrace_aggregate_sum;
10086                 break;
10087
10088         default:
10089                 goto err;
10090         }
10091
10092         agg->dtag_action.dta_rec.dtrd_size = size;
10093
10094         if (ntuple == 0)
10095                 goto err;
10096
10097         /*
10098          * We must make sure that we have enough actions for the n-tuple.
10099          */
10100         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10101                 if (DTRACEACT_ISAGG(act->dta_kind))
10102                         break;
10103
10104                 if (--ntuple == 0) {
10105                         /*
10106                          * This is the action with which our n-tuple begins.
10107                          */
10108                         agg->dtag_first = act;
10109                         goto success;
10110                 }
10111         }
10112
10113         /*
10114          * This n-tuple is short by ntuple elements.  Return failure.
10115          */
10116         ASSERT(ntuple != 0);
10117 err:
10118         kmem_free(agg, sizeof (dtrace_aggregation_t));
10119         return (NULL);
10120
10121 success:
10122         /*
10123          * If the last action in the tuple has a size of zero, it's actually
10124          * an expression argument for the aggregating action.
10125          */
10126         ASSERT(ecb->dte_action_last != NULL);
10127         act = ecb->dte_action_last;
10128
10129         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10130                 ASSERT(act->dta_difo != NULL);
10131
10132                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10133                         agg->dtag_hasarg = 1;
10134         }
10135
10136         /*
10137          * We need to allocate an id for this aggregation.
10138          */
10139 #if defined(sun)
10140         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10141             VM_BESTFIT | VM_SLEEP);
10142 #else
10143         aggid = alloc_unr(state->dts_aggid_arena);
10144 #endif
10145
10146         if (aggid - 1 >= state->dts_naggregations) {
10147                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10148                 dtrace_aggregation_t **aggs;
10149                 int naggs = state->dts_naggregations << 1;
10150                 int onaggs = state->dts_naggregations;
10151
10152                 ASSERT(aggid == state->dts_naggregations + 1);
10153
10154                 if (naggs == 0) {
10155                         ASSERT(oaggs == NULL);
10156                         naggs = 1;
10157                 }
10158
10159                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10160
10161                 if (oaggs != NULL) {
10162                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10163                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10164                 }
10165
10166                 state->dts_aggregations = aggs;
10167                 state->dts_naggregations = naggs;
10168         }
10169
10170         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10171         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10172
10173         frec = &agg->dtag_first->dta_rec;
10174         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10175                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10176
10177         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10178                 ASSERT(!act->dta_intuple);
10179                 act->dta_intuple = 1;
10180         }
10181
10182         return (&agg->dtag_action);
10183 }
10184
10185 static void
10186 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10187 {
10188         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10189         dtrace_state_t *state = ecb->dte_state;
10190         dtrace_aggid_t aggid = agg->dtag_id;
10191
10192         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10193 #if defined(sun)
10194         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10195 #else
10196         free_unr(state->dts_aggid_arena, aggid);
10197 #endif
10198
10199         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10200         state->dts_aggregations[aggid - 1] = NULL;
10201
10202         kmem_free(agg, sizeof (dtrace_aggregation_t));
10203 }
10204
10205 static int
10206 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10207 {
10208         dtrace_action_t *action, *last;
10209         dtrace_difo_t *dp = desc->dtad_difo;
10210         uint32_t size = 0, align = sizeof (uint8_t), mask;
10211         uint16_t format = 0;
10212         dtrace_recdesc_t *rec;
10213         dtrace_state_t *state = ecb->dte_state;
10214         dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10215         uint64_t arg = desc->dtad_arg;
10216
10217         ASSERT(MUTEX_HELD(&dtrace_lock));
10218         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10219
10220         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10221                 /*
10222                  * If this is an aggregating action, there must be neither
10223                  * a speculate nor a commit on the action chain.
10224                  */
10225                 dtrace_action_t *act;
10226
10227                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10228                         if (act->dta_kind == DTRACEACT_COMMIT)
10229                                 return (EINVAL);
10230
10231                         if (act->dta_kind == DTRACEACT_SPECULATE)
10232                                 return (EINVAL);
10233                 }
10234
10235                 action = dtrace_ecb_aggregation_create(ecb, desc);
10236
10237                 if (action == NULL)
10238                         return (EINVAL);
10239         } else {
10240                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10241                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10242                     dp != NULL && dp->dtdo_destructive)) {
10243                         state->dts_destructive = 1;
10244                 }
10245
10246                 switch (desc->dtad_kind) {
10247                 case DTRACEACT_PRINTF:
10248                 case DTRACEACT_PRINTA:
10249                 case DTRACEACT_SYSTEM:
10250                 case DTRACEACT_FREOPEN:
10251                 case DTRACEACT_DIFEXPR:
10252                         /*
10253                          * We know that our arg is a string -- turn it into a
10254                          * format.
10255                          */
10256                         if (arg == 0) {
10257                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10258                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10259                                 format = 0;
10260                         } else {
10261                                 ASSERT(arg != 0);
10262 #if defined(sun)
10263                                 ASSERT(arg > KERNELBASE);
10264 #endif
10265                                 format = dtrace_format_add(state,
10266                                     (char *)(uintptr_t)arg);
10267                         }
10268
10269                         /*FALLTHROUGH*/
10270                 case DTRACEACT_LIBACT:
10271                 case DTRACEACT_TRACEMEM:
10272                 case DTRACEACT_TRACEMEM_DYNSIZE:
10273                         if (dp == NULL)
10274                                 return (EINVAL);
10275
10276                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10277                                 break;
10278
10279                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10280                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10281                                         return (EINVAL);
10282
10283                                 size = opt[DTRACEOPT_STRSIZE];
10284                         }
10285
10286                         break;
10287
10288                 case DTRACEACT_STACK:
10289                         if ((nframes = arg) == 0) {
10290                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10291                                 ASSERT(nframes > 0);
10292                                 arg = nframes;
10293                         }
10294
10295                         size = nframes * sizeof (pc_t);
10296                         break;
10297
10298                 case DTRACEACT_JSTACK:
10299                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10300                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10301
10302                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10303                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10304
10305                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10306
10307                         /*FALLTHROUGH*/
10308                 case DTRACEACT_USTACK:
10309                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10310                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10311                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10312                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10313                                 ASSERT(nframes > 0);
10314                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10315                         }
10316
10317                         /*
10318                          * Save a slot for the pid.
10319                          */
10320                         size = (nframes + 1) * sizeof (uint64_t);
10321                         size += DTRACE_USTACK_STRSIZE(arg);
10322                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10323
10324                         break;
10325
10326                 case DTRACEACT_SYM:
10327                 case DTRACEACT_MOD:
10328                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10329                             sizeof (uint64_t)) ||
10330                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10331                                 return (EINVAL);
10332                         break;
10333
10334                 case DTRACEACT_USYM:
10335                 case DTRACEACT_UMOD:
10336                 case DTRACEACT_UADDR:
10337                         if (dp == NULL ||
10338                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10339                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10340                                 return (EINVAL);
10341
10342                         /*
10343                          * We have a slot for the pid, plus a slot for the
10344                          * argument.  To keep things simple (aligned with
10345                          * bitness-neutral sizing), we store each as a 64-bit
10346                          * quantity.
10347                          */
10348                         size = 2 * sizeof (uint64_t);
10349                         break;
10350
10351                 case DTRACEACT_STOP:
10352                 case DTRACEACT_BREAKPOINT:
10353                 case DTRACEACT_PANIC:
10354                         break;
10355
10356                 case DTRACEACT_CHILL:
10357                 case DTRACEACT_DISCARD:
10358                 case DTRACEACT_RAISE:
10359                         if (dp == NULL)
10360                                 return (EINVAL);
10361                         break;
10362
10363                 case DTRACEACT_EXIT:
10364                         if (dp == NULL ||
10365                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10366                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10367                                 return (EINVAL);
10368                         break;
10369
10370                 case DTRACEACT_SPECULATE:
10371                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10372                                 return (EINVAL);
10373
10374                         if (dp == NULL)
10375                                 return (EINVAL);
10376
10377                         state->dts_speculates = 1;
10378                         break;
10379
10380                 case DTRACEACT_PRINTM:
10381                         size = dp->dtdo_rtype.dtdt_size;
10382                         break;
10383
10384                 case DTRACEACT_PRINTT:
10385                         size = dp->dtdo_rtype.dtdt_size;
10386                         break;
10387
10388                 case DTRACEACT_COMMIT: {
10389                         dtrace_action_t *act = ecb->dte_action;
10390
10391                         for (; act != NULL; act = act->dta_next) {
10392                                 if (act->dta_kind == DTRACEACT_COMMIT)
10393                                         return (EINVAL);
10394                         }
10395
10396                         if (dp == NULL)
10397                                 return (EINVAL);
10398                         break;
10399                 }
10400
10401                 default:
10402                         return (EINVAL);
10403                 }
10404
10405                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10406                         /*
10407                          * If this is a data-storing action or a speculate,
10408                          * we must be sure that there isn't a commit on the
10409                          * action chain.
10410                          */
10411                         dtrace_action_t *act = ecb->dte_action;
10412
10413                         for (; act != NULL; act = act->dta_next) {
10414                                 if (act->dta_kind == DTRACEACT_COMMIT)
10415                                         return (EINVAL);
10416                         }
10417                 }
10418
10419                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10420                 action->dta_rec.dtrd_size = size;
10421         }
10422
10423         action->dta_refcnt = 1;
10424         rec = &action->dta_rec;
10425         size = rec->dtrd_size;
10426
10427         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10428                 if (!(size & mask)) {
10429                         align = mask + 1;
10430                         break;
10431                 }
10432         }
10433
10434         action->dta_kind = desc->dtad_kind;
10435
10436         if ((action->dta_difo = dp) != NULL)
10437                 dtrace_difo_hold(dp);
10438
10439         rec->dtrd_action = action->dta_kind;
10440         rec->dtrd_arg = arg;
10441         rec->dtrd_uarg = desc->dtad_uarg;
10442         rec->dtrd_alignment = (uint16_t)align;
10443         rec->dtrd_format = format;
10444
10445         if ((last = ecb->dte_action_last) != NULL) {
10446                 ASSERT(ecb->dte_action != NULL);
10447                 action->dta_prev = last;
10448                 last->dta_next = action;
10449         } else {
10450                 ASSERT(ecb->dte_action == NULL);
10451                 ecb->dte_action = action;
10452         }
10453
10454         ecb->dte_action_last = action;
10455
10456         return (0);
10457 }
10458
10459 static void
10460 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10461 {
10462         dtrace_action_t *act = ecb->dte_action, *next;
10463         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10464         dtrace_difo_t *dp;
10465         uint16_t format;
10466
10467         if (act != NULL && act->dta_refcnt > 1) {
10468                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10469                 act->dta_refcnt--;
10470         } else {
10471                 for (; act != NULL; act = next) {
10472                         next = act->dta_next;
10473                         ASSERT(next != NULL || act == ecb->dte_action_last);
10474                         ASSERT(act->dta_refcnt == 1);
10475
10476                         if ((format = act->dta_rec.dtrd_format) != 0)
10477                                 dtrace_format_remove(ecb->dte_state, format);
10478
10479                         if ((dp = act->dta_difo) != NULL)
10480                                 dtrace_difo_release(dp, vstate);
10481
10482                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10483                                 dtrace_ecb_aggregation_destroy(ecb, act);
10484                         } else {
10485                                 kmem_free(act, sizeof (dtrace_action_t));
10486                         }
10487                 }
10488         }
10489
10490         ecb->dte_action = NULL;
10491         ecb->dte_action_last = NULL;
10492         ecb->dte_size = 0;
10493 }
10494
10495 static void
10496 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10497 {
10498         /*
10499          * We disable the ECB by removing it from its probe.
10500          */
10501         dtrace_ecb_t *pecb, *prev = NULL;
10502         dtrace_probe_t *probe = ecb->dte_probe;
10503
10504         ASSERT(MUTEX_HELD(&dtrace_lock));
10505
10506         if (probe == NULL) {
10507                 /*
10508                  * This is the NULL probe; there is nothing to disable.
10509                  */
10510                 return;
10511         }
10512
10513         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10514                 if (pecb == ecb)
10515                         break;
10516                 prev = pecb;
10517         }
10518
10519         ASSERT(pecb != NULL);
10520
10521         if (prev == NULL) {
10522                 probe->dtpr_ecb = ecb->dte_next;
10523         } else {
10524                 prev->dte_next = ecb->dte_next;
10525         }
10526
10527         if (ecb == probe->dtpr_ecb_last) {
10528                 ASSERT(ecb->dte_next == NULL);
10529                 probe->dtpr_ecb_last = prev;
10530         }
10531
10532         /*
10533          * The ECB has been disconnected from the probe; now sync to assure
10534          * that all CPUs have seen the change before returning.
10535          */
10536         dtrace_sync();
10537
10538         if (probe->dtpr_ecb == NULL) {
10539                 /*
10540                  * That was the last ECB on the probe; clear the predicate
10541                  * cache ID for the probe, disable it and sync one more time
10542                  * to assure that we'll never hit it again.
10543                  */
10544                 dtrace_provider_t *prov = probe->dtpr_provider;
10545
10546                 ASSERT(ecb->dte_next == NULL);
10547                 ASSERT(probe->dtpr_ecb_last == NULL);
10548                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10549                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10550                     probe->dtpr_id, probe->dtpr_arg);
10551                 dtrace_sync();
10552         } else {
10553                 /*
10554                  * There is at least one ECB remaining on the probe.  If there
10555                  * is _exactly_ one, set the probe's predicate cache ID to be
10556                  * the predicate cache ID of the remaining ECB.
10557                  */
10558                 ASSERT(probe->dtpr_ecb_last != NULL);
10559                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10560
10561                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10562                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10563
10564                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10565
10566                         if (p != NULL)
10567                                 probe->dtpr_predcache = p->dtp_cacheid;
10568                 }
10569
10570                 ecb->dte_next = NULL;
10571         }
10572 }
10573
10574 static void
10575 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10576 {
10577         dtrace_state_t *state = ecb->dte_state;
10578         dtrace_vstate_t *vstate = &state->dts_vstate;
10579         dtrace_predicate_t *pred;
10580         dtrace_epid_t epid = ecb->dte_epid;
10581
10582         ASSERT(MUTEX_HELD(&dtrace_lock));
10583         ASSERT(ecb->dte_next == NULL);
10584         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10585
10586         if ((pred = ecb->dte_predicate) != NULL)
10587                 dtrace_predicate_release(pred, vstate);
10588
10589         dtrace_ecb_action_remove(ecb);
10590
10591         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10592         state->dts_ecbs[epid - 1] = NULL;
10593
10594         kmem_free(ecb, sizeof (dtrace_ecb_t));
10595 }
10596
10597 static dtrace_ecb_t *
10598 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10599     dtrace_enabling_t *enab)
10600 {
10601         dtrace_ecb_t *ecb;
10602         dtrace_predicate_t *pred;
10603         dtrace_actdesc_t *act;
10604         dtrace_provider_t *prov;
10605         dtrace_ecbdesc_t *desc = enab->dten_current;
10606
10607         ASSERT(MUTEX_HELD(&dtrace_lock));
10608         ASSERT(state != NULL);
10609
10610         ecb = dtrace_ecb_add(state, probe);
10611         ecb->dte_uarg = desc->dted_uarg;
10612
10613         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10614                 dtrace_predicate_hold(pred);
10615                 ecb->dte_predicate = pred;
10616         }
10617
10618         if (probe != NULL) {
10619                 /*
10620                  * If the provider shows more leg than the consumer is old
10621                  * enough to see, we need to enable the appropriate implicit
10622                  * predicate bits to prevent the ecb from activating at
10623                  * revealing times.
10624                  *
10625                  * Providers specifying DTRACE_PRIV_USER at register time
10626                  * are stating that they need the /proc-style privilege
10627                  * model to be enforced, and this is what DTRACE_COND_OWNER
10628                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10629                  */
10630                 prov = probe->dtpr_provider;
10631                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10632                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10633                         ecb->dte_cond |= DTRACE_COND_OWNER;
10634
10635                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10636                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10637                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10638
10639                 /*
10640                  * If the provider shows us kernel innards and the user
10641                  * is lacking sufficient privilege, enable the
10642                  * DTRACE_COND_USERMODE implicit predicate.
10643                  */
10644                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10645                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10646                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10647         }
10648
10649         if (dtrace_ecb_create_cache != NULL) {
10650                 /*
10651                  * If we have a cached ecb, we'll use its action list instead
10652                  * of creating our own (saving both time and space).
10653                  */
10654                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10655                 dtrace_action_t *act = cached->dte_action;
10656
10657                 if (act != NULL) {
10658                         ASSERT(act->dta_refcnt > 0);
10659                         act->dta_refcnt++;
10660                         ecb->dte_action = act;
10661                         ecb->dte_action_last = cached->dte_action_last;
10662                         ecb->dte_needed = cached->dte_needed;
10663                         ecb->dte_size = cached->dte_size;
10664                         ecb->dte_alignment = cached->dte_alignment;
10665                 }
10666
10667                 return (ecb);
10668         }
10669
10670         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10671                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10672                         dtrace_ecb_destroy(ecb);
10673                         return (NULL);
10674                 }
10675         }
10676
10677         dtrace_ecb_resize(ecb);
10678
10679         return (dtrace_ecb_create_cache = ecb);
10680 }
10681
10682 static int
10683 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10684 {
10685         dtrace_ecb_t *ecb;
10686         dtrace_enabling_t *enab = arg;
10687         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10688
10689         ASSERT(state != NULL);
10690
10691         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10692                 /*
10693                  * This probe was created in a generation for which this
10694                  * enabling has previously created ECBs; we don't want to
10695                  * enable it again, so just kick out.
10696                  */
10697                 return (DTRACE_MATCH_NEXT);
10698         }
10699
10700         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10701                 return (DTRACE_MATCH_DONE);
10702
10703         dtrace_ecb_enable(ecb);
10704         return (DTRACE_MATCH_NEXT);
10705 }
10706
10707 static dtrace_ecb_t *
10708 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10709 {
10710         dtrace_ecb_t *ecb;
10711
10712         ASSERT(MUTEX_HELD(&dtrace_lock));
10713
10714         if (id == 0 || id > state->dts_necbs)
10715                 return (NULL);
10716
10717         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10718         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10719
10720         return (state->dts_ecbs[id - 1]);
10721 }
10722
10723 static dtrace_aggregation_t *
10724 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10725 {
10726         dtrace_aggregation_t *agg;
10727
10728         ASSERT(MUTEX_HELD(&dtrace_lock));
10729
10730         if (id == 0 || id > state->dts_naggregations)
10731                 return (NULL);
10732
10733         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10734         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10735             agg->dtag_id == id);
10736
10737         return (state->dts_aggregations[id - 1]);
10738 }
10739
10740 /*
10741  * DTrace Buffer Functions
10742  *
10743  * The following functions manipulate DTrace buffers.  Most of these functions
10744  * are called in the context of establishing or processing consumer state;
10745  * exceptions are explicitly noted.
10746  */
10747
10748 /*
10749  * Note:  called from cross call context.  This function switches the two
10750  * buffers on a given CPU.  The atomicity of this operation is assured by
10751  * disabling interrupts while the actual switch takes place; the disabling of
10752  * interrupts serializes the execution with any execution of dtrace_probe() on
10753  * the same CPU.
10754  */
10755 static void
10756 dtrace_buffer_switch(dtrace_buffer_t *buf)
10757 {
10758         caddr_t tomax = buf->dtb_tomax;
10759         caddr_t xamot = buf->dtb_xamot;
10760         dtrace_icookie_t cookie;
10761         hrtime_t now;
10762
10763         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10764         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10765
10766         cookie = dtrace_interrupt_disable();
10767         now = dtrace_gethrtime();
10768         buf->dtb_tomax = xamot;
10769         buf->dtb_xamot = tomax;
10770         buf->dtb_xamot_drops = buf->dtb_drops;
10771         buf->dtb_xamot_offset = buf->dtb_offset;
10772         buf->dtb_xamot_errors = buf->dtb_errors;
10773         buf->dtb_xamot_flags = buf->dtb_flags;
10774         buf->dtb_offset = 0;
10775         buf->dtb_drops = 0;
10776         buf->dtb_errors = 0;
10777         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10778         buf->dtb_interval = now - buf->dtb_switched;
10779         buf->dtb_switched = now;
10780         dtrace_interrupt_enable(cookie);
10781 }
10782
10783 /*
10784  * Note:  called from cross call context.  This function activates a buffer
10785  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10786  * is guaranteed by the disabling of interrupts.
10787  */
10788 static void
10789 dtrace_buffer_activate(dtrace_state_t *state)
10790 {
10791         dtrace_buffer_t *buf;
10792         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10793
10794         buf = &state->dts_buffer[curcpu];
10795
10796         if (buf->dtb_tomax != NULL) {
10797                 /*
10798                  * We might like to assert that the buffer is marked inactive,
10799                  * but this isn't necessarily true:  the buffer for the CPU
10800                  * that processes the BEGIN probe has its buffer activated
10801                  * manually.  In this case, we take the (harmless) action
10802                  * re-clearing the bit INACTIVE bit.
10803                  */
10804                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10805         }
10806
10807         dtrace_interrupt_enable(cookie);
10808 }
10809
10810 static int
10811 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10812     processorid_t cpu, int *factor)
10813 {
10814 #if defined(sun)
10815         cpu_t *cp;
10816 #endif
10817         dtrace_buffer_t *buf;
10818         int allocated = 0, desired = 0;
10819
10820 #if defined(sun)
10821         ASSERT(MUTEX_HELD(&cpu_lock));
10822         ASSERT(MUTEX_HELD(&dtrace_lock));
10823
10824         *factor = 1;
10825
10826         if (size > dtrace_nonroot_maxsize &&
10827             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10828                 return (EFBIG);
10829
10830         cp = cpu_list;
10831
10832         do {
10833                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10834                         continue;
10835
10836                 buf = &bufs[cp->cpu_id];
10837
10838                 /*
10839                  * If there is already a buffer allocated for this CPU, it
10840                  * is only possible that this is a DR event.  In this case,
10841                  */
10842                 if (buf->dtb_tomax != NULL) {
10843                         ASSERT(buf->dtb_size == size);
10844                         continue;
10845                 }
10846
10847                 ASSERT(buf->dtb_xamot == NULL);
10848
10849                 if ((buf->dtb_tomax = kmem_zalloc(size,
10850                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10851                         goto err;
10852
10853                 buf->dtb_size = size;
10854                 buf->dtb_flags = flags;
10855                 buf->dtb_offset = 0;
10856                 buf->dtb_drops = 0;
10857
10858                 if (flags & DTRACEBUF_NOSWITCH)
10859                         continue;
10860
10861                 if ((buf->dtb_xamot = kmem_zalloc(size,
10862                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10863                         goto err;
10864         } while ((cp = cp->cpu_next) != cpu_list);
10865
10866         return (0);
10867
10868 err:
10869         cp = cpu_list;
10870
10871         do {
10872                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10873                         continue;
10874
10875                 buf = &bufs[cp->cpu_id];
10876                 desired += 2;
10877
10878                 if (buf->dtb_xamot != NULL) {
10879                         ASSERT(buf->dtb_tomax != NULL);
10880                         ASSERT(buf->dtb_size == size);
10881                         kmem_free(buf->dtb_xamot, size);
10882                         allocated++;
10883                 }
10884
10885                 if (buf->dtb_tomax != NULL) {
10886                         ASSERT(buf->dtb_size == size);
10887                         kmem_free(buf->dtb_tomax, size);
10888                         allocated++;
10889                 }
10890
10891                 buf->dtb_tomax = NULL;
10892                 buf->dtb_xamot = NULL;
10893                 buf->dtb_size = 0;
10894         } while ((cp = cp->cpu_next) != cpu_list);
10895 #else
10896         int i;
10897
10898         *factor = 1;
10899 #if defined(__amd64__)
10900         /*
10901          * FreeBSD isn't good at limiting the amount of memory we
10902          * ask to malloc, so let's place a limit here before trying
10903          * to do something that might well end in tears at bedtime.
10904          */
10905         if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10906                 return (ENOMEM);
10907 #endif
10908
10909         ASSERT(MUTEX_HELD(&dtrace_lock));
10910         CPU_FOREACH(i) {
10911                 if (cpu != DTRACE_CPUALL && cpu != i)
10912                         continue;
10913
10914                 buf = &bufs[i];
10915
10916                 /*
10917                  * If there is already a buffer allocated for this CPU, it
10918                  * is only possible that this is a DR event.  In this case,
10919                  * the buffer size must match our specified size.
10920                  */
10921                 if (buf->dtb_tomax != NULL) {
10922                         ASSERT(buf->dtb_size == size);
10923                         continue;
10924                 }
10925
10926                 ASSERT(buf->dtb_xamot == NULL);
10927
10928                 if ((buf->dtb_tomax = kmem_zalloc(size,
10929                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10930                         goto err;
10931
10932                 buf->dtb_size = size;
10933                 buf->dtb_flags = flags;
10934                 buf->dtb_offset = 0;
10935                 buf->dtb_drops = 0;
10936
10937                 if (flags & DTRACEBUF_NOSWITCH)
10938                         continue;
10939
10940                 if ((buf->dtb_xamot = kmem_zalloc(size,
10941                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10942                         goto err;
10943         }
10944
10945         return (0);
10946
10947 err:
10948         /*
10949          * Error allocating memory, so free the buffers that were
10950          * allocated before the failed allocation.
10951          */
10952         CPU_FOREACH(i) {
10953                 if (cpu != DTRACE_CPUALL && cpu != i)
10954                         continue;
10955
10956                 buf = &bufs[i];
10957                 desired += 2;
10958
10959                 if (buf->dtb_xamot != NULL) {
10960                         ASSERT(buf->dtb_tomax != NULL);
10961                         ASSERT(buf->dtb_size == size);
10962                         kmem_free(buf->dtb_xamot, size);
10963                         allocated++;
10964                 }
10965
10966                 if (buf->dtb_tomax != NULL) {
10967                         ASSERT(buf->dtb_size == size);
10968                         kmem_free(buf->dtb_tomax, size);
10969                         allocated++;
10970                 }
10971
10972                 buf->dtb_tomax = NULL;
10973                 buf->dtb_xamot = NULL;
10974                 buf->dtb_size = 0;
10975
10976         }
10977 #endif
10978         *factor = desired / (allocated > 0 ? allocated : 1);
10979
10980         return (ENOMEM);
10981 }
10982
10983 /*
10984  * Note:  called from probe context.  This function just increments the drop
10985  * count on a buffer.  It has been made a function to allow for the
10986  * possibility of understanding the source of mysterious drop counts.  (A
10987  * problem for which one may be particularly disappointed that DTrace cannot
10988  * be used to understand DTrace.)
10989  */
10990 static void
10991 dtrace_buffer_drop(dtrace_buffer_t *buf)
10992 {
10993         buf->dtb_drops++;
10994 }
10995
10996 /*
10997  * Note:  called from probe context.  This function is called to reserve space
10998  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10999  * mstate.  Returns the new offset in the buffer, or a negative value if an
11000  * error has occurred.
11001  */
11002 static intptr_t
11003 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11004     dtrace_state_t *state, dtrace_mstate_t *mstate)
11005 {
11006         intptr_t offs = buf->dtb_offset, soffs;
11007         intptr_t woffs;
11008         caddr_t tomax;
11009         size_t total;
11010
11011         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11012                 return (-1);
11013
11014         if ((tomax = buf->dtb_tomax) == NULL) {
11015                 dtrace_buffer_drop(buf);
11016                 return (-1);
11017         }
11018
11019         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11020                 while (offs & (align - 1)) {
11021                         /*
11022                          * Assert that our alignment is off by a number which
11023                          * is itself sizeof (uint32_t) aligned.
11024                          */
11025                         ASSERT(!((align - (offs & (align - 1))) &
11026                             (sizeof (uint32_t) - 1)));
11027                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11028                         offs += sizeof (uint32_t);
11029                 }
11030
11031                 if ((soffs = offs + needed) > buf->dtb_size) {
11032                         dtrace_buffer_drop(buf);
11033                         return (-1);
11034                 }
11035
11036                 if (mstate == NULL)
11037                         return (offs);
11038
11039                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11040                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11041                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11042
11043                 return (offs);
11044         }
11045
11046         if (buf->dtb_flags & DTRACEBUF_FILL) {
11047                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11048                     (buf->dtb_flags & DTRACEBUF_FULL))
11049                         return (-1);
11050                 goto out;
11051         }
11052
11053         total = needed + (offs & (align - 1));
11054
11055         /*
11056          * For a ring buffer, life is quite a bit more complicated.  Before
11057          * we can store any padding, we need to adjust our wrapping offset.
11058          * (If we've never before wrapped or we're not about to, no adjustment
11059          * is required.)
11060          */
11061         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11062             offs + total > buf->dtb_size) {
11063                 woffs = buf->dtb_xamot_offset;
11064
11065                 if (offs + total > buf->dtb_size) {
11066                         /*
11067                          * We can't fit in the end of the buffer.  First, a
11068                          * sanity check that we can fit in the buffer at all.
11069                          */
11070                         if (total > buf->dtb_size) {
11071                                 dtrace_buffer_drop(buf);
11072                                 return (-1);
11073                         }
11074
11075                         /*
11076                          * We're going to be storing at the top of the buffer,
11077                          * so now we need to deal with the wrapped offset.  We
11078                          * only reset our wrapped offset to 0 if it is
11079                          * currently greater than the current offset.  If it
11080                          * is less than the current offset, it is because a
11081                          * previous allocation induced a wrap -- but the
11082                          * allocation didn't subsequently take the space due
11083                          * to an error or false predicate evaluation.  In this
11084                          * case, we'll just leave the wrapped offset alone: if
11085                          * the wrapped offset hasn't been advanced far enough
11086                          * for this allocation, it will be adjusted in the
11087                          * lower loop.
11088                          */
11089                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11090                                 if (woffs >= offs)
11091                                         woffs = 0;
11092                         } else {
11093                                 woffs = 0;
11094                         }
11095
11096                         /*
11097                          * Now we know that we're going to be storing to the
11098                          * top of the buffer and that there is room for us
11099                          * there.  We need to clear the buffer from the current
11100                          * offset to the end (there may be old gunk there).
11101                          */
11102                         while (offs < buf->dtb_size)
11103                                 tomax[offs++] = 0;
11104
11105                         /*
11106                          * We need to set our offset to zero.  And because we
11107                          * are wrapping, we need to set the bit indicating as
11108                          * much.  We can also adjust our needed space back
11109                          * down to the space required by the ECB -- we know
11110                          * that the top of the buffer is aligned.
11111                          */
11112                         offs = 0;
11113                         total = needed;
11114                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11115                 } else {
11116                         /*
11117                          * There is room for us in the buffer, so we simply
11118                          * need to check the wrapped offset.
11119                          */
11120                         if (woffs < offs) {
11121                                 /*
11122                                  * The wrapped offset is less than the offset.
11123                                  * This can happen if we allocated buffer space
11124                                  * that induced a wrap, but then we didn't
11125                                  * subsequently take the space due to an error
11126                                  * or false predicate evaluation.  This is
11127                                  * okay; we know that _this_ allocation isn't
11128                                  * going to induce a wrap.  We still can't
11129                                  * reset the wrapped offset to be zero,
11130                                  * however: the space may have been trashed in
11131                                  * the previous failed probe attempt.  But at
11132                                  * least the wrapped offset doesn't need to
11133                                  * be adjusted at all...
11134                                  */
11135                                 goto out;
11136                         }
11137                 }
11138
11139                 while (offs + total > woffs) {
11140                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11141                         size_t size;
11142
11143                         if (epid == DTRACE_EPIDNONE) {
11144                                 size = sizeof (uint32_t);
11145                         } else {
11146                                 ASSERT3U(epid, <=, state->dts_necbs);
11147                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11148
11149                                 size = state->dts_ecbs[epid - 1]->dte_size;
11150                         }
11151
11152                         ASSERT(woffs + size <= buf->dtb_size);
11153                         ASSERT(size != 0);
11154
11155                         if (woffs + size == buf->dtb_size) {
11156                                 /*
11157                                  * We've reached the end of the buffer; we want
11158                                  * to set the wrapped offset to 0 and break
11159                                  * out.  However, if the offs is 0, then we're
11160                                  * in a strange edge-condition:  the amount of
11161                                  * space that we want to reserve plus the size
11162                                  * of the record that we're overwriting is
11163                                  * greater than the size of the buffer.  This
11164                                  * is problematic because if we reserve the
11165                                  * space but subsequently don't consume it (due
11166                                  * to a failed predicate or error) the wrapped
11167                                  * offset will be 0 -- yet the EPID at offset 0
11168                                  * will not be committed.  This situation is
11169                                  * relatively easy to deal with:  if we're in
11170                                  * this case, the buffer is indistinguishable
11171                                  * from one that hasn't wrapped; we need only
11172                                  * finish the job by clearing the wrapped bit,
11173                                  * explicitly setting the offset to be 0, and
11174                                  * zero'ing out the old data in the buffer.
11175                                  */
11176                                 if (offs == 0) {
11177                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11178                                         buf->dtb_offset = 0;
11179                                         woffs = total;
11180
11181                                         while (woffs < buf->dtb_size)
11182                                                 tomax[woffs++] = 0;
11183                                 }
11184
11185                                 woffs = 0;
11186                                 break;
11187                         }
11188
11189                         woffs += size;
11190                 }
11191
11192                 /*
11193                  * We have a wrapped offset.  It may be that the wrapped offset
11194                  * has become zero -- that's okay.
11195                  */
11196                 buf->dtb_xamot_offset = woffs;
11197         }
11198
11199 out:
11200         /*
11201          * Now we can plow the buffer with any necessary padding.
11202          */
11203         while (offs & (align - 1)) {
11204                 /*
11205                  * Assert that our alignment is off by a number which
11206                  * is itself sizeof (uint32_t) aligned.
11207                  */
11208                 ASSERT(!((align - (offs & (align - 1))) &
11209                     (sizeof (uint32_t) - 1)));
11210                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11211                 offs += sizeof (uint32_t);
11212         }
11213
11214         if (buf->dtb_flags & DTRACEBUF_FILL) {
11215                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11216                         buf->dtb_flags |= DTRACEBUF_FULL;
11217                         return (-1);
11218                 }
11219         }
11220
11221         if (mstate == NULL)
11222                 return (offs);
11223
11224         /*
11225          * For ring buffers and fill buffers, the scratch space is always
11226          * the inactive buffer.
11227          */
11228         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11229         mstate->dtms_scratch_size = buf->dtb_size;
11230         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11231
11232         return (offs);
11233 }
11234
11235 static void
11236 dtrace_buffer_polish(dtrace_buffer_t *buf)
11237 {
11238         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11239         ASSERT(MUTEX_HELD(&dtrace_lock));
11240
11241         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11242                 return;
11243
11244         /*
11245          * We need to polish the ring buffer.  There are three cases:
11246          *
11247          * - The first (and presumably most common) is that there is no gap
11248          *   between the buffer offset and the wrapped offset.  In this case,
11249          *   there is nothing in the buffer that isn't valid data; we can
11250          *   mark the buffer as polished and return.
11251          *
11252          * - The second (less common than the first but still more common
11253          *   than the third) is that there is a gap between the buffer offset
11254          *   and the wrapped offset, and the wrapped offset is larger than the
11255          *   buffer offset.  This can happen because of an alignment issue, or
11256          *   can happen because of a call to dtrace_buffer_reserve() that
11257          *   didn't subsequently consume the buffer space.  In this case,
11258          *   we need to zero the data from the buffer offset to the wrapped
11259          *   offset.
11260          *
11261          * - The third (and least common) is that there is a gap between the
11262          *   buffer offset and the wrapped offset, but the wrapped offset is
11263          *   _less_ than the buffer offset.  This can only happen because a
11264          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11265          *   was not subsequently consumed.  In this case, we need to zero the
11266          *   space from the offset to the end of the buffer _and_ from the
11267          *   top of the buffer to the wrapped offset.
11268          */
11269         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11270                 bzero(buf->dtb_tomax + buf->dtb_offset,
11271                     buf->dtb_xamot_offset - buf->dtb_offset);
11272         }
11273
11274         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11275                 bzero(buf->dtb_tomax + buf->dtb_offset,
11276                     buf->dtb_size - buf->dtb_offset);
11277                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11278         }
11279 }
11280
11281 /*
11282  * This routine determines if data generated at the specified time has likely
11283  * been entirely consumed at user-level.  This routine is called to determine
11284  * if an ECB on a defunct probe (but for an active enabling) can be safely
11285  * disabled and destroyed.
11286  */
11287 static int
11288 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11289 {
11290         int i;
11291
11292         for (i = 0; i < NCPU; i++) {
11293                 dtrace_buffer_t *buf = &bufs[i];
11294
11295                 if (buf->dtb_size == 0)
11296                         continue;
11297
11298                 if (buf->dtb_flags & DTRACEBUF_RING)
11299                         return (0);
11300
11301                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11302                         return (0);
11303
11304                 if (buf->dtb_switched - buf->dtb_interval < when)
11305                         return (0);
11306         }
11307
11308         return (1);
11309 }
11310
11311 static void
11312 dtrace_buffer_free(dtrace_buffer_t *bufs)
11313 {
11314         int i;
11315
11316         for (i = 0; i < NCPU; i++) {
11317                 dtrace_buffer_t *buf = &bufs[i];
11318
11319                 if (buf->dtb_tomax == NULL) {
11320                         ASSERT(buf->dtb_xamot == NULL);
11321                         ASSERT(buf->dtb_size == 0);
11322                         continue;
11323                 }
11324
11325                 if (buf->dtb_xamot != NULL) {
11326                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11327                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11328                 }
11329
11330                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11331                 buf->dtb_size = 0;
11332                 buf->dtb_tomax = NULL;
11333                 buf->dtb_xamot = NULL;
11334         }
11335 }
11336
11337 /*
11338  * DTrace Enabling Functions
11339  */
11340 static dtrace_enabling_t *
11341 dtrace_enabling_create(dtrace_vstate_t *vstate)
11342 {
11343         dtrace_enabling_t *enab;
11344
11345         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11346         enab->dten_vstate = vstate;
11347
11348         return (enab);
11349 }
11350
11351 static void
11352 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11353 {
11354         dtrace_ecbdesc_t **ndesc;
11355         size_t osize, nsize;
11356
11357         /*
11358          * We can't add to enablings after we've enabled them, or after we've
11359          * retained them.
11360          */
11361         ASSERT(enab->dten_probegen == 0);
11362         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11363
11364         if (enab->dten_ndesc < enab->dten_maxdesc) {
11365                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11366                 return;
11367         }
11368
11369         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11370
11371         if (enab->dten_maxdesc == 0) {
11372                 enab->dten_maxdesc = 1;
11373         } else {
11374                 enab->dten_maxdesc <<= 1;
11375         }
11376
11377         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11378
11379         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11380         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11381         bcopy(enab->dten_desc, ndesc, osize);
11382         if (enab->dten_desc != NULL)
11383                 kmem_free(enab->dten_desc, osize);
11384
11385         enab->dten_desc = ndesc;
11386         enab->dten_desc[enab->dten_ndesc++] = ecb;
11387 }
11388
11389 static void
11390 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11391     dtrace_probedesc_t *pd)
11392 {
11393         dtrace_ecbdesc_t *new;
11394         dtrace_predicate_t *pred;
11395         dtrace_actdesc_t *act;
11396
11397         /*
11398          * We're going to create a new ECB description that matches the
11399          * specified ECB in every way, but has the specified probe description.
11400          */
11401         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11402
11403         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11404                 dtrace_predicate_hold(pred);
11405
11406         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11407                 dtrace_actdesc_hold(act);
11408
11409         new->dted_action = ecb->dted_action;
11410         new->dted_pred = ecb->dted_pred;
11411         new->dted_probe = *pd;
11412         new->dted_uarg = ecb->dted_uarg;
11413
11414         dtrace_enabling_add(enab, new);
11415 }
11416
11417 static void
11418 dtrace_enabling_dump(dtrace_enabling_t *enab)
11419 {
11420         int i;
11421
11422         for (i = 0; i < enab->dten_ndesc; i++) {
11423                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11424
11425                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11426                     desc->dtpd_provider, desc->dtpd_mod,
11427                     desc->dtpd_func, desc->dtpd_name);
11428         }
11429 }
11430
11431 static void
11432 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11433 {
11434         int i;
11435         dtrace_ecbdesc_t *ep;
11436         dtrace_vstate_t *vstate = enab->dten_vstate;
11437
11438         ASSERT(MUTEX_HELD(&dtrace_lock));
11439
11440         for (i = 0; i < enab->dten_ndesc; i++) {
11441                 dtrace_actdesc_t *act, *next;
11442                 dtrace_predicate_t *pred;
11443
11444                 ep = enab->dten_desc[i];
11445
11446                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11447                         dtrace_predicate_release(pred, vstate);
11448
11449                 for (act = ep->dted_action; act != NULL; act = next) {
11450                         next = act->dtad_next;
11451                         dtrace_actdesc_release(act, vstate);
11452                 }
11453
11454                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11455         }
11456
11457         if (enab->dten_desc != NULL)
11458                 kmem_free(enab->dten_desc,
11459                     enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11460
11461         /*
11462          * If this was a retained enabling, decrement the dts_nretained count
11463          * and take it off of the dtrace_retained list.
11464          */
11465         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11466             dtrace_retained == enab) {
11467                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11468                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11469                 enab->dten_vstate->dtvs_state->dts_nretained--;
11470         }
11471
11472         if (enab->dten_prev == NULL) {
11473                 if (dtrace_retained == enab) {
11474                         dtrace_retained = enab->dten_next;
11475
11476                         if (dtrace_retained != NULL)
11477                                 dtrace_retained->dten_prev = NULL;
11478                 }
11479         } else {
11480                 ASSERT(enab != dtrace_retained);
11481                 ASSERT(dtrace_retained != NULL);
11482                 enab->dten_prev->dten_next = enab->dten_next;
11483         }
11484
11485         if (enab->dten_next != NULL) {
11486                 ASSERT(dtrace_retained != NULL);
11487                 enab->dten_next->dten_prev = enab->dten_prev;
11488         }
11489
11490         kmem_free(enab, sizeof (dtrace_enabling_t));
11491 }
11492
11493 static int
11494 dtrace_enabling_retain(dtrace_enabling_t *enab)
11495 {
11496         dtrace_state_t *state;
11497
11498         ASSERT(MUTEX_HELD(&dtrace_lock));
11499         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11500         ASSERT(enab->dten_vstate != NULL);
11501
11502         state = enab->dten_vstate->dtvs_state;
11503         ASSERT(state != NULL);
11504
11505         /*
11506          * We only allow each state to retain dtrace_retain_max enablings.
11507          */
11508         if (state->dts_nretained >= dtrace_retain_max)
11509                 return (ENOSPC);
11510
11511         state->dts_nretained++;
11512
11513         if (dtrace_retained == NULL) {
11514                 dtrace_retained = enab;
11515                 return (0);
11516         }
11517
11518         enab->dten_next = dtrace_retained;
11519         dtrace_retained->dten_prev = enab;
11520         dtrace_retained = enab;
11521
11522         return (0);
11523 }
11524
11525 static int
11526 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11527     dtrace_probedesc_t *create)
11528 {
11529         dtrace_enabling_t *new, *enab;
11530         int found = 0, err = ENOENT;
11531
11532         ASSERT(MUTEX_HELD(&dtrace_lock));
11533         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11534         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11535         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11536         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11537
11538         new = dtrace_enabling_create(&state->dts_vstate);
11539
11540         /*
11541          * Iterate over all retained enablings, looking for enablings that
11542          * match the specified state.
11543          */
11544         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11545                 int i;
11546
11547                 /*
11548                  * dtvs_state can only be NULL for helper enablings -- and
11549                  * helper enablings can't be retained.
11550                  */
11551                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11552
11553                 if (enab->dten_vstate->dtvs_state != state)
11554                         continue;
11555
11556                 /*
11557                  * Now iterate over each probe description; we're looking for
11558                  * an exact match to the specified probe description.
11559                  */
11560                 for (i = 0; i < enab->dten_ndesc; i++) {
11561                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11562                         dtrace_probedesc_t *pd = &ep->dted_probe;
11563
11564                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11565                                 continue;
11566
11567                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11568                                 continue;
11569
11570                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11571                                 continue;
11572
11573                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11574                                 continue;
11575
11576                         /*
11577                          * We have a winning probe!  Add it to our growing
11578                          * enabling.
11579                          */
11580                         found = 1;
11581                         dtrace_enabling_addlike(new, ep, create);
11582                 }
11583         }
11584
11585         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11586                 dtrace_enabling_destroy(new);
11587                 return (err);
11588         }
11589
11590         return (0);
11591 }
11592
11593 static void
11594 dtrace_enabling_retract(dtrace_state_t *state)
11595 {
11596         dtrace_enabling_t *enab, *next;
11597
11598         ASSERT(MUTEX_HELD(&dtrace_lock));
11599
11600         /*
11601          * Iterate over all retained enablings, destroy the enablings retained
11602          * for the specified state.
11603          */
11604         for (enab = dtrace_retained; enab != NULL; enab = next) {
11605                 next = enab->dten_next;
11606
11607                 /*
11608                  * dtvs_state can only be NULL for helper enablings -- and
11609                  * helper enablings can't be retained.
11610                  */
11611                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11612
11613                 if (enab->dten_vstate->dtvs_state == state) {
11614                         ASSERT(state->dts_nretained > 0);
11615                         dtrace_enabling_destroy(enab);
11616                 }
11617         }
11618
11619         ASSERT(state->dts_nretained == 0);
11620 }
11621
11622 static int
11623 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11624 {
11625         int i = 0;
11626         int matched = 0;
11627
11628         ASSERT(MUTEX_HELD(&cpu_lock));
11629         ASSERT(MUTEX_HELD(&dtrace_lock));
11630
11631         for (i = 0; i < enab->dten_ndesc; i++) {
11632                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11633
11634                 enab->dten_current = ep;
11635                 enab->dten_error = 0;
11636
11637                 matched += dtrace_probe_enable(&ep->dted_probe, enab);
11638
11639                 if (enab->dten_error != 0) {
11640                         /*
11641                          * If we get an error half-way through enabling the
11642                          * probes, we kick out -- perhaps with some number of
11643                          * them enabled.  Leaving enabled probes enabled may
11644                          * be slightly confusing for user-level, but we expect
11645                          * that no one will attempt to actually drive on in
11646                          * the face of such errors.  If this is an anonymous
11647                          * enabling (indicated with a NULL nmatched pointer),
11648                          * we cmn_err() a message.  We aren't expecting to
11649                          * get such an error -- such as it can exist at all,
11650                          * it would be a result of corrupted DOF in the driver
11651                          * properties.
11652                          */
11653                         if (nmatched == NULL) {
11654                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11655                                     "error on %p: %d", (void *)ep,
11656                                     enab->dten_error);
11657                         }
11658
11659                         return (enab->dten_error);
11660                 }
11661         }
11662
11663         enab->dten_probegen = dtrace_probegen;
11664         if (nmatched != NULL)
11665                 *nmatched = matched;
11666
11667         return (0);
11668 }
11669
11670 static void
11671 dtrace_enabling_matchall(void)
11672 {
11673         dtrace_enabling_t *enab;
11674
11675         mutex_enter(&cpu_lock);
11676         mutex_enter(&dtrace_lock);
11677
11678         /*
11679          * Iterate over all retained enablings to see if any probes match
11680          * against them.  We only perform this operation on enablings for which
11681          * we have sufficient permissions by virtue of being in the global zone
11682          * or in the same zone as the DTrace client.  Because we can be called
11683          * after dtrace_detach() has been called, we cannot assert that there
11684          * are retained enablings.  We can safely load from dtrace_retained,
11685          * however:  the taskq_destroy() at the end of dtrace_detach() will
11686          * block pending our completion.
11687          */
11688         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11689 #if defined(sun)
11690                 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11691
11692                 if (INGLOBALZONE(curproc) ||
11693                     cr != NULL && getzoneid() == crgetzoneid(cr))
11694 #endif
11695                         (void) dtrace_enabling_match(enab, NULL);
11696         }
11697
11698         mutex_exit(&dtrace_lock);
11699         mutex_exit(&cpu_lock);
11700 }
11701
11702 /*
11703  * If an enabling is to be enabled without having matched probes (that is, if
11704  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11705  * enabling must be _primed_ by creating an ECB for every ECB description.
11706  * This must be done to assure that we know the number of speculations, the
11707  * number of aggregations, the minimum buffer size needed, etc. before we
11708  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11709  * enabling any probes, we create ECBs for every ECB decription, but with a
11710  * NULL probe -- which is exactly what this function does.
11711  */
11712 static void
11713 dtrace_enabling_prime(dtrace_state_t *state)
11714 {
11715         dtrace_enabling_t *enab;
11716         int i;
11717
11718         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11719                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11720
11721                 if (enab->dten_vstate->dtvs_state != state)
11722                         continue;
11723
11724                 /*
11725                  * We don't want to prime an enabling more than once, lest
11726                  * we allow a malicious user to induce resource exhaustion.
11727                  * (The ECBs that result from priming an enabling aren't
11728                  * leaked -- but they also aren't deallocated until the
11729                  * consumer state is destroyed.)
11730                  */
11731                 if (enab->dten_primed)
11732                         continue;
11733
11734                 for (i = 0; i < enab->dten_ndesc; i++) {
11735                         enab->dten_current = enab->dten_desc[i];
11736                         (void) dtrace_probe_enable(NULL, enab);
11737                 }
11738
11739                 enab->dten_primed = 1;
11740         }
11741 }
11742
11743 /*
11744  * Called to indicate that probes should be provided due to retained
11745  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11746  * must take an initial lap through the enabling calling the dtps_provide()
11747  * entry point explicitly to allow for autocreated probes.
11748  */
11749 static void
11750 dtrace_enabling_provide(dtrace_provider_t *prv)
11751 {
11752         int i, all = 0;
11753         dtrace_probedesc_t desc;
11754
11755         ASSERT(MUTEX_HELD(&dtrace_lock));
11756         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11757
11758         if (prv == NULL) {
11759                 all = 1;
11760                 prv = dtrace_provider;
11761         }
11762
11763         do {
11764                 dtrace_enabling_t *enab = dtrace_retained;
11765                 void *parg = prv->dtpv_arg;
11766
11767                 for (; enab != NULL; enab = enab->dten_next) {
11768                         for (i = 0; i < enab->dten_ndesc; i++) {
11769                                 desc = enab->dten_desc[i]->dted_probe;
11770                                 mutex_exit(&dtrace_lock);
11771                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11772                                 mutex_enter(&dtrace_lock);
11773                         }
11774                 }
11775         } while (all && (prv = prv->dtpv_next) != NULL);
11776
11777         mutex_exit(&dtrace_lock);
11778         dtrace_probe_provide(NULL, all ? NULL : prv);
11779         mutex_enter(&dtrace_lock);
11780 }
11781
11782 /*
11783  * Called to reap ECBs that are attached to probes from defunct providers.
11784  */
11785 static void
11786 dtrace_enabling_reap(void)
11787 {
11788         dtrace_provider_t *prov;
11789         dtrace_probe_t *probe;
11790         dtrace_ecb_t *ecb;
11791         hrtime_t when;
11792         int i;
11793
11794         mutex_enter(&cpu_lock);
11795         mutex_enter(&dtrace_lock);
11796
11797         for (i = 0; i < dtrace_nprobes; i++) {
11798                 if ((probe = dtrace_probes[i]) == NULL)
11799                         continue;
11800
11801                 if (probe->dtpr_ecb == NULL)
11802                         continue;
11803
11804                 prov = probe->dtpr_provider;
11805
11806                 if ((when = prov->dtpv_defunct) == 0)
11807                         continue;
11808
11809                 /*
11810                  * We have ECBs on a defunct provider:  we want to reap these
11811                  * ECBs to allow the provider to unregister.  The destruction
11812                  * of these ECBs must be done carefully:  if we destroy the ECB
11813                  * and the consumer later wishes to consume an EPID that
11814                  * corresponds to the destroyed ECB (and if the EPID metadata
11815                  * has not been previously consumed), the consumer will abort
11816                  * processing on the unknown EPID.  To reduce (but not, sadly,
11817                  * eliminate) the possibility of this, we will only destroy an
11818                  * ECB for a defunct provider if, for the state that
11819                  * corresponds to the ECB:
11820                  *
11821                  *  (a) There is no speculative tracing (which can effectively
11822                  *      cache an EPID for an arbitrary amount of time).
11823                  *
11824                  *  (b) The principal buffers have been switched twice since the
11825                  *      provider became defunct.
11826                  *
11827                  *  (c) The aggregation buffers are of zero size or have been
11828                  *      switched twice since the provider became defunct.
11829                  *
11830                  * We use dts_speculates to determine (a) and call a function
11831                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11832                  * that as soon as we've been unable to destroy one of the ECBs
11833                  * associated with the probe, we quit trying -- reaping is only
11834                  * fruitful in as much as we can destroy all ECBs associated
11835                  * with the defunct provider's probes.
11836                  */
11837                 while ((ecb = probe->dtpr_ecb) != NULL) {
11838                         dtrace_state_t *state = ecb->dte_state;
11839                         dtrace_buffer_t *buf = state->dts_buffer;
11840                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11841
11842                         if (state->dts_speculates)
11843                                 break;
11844
11845                         if (!dtrace_buffer_consumed(buf, when))
11846                                 break;
11847
11848                         if (!dtrace_buffer_consumed(aggbuf, when))
11849                                 break;
11850
11851                         dtrace_ecb_disable(ecb);
11852                         ASSERT(probe->dtpr_ecb != ecb);
11853                         dtrace_ecb_destroy(ecb);
11854                 }
11855         }
11856
11857         mutex_exit(&dtrace_lock);
11858         mutex_exit(&cpu_lock);
11859 }
11860
11861 /*
11862  * DTrace DOF Functions
11863  */
11864 /*ARGSUSED*/
11865 static void
11866 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11867 {
11868         if (dtrace_err_verbose)
11869                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11870
11871 #ifdef DTRACE_ERRDEBUG
11872         dtrace_errdebug(str);
11873 #endif
11874 }
11875
11876 /*
11877  * Create DOF out of a currently enabled state.  Right now, we only create
11878  * DOF containing the run-time options -- but this could be expanded to create
11879  * complete DOF representing the enabled state.
11880  */
11881 static dof_hdr_t *
11882 dtrace_dof_create(dtrace_state_t *state)
11883 {
11884         dof_hdr_t *dof;
11885         dof_sec_t *sec;
11886         dof_optdesc_t *opt;
11887         int i, len = sizeof (dof_hdr_t) +
11888             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11889             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11890
11891         ASSERT(MUTEX_HELD(&dtrace_lock));
11892
11893         dof = kmem_zalloc(len, KM_SLEEP);
11894         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11895         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11896         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11897         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11898
11899         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11900         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11901         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11902         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11903         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11904         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11905
11906         dof->dofh_flags = 0;
11907         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11908         dof->dofh_secsize = sizeof (dof_sec_t);
11909         dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
11910         dof->dofh_secoff = sizeof (dof_hdr_t);
11911         dof->dofh_loadsz = len;
11912         dof->dofh_filesz = len;
11913         dof->dofh_pad = 0;
11914
11915         /*
11916          * Fill in the option section header...
11917          */
11918         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11919         sec->dofs_type = DOF_SECT_OPTDESC;
11920         sec->dofs_align = sizeof (uint64_t);
11921         sec->dofs_flags = DOF_SECF_LOAD;
11922         sec->dofs_entsize = sizeof (dof_optdesc_t);
11923
11924         opt = (dof_optdesc_t *)((uintptr_t)sec +
11925             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11926
11927         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11928         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11929
11930         for (i = 0; i < DTRACEOPT_MAX; i++) {
11931                 opt[i].dofo_option = i;
11932                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11933                 opt[i].dofo_value = state->dts_options[i];
11934         }
11935
11936         return (dof);
11937 }
11938
11939 static dof_hdr_t *
11940 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11941 {
11942         dof_hdr_t hdr, *dof;
11943
11944         ASSERT(!MUTEX_HELD(&dtrace_lock));
11945
11946         /*
11947          * First, we're going to copyin() the sizeof (dof_hdr_t).
11948          */
11949         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11950                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11951                 *errp = EFAULT;
11952                 return (NULL);
11953         }
11954
11955         /*
11956          * Now we'll allocate the entire DOF and copy it in -- provided
11957          * that the length isn't outrageous.
11958          */
11959         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11960                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11961                 *errp = E2BIG;
11962                 return (NULL);
11963         }
11964
11965         if (hdr.dofh_loadsz < sizeof (hdr)) {
11966                 dtrace_dof_error(&hdr, "invalid load size");
11967                 *errp = EINVAL;
11968                 return (NULL);
11969         }
11970
11971         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11972
11973         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11974                 kmem_free(dof, hdr.dofh_loadsz);
11975                 *errp = EFAULT;
11976                 return (NULL);
11977         }
11978
11979         return (dof);
11980 }
11981
11982 #if !defined(sun)
11983 static __inline uchar_t
11984 dtrace_dof_char(char c) {
11985         switch (c) {
11986         case '0':
11987         case '1':
11988         case '2':
11989         case '3':
11990         case '4':
11991         case '5':
11992         case '6':
11993         case '7':
11994         case '8':
11995         case '9':
11996                 return (c - '0');
11997         case 'A':
11998         case 'B':
11999         case 'C':
12000         case 'D':
12001         case 'E':
12002         case 'F':
12003                 return (c - 'A' + 10);
12004         case 'a':
12005         case 'b':
12006         case 'c':
12007         case 'd':
12008         case 'e':
12009         case 'f':
12010                 return (c - 'a' + 10);
12011         }
12012         /* Should not reach here. */
12013         return (0);
12014 }
12015 #endif
12016
12017 static dof_hdr_t *
12018 dtrace_dof_property(const char *name)
12019 {
12020         uchar_t *buf;
12021         uint64_t loadsz;
12022         unsigned int len, i;
12023         dof_hdr_t *dof;
12024
12025 #if defined(sun)
12026         /*
12027          * Unfortunately, array of values in .conf files are always (and
12028          * only) interpreted to be integer arrays.  We must read our DOF
12029          * as an integer array, and then squeeze it into a byte array.
12030          */
12031         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12032             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12033                 return (NULL);
12034
12035         for (i = 0; i < len; i++)
12036                 buf[i] = (uchar_t)(((int *)buf)[i]);
12037
12038         if (len < sizeof (dof_hdr_t)) {
12039                 ddi_prop_free(buf);
12040                 dtrace_dof_error(NULL, "truncated header");
12041                 return (NULL);
12042         }
12043
12044         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12045                 ddi_prop_free(buf);
12046                 dtrace_dof_error(NULL, "truncated DOF");
12047                 return (NULL);
12048         }
12049
12050         if (loadsz >= dtrace_dof_maxsize) {
12051                 ddi_prop_free(buf);
12052                 dtrace_dof_error(NULL, "oversized DOF");
12053                 return (NULL);
12054         }
12055
12056         dof = kmem_alloc(loadsz, KM_SLEEP);
12057         bcopy(buf, dof, loadsz);
12058         ddi_prop_free(buf);
12059 #else
12060         char *p;
12061         char *p_env;
12062
12063         if ((p_env = getenv(name)) == NULL)
12064                 return (NULL);
12065
12066         len = strlen(p_env) / 2;
12067
12068         buf = kmem_alloc(len, KM_SLEEP);
12069
12070         dof = (dof_hdr_t *) buf;
12071
12072         p = p_env;
12073
12074         for (i = 0; i < len; i++) {
12075                 buf[i] = (dtrace_dof_char(p[0]) << 4) |
12076                      dtrace_dof_char(p[1]);
12077                 p += 2;
12078         }
12079
12080         freeenv(p_env);
12081
12082         if (len < sizeof (dof_hdr_t)) {
12083                 kmem_free(buf, 0);
12084                 dtrace_dof_error(NULL, "truncated header");
12085                 return (NULL);
12086         }
12087
12088         if (len < (loadsz = dof->dofh_loadsz)) {
12089                 kmem_free(buf, 0);
12090                 dtrace_dof_error(NULL, "truncated DOF");
12091                 return (NULL);
12092         }
12093
12094         if (loadsz >= dtrace_dof_maxsize) {
12095                 kmem_free(buf, 0);
12096                 dtrace_dof_error(NULL, "oversized DOF");
12097                 return (NULL);
12098         }
12099 #endif
12100
12101         return (dof);
12102 }
12103
12104 static void
12105 dtrace_dof_destroy(dof_hdr_t *dof)
12106 {
12107         kmem_free(dof, dof->dofh_loadsz);
12108 }
12109
12110 /*
12111  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12112  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12113  * a type other than DOF_SECT_NONE is specified, the header is checked against
12114  * this type and NULL is returned if the types do not match.
12115  */
12116 static dof_sec_t *
12117 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12118 {
12119         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12120             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12121
12122         if (i >= dof->dofh_secnum) {
12123                 dtrace_dof_error(dof, "referenced section index is invalid");
12124                 return (NULL);
12125         }
12126
12127         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12128                 dtrace_dof_error(dof, "referenced section is not loadable");
12129                 return (NULL);
12130         }
12131
12132         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12133                 dtrace_dof_error(dof, "referenced section is the wrong type");
12134                 return (NULL);
12135         }
12136
12137         return (sec);
12138 }
12139
12140 static dtrace_probedesc_t *
12141 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12142 {
12143         dof_probedesc_t *probe;
12144         dof_sec_t *strtab;
12145         uintptr_t daddr = (uintptr_t)dof;
12146         uintptr_t str;
12147         size_t size;
12148
12149         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12150                 dtrace_dof_error(dof, "invalid probe section");
12151                 return (NULL);
12152         }
12153
12154         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12155                 dtrace_dof_error(dof, "bad alignment in probe description");
12156                 return (NULL);
12157         }
12158
12159         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12160                 dtrace_dof_error(dof, "truncated probe description");
12161                 return (NULL);
12162         }
12163
12164         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12165         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12166
12167         if (strtab == NULL)
12168                 return (NULL);
12169
12170         str = daddr + strtab->dofs_offset;
12171         size = strtab->dofs_size;
12172
12173         if (probe->dofp_provider >= strtab->dofs_size) {
12174                 dtrace_dof_error(dof, "corrupt probe provider");
12175                 return (NULL);
12176         }
12177
12178         (void) strncpy(desc->dtpd_provider,
12179             (char *)(str + probe->dofp_provider),
12180             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12181
12182         if (probe->dofp_mod >= strtab->dofs_size) {
12183                 dtrace_dof_error(dof, "corrupt probe module");
12184                 return (NULL);
12185         }
12186
12187         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12188             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12189
12190         if (probe->dofp_func >= strtab->dofs_size) {
12191                 dtrace_dof_error(dof, "corrupt probe function");
12192                 return (NULL);
12193         }
12194
12195         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12196             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12197
12198         if (probe->dofp_name >= strtab->dofs_size) {
12199                 dtrace_dof_error(dof, "corrupt probe name");
12200                 return (NULL);
12201         }
12202
12203         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12204             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12205
12206         return (desc);
12207 }
12208
12209 static dtrace_difo_t *
12210 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12211     cred_t *cr)
12212 {
12213         dtrace_difo_t *dp;
12214         size_t ttl = 0;
12215         dof_difohdr_t *dofd;
12216         uintptr_t daddr = (uintptr_t)dof;
12217         size_t max = dtrace_difo_maxsize;
12218         int i, l, n;
12219
12220         static const struct {
12221                 int section;
12222                 int bufoffs;
12223                 int lenoffs;
12224                 int entsize;
12225                 int align;
12226                 const char *msg;
12227         } difo[] = {
12228                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12229                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12230                 sizeof (dif_instr_t), "multiple DIF sections" },
12231
12232                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12233                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12234                 sizeof (uint64_t), "multiple integer tables" },
12235
12236                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12237                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12238                 sizeof (char), "multiple string tables" },
12239
12240                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12241                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12242                 sizeof (uint_t), "multiple variable tables" },
12243
12244                 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12245         };
12246
12247         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12248                 dtrace_dof_error(dof, "invalid DIFO header section");
12249                 return (NULL);
12250         }
12251
12252         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12253                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12254                 return (NULL);
12255         }
12256
12257         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12258             sec->dofs_size % sizeof (dof_secidx_t)) {
12259                 dtrace_dof_error(dof, "bad size in DIFO header");
12260                 return (NULL);
12261         }
12262
12263         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12264         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12265
12266         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12267         dp->dtdo_rtype = dofd->dofd_rtype;
12268
12269         for (l = 0; l < n; l++) {
12270                 dof_sec_t *subsec;
12271                 void **bufp;
12272                 uint32_t *lenp;
12273
12274                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12275                     dofd->dofd_links[l])) == NULL)
12276                         goto err; /* invalid section link */
12277
12278                 if (ttl + subsec->dofs_size > max) {
12279                         dtrace_dof_error(dof, "exceeds maximum size");
12280                         goto err;
12281                 }
12282
12283                 ttl += subsec->dofs_size;
12284
12285                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12286                         if (subsec->dofs_type != difo[i].section)
12287                                 continue;
12288
12289                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12290                                 dtrace_dof_error(dof, "section not loaded");
12291                                 goto err;
12292                         }
12293
12294                         if (subsec->dofs_align != difo[i].align) {
12295                                 dtrace_dof_error(dof, "bad alignment");
12296                                 goto err;
12297                         }
12298
12299                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12300                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12301
12302                         if (*bufp != NULL) {
12303                                 dtrace_dof_error(dof, difo[i].msg);
12304                                 goto err;
12305                         }
12306
12307                         if (difo[i].entsize != subsec->dofs_entsize) {
12308                                 dtrace_dof_error(dof, "entry size mismatch");
12309                                 goto err;
12310                         }
12311
12312                         if (subsec->dofs_entsize != 0 &&
12313                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12314                                 dtrace_dof_error(dof, "corrupt entry size");
12315                                 goto err;
12316                         }
12317
12318                         *lenp = subsec->dofs_size;
12319                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12320                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12321                             *bufp, subsec->dofs_size);
12322
12323                         if (subsec->dofs_entsize != 0)
12324                                 *lenp /= subsec->dofs_entsize;
12325
12326                         break;
12327                 }
12328
12329                 /*
12330                  * If we encounter a loadable DIFO sub-section that is not
12331                  * known to us, assume this is a broken program and fail.
12332                  */
12333                 if (difo[i].section == DOF_SECT_NONE &&
12334                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12335                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12336                         goto err;
12337                 }
12338         }
12339
12340         if (dp->dtdo_buf == NULL) {
12341                 /*
12342                  * We can't have a DIF object without DIF text.
12343                  */
12344                 dtrace_dof_error(dof, "missing DIF text");
12345                 goto err;
12346         }
12347
12348         /*
12349          * Before we validate the DIF object, run through the variable table
12350          * looking for the strings -- if any of their size are under, we'll set
12351          * their size to be the system-wide default string size.  Note that
12352          * this should _not_ happen if the "strsize" option has been set --
12353          * in this case, the compiler should have set the size to reflect the
12354          * setting of the option.
12355          */
12356         for (i = 0; i < dp->dtdo_varlen; i++) {
12357                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12358                 dtrace_diftype_t *t = &v->dtdv_type;
12359
12360                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12361                         continue;
12362
12363                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12364                         t->dtdt_size = dtrace_strsize_default;
12365         }
12366
12367         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12368                 goto err;
12369
12370         dtrace_difo_init(dp, vstate);
12371         return (dp);
12372
12373 err:
12374         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12375         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12376         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12377         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12378
12379         kmem_free(dp, sizeof (dtrace_difo_t));
12380         return (NULL);
12381 }
12382
12383 static dtrace_predicate_t *
12384 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12385     cred_t *cr)
12386 {
12387         dtrace_difo_t *dp;
12388
12389         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12390                 return (NULL);
12391
12392         return (dtrace_predicate_create(dp));
12393 }
12394
12395 static dtrace_actdesc_t *
12396 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12397     cred_t *cr)
12398 {
12399         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12400         dof_actdesc_t *desc;
12401         dof_sec_t *difosec;
12402         size_t offs;
12403         uintptr_t daddr = (uintptr_t)dof;
12404         uint64_t arg;
12405         dtrace_actkind_t kind;
12406
12407         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12408                 dtrace_dof_error(dof, "invalid action section");
12409                 return (NULL);
12410         }
12411
12412         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12413                 dtrace_dof_error(dof, "truncated action description");
12414                 return (NULL);
12415         }
12416
12417         if (sec->dofs_align != sizeof (uint64_t)) {
12418                 dtrace_dof_error(dof, "bad alignment in action description");
12419                 return (NULL);
12420         }
12421
12422         if (sec->dofs_size < sec->dofs_entsize) {
12423                 dtrace_dof_error(dof, "section entry size exceeds total size");
12424                 return (NULL);
12425         }
12426
12427         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12428                 dtrace_dof_error(dof, "bad entry size in action description");
12429                 return (NULL);
12430         }
12431
12432         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12433                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12434                 return (NULL);
12435         }
12436
12437         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12438                 desc = (dof_actdesc_t *)(daddr +
12439                     (uintptr_t)sec->dofs_offset + offs);
12440                 kind = (dtrace_actkind_t)desc->dofa_kind;
12441
12442                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12443                     (kind != DTRACEACT_PRINTA ||
12444                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12445                     (kind == DTRACEACT_DIFEXPR &&
12446                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12447                         dof_sec_t *strtab;
12448                         char *str, *fmt;
12449                         uint64_t i;
12450
12451                         /*
12452                          * The argument to these actions is an index into the
12453                          * DOF string table.  For printf()-like actions, this
12454                          * is the format string.  For print(), this is the
12455                          * CTF type of the expression result.
12456                          */
12457                         if ((strtab = dtrace_dof_sect(dof,
12458                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12459                                 goto err;
12460
12461                         str = (char *)((uintptr_t)dof +
12462                             (uintptr_t)strtab->dofs_offset);
12463
12464                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12465                                 if (str[i] == '\0')
12466                                         break;
12467                         }
12468
12469                         if (i >= strtab->dofs_size) {
12470                                 dtrace_dof_error(dof, "bogus format string");
12471                                 goto err;
12472                         }
12473
12474                         if (i == desc->dofa_arg) {
12475                                 dtrace_dof_error(dof, "empty format string");
12476                                 goto err;
12477                         }
12478
12479                         i -= desc->dofa_arg;
12480                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12481                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12482                         arg = (uint64_t)(uintptr_t)fmt;
12483                 } else {
12484                         if (kind == DTRACEACT_PRINTA) {
12485                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12486                                 arg = 0;
12487                         } else {
12488                                 arg = desc->dofa_arg;
12489                         }
12490                 }
12491
12492                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12493                     desc->dofa_uarg, arg);
12494
12495                 if (last != NULL) {
12496                         last->dtad_next = act;
12497                 } else {
12498                         first = act;
12499                 }
12500
12501                 last = act;
12502
12503                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12504                         continue;
12505
12506                 if ((difosec = dtrace_dof_sect(dof,
12507                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12508                         goto err;
12509
12510                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12511
12512                 if (act->dtad_difo == NULL)
12513                         goto err;
12514         }
12515
12516         ASSERT(first != NULL);
12517         return (first);
12518
12519 err:
12520         for (act = first; act != NULL; act = next) {
12521                 next = act->dtad_next;
12522                 dtrace_actdesc_release(act, vstate);
12523         }
12524
12525         return (NULL);
12526 }
12527
12528 static dtrace_ecbdesc_t *
12529 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12530     cred_t *cr)
12531 {
12532         dtrace_ecbdesc_t *ep;
12533         dof_ecbdesc_t *ecb;
12534         dtrace_probedesc_t *desc;
12535         dtrace_predicate_t *pred = NULL;
12536
12537         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12538                 dtrace_dof_error(dof, "truncated ECB description");
12539                 return (NULL);
12540         }
12541
12542         if (sec->dofs_align != sizeof (uint64_t)) {
12543                 dtrace_dof_error(dof, "bad alignment in ECB description");
12544                 return (NULL);
12545         }
12546
12547         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12548         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12549
12550         if (sec == NULL)
12551                 return (NULL);
12552
12553         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12554         ep->dted_uarg = ecb->dofe_uarg;
12555         desc = &ep->dted_probe;
12556
12557         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12558                 goto err;
12559
12560         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12561                 if ((sec = dtrace_dof_sect(dof,
12562                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12563                         goto err;
12564
12565                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12566                         goto err;
12567
12568                 ep->dted_pred.dtpdd_predicate = pred;
12569         }
12570
12571         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12572                 if ((sec = dtrace_dof_sect(dof,
12573                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12574                         goto err;
12575
12576                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12577
12578                 if (ep->dted_action == NULL)
12579                         goto err;
12580         }
12581
12582         return (ep);
12583
12584 err:
12585         if (pred != NULL)
12586                 dtrace_predicate_release(pred, vstate);
12587         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12588         return (NULL);
12589 }
12590
12591 /*
12592  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12593  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12594  * site of any user SETX relocations to account for load object base address.
12595  * In the future, if we need other relocations, this function can be extended.
12596  */
12597 static int
12598 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12599 {
12600         uintptr_t daddr = (uintptr_t)dof;
12601         dof_relohdr_t *dofr =
12602             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12603         dof_sec_t *ss, *rs, *ts;
12604         dof_relodesc_t *r;
12605         uint_t i, n;
12606
12607         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12608             sec->dofs_align != sizeof (dof_secidx_t)) {
12609                 dtrace_dof_error(dof, "invalid relocation header");
12610                 return (-1);
12611         }
12612
12613         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12614         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12615         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12616
12617         if (ss == NULL || rs == NULL || ts == NULL)
12618                 return (-1); /* dtrace_dof_error() has been called already */
12619
12620         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12621             rs->dofs_align != sizeof (uint64_t)) {
12622                 dtrace_dof_error(dof, "invalid relocation section");
12623                 return (-1);
12624         }
12625
12626         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12627         n = rs->dofs_size / rs->dofs_entsize;
12628
12629         for (i = 0; i < n; i++) {
12630                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12631
12632                 switch (r->dofr_type) {
12633                 case DOF_RELO_NONE:
12634                         break;
12635                 case DOF_RELO_SETX:
12636                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12637                             sizeof (uint64_t) > ts->dofs_size) {
12638                                 dtrace_dof_error(dof, "bad relocation offset");
12639                                 return (-1);
12640                         }
12641
12642                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12643                                 dtrace_dof_error(dof, "misaligned setx relo");
12644                                 return (-1);
12645                         }
12646
12647                         *(uint64_t *)taddr += ubase;
12648                         break;
12649                 default:
12650                         dtrace_dof_error(dof, "invalid relocation type");
12651                         return (-1);
12652                 }
12653
12654                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12655         }
12656
12657         return (0);
12658 }
12659
12660 /*
12661  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12662  * header:  it should be at the front of a memory region that is at least
12663  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12664  * size.  It need not be validated in any other way.
12665  */
12666 static int
12667 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12668     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12669 {
12670         uint64_t len = dof->dofh_loadsz, seclen;
12671         uintptr_t daddr = (uintptr_t)dof;
12672         dtrace_ecbdesc_t *ep;
12673         dtrace_enabling_t *enab;
12674         uint_t i;
12675
12676         ASSERT(MUTEX_HELD(&dtrace_lock));
12677         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12678
12679         /*
12680          * Check the DOF header identification bytes.  In addition to checking
12681          * valid settings, we also verify that unused bits/bytes are zeroed so
12682          * we can use them later without fear of regressing existing binaries.
12683          */
12684         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12685             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12686                 dtrace_dof_error(dof, "DOF magic string mismatch");
12687                 return (-1);
12688         }
12689
12690         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12691             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12692                 dtrace_dof_error(dof, "DOF has invalid data model");
12693                 return (-1);
12694         }
12695
12696         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12697                 dtrace_dof_error(dof, "DOF encoding mismatch");
12698                 return (-1);
12699         }
12700
12701         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12702             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12703                 dtrace_dof_error(dof, "DOF version mismatch");
12704                 return (-1);
12705         }
12706
12707         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12708                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12709                 return (-1);
12710         }
12711
12712         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12713                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12714                 return (-1);
12715         }
12716
12717         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12718                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12719                 return (-1);
12720         }
12721
12722         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12723                 if (dof->dofh_ident[i] != 0) {
12724                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12725                         return (-1);
12726                 }
12727         }
12728
12729         if (dof->dofh_flags & ~DOF_FL_VALID) {
12730                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12731                 return (-1);
12732         }
12733
12734         if (dof->dofh_secsize == 0) {
12735                 dtrace_dof_error(dof, "zero section header size");
12736                 return (-1);
12737         }
12738
12739         /*
12740          * Check that the section headers don't exceed the amount of DOF
12741          * data.  Note that we cast the section size and number of sections
12742          * to uint64_t's to prevent possible overflow in the multiplication.
12743          */
12744         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12745
12746         if (dof->dofh_secoff > len || seclen > len ||
12747             dof->dofh_secoff + seclen > len) {
12748                 dtrace_dof_error(dof, "truncated section headers");
12749                 return (-1);
12750         }
12751
12752         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12753                 dtrace_dof_error(dof, "misaligned section headers");
12754                 return (-1);
12755         }
12756
12757         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12758                 dtrace_dof_error(dof, "misaligned section size");
12759                 return (-1);
12760         }
12761
12762         /*
12763          * Take an initial pass through the section headers to be sure that
12764          * the headers don't have stray offsets.  If the 'noprobes' flag is
12765          * set, do not permit sections relating to providers, probes, or args.
12766          */
12767         for (i = 0; i < dof->dofh_secnum; i++) {
12768                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12769                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12770
12771                 if (noprobes) {
12772                         switch (sec->dofs_type) {
12773                         case DOF_SECT_PROVIDER:
12774                         case DOF_SECT_PROBES:
12775                         case DOF_SECT_PRARGS:
12776                         case DOF_SECT_PROFFS:
12777                                 dtrace_dof_error(dof, "illegal sections "
12778                                     "for enabling");
12779                                 return (-1);
12780                         }
12781                 }
12782
12783                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12784                         continue; /* just ignore non-loadable sections */
12785
12786                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12787                         dtrace_dof_error(dof, "bad section alignment");
12788                         return (-1);
12789                 }
12790
12791                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12792                         dtrace_dof_error(dof, "misaligned section");
12793                         return (-1);
12794                 }
12795
12796                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12797                     sec->dofs_offset + sec->dofs_size > len) {
12798                         dtrace_dof_error(dof, "corrupt section header");
12799                         return (-1);
12800                 }
12801
12802                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12803                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12804                         dtrace_dof_error(dof, "non-terminating string table");
12805                         return (-1);
12806                 }
12807         }
12808
12809         /*
12810          * Take a second pass through the sections and locate and perform any
12811          * relocations that are present.  We do this after the first pass to
12812          * be sure that all sections have had their headers validated.
12813          */
12814         for (i = 0; i < dof->dofh_secnum; i++) {
12815                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12816                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12817
12818                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12819                         continue; /* skip sections that are not loadable */
12820
12821                 switch (sec->dofs_type) {
12822                 case DOF_SECT_URELHDR:
12823                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12824                                 return (-1);
12825                         break;
12826                 }
12827         }
12828
12829         if ((enab = *enabp) == NULL)
12830                 enab = *enabp = dtrace_enabling_create(vstate);
12831
12832         for (i = 0; i < dof->dofh_secnum; i++) {
12833                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12834                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12835
12836                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12837                         continue;
12838
12839                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12840                         dtrace_enabling_destroy(enab);
12841                         *enabp = NULL;
12842                         return (-1);
12843                 }
12844
12845                 dtrace_enabling_add(enab, ep);
12846         }
12847
12848         return (0);
12849 }
12850
12851 /*
12852  * Process DOF for any options.  This routine assumes that the DOF has been
12853  * at least processed by dtrace_dof_slurp().
12854  */
12855 static int
12856 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12857 {
12858         int i, rval;
12859         uint32_t entsize;
12860         size_t offs;
12861         dof_optdesc_t *desc;
12862
12863         for (i = 0; i < dof->dofh_secnum; i++) {
12864                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12865                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12866
12867                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12868                         continue;
12869
12870                 if (sec->dofs_align != sizeof (uint64_t)) {
12871                         dtrace_dof_error(dof, "bad alignment in "
12872                             "option description");
12873                         return (EINVAL);
12874                 }
12875
12876                 if ((entsize = sec->dofs_entsize) == 0) {
12877                         dtrace_dof_error(dof, "zeroed option entry size");
12878                         return (EINVAL);
12879                 }
12880
12881                 if (entsize < sizeof (dof_optdesc_t)) {
12882                         dtrace_dof_error(dof, "bad option entry size");
12883                         return (EINVAL);
12884                 }
12885
12886                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12887                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12888                             (uintptr_t)sec->dofs_offset + offs);
12889
12890                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12891                                 dtrace_dof_error(dof, "non-zero option string");
12892                                 return (EINVAL);
12893                         }
12894
12895                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12896                                 dtrace_dof_error(dof, "unset option");
12897                                 return (EINVAL);
12898                         }
12899
12900                         if ((rval = dtrace_state_option(state,
12901                             desc->dofo_option, desc->dofo_value)) != 0) {
12902                                 dtrace_dof_error(dof, "rejected option");
12903                                 return (rval);
12904                         }
12905                 }
12906         }
12907
12908         return (0);
12909 }
12910
12911 /*
12912  * DTrace Consumer State Functions
12913  */
12914 static int
12915 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12916 {
12917         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12918         void *base;
12919         uintptr_t limit;
12920         dtrace_dynvar_t *dvar, *next, *start;
12921         int i;
12922
12923         ASSERT(MUTEX_HELD(&dtrace_lock));
12924         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12925
12926         bzero(dstate, sizeof (dtrace_dstate_t));
12927
12928         if ((dstate->dtds_chunksize = chunksize) == 0)
12929                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12930
12931         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12932                 size = min;
12933
12934         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12935                 return (ENOMEM);
12936
12937         dstate->dtds_size = size;
12938         dstate->dtds_base = base;
12939         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12940         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12941
12942         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12943
12944         if (hashsize != 1 && (hashsize & 1))
12945                 hashsize--;
12946
12947         dstate->dtds_hashsize = hashsize;
12948         dstate->dtds_hash = dstate->dtds_base;
12949
12950         /*
12951          * Set all of our hash buckets to point to the single sink, and (if
12952          * it hasn't already been set), set the sink's hash value to be the
12953          * sink sentinel value.  The sink is needed for dynamic variable
12954          * lookups to know that they have iterated over an entire, valid hash
12955          * chain.
12956          */
12957         for (i = 0; i < hashsize; i++)
12958                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12959
12960         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12961                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12962
12963         /*
12964          * Determine number of active CPUs.  Divide free list evenly among
12965          * active CPUs.
12966          */
12967         start = (dtrace_dynvar_t *)
12968             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12969         limit = (uintptr_t)base + size;
12970
12971         maxper = (limit - (uintptr_t)start) / NCPU;
12972         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12973
12974 #if !defined(sun)
12975         CPU_FOREACH(i) {
12976 #else
12977         for (i = 0; i < NCPU; i++) {
12978 #endif
12979                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12980
12981                 /*
12982                  * If we don't even have enough chunks to make it once through
12983                  * NCPUs, we're just going to allocate everything to the first
12984                  * CPU.  And if we're on the last CPU, we're going to allocate
12985                  * whatever is left over.  In either case, we set the limit to
12986                  * be the limit of the dynamic variable space.
12987                  */
12988                 if (maxper == 0 || i == NCPU - 1) {
12989                         limit = (uintptr_t)base + size;
12990                         start = NULL;
12991                 } else {
12992                         limit = (uintptr_t)start + maxper;
12993                         start = (dtrace_dynvar_t *)limit;
12994                 }
12995
12996                 ASSERT(limit <= (uintptr_t)base + size);
12997
12998                 for (;;) {
12999                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13000                             dstate->dtds_chunksize);
13001
13002                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13003                                 break;
13004
13005                         dvar->dtdv_next = next;
13006                         dvar = next;
13007                 }
13008
13009                 if (maxper == 0)
13010                         break;
13011         }
13012
13013         return (0);
13014 }
13015
13016 static void
13017 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13018 {
13019         ASSERT(MUTEX_HELD(&cpu_lock));
13020
13021         if (dstate->dtds_base == NULL)
13022                 return;
13023
13024         kmem_free(dstate->dtds_base, dstate->dtds_size);
13025         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13026 }
13027
13028 static void
13029 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13030 {
13031         /*
13032          * Logical XOR, where are you?
13033          */
13034         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13035
13036         if (vstate->dtvs_nglobals > 0) {
13037                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13038                     sizeof (dtrace_statvar_t *));
13039         }
13040
13041         if (vstate->dtvs_ntlocals > 0) {
13042                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13043                     sizeof (dtrace_difv_t));
13044         }
13045
13046         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13047
13048         if (vstate->dtvs_nlocals > 0) {
13049                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13050                     sizeof (dtrace_statvar_t *));
13051         }
13052 }
13053
13054 #if defined(sun)
13055 static void
13056 dtrace_state_clean(dtrace_state_t *state)
13057 {
13058         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13059                 return;
13060
13061         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13062         dtrace_speculation_clean(state);
13063 }
13064
13065 static void
13066 dtrace_state_deadman(dtrace_state_t *state)
13067 {
13068         hrtime_t now;
13069
13070         dtrace_sync();
13071
13072         now = dtrace_gethrtime();
13073
13074         if (state != dtrace_anon.dta_state &&
13075             now - state->dts_laststatus >= dtrace_deadman_user)
13076                 return;
13077
13078         /*
13079          * We must be sure that dts_alive never appears to be less than the
13080          * value upon entry to dtrace_state_deadman(), and because we lack a
13081          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13082          * store INT64_MAX to it, followed by a memory barrier, followed by
13083          * the new value.  This assures that dts_alive never appears to be
13084          * less than its true value, regardless of the order in which the
13085          * stores to the underlying storage are issued.
13086          */
13087         state->dts_alive = INT64_MAX;
13088         dtrace_membar_producer();
13089         state->dts_alive = now;
13090 }
13091 #else
13092 static void
13093 dtrace_state_clean(void *arg)
13094 {
13095         dtrace_state_t *state = arg;
13096         dtrace_optval_t *opt = state->dts_options;
13097
13098         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13099                 return;
13100
13101         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13102         dtrace_speculation_clean(state);
13103
13104         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13105             dtrace_state_clean, state);
13106 }
13107
13108 static void
13109 dtrace_state_deadman(void *arg)
13110 {
13111         dtrace_state_t *state = arg;
13112         hrtime_t now;
13113
13114         dtrace_sync();
13115
13116         dtrace_debug_output();
13117
13118         now = dtrace_gethrtime();
13119
13120         if (state != dtrace_anon.dta_state &&
13121             now - state->dts_laststatus >= dtrace_deadman_user)
13122                 return;
13123
13124         /*
13125          * We must be sure that dts_alive never appears to be less than the
13126          * value upon entry to dtrace_state_deadman(), and because we lack a
13127          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13128          * store INT64_MAX to it, followed by a memory barrier, followed by
13129          * the new value.  This assures that dts_alive never appears to be
13130          * less than its true value, regardless of the order in which the
13131          * stores to the underlying storage are issued.
13132          */
13133         state->dts_alive = INT64_MAX;
13134         dtrace_membar_producer();
13135         state->dts_alive = now;
13136
13137         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13138             dtrace_state_deadman, state);
13139 }
13140 #endif
13141
13142 static dtrace_state_t *
13143 #if defined(sun)
13144 dtrace_state_create(dev_t *devp, cred_t *cr)
13145 #else
13146 dtrace_state_create(struct cdev *dev)
13147 #endif
13148 {
13149 #if defined(sun)
13150         minor_t minor;
13151         major_t major;
13152 #else
13153         cred_t *cr = NULL;
13154         int m = 0;
13155 #endif
13156         char c[30];
13157         dtrace_state_t *state;
13158         dtrace_optval_t *opt;
13159         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13160
13161         ASSERT(MUTEX_HELD(&dtrace_lock));
13162         ASSERT(MUTEX_HELD(&cpu_lock));
13163
13164 #if defined(sun)
13165         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13166             VM_BESTFIT | VM_SLEEP);
13167
13168         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13169                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13170                 return (NULL);
13171         }
13172
13173         state = ddi_get_soft_state(dtrace_softstate, minor);
13174 #else
13175         if (dev != NULL) {
13176                 cr = dev->si_cred;
13177                 m = dev2unit(dev);
13178                 }
13179
13180         /* Allocate memory for the state. */
13181         state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13182 #endif
13183
13184         state->dts_epid = DTRACE_EPIDNONE + 1;
13185
13186         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13187 #if defined(sun)
13188         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13189             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13190
13191         if (devp != NULL) {
13192                 major = getemajor(*devp);
13193         } else {
13194                 major = ddi_driver_major(dtrace_devi);
13195         }
13196
13197         state->dts_dev = makedevice(major, minor);
13198
13199         if (devp != NULL)
13200                 *devp = state->dts_dev;
13201 #else
13202         state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13203         state->dts_dev = dev;
13204 #endif
13205
13206         /*
13207          * We allocate NCPU buffers.  On the one hand, this can be quite
13208          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13209          * other hand, it saves an additional memory reference in the probe
13210          * path.
13211          */
13212         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13213         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13214
13215 #if defined(sun)
13216         state->dts_cleaner = CYCLIC_NONE;
13217         state->dts_deadman = CYCLIC_NONE;
13218 #else
13219         callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13220         callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13221 #endif
13222         state->dts_vstate.dtvs_state = state;
13223
13224         for (i = 0; i < DTRACEOPT_MAX; i++)
13225                 state->dts_options[i] = DTRACEOPT_UNSET;
13226
13227         /*
13228          * Set the default options.
13229          */
13230         opt = state->dts_options;
13231         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13232         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13233         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13234         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13235         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13236         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13237         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13238         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13239         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13240         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13241         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13242         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13243         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13244         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13245
13246         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13247
13248         /*
13249          * Depending on the user credentials, we set flag bits which alter probe
13250          * visibility or the amount of destructiveness allowed.  In the case of
13251          * actual anonymous tracing, or the possession of all privileges, all of
13252          * the normal checks are bypassed.
13253          */
13254         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13255                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13256                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13257         } else {
13258                 /*
13259                  * Set up the credentials for this instantiation.  We take a
13260                  * hold on the credential to prevent it from disappearing on
13261                  * us; this in turn prevents the zone_t referenced by this
13262                  * credential from disappearing.  This means that we can
13263                  * examine the credential and the zone from probe context.
13264                  */
13265                 crhold(cr);
13266                 state->dts_cred.dcr_cred = cr;
13267
13268                 /*
13269                  * CRA_PROC means "we have *some* privilege for dtrace" and
13270                  * unlocks the use of variables like pid, zonename, etc.
13271                  */
13272                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13273                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13274                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13275                 }
13276
13277                 /*
13278                  * dtrace_user allows use of syscall and profile providers.
13279                  * If the user also has proc_owner and/or proc_zone, we
13280                  * extend the scope to include additional visibility and
13281                  * destructive power.
13282                  */
13283                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13284                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13285                                 state->dts_cred.dcr_visible |=
13286                                     DTRACE_CRV_ALLPROC;
13287
13288                                 state->dts_cred.dcr_action |=
13289                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13290                         }
13291
13292                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13293                                 state->dts_cred.dcr_visible |=
13294                                     DTRACE_CRV_ALLZONE;
13295
13296                                 state->dts_cred.dcr_action |=
13297                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13298                         }
13299
13300                         /*
13301                          * If we have all privs in whatever zone this is,
13302                          * we can do destructive things to processes which
13303                          * have altered credentials.
13304                          */
13305 #if defined(sun)
13306                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13307                             cr->cr_zone->zone_privset)) {
13308                                 state->dts_cred.dcr_action |=
13309                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13310                         }
13311 #endif
13312                 }
13313
13314                 /*
13315                  * Holding the dtrace_kernel privilege also implies that
13316                  * the user has the dtrace_user privilege from a visibility
13317                  * perspective.  But without further privileges, some
13318                  * destructive actions are not available.
13319                  */
13320                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13321                         /*
13322                          * Make all probes in all zones visible.  However,
13323                          * this doesn't mean that all actions become available
13324                          * to all zones.
13325                          */
13326                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13327                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13328
13329                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13330                             DTRACE_CRA_PROC;
13331                         /*
13332                          * Holding proc_owner means that destructive actions
13333                          * for *this* zone are allowed.
13334                          */
13335                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13336                                 state->dts_cred.dcr_action |=
13337                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13338
13339                         /*
13340                          * Holding proc_zone means that destructive actions
13341                          * for this user/group ID in all zones is allowed.
13342                          */
13343                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13344                                 state->dts_cred.dcr_action |=
13345                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13346
13347 #if defined(sun)
13348                         /*
13349                          * If we have all privs in whatever zone this is,
13350                          * we can do destructive things to processes which
13351                          * have altered credentials.
13352                          */
13353                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13354                             cr->cr_zone->zone_privset)) {
13355                                 state->dts_cred.dcr_action |=
13356                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13357                         }
13358 #endif
13359                 }
13360
13361                 /*
13362                  * Holding the dtrace_proc privilege gives control over fasttrap
13363                  * and pid providers.  We need to grant wider destructive
13364                  * privileges in the event that the user has proc_owner and/or
13365                  * proc_zone.
13366                  */
13367                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13368                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13369                                 state->dts_cred.dcr_action |=
13370                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13371
13372                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13373                                 state->dts_cred.dcr_action |=
13374                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13375                 }
13376         }
13377
13378         return (state);
13379 }
13380
13381 static int
13382 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13383 {
13384         dtrace_optval_t *opt = state->dts_options, size;
13385         processorid_t cpu = 0;;
13386         int flags = 0, rval, factor, divisor = 1;
13387
13388         ASSERT(MUTEX_HELD(&dtrace_lock));
13389         ASSERT(MUTEX_HELD(&cpu_lock));
13390         ASSERT(which < DTRACEOPT_MAX);
13391         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13392             (state == dtrace_anon.dta_state &&
13393             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13394
13395         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13396                 return (0);
13397
13398         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13399                 cpu = opt[DTRACEOPT_CPU];
13400
13401         if (which == DTRACEOPT_SPECSIZE)
13402                 flags |= DTRACEBUF_NOSWITCH;
13403
13404         if (which == DTRACEOPT_BUFSIZE) {
13405                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13406                         flags |= DTRACEBUF_RING;
13407
13408                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13409                         flags |= DTRACEBUF_FILL;
13410
13411                 if (state != dtrace_anon.dta_state ||
13412                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13413                         flags |= DTRACEBUF_INACTIVE;
13414         }
13415
13416         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13417                 /*
13418                  * The size must be 8-byte aligned.  If the size is not 8-byte
13419                  * aligned, drop it down by the difference.
13420                  */
13421                 if (size & (sizeof (uint64_t) - 1))
13422                         size -= size & (sizeof (uint64_t) - 1);
13423
13424                 if (size < state->dts_reserve) {
13425                         /*
13426                          * Buffers always must be large enough to accommodate
13427                          * their prereserved space.  We return E2BIG instead
13428                          * of ENOMEM in this case to allow for user-level
13429                          * software to differentiate the cases.
13430                          */
13431                         return (E2BIG);
13432                 }
13433
13434                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13435
13436                 if (rval != ENOMEM) {
13437                         opt[which] = size;
13438                         return (rval);
13439                 }
13440
13441                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13442                         return (rval);
13443
13444                 for (divisor = 2; divisor < factor; divisor <<= 1)
13445                         continue;
13446         }
13447
13448         return (ENOMEM);
13449 }
13450
13451 static int
13452 dtrace_state_buffers(dtrace_state_t *state)
13453 {
13454         dtrace_speculation_t *spec = state->dts_speculations;
13455         int rval, i;
13456
13457         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13458             DTRACEOPT_BUFSIZE)) != 0)
13459                 return (rval);
13460
13461         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13462             DTRACEOPT_AGGSIZE)) != 0)
13463                 return (rval);
13464
13465         for (i = 0; i < state->dts_nspeculations; i++) {
13466                 if ((rval = dtrace_state_buffer(state,
13467                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13468                         return (rval);
13469         }
13470
13471         return (0);
13472 }
13473
13474 static void
13475 dtrace_state_prereserve(dtrace_state_t *state)
13476 {
13477         dtrace_ecb_t *ecb;
13478         dtrace_probe_t *probe;
13479
13480         state->dts_reserve = 0;
13481
13482         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13483                 return;
13484
13485         /*
13486          * If our buffer policy is a "fill" buffer policy, we need to set the
13487          * prereserved space to be the space required by the END probes.
13488          */
13489         probe = dtrace_probes[dtrace_probeid_end - 1];
13490         ASSERT(probe != NULL);
13491
13492         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13493                 if (ecb->dte_state != state)
13494                         continue;
13495
13496                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13497         }
13498 }
13499
13500 static int
13501 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13502 {
13503         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13504         dtrace_speculation_t *spec;
13505         dtrace_buffer_t *buf;
13506 #if defined(sun)
13507         cyc_handler_t hdlr;
13508         cyc_time_t when;
13509 #endif
13510         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13511         dtrace_icookie_t cookie;
13512
13513         mutex_enter(&cpu_lock);
13514         mutex_enter(&dtrace_lock);
13515
13516         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13517                 rval = EBUSY;
13518                 goto out;
13519         }
13520
13521         /*
13522          * Before we can perform any checks, we must prime all of the
13523          * retained enablings that correspond to this state.
13524          */
13525         dtrace_enabling_prime(state);
13526
13527         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13528                 rval = EACCES;
13529                 goto out;
13530         }
13531
13532         dtrace_state_prereserve(state);
13533
13534         /*
13535          * Now we want to do is try to allocate our speculations.
13536          * We do not automatically resize the number of speculations; if
13537          * this fails, we will fail the operation.
13538          */
13539         nspec = opt[DTRACEOPT_NSPEC];
13540         ASSERT(nspec != DTRACEOPT_UNSET);
13541
13542         if (nspec > INT_MAX) {
13543                 rval = ENOMEM;
13544                 goto out;
13545         }
13546
13547         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13548             KM_NOSLEEP | KM_NORMALPRI);
13549
13550         if (spec == NULL) {
13551                 rval = ENOMEM;
13552                 goto out;
13553         }
13554
13555         state->dts_speculations = spec;
13556         state->dts_nspeculations = (int)nspec;
13557
13558         for (i = 0; i < nspec; i++) {
13559                 if ((buf = kmem_zalloc(bufsize,
13560                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13561                         rval = ENOMEM;
13562                         goto err;
13563                 }
13564
13565                 spec[i].dtsp_buffer = buf;
13566         }
13567
13568         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13569                 if (dtrace_anon.dta_state == NULL) {
13570                         rval = ENOENT;
13571                         goto out;
13572                 }
13573
13574                 if (state->dts_necbs != 0) {
13575                         rval = EALREADY;
13576                         goto out;
13577                 }
13578
13579                 state->dts_anon = dtrace_anon_grab();
13580                 ASSERT(state->dts_anon != NULL);
13581                 state = state->dts_anon;
13582
13583                 /*
13584                  * We want "grabanon" to be set in the grabbed state, so we'll
13585                  * copy that option value from the grabbing state into the
13586                  * grabbed state.
13587                  */
13588                 state->dts_options[DTRACEOPT_GRABANON] =
13589                     opt[DTRACEOPT_GRABANON];
13590
13591                 *cpu = dtrace_anon.dta_beganon;
13592
13593                 /*
13594                  * If the anonymous state is active (as it almost certainly
13595                  * is if the anonymous enabling ultimately matched anything),
13596                  * we don't allow any further option processing -- but we
13597                  * don't return failure.
13598                  */
13599                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13600                         goto out;
13601         }
13602
13603         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13604             opt[DTRACEOPT_AGGSIZE] != 0) {
13605                 if (state->dts_aggregations == NULL) {
13606                         /*
13607                          * We're not going to create an aggregation buffer
13608                          * because we don't have any ECBs that contain
13609                          * aggregations -- set this option to 0.
13610                          */
13611                         opt[DTRACEOPT_AGGSIZE] = 0;
13612                 } else {
13613                         /*
13614                          * If we have an aggregation buffer, we must also have
13615                          * a buffer to use as scratch.
13616                          */
13617                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13618                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13619                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13620                         }
13621                 }
13622         }
13623
13624         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13625             opt[DTRACEOPT_SPECSIZE] != 0) {
13626                 if (!state->dts_speculates) {
13627                         /*
13628                          * We're not going to create speculation buffers
13629                          * because we don't have any ECBs that actually
13630                          * speculate -- set the speculation size to 0.
13631                          */
13632                         opt[DTRACEOPT_SPECSIZE] = 0;
13633                 }
13634         }
13635
13636         /*
13637          * The bare minimum size for any buffer that we're actually going to
13638          * do anything to is sizeof (uint64_t).
13639          */
13640         sz = sizeof (uint64_t);
13641
13642         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13643             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13644             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13645                 /*
13646                  * A buffer size has been explicitly set to 0 (or to a size
13647                  * that will be adjusted to 0) and we need the space -- we
13648                  * need to return failure.  We return ENOSPC to differentiate
13649                  * it from failing to allocate a buffer due to failure to meet
13650                  * the reserve (for which we return E2BIG).
13651                  */
13652                 rval = ENOSPC;
13653                 goto out;
13654         }
13655
13656         if ((rval = dtrace_state_buffers(state)) != 0)
13657                 goto err;
13658
13659         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13660                 sz = dtrace_dstate_defsize;
13661
13662         do {
13663                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13664
13665                 if (rval == 0)
13666                         break;
13667
13668                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13669                         goto err;
13670         } while (sz >>= 1);
13671
13672         opt[DTRACEOPT_DYNVARSIZE] = sz;
13673
13674         if (rval != 0)
13675                 goto err;
13676
13677         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13678                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13679
13680         if (opt[DTRACEOPT_CLEANRATE] == 0)
13681                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13682
13683         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13684                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13685
13686         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13687                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13688
13689         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13690 #if defined(sun)
13691         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13692         hdlr.cyh_arg = state;
13693         hdlr.cyh_level = CY_LOW_LEVEL;
13694
13695         when.cyt_when = 0;
13696         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13697
13698         state->dts_cleaner = cyclic_add(&hdlr, &when);
13699
13700         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13701         hdlr.cyh_arg = state;
13702         hdlr.cyh_level = CY_LOW_LEVEL;
13703
13704         when.cyt_when = 0;
13705         when.cyt_interval = dtrace_deadman_interval;
13706
13707         state->dts_deadman = cyclic_add(&hdlr, &when);
13708 #else
13709         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13710             dtrace_state_clean, state);
13711         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13712             dtrace_state_deadman, state);
13713 #endif
13714
13715         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13716
13717         /*
13718          * Now it's time to actually fire the BEGIN probe.  We need to disable
13719          * interrupts here both to record the CPU on which we fired the BEGIN
13720          * probe (the data from this CPU will be processed first at user
13721          * level) and to manually activate the buffer for this CPU.
13722          */
13723         cookie = dtrace_interrupt_disable();
13724         *cpu = curcpu;
13725         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13726         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13727
13728         dtrace_probe(dtrace_probeid_begin,
13729             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13730         dtrace_interrupt_enable(cookie);
13731         /*
13732          * We may have had an exit action from a BEGIN probe; only change our
13733          * state to ACTIVE if we're still in WARMUP.
13734          */
13735         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13736             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13737
13738         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13739                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13740
13741         /*
13742          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13743          * want each CPU to transition its principal buffer out of the
13744          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13745          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13746          * atomically transition from processing none of a state's ECBs to
13747          * processing all of them.
13748          */
13749         dtrace_xcall(DTRACE_CPUALL,
13750             (dtrace_xcall_t)dtrace_buffer_activate, state);
13751         goto out;
13752
13753 err:
13754         dtrace_buffer_free(state->dts_buffer);
13755         dtrace_buffer_free(state->dts_aggbuffer);
13756
13757         if ((nspec = state->dts_nspeculations) == 0) {
13758                 ASSERT(state->dts_speculations == NULL);
13759                 goto out;
13760         }
13761
13762         spec = state->dts_speculations;
13763         ASSERT(spec != NULL);
13764
13765         for (i = 0; i < state->dts_nspeculations; i++) {
13766                 if ((buf = spec[i].dtsp_buffer) == NULL)
13767                         break;
13768
13769                 dtrace_buffer_free(buf);
13770                 kmem_free(buf, bufsize);
13771         }
13772
13773         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13774         state->dts_nspeculations = 0;
13775         state->dts_speculations = NULL;
13776
13777 out:
13778         mutex_exit(&dtrace_lock);
13779         mutex_exit(&cpu_lock);
13780
13781         return (rval);
13782 }
13783
13784 static int
13785 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13786 {
13787         dtrace_icookie_t cookie;
13788
13789         ASSERT(MUTEX_HELD(&dtrace_lock));
13790
13791         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13792             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13793                 return (EINVAL);
13794
13795         /*
13796          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13797          * to be sure that every CPU has seen it.  See below for the details
13798          * on why this is done.
13799          */
13800         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13801         dtrace_sync();
13802
13803         /*
13804          * By this point, it is impossible for any CPU to be still processing
13805          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13806          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13807          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13808          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13809          * iff we're in the END probe.
13810          */
13811         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13812         dtrace_sync();
13813         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13814
13815         /*
13816          * Finally, we can release the reserve and call the END probe.  We
13817          * disable interrupts across calling the END probe to allow us to
13818          * return the CPU on which we actually called the END probe.  This
13819          * allows user-land to be sure that this CPU's principal buffer is
13820          * processed last.
13821          */
13822         state->dts_reserve = 0;
13823
13824         cookie = dtrace_interrupt_disable();
13825         *cpu = curcpu;
13826         dtrace_probe(dtrace_probeid_end,
13827             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13828         dtrace_interrupt_enable(cookie);
13829
13830         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13831         dtrace_sync();
13832
13833         return (0);
13834 }
13835
13836 static int
13837 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13838     dtrace_optval_t val)
13839 {
13840         ASSERT(MUTEX_HELD(&dtrace_lock));
13841
13842         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13843                 return (EBUSY);
13844
13845         if (option >= DTRACEOPT_MAX)
13846                 return (EINVAL);
13847
13848         if (option != DTRACEOPT_CPU && val < 0)
13849                 return (EINVAL);
13850
13851         switch (option) {
13852         case DTRACEOPT_DESTRUCTIVE:
13853                 if (dtrace_destructive_disallow)
13854                         return (EACCES);
13855
13856                 state->dts_cred.dcr_destructive = 1;
13857                 break;
13858
13859         case DTRACEOPT_BUFSIZE:
13860         case DTRACEOPT_DYNVARSIZE:
13861         case DTRACEOPT_AGGSIZE:
13862         case DTRACEOPT_SPECSIZE:
13863         case DTRACEOPT_STRSIZE:
13864                 if (val < 0)
13865                         return (EINVAL);
13866
13867                 if (val >= LONG_MAX) {
13868                         /*
13869                          * If this is an otherwise negative value, set it to
13870                          * the highest multiple of 128m less than LONG_MAX.
13871                          * Technically, we're adjusting the size without
13872                          * regard to the buffer resizing policy, but in fact,
13873                          * this has no effect -- if we set the buffer size to
13874                          * ~LONG_MAX and the buffer policy is ultimately set to
13875                          * be "manual", the buffer allocation is guaranteed to
13876                          * fail, if only because the allocation requires two
13877                          * buffers.  (We set the the size to the highest
13878                          * multiple of 128m because it ensures that the size
13879                          * will remain a multiple of a megabyte when
13880                          * repeatedly halved -- all the way down to 15m.)
13881                          */
13882                         val = LONG_MAX - (1 << 27) + 1;
13883                 }
13884         }
13885
13886         state->dts_options[option] = val;
13887
13888         return (0);
13889 }
13890
13891 static void
13892 dtrace_state_destroy(dtrace_state_t *state)
13893 {
13894         dtrace_ecb_t *ecb;
13895         dtrace_vstate_t *vstate = &state->dts_vstate;
13896 #if defined(sun)
13897         minor_t minor = getminor(state->dts_dev);
13898 #endif
13899         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13900         dtrace_speculation_t *spec = state->dts_speculations;
13901         int nspec = state->dts_nspeculations;
13902         uint32_t match;
13903
13904         ASSERT(MUTEX_HELD(&dtrace_lock));
13905         ASSERT(MUTEX_HELD(&cpu_lock));
13906
13907         /*
13908          * First, retract any retained enablings for this state.
13909          */
13910         dtrace_enabling_retract(state);
13911         ASSERT(state->dts_nretained == 0);
13912
13913         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13914             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13915                 /*
13916                  * We have managed to come into dtrace_state_destroy() on a
13917                  * hot enabling -- almost certainly because of a disorderly
13918                  * shutdown of a consumer.  (That is, a consumer that is
13919                  * exiting without having called dtrace_stop().) In this case,
13920                  * we're going to set our activity to be KILLED, and then
13921                  * issue a sync to be sure that everyone is out of probe
13922                  * context before we start blowing away ECBs.
13923                  */
13924                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13925                 dtrace_sync();
13926         }
13927
13928         /*
13929          * Release the credential hold we took in dtrace_state_create().
13930          */
13931         if (state->dts_cred.dcr_cred != NULL)
13932                 crfree(state->dts_cred.dcr_cred);
13933
13934         /*
13935          * Now we can safely disable and destroy any enabled probes.  Because
13936          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13937          * (especially if they're all enabled), we take two passes through the
13938          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13939          * in the second we disable whatever is left over.
13940          */
13941         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13942                 for (i = 0; i < state->dts_necbs; i++) {
13943                         if ((ecb = state->dts_ecbs[i]) == NULL)
13944                                 continue;
13945
13946                         if (match && ecb->dte_probe != NULL) {
13947                                 dtrace_probe_t *probe = ecb->dte_probe;
13948                                 dtrace_provider_t *prov = probe->dtpr_provider;
13949
13950                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13951                                         continue;
13952                         }
13953
13954                         dtrace_ecb_disable(ecb);
13955                         dtrace_ecb_destroy(ecb);
13956                 }
13957
13958                 if (!match)
13959                         break;
13960         }
13961
13962         /*
13963          * Before we free the buffers, perform one more sync to assure that
13964          * every CPU is out of probe context.
13965          */
13966         dtrace_sync();
13967
13968         dtrace_buffer_free(state->dts_buffer);
13969         dtrace_buffer_free(state->dts_aggbuffer);
13970
13971         for (i = 0; i < nspec; i++)
13972                 dtrace_buffer_free(spec[i].dtsp_buffer);
13973
13974 #if defined(sun)
13975         if (state->dts_cleaner != CYCLIC_NONE)
13976                 cyclic_remove(state->dts_cleaner);
13977
13978         if (state->dts_deadman != CYCLIC_NONE)
13979                 cyclic_remove(state->dts_deadman);
13980 #else
13981         callout_stop(&state->dts_cleaner);
13982         callout_drain(&state->dts_cleaner);
13983         callout_stop(&state->dts_deadman);
13984         callout_drain(&state->dts_deadman);
13985 #endif
13986
13987         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13988         dtrace_vstate_fini(vstate);
13989         if (state->dts_ecbs != NULL)
13990                 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13991
13992         if (state->dts_aggregations != NULL) {
13993 #ifdef DEBUG
13994                 for (i = 0; i < state->dts_naggregations; i++)
13995                         ASSERT(state->dts_aggregations[i] == NULL);
13996 #endif
13997                 ASSERT(state->dts_naggregations > 0);
13998                 kmem_free(state->dts_aggregations,
13999                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14000         }
14001
14002         kmem_free(state->dts_buffer, bufsize);
14003         kmem_free(state->dts_aggbuffer, bufsize);
14004
14005         for (i = 0; i < nspec; i++)
14006                 kmem_free(spec[i].dtsp_buffer, bufsize);
14007
14008         if (spec != NULL)
14009                 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14010
14011         dtrace_format_destroy(state);
14012
14013         if (state->dts_aggid_arena != NULL) {
14014 #if defined(sun)
14015                 vmem_destroy(state->dts_aggid_arena);
14016 #else
14017                 delete_unrhdr(state->dts_aggid_arena);
14018 #endif
14019                 state->dts_aggid_arena = NULL;
14020         }
14021 #if defined(sun)
14022         ddi_soft_state_free(dtrace_softstate, minor);
14023         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14024 #endif
14025 }
14026
14027 /*
14028  * DTrace Anonymous Enabling Functions
14029  */
14030 static dtrace_state_t *
14031 dtrace_anon_grab(void)
14032 {
14033         dtrace_state_t *state;
14034
14035         ASSERT(MUTEX_HELD(&dtrace_lock));
14036
14037         if ((state = dtrace_anon.dta_state) == NULL) {
14038                 ASSERT(dtrace_anon.dta_enabling == NULL);
14039                 return (NULL);
14040         }
14041
14042         ASSERT(dtrace_anon.dta_enabling != NULL);
14043         ASSERT(dtrace_retained != NULL);
14044
14045         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14046         dtrace_anon.dta_enabling = NULL;
14047         dtrace_anon.dta_state = NULL;
14048
14049         return (state);
14050 }
14051
14052 static void
14053 dtrace_anon_property(void)
14054 {
14055         int i, rv;
14056         dtrace_state_t *state;
14057         dof_hdr_t *dof;
14058         char c[32];             /* enough for "dof-data-" + digits */
14059
14060         ASSERT(MUTEX_HELD(&dtrace_lock));
14061         ASSERT(MUTEX_HELD(&cpu_lock));
14062
14063         for (i = 0; ; i++) {
14064                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14065
14066                 dtrace_err_verbose = 1;
14067
14068                 if ((dof = dtrace_dof_property(c)) == NULL) {
14069                         dtrace_err_verbose = 0;
14070                         break;
14071                 }
14072
14073 #if defined(sun)
14074                 /*
14075                  * We want to create anonymous state, so we need to transition
14076                  * the kernel debugger to indicate that DTrace is active.  If
14077                  * this fails (e.g. because the debugger has modified text in
14078                  * some way), we won't continue with the processing.
14079                  */
14080                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14081                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14082                             "enabling ignored.");
14083                         dtrace_dof_destroy(dof);
14084                         break;
14085                 }
14086 #endif
14087
14088                 /*
14089                  * If we haven't allocated an anonymous state, we'll do so now.
14090                  */
14091                 if ((state = dtrace_anon.dta_state) == NULL) {
14092 #if defined(sun)
14093                         state = dtrace_state_create(NULL, NULL);
14094 #else
14095                         state = dtrace_state_create(NULL);
14096 #endif
14097                         dtrace_anon.dta_state = state;
14098
14099                         if (state == NULL) {
14100                                 /*
14101                                  * This basically shouldn't happen:  the only
14102                                  * failure mode from dtrace_state_create() is a
14103                                  * failure of ddi_soft_state_zalloc() that
14104                                  * itself should never happen.  Still, the
14105                                  * interface allows for a failure mode, and
14106                                  * we want to fail as gracefully as possible:
14107                                  * we'll emit an error message and cease
14108                                  * processing anonymous state in this case.
14109                                  */
14110                                 cmn_err(CE_WARN, "failed to create "
14111                                     "anonymous state");
14112                                 dtrace_dof_destroy(dof);
14113                                 break;
14114                         }
14115                 }
14116
14117                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14118                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14119
14120                 if (rv == 0)
14121                         rv = dtrace_dof_options(dof, state);
14122
14123                 dtrace_err_verbose = 0;
14124                 dtrace_dof_destroy(dof);
14125
14126                 if (rv != 0) {
14127                         /*
14128                          * This is malformed DOF; chuck any anonymous state
14129                          * that we created.
14130                          */
14131                         ASSERT(dtrace_anon.dta_enabling == NULL);
14132                         dtrace_state_destroy(state);
14133                         dtrace_anon.dta_state = NULL;
14134                         break;
14135                 }
14136
14137                 ASSERT(dtrace_anon.dta_enabling != NULL);
14138         }
14139
14140         if (dtrace_anon.dta_enabling != NULL) {
14141                 int rval;
14142
14143                 /*
14144                  * dtrace_enabling_retain() can only fail because we are
14145                  * trying to retain more enablings than are allowed -- but
14146                  * we only have one anonymous enabling, and we are guaranteed
14147                  * to be allowed at least one retained enabling; we assert
14148                  * that dtrace_enabling_retain() returns success.
14149                  */
14150                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14151                 ASSERT(rval == 0);
14152
14153                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14154         }
14155 }
14156
14157 /*
14158  * DTrace Helper Functions
14159  */
14160 static void
14161 dtrace_helper_trace(dtrace_helper_action_t *helper,
14162     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14163 {
14164         uint32_t size, next, nnext, i;
14165         dtrace_helptrace_t *ent;
14166         uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14167
14168         if (!dtrace_helptrace_enabled)
14169                 return;
14170
14171         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14172
14173         /*
14174          * What would a tracing framework be without its own tracing
14175          * framework?  (Well, a hell of a lot simpler, for starters...)
14176          */
14177         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14178             sizeof (uint64_t) - sizeof (uint64_t);
14179
14180         /*
14181          * Iterate until we can allocate a slot in the trace buffer.
14182          */
14183         do {
14184                 next = dtrace_helptrace_next;
14185
14186                 if (next + size < dtrace_helptrace_bufsize) {
14187                         nnext = next + size;
14188                 } else {
14189                         nnext = size;
14190                 }
14191         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14192
14193         /*
14194          * We have our slot; fill it in.
14195          */
14196         if (nnext == size)
14197                 next = 0;
14198
14199         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14200         ent->dtht_helper = helper;
14201         ent->dtht_where = where;
14202         ent->dtht_nlocals = vstate->dtvs_nlocals;
14203
14204         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14205             mstate->dtms_fltoffs : -1;
14206         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14207         ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14208
14209         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14210                 dtrace_statvar_t *svar;
14211
14212                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14213                         continue;
14214
14215                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14216                 ent->dtht_locals[i] =
14217                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14218         }
14219 }
14220
14221 static uint64_t
14222 dtrace_helper(int which, dtrace_mstate_t *mstate,
14223     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14224 {
14225         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14226         uint64_t sarg0 = mstate->dtms_arg[0];
14227         uint64_t sarg1 = mstate->dtms_arg[1];
14228         uint64_t rval = 0;
14229         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14230         dtrace_helper_action_t *helper;
14231         dtrace_vstate_t *vstate;
14232         dtrace_difo_t *pred;
14233         int i, trace = dtrace_helptrace_enabled;
14234
14235         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14236
14237         if (helpers == NULL)
14238                 return (0);
14239
14240         if ((helper = helpers->dthps_actions[which]) == NULL)
14241                 return (0);
14242
14243         vstate = &helpers->dthps_vstate;
14244         mstate->dtms_arg[0] = arg0;
14245         mstate->dtms_arg[1] = arg1;
14246
14247         /*
14248          * Now iterate over each helper.  If its predicate evaluates to 'true',
14249          * we'll call the corresponding actions.  Note that the below calls
14250          * to dtrace_dif_emulate() may set faults in machine state.  This is
14251          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14252          * the stored DIF offset with its own (which is the desired behavior).
14253          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14254          * from machine state; this is okay, too.
14255          */
14256         for (; helper != NULL; helper = helper->dtha_next) {
14257                 if ((pred = helper->dtha_predicate) != NULL) {
14258                         if (trace)
14259                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14260
14261                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14262                                 goto next;
14263
14264                         if (*flags & CPU_DTRACE_FAULT)
14265                                 goto err;
14266                 }
14267
14268                 for (i = 0; i < helper->dtha_nactions; i++) {
14269                         if (trace)
14270                                 dtrace_helper_trace(helper,
14271                                     mstate, vstate, i + 1);
14272
14273                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14274                             mstate, vstate, state);
14275
14276                         if (*flags & CPU_DTRACE_FAULT)
14277                                 goto err;
14278                 }
14279
14280 next:
14281                 if (trace)
14282                         dtrace_helper_trace(helper, mstate, vstate,
14283                             DTRACE_HELPTRACE_NEXT);
14284         }
14285
14286         if (trace)
14287                 dtrace_helper_trace(helper, mstate, vstate,
14288                     DTRACE_HELPTRACE_DONE);
14289
14290         /*
14291          * Restore the arg0 that we saved upon entry.
14292          */
14293         mstate->dtms_arg[0] = sarg0;
14294         mstate->dtms_arg[1] = sarg1;
14295
14296         return (rval);
14297
14298 err:
14299         if (trace)
14300                 dtrace_helper_trace(helper, mstate, vstate,
14301                     DTRACE_HELPTRACE_ERR);
14302
14303         /*
14304          * Restore the arg0 that we saved upon entry.
14305          */
14306         mstate->dtms_arg[0] = sarg0;
14307         mstate->dtms_arg[1] = sarg1;
14308
14309         return (0);
14310 }
14311
14312 static void
14313 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14314     dtrace_vstate_t *vstate)
14315 {
14316         int i;
14317
14318         if (helper->dtha_predicate != NULL)
14319                 dtrace_difo_release(helper->dtha_predicate, vstate);
14320
14321         for (i = 0; i < helper->dtha_nactions; i++) {
14322                 ASSERT(helper->dtha_actions[i] != NULL);
14323                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14324         }
14325
14326         kmem_free(helper->dtha_actions,
14327             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14328         kmem_free(helper, sizeof (dtrace_helper_action_t));
14329 }
14330
14331 static int
14332 dtrace_helper_destroygen(int gen)
14333 {
14334         proc_t *p = curproc;
14335         dtrace_helpers_t *help = p->p_dtrace_helpers;
14336         dtrace_vstate_t *vstate;
14337         int i;
14338
14339         ASSERT(MUTEX_HELD(&dtrace_lock));
14340
14341         if (help == NULL || gen > help->dthps_generation)
14342                 return (EINVAL);
14343
14344         vstate = &help->dthps_vstate;
14345
14346         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14347                 dtrace_helper_action_t *last = NULL, *h, *next;
14348
14349                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14350                         next = h->dtha_next;
14351
14352                         if (h->dtha_generation == gen) {
14353                                 if (last != NULL) {
14354                                         last->dtha_next = next;
14355                                 } else {
14356                                         help->dthps_actions[i] = next;
14357                                 }
14358
14359                                 dtrace_helper_action_destroy(h, vstate);
14360                         } else {
14361                                 last = h;
14362                         }
14363                 }
14364         }
14365
14366         /*
14367          * Interate until we've cleared out all helper providers with the
14368          * given generation number.
14369          */
14370         for (;;) {
14371                 dtrace_helper_provider_t *prov;
14372
14373                 /*
14374                  * Look for a helper provider with the right generation. We
14375                  * have to start back at the beginning of the list each time
14376                  * because we drop dtrace_lock. It's unlikely that we'll make
14377                  * more than two passes.
14378                  */
14379                 for (i = 0; i < help->dthps_nprovs; i++) {
14380                         prov = help->dthps_provs[i];
14381
14382                         if (prov->dthp_generation == gen)
14383                                 break;
14384                 }
14385
14386                 /*
14387                  * If there were no matches, we're done.
14388                  */
14389                 if (i == help->dthps_nprovs)
14390                         break;
14391
14392                 /*
14393                  * Move the last helper provider into this slot.
14394                  */
14395                 help->dthps_nprovs--;
14396                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14397                 help->dthps_provs[help->dthps_nprovs] = NULL;
14398
14399                 mutex_exit(&dtrace_lock);
14400
14401                 /*
14402                  * If we have a meta provider, remove this helper provider.
14403                  */
14404                 mutex_enter(&dtrace_meta_lock);
14405                 if (dtrace_meta_pid != NULL) {
14406                         ASSERT(dtrace_deferred_pid == NULL);
14407                         dtrace_helper_provider_remove(&prov->dthp_prov,
14408                             p->p_pid);
14409                 }
14410                 mutex_exit(&dtrace_meta_lock);
14411
14412                 dtrace_helper_provider_destroy(prov);
14413
14414                 mutex_enter(&dtrace_lock);
14415         }
14416
14417         return (0);
14418 }
14419
14420 static int
14421 dtrace_helper_validate(dtrace_helper_action_t *helper)
14422 {
14423         int err = 0, i;
14424         dtrace_difo_t *dp;
14425
14426         if ((dp = helper->dtha_predicate) != NULL)
14427                 err += dtrace_difo_validate_helper(dp);
14428
14429         for (i = 0; i < helper->dtha_nactions; i++)
14430                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14431
14432         return (err == 0);
14433 }
14434
14435 static int
14436 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14437 {
14438         dtrace_helpers_t *help;
14439         dtrace_helper_action_t *helper, *last;
14440         dtrace_actdesc_t *act;
14441         dtrace_vstate_t *vstate;
14442         dtrace_predicate_t *pred;
14443         int count = 0, nactions = 0, i;
14444
14445         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14446                 return (EINVAL);
14447
14448         help = curproc->p_dtrace_helpers;
14449         last = help->dthps_actions[which];
14450         vstate = &help->dthps_vstate;
14451
14452         for (count = 0; last != NULL; last = last->dtha_next) {
14453                 count++;
14454                 if (last->dtha_next == NULL)
14455                         break;
14456         }
14457
14458         /*
14459          * If we already have dtrace_helper_actions_max helper actions for this
14460          * helper action type, we'll refuse to add a new one.
14461          */
14462         if (count >= dtrace_helper_actions_max)
14463                 return (ENOSPC);
14464
14465         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14466         helper->dtha_generation = help->dthps_generation;
14467
14468         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14469                 ASSERT(pred->dtp_difo != NULL);
14470                 dtrace_difo_hold(pred->dtp_difo);
14471                 helper->dtha_predicate = pred->dtp_difo;
14472         }
14473
14474         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14475                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14476                         goto err;
14477
14478                 if (act->dtad_difo == NULL)
14479                         goto err;
14480
14481                 nactions++;
14482         }
14483
14484         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14485             (helper->dtha_nactions = nactions), KM_SLEEP);
14486
14487         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14488                 dtrace_difo_hold(act->dtad_difo);
14489                 helper->dtha_actions[i++] = act->dtad_difo;
14490         }
14491
14492         if (!dtrace_helper_validate(helper))
14493                 goto err;
14494
14495         if (last == NULL) {
14496                 help->dthps_actions[which] = helper;
14497         } else {
14498                 last->dtha_next = helper;
14499         }
14500
14501         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14502                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14503                 dtrace_helptrace_next = 0;
14504         }
14505
14506         return (0);
14507 err:
14508         dtrace_helper_action_destroy(helper, vstate);
14509         return (EINVAL);
14510 }
14511
14512 static void
14513 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14514     dof_helper_t *dofhp)
14515 {
14516         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14517
14518         mutex_enter(&dtrace_meta_lock);
14519         mutex_enter(&dtrace_lock);
14520
14521         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14522                 /*
14523                  * If the dtrace module is loaded but not attached, or if
14524                  * there aren't isn't a meta provider registered to deal with
14525                  * these provider descriptions, we need to postpone creating
14526                  * the actual providers until later.
14527                  */
14528
14529                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14530                     dtrace_deferred_pid != help) {
14531                         help->dthps_deferred = 1;
14532                         help->dthps_pid = p->p_pid;
14533                         help->dthps_next = dtrace_deferred_pid;
14534                         help->dthps_prev = NULL;
14535                         if (dtrace_deferred_pid != NULL)
14536                                 dtrace_deferred_pid->dthps_prev = help;
14537                         dtrace_deferred_pid = help;
14538                 }
14539
14540                 mutex_exit(&dtrace_lock);
14541
14542         } else if (dofhp != NULL) {
14543                 /*
14544                  * If the dtrace module is loaded and we have a particular
14545                  * helper provider description, pass that off to the
14546                  * meta provider.
14547                  */
14548
14549                 mutex_exit(&dtrace_lock);
14550
14551                 dtrace_helper_provide(dofhp, p->p_pid);
14552
14553         } else {
14554                 /*
14555                  * Otherwise, just pass all the helper provider descriptions
14556                  * off to the meta provider.
14557                  */
14558
14559                 int i;
14560                 mutex_exit(&dtrace_lock);
14561
14562                 for (i = 0; i < help->dthps_nprovs; i++) {
14563                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14564                             p->p_pid);
14565                 }
14566         }
14567
14568         mutex_exit(&dtrace_meta_lock);
14569 }
14570
14571 static int
14572 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14573 {
14574         dtrace_helpers_t *help;
14575         dtrace_helper_provider_t *hprov, **tmp_provs;
14576         uint_t tmp_maxprovs, i;
14577
14578         ASSERT(MUTEX_HELD(&dtrace_lock));
14579
14580         help = curproc->p_dtrace_helpers;
14581         ASSERT(help != NULL);
14582
14583         /*
14584          * If we already have dtrace_helper_providers_max helper providers,
14585          * we're refuse to add a new one.
14586          */
14587         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14588                 return (ENOSPC);
14589
14590         /*
14591          * Check to make sure this isn't a duplicate.
14592          */
14593         for (i = 0; i < help->dthps_nprovs; i++) {
14594                 if (dofhp->dofhp_dof ==
14595                     help->dthps_provs[i]->dthp_prov.dofhp_dof)
14596                         return (EALREADY);
14597         }
14598
14599         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14600         hprov->dthp_prov = *dofhp;
14601         hprov->dthp_ref = 1;
14602         hprov->dthp_generation = gen;
14603
14604         /*
14605          * Allocate a bigger table for helper providers if it's already full.
14606          */
14607         if (help->dthps_maxprovs == help->dthps_nprovs) {
14608                 tmp_maxprovs = help->dthps_maxprovs;
14609                 tmp_provs = help->dthps_provs;
14610
14611                 if (help->dthps_maxprovs == 0)
14612                         help->dthps_maxprovs = 2;
14613                 else
14614                         help->dthps_maxprovs *= 2;
14615                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14616                         help->dthps_maxprovs = dtrace_helper_providers_max;
14617
14618                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14619
14620                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14621                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14622
14623                 if (tmp_provs != NULL) {
14624                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14625                             sizeof (dtrace_helper_provider_t *));
14626                         kmem_free(tmp_provs, tmp_maxprovs *
14627                             sizeof (dtrace_helper_provider_t *));
14628                 }
14629         }
14630
14631         help->dthps_provs[help->dthps_nprovs] = hprov;
14632         help->dthps_nprovs++;
14633
14634         return (0);
14635 }
14636
14637 static void
14638 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14639 {
14640         mutex_enter(&dtrace_lock);
14641
14642         if (--hprov->dthp_ref == 0) {
14643                 dof_hdr_t *dof;
14644                 mutex_exit(&dtrace_lock);
14645                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14646                 dtrace_dof_destroy(dof);
14647                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14648         } else {
14649                 mutex_exit(&dtrace_lock);
14650         }
14651 }
14652
14653 static int
14654 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14655 {
14656         uintptr_t daddr = (uintptr_t)dof;
14657         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14658         dof_provider_t *provider;
14659         dof_probe_t *probe;
14660         uint8_t *arg;
14661         char *strtab, *typestr;
14662         dof_stridx_t typeidx;
14663         size_t typesz;
14664         uint_t nprobes, j, k;
14665
14666         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14667
14668         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14669                 dtrace_dof_error(dof, "misaligned section offset");
14670                 return (-1);
14671         }
14672
14673         /*
14674          * The section needs to be large enough to contain the DOF provider
14675          * structure appropriate for the given version.
14676          */
14677         if (sec->dofs_size <
14678             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14679             offsetof(dof_provider_t, dofpv_prenoffs) :
14680             sizeof (dof_provider_t))) {
14681                 dtrace_dof_error(dof, "provider section too small");
14682                 return (-1);
14683         }
14684
14685         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14686         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14687         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14688         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14689         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14690
14691         if (str_sec == NULL || prb_sec == NULL ||
14692             arg_sec == NULL || off_sec == NULL)
14693                 return (-1);
14694
14695         enoff_sec = NULL;
14696
14697         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14698             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14699             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14700             provider->dofpv_prenoffs)) == NULL)
14701                 return (-1);
14702
14703         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14704
14705         if (provider->dofpv_name >= str_sec->dofs_size ||
14706             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14707                 dtrace_dof_error(dof, "invalid provider name");
14708                 return (-1);
14709         }
14710
14711         if (prb_sec->dofs_entsize == 0 ||
14712             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14713                 dtrace_dof_error(dof, "invalid entry size");
14714                 return (-1);
14715         }
14716
14717         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14718                 dtrace_dof_error(dof, "misaligned entry size");
14719                 return (-1);
14720         }
14721
14722         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14723                 dtrace_dof_error(dof, "invalid entry size");
14724                 return (-1);
14725         }
14726
14727         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14728                 dtrace_dof_error(dof, "misaligned section offset");
14729                 return (-1);
14730         }
14731
14732         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14733                 dtrace_dof_error(dof, "invalid entry size");
14734                 return (-1);
14735         }
14736
14737         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14738
14739         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14740
14741         /*
14742          * Take a pass through the probes to check for errors.
14743          */
14744         for (j = 0; j < nprobes; j++) {
14745                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14746                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14747
14748                 if (probe->dofpr_func >= str_sec->dofs_size) {
14749                         dtrace_dof_error(dof, "invalid function name");
14750                         return (-1);
14751                 }
14752
14753                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14754                         dtrace_dof_error(dof, "function name too long");
14755                         return (-1);
14756                 }
14757
14758                 if (probe->dofpr_name >= str_sec->dofs_size ||
14759                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14760                         dtrace_dof_error(dof, "invalid probe name");
14761                         return (-1);
14762                 }
14763
14764                 /*
14765                  * The offset count must not wrap the index, and the offsets
14766                  * must also not overflow the section's data.
14767                  */
14768                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14769                     probe->dofpr_offidx ||
14770                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14771                     off_sec->dofs_entsize > off_sec->dofs_size) {
14772                         dtrace_dof_error(dof, "invalid probe offset");
14773                         return (-1);
14774                 }
14775
14776                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14777                         /*
14778                          * If there's no is-enabled offset section, make sure
14779                          * there aren't any is-enabled offsets. Otherwise
14780                          * perform the same checks as for probe offsets
14781                          * (immediately above).
14782                          */
14783                         if (enoff_sec == NULL) {
14784                                 if (probe->dofpr_enoffidx != 0 ||
14785                                     probe->dofpr_nenoffs != 0) {
14786                                         dtrace_dof_error(dof, "is-enabled "
14787                                             "offsets with null section");
14788                                         return (-1);
14789                                 }
14790                         } else if (probe->dofpr_enoffidx +
14791                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14792                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14793                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14794                                 dtrace_dof_error(dof, "invalid is-enabled "
14795                                     "offset");
14796                                 return (-1);
14797                         }
14798
14799                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14800                                 dtrace_dof_error(dof, "zero probe and "
14801                                     "is-enabled offsets");
14802                                 return (-1);
14803                         }
14804                 } else if (probe->dofpr_noffs == 0) {
14805                         dtrace_dof_error(dof, "zero probe offsets");
14806                         return (-1);
14807                 }
14808
14809                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14810                     probe->dofpr_argidx ||
14811                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14812                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14813                         dtrace_dof_error(dof, "invalid args");
14814                         return (-1);
14815                 }
14816
14817                 typeidx = probe->dofpr_nargv;
14818                 typestr = strtab + probe->dofpr_nargv;
14819                 for (k = 0; k < probe->dofpr_nargc; k++) {
14820                         if (typeidx >= str_sec->dofs_size) {
14821                                 dtrace_dof_error(dof, "bad "
14822                                     "native argument type");
14823                                 return (-1);
14824                         }
14825
14826                         typesz = strlen(typestr) + 1;
14827                         if (typesz > DTRACE_ARGTYPELEN) {
14828                                 dtrace_dof_error(dof, "native "
14829                                     "argument type too long");
14830                                 return (-1);
14831                         }
14832                         typeidx += typesz;
14833                         typestr += typesz;
14834                 }
14835
14836                 typeidx = probe->dofpr_xargv;
14837                 typestr = strtab + probe->dofpr_xargv;
14838                 for (k = 0; k < probe->dofpr_xargc; k++) {
14839                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14840                                 dtrace_dof_error(dof, "bad "
14841                                     "native argument index");
14842                                 return (-1);
14843                         }
14844
14845                         if (typeidx >= str_sec->dofs_size) {
14846                                 dtrace_dof_error(dof, "bad "
14847                                     "translated argument type");
14848                                 return (-1);
14849                         }
14850
14851                         typesz = strlen(typestr) + 1;
14852                         if (typesz > DTRACE_ARGTYPELEN) {
14853                                 dtrace_dof_error(dof, "translated argument "
14854                                     "type too long");
14855                                 return (-1);
14856                         }
14857
14858                         typeidx += typesz;
14859                         typestr += typesz;
14860                 }
14861         }
14862
14863         return (0);
14864 }
14865
14866 static int
14867 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14868 {
14869         dtrace_helpers_t *help;
14870         dtrace_vstate_t *vstate;
14871         dtrace_enabling_t *enab = NULL;
14872         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14873         uintptr_t daddr = (uintptr_t)dof;
14874
14875         ASSERT(MUTEX_HELD(&dtrace_lock));
14876
14877         if ((help = curproc->p_dtrace_helpers) == NULL)
14878                 help = dtrace_helpers_create(curproc);
14879
14880         vstate = &help->dthps_vstate;
14881
14882         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14883             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14884                 dtrace_dof_destroy(dof);
14885                 return (rv);
14886         }
14887
14888         /*
14889          * Look for helper providers and validate their descriptions.
14890          */
14891         if (dhp != NULL) {
14892                 for (i = 0; i < dof->dofh_secnum; i++) {
14893                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14894                             dof->dofh_secoff + i * dof->dofh_secsize);
14895
14896                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14897                                 continue;
14898
14899                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14900                                 dtrace_enabling_destroy(enab);
14901                                 dtrace_dof_destroy(dof);
14902                                 return (-1);
14903                         }
14904
14905                         nprovs++;
14906                 }
14907         }
14908
14909         /*
14910          * Now we need to walk through the ECB descriptions in the enabling.
14911          */
14912         for (i = 0; i < enab->dten_ndesc; i++) {
14913                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14914                 dtrace_probedesc_t *desc = &ep->dted_probe;
14915
14916                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14917                         continue;
14918
14919                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14920                         continue;
14921
14922                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14923                         continue;
14924
14925                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14926                     ep)) != 0) {
14927                         /*
14928                          * Adding this helper action failed -- we are now going
14929                          * to rip out the entire generation and return failure.
14930                          */
14931                         (void) dtrace_helper_destroygen(help->dthps_generation);
14932                         dtrace_enabling_destroy(enab);
14933                         dtrace_dof_destroy(dof);
14934                         return (-1);
14935                 }
14936
14937                 nhelpers++;
14938         }
14939
14940         if (nhelpers < enab->dten_ndesc)
14941                 dtrace_dof_error(dof, "unmatched helpers");
14942
14943         gen = help->dthps_generation++;
14944         dtrace_enabling_destroy(enab);
14945
14946         if (dhp != NULL && nprovs > 0) {
14947                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14948                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14949                         mutex_exit(&dtrace_lock);
14950                         dtrace_helper_provider_register(curproc, help, dhp);
14951                         mutex_enter(&dtrace_lock);
14952
14953                         destroy = 0;
14954                 }
14955         }
14956
14957         if (destroy)
14958                 dtrace_dof_destroy(dof);
14959
14960         return (gen);
14961 }
14962
14963 static dtrace_helpers_t *
14964 dtrace_helpers_create(proc_t *p)
14965 {
14966         dtrace_helpers_t *help;
14967
14968         ASSERT(MUTEX_HELD(&dtrace_lock));
14969         ASSERT(p->p_dtrace_helpers == NULL);
14970
14971         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14972         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14973             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14974
14975         p->p_dtrace_helpers = help;
14976         dtrace_helpers++;
14977
14978         return (help);
14979 }
14980
14981 #if defined(sun)
14982 static
14983 #endif
14984 void
14985 dtrace_helpers_destroy(proc_t *p)
14986 {
14987         dtrace_helpers_t *help;
14988         dtrace_vstate_t *vstate;
14989 #if defined(sun)
14990         proc_t *p = curproc;
14991 #endif
14992         int i;
14993
14994         mutex_enter(&dtrace_lock);
14995
14996         ASSERT(p->p_dtrace_helpers != NULL);
14997         ASSERT(dtrace_helpers > 0);
14998
14999         help = p->p_dtrace_helpers;
15000         vstate = &help->dthps_vstate;
15001
15002         /*
15003          * We're now going to lose the help from this process.
15004          */
15005         p->p_dtrace_helpers = NULL;
15006         dtrace_sync();
15007
15008         /*
15009          * Destory the helper actions.
15010          */
15011         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15012                 dtrace_helper_action_t *h, *next;
15013
15014                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15015                         next = h->dtha_next;
15016                         dtrace_helper_action_destroy(h, vstate);
15017                         h = next;
15018                 }
15019         }
15020
15021         mutex_exit(&dtrace_lock);
15022
15023         /*
15024          * Destroy the helper providers.
15025          */
15026         if (help->dthps_maxprovs > 0) {
15027                 mutex_enter(&dtrace_meta_lock);
15028                 if (dtrace_meta_pid != NULL) {
15029                         ASSERT(dtrace_deferred_pid == NULL);
15030
15031                         for (i = 0; i < help->dthps_nprovs; i++) {
15032                                 dtrace_helper_provider_remove(
15033                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
15034                         }
15035                 } else {
15036                         mutex_enter(&dtrace_lock);
15037                         ASSERT(help->dthps_deferred == 0 ||
15038                             help->dthps_next != NULL ||
15039                             help->dthps_prev != NULL ||
15040                             help == dtrace_deferred_pid);
15041
15042                         /*
15043                          * Remove the helper from the deferred list.
15044                          */
15045                         if (help->dthps_next != NULL)
15046                                 help->dthps_next->dthps_prev = help->dthps_prev;
15047                         if (help->dthps_prev != NULL)
15048                                 help->dthps_prev->dthps_next = help->dthps_next;
15049                         if (dtrace_deferred_pid == help) {
15050                                 dtrace_deferred_pid = help->dthps_next;
15051                                 ASSERT(help->dthps_prev == NULL);
15052                         }
15053
15054                         mutex_exit(&dtrace_lock);
15055                 }
15056
15057                 mutex_exit(&dtrace_meta_lock);
15058
15059                 for (i = 0; i < help->dthps_nprovs; i++) {
15060                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15061                 }
15062
15063                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15064                     sizeof (dtrace_helper_provider_t *));
15065         }
15066
15067         mutex_enter(&dtrace_lock);
15068
15069         dtrace_vstate_fini(&help->dthps_vstate);
15070         kmem_free(help->dthps_actions,
15071             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15072         kmem_free(help, sizeof (dtrace_helpers_t));
15073
15074         --dtrace_helpers;
15075         mutex_exit(&dtrace_lock);
15076 }
15077
15078 #if defined(sun)
15079 static
15080 #endif
15081 void
15082 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15083 {
15084         dtrace_helpers_t *help, *newhelp;
15085         dtrace_helper_action_t *helper, *new, *last;
15086         dtrace_difo_t *dp;
15087         dtrace_vstate_t *vstate;
15088         int i, j, sz, hasprovs = 0;
15089
15090         mutex_enter(&dtrace_lock);
15091         ASSERT(from->p_dtrace_helpers != NULL);
15092         ASSERT(dtrace_helpers > 0);
15093
15094         help = from->p_dtrace_helpers;
15095         newhelp = dtrace_helpers_create(to);
15096         ASSERT(to->p_dtrace_helpers != NULL);
15097
15098         newhelp->dthps_generation = help->dthps_generation;
15099         vstate = &newhelp->dthps_vstate;
15100
15101         /*
15102          * Duplicate the helper actions.
15103          */
15104         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15105                 if ((helper = help->dthps_actions[i]) == NULL)
15106                         continue;
15107
15108                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15109                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15110                             KM_SLEEP);
15111                         new->dtha_generation = helper->dtha_generation;
15112
15113                         if ((dp = helper->dtha_predicate) != NULL) {
15114                                 dp = dtrace_difo_duplicate(dp, vstate);
15115                                 new->dtha_predicate = dp;
15116                         }
15117
15118                         new->dtha_nactions = helper->dtha_nactions;
15119                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15120                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15121
15122                         for (j = 0; j < new->dtha_nactions; j++) {
15123                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15124
15125                                 ASSERT(dp != NULL);
15126                                 dp = dtrace_difo_duplicate(dp, vstate);
15127                                 new->dtha_actions[j] = dp;
15128                         }
15129
15130                         if (last != NULL) {
15131                                 last->dtha_next = new;
15132                         } else {
15133                                 newhelp->dthps_actions[i] = new;
15134                         }
15135
15136                         last = new;
15137                 }
15138         }
15139
15140         /*
15141          * Duplicate the helper providers and register them with the
15142          * DTrace framework.
15143          */
15144         if (help->dthps_nprovs > 0) {
15145                 newhelp->dthps_nprovs = help->dthps_nprovs;
15146                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15147                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15148                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15149                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15150                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15151                         newhelp->dthps_provs[i]->dthp_ref++;
15152                 }
15153
15154                 hasprovs = 1;
15155         }
15156
15157         mutex_exit(&dtrace_lock);
15158
15159         if (hasprovs)
15160                 dtrace_helper_provider_register(to, newhelp, NULL);
15161 }
15162
15163 /*
15164  * DTrace Hook Functions
15165  */
15166 static void
15167 dtrace_module_loaded(modctl_t *ctl)
15168 {
15169         dtrace_provider_t *prv;
15170
15171         mutex_enter(&dtrace_provider_lock);
15172 #if defined(sun)
15173         mutex_enter(&mod_lock);
15174 #endif
15175
15176 #if defined(sun)
15177         ASSERT(ctl->mod_busy);
15178 #endif
15179
15180         /*
15181          * We're going to call each providers per-module provide operation
15182          * specifying only this module.
15183          */
15184         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15185                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15186
15187 #if defined(sun)
15188         mutex_exit(&mod_lock);
15189 #endif
15190         mutex_exit(&dtrace_provider_lock);
15191
15192         /*
15193          * If we have any retained enablings, we need to match against them.
15194          * Enabling probes requires that cpu_lock be held, and we cannot hold
15195          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15196          * module.  (In particular, this happens when loading scheduling
15197          * classes.)  So if we have any retained enablings, we need to dispatch
15198          * our task queue to do the match for us.
15199          */
15200         mutex_enter(&dtrace_lock);
15201
15202         if (dtrace_retained == NULL) {
15203                 mutex_exit(&dtrace_lock);
15204                 return;
15205         }
15206
15207         (void) taskq_dispatch(dtrace_taskq,
15208             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15209
15210         mutex_exit(&dtrace_lock);
15211
15212         /*
15213          * And now, for a little heuristic sleaze:  in general, we want to
15214          * match modules as soon as they load.  However, we cannot guarantee
15215          * this, because it would lead us to the lock ordering violation
15216          * outlined above.  The common case, of course, is that cpu_lock is
15217          * _not_ held -- so we delay here for a clock tick, hoping that that's
15218          * long enough for the task queue to do its work.  If it's not, it's
15219          * not a serious problem -- it just means that the module that we
15220          * just loaded may not be immediately instrumentable.
15221          */
15222         delay(1);
15223 }
15224
15225 static void
15226 #if defined(sun)
15227 dtrace_module_unloaded(modctl_t *ctl)
15228 #else
15229 dtrace_module_unloaded(modctl_t *ctl, int *error)
15230 #endif
15231 {
15232         dtrace_probe_t template, *probe, *first, *next;
15233         dtrace_provider_t *prov;
15234 #if !defined(sun)
15235         char modname[DTRACE_MODNAMELEN];
15236         size_t len;
15237 #endif
15238
15239 #if defined(sun)
15240         template.dtpr_mod = ctl->mod_modname;
15241 #else
15242         /* Handle the fact that ctl->filename may end in ".ko". */
15243         strlcpy(modname, ctl->filename, sizeof(modname));
15244         len = strlen(ctl->filename);
15245         if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15246                 modname[len - 3] = '\0';
15247         template.dtpr_mod = modname;
15248 #endif
15249
15250         mutex_enter(&dtrace_provider_lock);
15251 #if defined(sun)
15252         mutex_enter(&mod_lock);
15253 #endif
15254         mutex_enter(&dtrace_lock);
15255
15256 #if !defined(sun)
15257         if (ctl->nenabled > 0) {
15258                 /* Don't allow unloads if a probe is enabled. */
15259                 mutex_exit(&dtrace_provider_lock);
15260                 mutex_exit(&dtrace_lock);
15261                 *error = -1;
15262                 printf(
15263         "kldunload: attempt to unload module that has DTrace probes enabled\n");
15264                 return;
15265         }
15266 #endif
15267
15268         if (dtrace_bymod == NULL) {
15269                 /*
15270                  * The DTrace module is loaded (obviously) but not attached;
15271                  * we don't have any work to do.
15272                  */
15273                 mutex_exit(&dtrace_provider_lock);
15274 #if defined(sun)
15275                 mutex_exit(&mod_lock);
15276 #endif
15277                 mutex_exit(&dtrace_lock);
15278                 return;
15279         }
15280
15281         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15282             probe != NULL; probe = probe->dtpr_nextmod) {
15283                 if (probe->dtpr_ecb != NULL) {
15284                         mutex_exit(&dtrace_provider_lock);
15285 #if defined(sun)
15286                         mutex_exit(&mod_lock);
15287 #endif
15288                         mutex_exit(&dtrace_lock);
15289
15290                         /*
15291                          * This shouldn't _actually_ be possible -- we're
15292                          * unloading a module that has an enabled probe in it.
15293                          * (It's normally up to the provider to make sure that
15294                          * this can't happen.)  However, because dtps_enable()
15295                          * doesn't have a failure mode, there can be an
15296                          * enable/unload race.  Upshot:  we don't want to
15297                          * assert, but we're not going to disable the
15298                          * probe, either.
15299                          */
15300                         if (dtrace_err_verbose) {
15301 #if defined(sun)
15302                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15303                                     "enabled probes", ctl->mod_modname);
15304 #else
15305                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15306                                     "enabled probes", modname);
15307 #endif
15308                         }
15309
15310                         return;
15311                 }
15312         }
15313
15314         probe = first;
15315
15316         for (first = NULL; probe != NULL; probe = next) {
15317                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15318
15319                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15320
15321                 next = probe->dtpr_nextmod;
15322                 dtrace_hash_remove(dtrace_bymod, probe);
15323                 dtrace_hash_remove(dtrace_byfunc, probe);
15324                 dtrace_hash_remove(dtrace_byname, probe);
15325
15326                 if (first == NULL) {
15327                         first = probe;
15328                         probe->dtpr_nextmod = NULL;
15329                 } else {
15330                         probe->dtpr_nextmod = first;
15331                         first = probe;
15332                 }
15333         }
15334
15335         /*
15336          * We've removed all of the module's probes from the hash chains and
15337          * from the probe array.  Now issue a dtrace_sync() to be sure that
15338          * everyone has cleared out from any probe array processing.
15339          */
15340         dtrace_sync();
15341
15342         for (probe = first; probe != NULL; probe = first) {
15343                 first = probe->dtpr_nextmod;
15344                 prov = probe->dtpr_provider;
15345                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15346                     probe->dtpr_arg);
15347                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15348                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15349                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15350 #if defined(sun)
15351                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15352 #else
15353                 free_unr(dtrace_arena, probe->dtpr_id);
15354 #endif
15355                 kmem_free(probe, sizeof (dtrace_probe_t));
15356         }
15357
15358         mutex_exit(&dtrace_lock);
15359 #if defined(sun)
15360         mutex_exit(&mod_lock);
15361 #endif
15362         mutex_exit(&dtrace_provider_lock);
15363 }
15364
15365 #if !defined(sun)
15366 static void
15367 dtrace_kld_load(void *arg __unused, linker_file_t lf)
15368 {
15369
15370         dtrace_module_loaded(lf);
15371 }
15372
15373 static void
15374 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
15375 {
15376
15377         if (*error != 0)
15378                 /* We already have an error, so don't do anything. */
15379                 return;
15380         dtrace_module_unloaded(lf, error);
15381 }
15382 #endif
15383
15384 #if defined(sun)
15385 static void
15386 dtrace_suspend(void)
15387 {
15388         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15389 }
15390
15391 static void
15392 dtrace_resume(void)
15393 {
15394         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15395 }
15396 #endif
15397
15398 static int
15399 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15400 {
15401         ASSERT(MUTEX_HELD(&cpu_lock));
15402         mutex_enter(&dtrace_lock);
15403
15404         switch (what) {
15405         case CPU_CONFIG: {
15406                 dtrace_state_t *state;
15407                 dtrace_optval_t *opt, rs, c;
15408
15409                 /*
15410                  * For now, we only allocate a new buffer for anonymous state.
15411                  */
15412                 if ((state = dtrace_anon.dta_state) == NULL)
15413                         break;
15414
15415                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15416                         break;
15417
15418                 opt = state->dts_options;
15419                 c = opt[DTRACEOPT_CPU];
15420
15421                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15422                         break;
15423
15424                 /*
15425                  * Regardless of what the actual policy is, we're going to
15426                  * temporarily set our resize policy to be manual.  We're
15427                  * also going to temporarily set our CPU option to denote
15428                  * the newly configured CPU.
15429                  */
15430                 rs = opt[DTRACEOPT_BUFRESIZE];
15431                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15432                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15433
15434                 (void) dtrace_state_buffers(state);
15435
15436                 opt[DTRACEOPT_BUFRESIZE] = rs;
15437                 opt[DTRACEOPT_CPU] = c;
15438
15439                 break;
15440         }
15441
15442         case CPU_UNCONFIG:
15443                 /*
15444                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15445                  * buffer will be freed when the consumer exits.)
15446                  */
15447                 break;
15448
15449         default:
15450                 break;
15451         }
15452
15453         mutex_exit(&dtrace_lock);
15454         return (0);
15455 }
15456
15457 #if defined(sun)
15458 static void
15459 dtrace_cpu_setup_initial(processorid_t cpu)
15460 {
15461         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15462 }
15463 #endif
15464
15465 static void
15466 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15467 {
15468         if (dtrace_toxranges >= dtrace_toxranges_max) {
15469                 int osize, nsize;
15470                 dtrace_toxrange_t *range;
15471
15472                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15473
15474                 if (osize == 0) {
15475                         ASSERT(dtrace_toxrange == NULL);
15476                         ASSERT(dtrace_toxranges_max == 0);
15477                         dtrace_toxranges_max = 1;
15478                 } else {
15479                         dtrace_toxranges_max <<= 1;
15480                 }
15481
15482                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15483                 range = kmem_zalloc(nsize, KM_SLEEP);
15484
15485                 if (dtrace_toxrange != NULL) {
15486                         ASSERT(osize != 0);
15487                         bcopy(dtrace_toxrange, range, osize);
15488                         kmem_free(dtrace_toxrange, osize);
15489                 }
15490
15491                 dtrace_toxrange = range;
15492         }
15493
15494         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15495         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15496
15497         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15498         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15499         dtrace_toxranges++;
15500 }
15501
15502 /*
15503  * DTrace Driver Cookbook Functions
15504  */
15505 #if defined(sun)
15506 /*ARGSUSED*/
15507 static int
15508 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15509 {
15510         dtrace_provider_id_t id;
15511         dtrace_state_t *state = NULL;
15512         dtrace_enabling_t *enab;
15513
15514         mutex_enter(&cpu_lock);
15515         mutex_enter(&dtrace_provider_lock);
15516         mutex_enter(&dtrace_lock);
15517
15518         if (ddi_soft_state_init(&dtrace_softstate,
15519             sizeof (dtrace_state_t), 0) != 0) {
15520                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15521                 mutex_exit(&cpu_lock);
15522                 mutex_exit(&dtrace_provider_lock);
15523                 mutex_exit(&dtrace_lock);
15524                 return (DDI_FAILURE);
15525         }
15526
15527         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15528             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15529             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15530             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15531                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15532                 ddi_remove_minor_node(devi, NULL);
15533                 ddi_soft_state_fini(&dtrace_softstate);
15534                 mutex_exit(&cpu_lock);
15535                 mutex_exit(&dtrace_provider_lock);
15536                 mutex_exit(&dtrace_lock);
15537                 return (DDI_FAILURE);
15538         }
15539
15540         ddi_report_dev(devi);
15541         dtrace_devi = devi;
15542
15543         dtrace_modload = dtrace_module_loaded;
15544         dtrace_modunload = dtrace_module_unloaded;
15545         dtrace_cpu_init = dtrace_cpu_setup_initial;
15546         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15547         dtrace_helpers_fork = dtrace_helpers_duplicate;
15548         dtrace_cpustart_init = dtrace_suspend;
15549         dtrace_cpustart_fini = dtrace_resume;
15550         dtrace_debugger_init = dtrace_suspend;
15551         dtrace_debugger_fini = dtrace_resume;
15552
15553         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15554
15555         ASSERT(MUTEX_HELD(&cpu_lock));
15556
15557         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15558             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15559         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15560             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15561             VM_SLEEP | VMC_IDENTIFIER);
15562         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15563             1, INT_MAX, 0);
15564
15565         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15566             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15567             NULL, NULL, NULL, NULL, NULL, 0);
15568
15569         ASSERT(MUTEX_HELD(&cpu_lock));
15570         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15571             offsetof(dtrace_probe_t, dtpr_nextmod),
15572             offsetof(dtrace_probe_t, dtpr_prevmod));
15573
15574         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15575             offsetof(dtrace_probe_t, dtpr_nextfunc),
15576             offsetof(dtrace_probe_t, dtpr_prevfunc));
15577
15578         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15579             offsetof(dtrace_probe_t, dtpr_nextname),
15580             offsetof(dtrace_probe_t, dtpr_prevname));
15581
15582         if (dtrace_retain_max < 1) {
15583                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15584                     "setting to 1", dtrace_retain_max);
15585                 dtrace_retain_max = 1;
15586         }
15587
15588         /*
15589          * Now discover our toxic ranges.
15590          */
15591         dtrace_toxic_ranges(dtrace_toxrange_add);
15592
15593         /*
15594          * Before we register ourselves as a provider to our own framework,
15595          * we would like to assert that dtrace_provider is NULL -- but that's
15596          * not true if we were loaded as a dependency of a DTrace provider.
15597          * Once we've registered, we can assert that dtrace_provider is our
15598          * pseudo provider.
15599          */
15600         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15601             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15602
15603         ASSERT(dtrace_provider != NULL);
15604         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15605
15606         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15607             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15608         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15609             dtrace_provider, NULL, NULL, "END", 0, NULL);
15610         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15611             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15612
15613         dtrace_anon_property();
15614         mutex_exit(&cpu_lock);
15615
15616         /*
15617          * If DTrace helper tracing is enabled, we need to allocate the
15618          * trace buffer and initialize the values.
15619          */
15620         if (dtrace_helptrace_enabled) {
15621                 ASSERT(dtrace_helptrace_buffer == NULL);
15622                 dtrace_helptrace_buffer =
15623                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15624                 dtrace_helptrace_next = 0;
15625         }
15626
15627         /*
15628          * If there are already providers, we must ask them to provide their
15629          * probes, and then match any anonymous enabling against them.  Note
15630          * that there should be no other retained enablings at this time:
15631          * the only retained enablings at this time should be the anonymous
15632          * enabling.
15633          */
15634         if (dtrace_anon.dta_enabling != NULL) {
15635                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15636
15637                 dtrace_enabling_provide(NULL);
15638                 state = dtrace_anon.dta_state;
15639
15640                 /*
15641                  * We couldn't hold cpu_lock across the above call to
15642                  * dtrace_enabling_provide(), but we must hold it to actually
15643                  * enable the probes.  We have to drop all of our locks, pick
15644                  * up cpu_lock, and regain our locks before matching the
15645                  * retained anonymous enabling.
15646                  */
15647                 mutex_exit(&dtrace_lock);
15648                 mutex_exit(&dtrace_provider_lock);
15649
15650                 mutex_enter(&cpu_lock);
15651                 mutex_enter(&dtrace_provider_lock);
15652                 mutex_enter(&dtrace_lock);
15653
15654                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15655                         (void) dtrace_enabling_match(enab, NULL);
15656
15657                 mutex_exit(&cpu_lock);
15658         }
15659
15660         mutex_exit(&dtrace_lock);
15661         mutex_exit(&dtrace_provider_lock);
15662
15663         if (state != NULL) {
15664                 /*
15665                  * If we created any anonymous state, set it going now.
15666                  */
15667                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15668         }
15669
15670         return (DDI_SUCCESS);
15671 }
15672 #endif
15673
15674 #if !defined(sun)
15675 #if __FreeBSD_version >= 800039
15676 static void
15677 dtrace_dtr(void *data __unused)
15678 {
15679 }
15680 #endif
15681 #endif
15682
15683 /*ARGSUSED*/
15684 static int
15685 #if defined(sun)
15686 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15687 #else
15688 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15689 #endif
15690 {
15691         dtrace_state_t *state;
15692         uint32_t priv;
15693         uid_t uid;
15694         zoneid_t zoneid;
15695
15696 #if defined(sun)
15697         if (getminor(*devp) == DTRACEMNRN_HELPER)
15698                 return (0);
15699
15700         /*
15701          * If this wasn't an open with the "helper" minor, then it must be
15702          * the "dtrace" minor.
15703          */
15704         if (getminor(*devp) == DTRACEMNRN_DTRACE)
15705                 return (ENXIO);
15706 #else
15707         cred_t *cred_p = NULL;
15708
15709 #if __FreeBSD_version < 800039
15710         /*
15711          * The first minor device is the one that is cloned so there is
15712          * nothing more to do here.
15713          */
15714         if (dev2unit(dev) == 0)
15715                 return 0;
15716
15717         /*
15718          * Devices are cloned, so if the DTrace state has already
15719          * been allocated, that means this device belongs to a
15720          * different client. Each client should open '/dev/dtrace'
15721          * to get a cloned device.
15722          */
15723         if (dev->si_drv1 != NULL)
15724                 return (EBUSY);
15725 #endif
15726
15727         cred_p = dev->si_cred;
15728 #endif
15729
15730         /*
15731          * If no DTRACE_PRIV_* bits are set in the credential, then the
15732          * caller lacks sufficient permission to do anything with DTrace.
15733          */
15734         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15735         if (priv == DTRACE_PRIV_NONE) {
15736 #if !defined(sun)
15737 #if __FreeBSD_version < 800039
15738                 /* Destroy the cloned device. */
15739                 destroy_dev(dev);
15740 #endif
15741 #endif
15742
15743                 return (EACCES);
15744         }
15745
15746         /*
15747          * Ask all providers to provide all their probes.
15748          */
15749         mutex_enter(&dtrace_provider_lock);
15750         dtrace_probe_provide(NULL, NULL);
15751         mutex_exit(&dtrace_provider_lock);
15752
15753         mutex_enter(&cpu_lock);
15754         mutex_enter(&dtrace_lock);
15755         dtrace_opens++;
15756         dtrace_membar_producer();
15757
15758 #if defined(sun)
15759         /*
15760          * If the kernel debugger is active (that is, if the kernel debugger
15761          * modified text in some way), we won't allow the open.
15762          */
15763         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15764                 dtrace_opens--;
15765                 mutex_exit(&cpu_lock);
15766                 mutex_exit(&dtrace_lock);
15767                 return (EBUSY);
15768         }
15769
15770         state = dtrace_state_create(devp, cred_p);
15771 #else
15772         state = dtrace_state_create(dev);
15773 #if __FreeBSD_version < 800039
15774         dev->si_drv1 = state;
15775 #else
15776         devfs_set_cdevpriv(state, dtrace_dtr);
15777 #endif
15778 #endif
15779
15780         mutex_exit(&cpu_lock);
15781
15782         if (state == NULL) {
15783 #if defined(sun)
15784                 if (--dtrace_opens == 0)
15785                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15786 #else
15787                 --dtrace_opens;
15788 #endif
15789                 mutex_exit(&dtrace_lock);
15790 #if !defined(sun)
15791 #if __FreeBSD_version < 800039
15792                 /* Destroy the cloned device. */
15793                 destroy_dev(dev);
15794 #endif
15795 #endif
15796                 return (EAGAIN);
15797         }
15798
15799         mutex_exit(&dtrace_lock);
15800
15801         return (0);
15802 }
15803
15804 /*ARGSUSED*/
15805 static int
15806 #if defined(sun)
15807 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15808 #else
15809 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15810 #endif
15811 {
15812 #if defined(sun)
15813         minor_t minor = getminor(dev);
15814         dtrace_state_t *state;
15815
15816         if (minor == DTRACEMNRN_HELPER)
15817                 return (0);
15818
15819         state = ddi_get_soft_state(dtrace_softstate, minor);
15820 #else
15821 #if __FreeBSD_version < 800039
15822         dtrace_state_t *state = dev->si_drv1;
15823
15824         /* Check if this is not a cloned device. */
15825         if (dev2unit(dev) == 0)
15826                 return (0);
15827 #else
15828         dtrace_state_t *state;
15829         devfs_get_cdevpriv((void **) &state);
15830 #endif
15831
15832 #endif
15833
15834         mutex_enter(&cpu_lock);
15835         mutex_enter(&dtrace_lock);
15836
15837         if (state != NULL) {
15838                 if (state->dts_anon) {
15839                         /*
15840                          * There is anonymous state. Destroy that first.
15841                          */
15842                         ASSERT(dtrace_anon.dta_state == NULL);
15843                         dtrace_state_destroy(state->dts_anon);
15844                 }
15845
15846                 dtrace_state_destroy(state);
15847
15848 #if !defined(sun)
15849                 kmem_free(state, 0);
15850 #if __FreeBSD_version < 800039
15851                 dev->si_drv1 = NULL;
15852 #endif
15853 #endif
15854         }
15855
15856         ASSERT(dtrace_opens > 0);
15857 #if defined(sun)
15858         if (--dtrace_opens == 0)
15859                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15860 #else
15861         --dtrace_opens;
15862 #endif
15863
15864         mutex_exit(&dtrace_lock);
15865         mutex_exit(&cpu_lock);
15866
15867 #if __FreeBSD_version < 800039
15868         /* Schedule this cloned device to be destroyed. */
15869         destroy_dev_sched(dev);
15870 #endif
15871
15872         return (0);
15873 }
15874
15875 #if defined(sun)
15876 /*ARGSUSED*/
15877 static int
15878 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15879 {
15880         int rval;
15881         dof_helper_t help, *dhp = NULL;
15882
15883         switch (cmd) {
15884         case DTRACEHIOC_ADDDOF:
15885                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15886                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15887                         return (EFAULT);
15888                 }
15889
15890                 dhp = &help;
15891                 arg = (intptr_t)help.dofhp_dof;
15892                 /*FALLTHROUGH*/
15893
15894         case DTRACEHIOC_ADD: {
15895                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15896
15897                 if (dof == NULL)
15898                         return (rval);
15899
15900                 mutex_enter(&dtrace_lock);
15901
15902                 /*
15903                  * dtrace_helper_slurp() takes responsibility for the dof --
15904                  * it may free it now or it may save it and free it later.
15905                  */
15906                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15907                         *rv = rval;
15908                         rval = 0;
15909                 } else {
15910                         rval = EINVAL;
15911                 }
15912
15913                 mutex_exit(&dtrace_lock);
15914                 return (rval);
15915         }
15916
15917         case DTRACEHIOC_REMOVE: {
15918                 mutex_enter(&dtrace_lock);
15919                 rval = dtrace_helper_destroygen(arg);
15920                 mutex_exit(&dtrace_lock);
15921
15922                 return (rval);
15923         }
15924
15925         default:
15926                 break;
15927         }
15928
15929         return (ENOTTY);
15930 }
15931
15932 /*ARGSUSED*/
15933 static int
15934 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15935 {
15936         minor_t minor = getminor(dev);
15937         dtrace_state_t *state;
15938         int rval;
15939
15940         if (minor == DTRACEMNRN_HELPER)
15941                 return (dtrace_ioctl_helper(cmd, arg, rv));
15942
15943         state = ddi_get_soft_state(dtrace_softstate, minor);
15944
15945         if (state->dts_anon) {
15946                 ASSERT(dtrace_anon.dta_state == NULL);
15947                 state = state->dts_anon;
15948         }
15949
15950         switch (cmd) {
15951         case DTRACEIOC_PROVIDER: {
15952                 dtrace_providerdesc_t pvd;
15953                 dtrace_provider_t *pvp;
15954
15955                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15956                         return (EFAULT);
15957
15958                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15959                 mutex_enter(&dtrace_provider_lock);
15960
15961                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15962                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15963                                 break;
15964                 }
15965
15966                 mutex_exit(&dtrace_provider_lock);
15967
15968                 if (pvp == NULL)
15969                         return (ESRCH);
15970
15971                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15972                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15973
15974                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15975                         return (EFAULT);
15976
15977                 return (0);
15978         }
15979
15980         case DTRACEIOC_EPROBE: {
15981                 dtrace_eprobedesc_t epdesc;
15982                 dtrace_ecb_t *ecb;
15983                 dtrace_action_t *act;
15984                 void *buf;
15985                 size_t size;
15986                 uintptr_t dest;
15987                 int nrecs;
15988
15989                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15990                         return (EFAULT);
15991
15992                 mutex_enter(&dtrace_lock);
15993
15994                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15995                         mutex_exit(&dtrace_lock);
15996                         return (EINVAL);
15997                 }
15998
15999                 if (ecb->dte_probe == NULL) {
16000                         mutex_exit(&dtrace_lock);
16001                         return (EINVAL);
16002                 }
16003
16004                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16005                 epdesc.dtepd_uarg = ecb->dte_uarg;
16006                 epdesc.dtepd_size = ecb->dte_size;
16007
16008                 nrecs = epdesc.dtepd_nrecs;
16009                 epdesc.dtepd_nrecs = 0;
16010                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16011                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16012                                 continue;
16013
16014                         epdesc.dtepd_nrecs++;
16015                 }
16016
16017                 /*
16018                  * Now that we have the size, we need to allocate a temporary
16019                  * buffer in which to store the complete description.  We need
16020                  * the temporary buffer to be able to drop dtrace_lock()
16021                  * across the copyout(), below.
16022                  */
16023                 size = sizeof (dtrace_eprobedesc_t) +
16024                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16025
16026                 buf = kmem_alloc(size, KM_SLEEP);
16027                 dest = (uintptr_t)buf;
16028
16029                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16030                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16031
16032                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16033                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16034                                 continue;
16035
16036                         if (nrecs-- == 0)
16037                                 break;
16038
16039                         bcopy(&act->dta_rec, (void *)dest,
16040                             sizeof (dtrace_recdesc_t));
16041                         dest += sizeof (dtrace_recdesc_t);
16042                 }
16043
16044                 mutex_exit(&dtrace_lock);
16045
16046                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16047                         kmem_free(buf, size);
16048                         return (EFAULT);
16049                 }
16050
16051                 kmem_free(buf, size);
16052                 return (0);
16053         }
16054
16055         case DTRACEIOC_AGGDESC: {
16056                 dtrace_aggdesc_t aggdesc;
16057                 dtrace_action_t *act;
16058                 dtrace_aggregation_t *agg;
16059                 int nrecs;
16060                 uint32_t offs;
16061                 dtrace_recdesc_t *lrec;
16062                 void *buf;
16063                 size_t size;
16064                 uintptr_t dest;
16065
16066                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16067                         return (EFAULT);
16068
16069                 mutex_enter(&dtrace_lock);
16070
16071                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16072                         mutex_exit(&dtrace_lock);
16073                         return (EINVAL);
16074                 }
16075
16076                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16077
16078                 nrecs = aggdesc.dtagd_nrecs;
16079                 aggdesc.dtagd_nrecs = 0;
16080
16081                 offs = agg->dtag_base;
16082                 lrec = &agg->dtag_action.dta_rec;
16083                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16084
16085                 for (act = agg->dtag_first; ; act = act->dta_next) {
16086                         ASSERT(act->dta_intuple ||
16087                             DTRACEACT_ISAGG(act->dta_kind));
16088
16089                         /*
16090                          * If this action has a record size of zero, it
16091                          * denotes an argument to the aggregating action.
16092                          * Because the presence of this record doesn't (or
16093                          * shouldn't) affect the way the data is interpreted,
16094                          * we don't copy it out to save user-level the
16095                          * confusion of dealing with a zero-length record.
16096                          */
16097                         if (act->dta_rec.dtrd_size == 0) {
16098                                 ASSERT(agg->dtag_hasarg);
16099                                 continue;
16100                         }
16101
16102                         aggdesc.dtagd_nrecs++;
16103
16104                         if (act == &agg->dtag_action)
16105                                 break;
16106                 }
16107
16108                 /*
16109                  * Now that we have the size, we need to allocate a temporary
16110                  * buffer in which to store the complete description.  We need
16111                  * the temporary buffer to be able to drop dtrace_lock()
16112                  * across the copyout(), below.
16113                  */
16114                 size = sizeof (dtrace_aggdesc_t) +
16115                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16116
16117                 buf = kmem_alloc(size, KM_SLEEP);
16118                 dest = (uintptr_t)buf;
16119
16120                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16121                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16122
16123                 for (act = agg->dtag_first; ; act = act->dta_next) {
16124                         dtrace_recdesc_t rec = act->dta_rec;
16125
16126                         /*
16127                          * See the comment in the above loop for why we pass
16128                          * over zero-length records.
16129                          */
16130                         if (rec.dtrd_size == 0) {
16131                                 ASSERT(agg->dtag_hasarg);
16132                                 continue;
16133                         }
16134
16135                         if (nrecs-- == 0)
16136                                 break;
16137
16138                         rec.dtrd_offset -= offs;
16139                         bcopy(&rec, (void *)dest, sizeof (rec));
16140                         dest += sizeof (dtrace_recdesc_t);
16141
16142                         if (act == &agg->dtag_action)
16143                                 break;
16144                 }
16145
16146                 mutex_exit(&dtrace_lock);
16147
16148                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16149                         kmem_free(buf, size);
16150                         return (EFAULT);
16151                 }
16152
16153                 kmem_free(buf, size);
16154                 return (0);
16155         }
16156
16157         case DTRACEIOC_ENABLE: {
16158                 dof_hdr_t *dof;
16159                 dtrace_enabling_t *enab = NULL;
16160                 dtrace_vstate_t *vstate;
16161                 int err = 0;
16162
16163                 *rv = 0;
16164
16165                 /*
16166                  * If a NULL argument has been passed, we take this as our
16167                  * cue to reevaluate our enablings.
16168                  */
16169                 if (arg == NULL) {
16170                         dtrace_enabling_matchall();
16171
16172                         return (0);
16173                 }
16174
16175                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16176                         return (rval);
16177
16178                 mutex_enter(&cpu_lock);
16179                 mutex_enter(&dtrace_lock);
16180                 vstate = &state->dts_vstate;
16181
16182                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16183                         mutex_exit(&dtrace_lock);
16184                         mutex_exit(&cpu_lock);
16185                         dtrace_dof_destroy(dof);
16186                         return (EBUSY);
16187                 }
16188
16189                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16190                         mutex_exit(&dtrace_lock);
16191                         mutex_exit(&cpu_lock);
16192                         dtrace_dof_destroy(dof);
16193                         return (EINVAL);
16194                 }
16195
16196                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16197                         dtrace_enabling_destroy(enab);
16198                         mutex_exit(&dtrace_lock);
16199                         mutex_exit(&cpu_lock);
16200                         dtrace_dof_destroy(dof);
16201                         return (rval);
16202                 }
16203
16204                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16205                         err = dtrace_enabling_retain(enab);
16206                 } else {
16207                         dtrace_enabling_destroy(enab);
16208                 }
16209
16210                 mutex_exit(&cpu_lock);
16211                 mutex_exit(&dtrace_lock);
16212                 dtrace_dof_destroy(dof);
16213
16214                 return (err);
16215         }
16216
16217         case DTRACEIOC_REPLICATE: {
16218                 dtrace_repldesc_t desc;
16219                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16220                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16221                 int err;
16222
16223                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16224                         return (EFAULT);
16225
16226                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16227                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16228                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16229                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16230
16231                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16232                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16233                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16234                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16235
16236                 mutex_enter(&dtrace_lock);
16237                 err = dtrace_enabling_replicate(state, match, create);
16238                 mutex_exit(&dtrace_lock);
16239
16240                 return (err);
16241         }
16242
16243         case DTRACEIOC_PROBEMATCH:
16244         case DTRACEIOC_PROBES: {
16245                 dtrace_probe_t *probe = NULL;
16246                 dtrace_probedesc_t desc;
16247                 dtrace_probekey_t pkey;
16248                 dtrace_id_t i;
16249                 int m = 0;
16250                 uint32_t priv;
16251                 uid_t uid;
16252                 zoneid_t zoneid;
16253
16254                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16255                         return (EFAULT);
16256
16257                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16258                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16259                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16260                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16261
16262                 /*
16263                  * Before we attempt to match this probe, we want to give
16264                  * all providers the opportunity to provide it.
16265                  */
16266                 if (desc.dtpd_id == DTRACE_IDNONE) {
16267                         mutex_enter(&dtrace_provider_lock);
16268                         dtrace_probe_provide(&desc, NULL);
16269                         mutex_exit(&dtrace_provider_lock);
16270                         desc.dtpd_id++;
16271                 }
16272
16273                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16274                         dtrace_probekey(&desc, &pkey);
16275                         pkey.dtpk_id = DTRACE_IDNONE;
16276                 }
16277
16278                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16279
16280                 mutex_enter(&dtrace_lock);
16281
16282                 if (cmd == DTRACEIOC_PROBEMATCH) {
16283                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16284                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16285                                     (m = dtrace_match_probe(probe, &pkey,
16286                                     priv, uid, zoneid)) != 0)
16287                                         break;
16288                         }
16289
16290                         if (m < 0) {
16291                                 mutex_exit(&dtrace_lock);
16292                                 return (EINVAL);
16293                         }
16294
16295                 } else {
16296                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16297                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16298                                     dtrace_match_priv(probe, priv, uid, zoneid))
16299                                         break;
16300                         }
16301                 }
16302
16303                 if (probe == NULL) {
16304                         mutex_exit(&dtrace_lock);
16305                         return (ESRCH);
16306                 }
16307
16308                 dtrace_probe_description(probe, &desc);
16309                 mutex_exit(&dtrace_lock);
16310
16311                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16312                         return (EFAULT);
16313
16314                 return (0);
16315         }
16316
16317         case DTRACEIOC_PROBEARG: {
16318                 dtrace_argdesc_t desc;
16319                 dtrace_probe_t *probe;
16320                 dtrace_provider_t *prov;
16321
16322                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16323                         return (EFAULT);
16324
16325                 if (desc.dtargd_id == DTRACE_IDNONE)
16326                         return (EINVAL);
16327
16328                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16329                         return (EINVAL);
16330
16331                 mutex_enter(&dtrace_provider_lock);
16332                 mutex_enter(&mod_lock);
16333                 mutex_enter(&dtrace_lock);
16334
16335                 if (desc.dtargd_id > dtrace_nprobes) {
16336                         mutex_exit(&dtrace_lock);
16337                         mutex_exit(&mod_lock);
16338                         mutex_exit(&dtrace_provider_lock);
16339                         return (EINVAL);
16340                 }
16341
16342                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16343                         mutex_exit(&dtrace_lock);
16344                         mutex_exit(&mod_lock);
16345                         mutex_exit(&dtrace_provider_lock);
16346                         return (EINVAL);
16347                 }
16348
16349                 mutex_exit(&dtrace_lock);
16350
16351                 prov = probe->dtpr_provider;
16352
16353                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16354                         /*
16355                          * There isn't any typed information for this probe.
16356                          * Set the argument number to DTRACE_ARGNONE.
16357                          */
16358                         desc.dtargd_ndx = DTRACE_ARGNONE;
16359                 } else {
16360                         desc.dtargd_native[0] = '\0';
16361                         desc.dtargd_xlate[0] = '\0';
16362                         desc.dtargd_mapping = desc.dtargd_ndx;
16363
16364                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16365                             probe->dtpr_id, probe->dtpr_arg, &desc);
16366                 }
16367
16368                 mutex_exit(&mod_lock);
16369                 mutex_exit(&dtrace_provider_lock);
16370
16371                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16372                         return (EFAULT);
16373
16374                 return (0);
16375         }
16376
16377         case DTRACEIOC_GO: {
16378                 processorid_t cpuid;
16379                 rval = dtrace_state_go(state, &cpuid);
16380
16381                 if (rval != 0)
16382                         return (rval);
16383
16384                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16385                         return (EFAULT);
16386
16387                 return (0);
16388         }
16389
16390         case DTRACEIOC_STOP: {
16391                 processorid_t cpuid;
16392
16393                 mutex_enter(&dtrace_lock);
16394                 rval = dtrace_state_stop(state, &cpuid);
16395                 mutex_exit(&dtrace_lock);
16396
16397                 if (rval != 0)
16398                         return (rval);
16399
16400                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16401                         return (EFAULT);
16402
16403                 return (0);
16404         }
16405
16406         case DTRACEIOC_DOFGET: {
16407                 dof_hdr_t hdr, *dof;
16408                 uint64_t len;
16409
16410                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16411                         return (EFAULT);
16412
16413                 mutex_enter(&dtrace_lock);
16414                 dof = dtrace_dof_create(state);
16415                 mutex_exit(&dtrace_lock);
16416
16417                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16418                 rval = copyout(dof, (void *)arg, len);
16419                 dtrace_dof_destroy(dof);
16420
16421                 return (rval == 0 ? 0 : EFAULT);
16422         }
16423
16424         case DTRACEIOC_AGGSNAP:
16425         case DTRACEIOC_BUFSNAP: {
16426                 dtrace_bufdesc_t desc;
16427                 caddr_t cached;
16428                 dtrace_buffer_t *buf;
16429
16430                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16431                         return (EFAULT);
16432
16433                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16434                         return (EINVAL);
16435
16436                 mutex_enter(&dtrace_lock);
16437
16438                 if (cmd == DTRACEIOC_BUFSNAP) {
16439                         buf = &state->dts_buffer[desc.dtbd_cpu];
16440                 } else {
16441                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16442                 }
16443
16444                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16445                         size_t sz = buf->dtb_offset;
16446
16447                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16448                                 mutex_exit(&dtrace_lock);
16449                                 return (EBUSY);
16450                         }
16451
16452                         /*
16453                          * If this buffer has already been consumed, we're
16454                          * going to indicate that there's nothing left here
16455                          * to consume.
16456                          */
16457                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16458                                 mutex_exit(&dtrace_lock);
16459
16460                                 desc.dtbd_size = 0;
16461                                 desc.dtbd_drops = 0;
16462                                 desc.dtbd_errors = 0;
16463                                 desc.dtbd_oldest = 0;
16464                                 sz = sizeof (desc);
16465
16466                                 if (copyout(&desc, (void *)arg, sz) != 0)
16467                                         return (EFAULT);
16468
16469                                 return (0);
16470                         }
16471
16472                         /*
16473                          * If this is a ring buffer that has wrapped, we want
16474                          * to copy the whole thing out.
16475                          */
16476                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16477                                 dtrace_buffer_polish(buf);
16478                                 sz = buf->dtb_size;
16479                         }
16480
16481                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16482                                 mutex_exit(&dtrace_lock);
16483                                 return (EFAULT);
16484                         }
16485
16486                         desc.dtbd_size = sz;
16487                         desc.dtbd_drops = buf->dtb_drops;
16488                         desc.dtbd_errors = buf->dtb_errors;
16489                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16490                         desc.dtbd_timestamp = dtrace_gethrtime();
16491
16492                         mutex_exit(&dtrace_lock);
16493
16494                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16495                                 return (EFAULT);
16496
16497                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16498
16499                         return (0);
16500                 }
16501
16502                 if (buf->dtb_tomax == NULL) {
16503                         ASSERT(buf->dtb_xamot == NULL);
16504                         mutex_exit(&dtrace_lock);
16505                         return (ENOENT);
16506                 }
16507
16508                 cached = buf->dtb_tomax;
16509                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16510
16511                 dtrace_xcall(desc.dtbd_cpu,
16512                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16513
16514                 state->dts_errors += buf->dtb_xamot_errors;
16515
16516                 /*
16517                  * If the buffers did not actually switch, then the cross call
16518                  * did not take place -- presumably because the given CPU is
16519                  * not in the ready set.  If this is the case, we'll return
16520                  * ENOENT.
16521                  */
16522                 if (buf->dtb_tomax == cached) {
16523                         ASSERT(buf->dtb_xamot != cached);
16524                         mutex_exit(&dtrace_lock);
16525                         return (ENOENT);
16526                 }
16527
16528                 ASSERT(cached == buf->dtb_xamot);
16529
16530                 /*
16531                  * We have our snapshot; now copy it out.
16532                  */
16533                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16534                     buf->dtb_xamot_offset) != 0) {
16535                         mutex_exit(&dtrace_lock);
16536                         return (EFAULT);
16537                 }
16538
16539                 desc.dtbd_size = buf->dtb_xamot_offset;
16540                 desc.dtbd_drops = buf->dtb_xamot_drops;
16541                 desc.dtbd_errors = buf->dtb_xamot_errors;
16542                 desc.dtbd_oldest = 0;
16543                 desc.dtbd_timestamp = buf->dtb_switched;
16544
16545                 mutex_exit(&dtrace_lock);
16546
16547                 /*
16548                  * Finally, copy out the buffer description.
16549                  */
16550                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16551                         return (EFAULT);
16552
16553                 return (0);
16554         }
16555
16556         case DTRACEIOC_CONF: {
16557                 dtrace_conf_t conf;
16558
16559                 bzero(&conf, sizeof (conf));
16560                 conf.dtc_difversion = DIF_VERSION;
16561                 conf.dtc_difintregs = DIF_DIR_NREGS;
16562                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16563                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16564
16565                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16566                         return (EFAULT);
16567
16568                 return (0);
16569         }
16570
16571         case DTRACEIOC_STATUS: {
16572                 dtrace_status_t stat;
16573                 dtrace_dstate_t *dstate;
16574                 int i, j;
16575                 uint64_t nerrs;
16576
16577                 /*
16578                  * See the comment in dtrace_state_deadman() for the reason
16579                  * for setting dts_laststatus to INT64_MAX before setting
16580                  * it to the correct value.
16581                  */
16582                 state->dts_laststatus = INT64_MAX;
16583                 dtrace_membar_producer();
16584                 state->dts_laststatus = dtrace_gethrtime();
16585
16586                 bzero(&stat, sizeof (stat));
16587
16588                 mutex_enter(&dtrace_lock);
16589
16590                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16591                         mutex_exit(&dtrace_lock);
16592                         return (ENOENT);
16593                 }
16594
16595                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16596                         stat.dtst_exiting = 1;
16597
16598                 nerrs = state->dts_errors;
16599                 dstate = &state->dts_vstate.dtvs_dynvars;
16600
16601                 for (i = 0; i < NCPU; i++) {
16602                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16603
16604                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16605                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16606                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16607
16608                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16609                                 stat.dtst_filled++;
16610
16611                         nerrs += state->dts_buffer[i].dtb_errors;
16612
16613                         for (j = 0; j < state->dts_nspeculations; j++) {
16614                                 dtrace_speculation_t *spec;
16615                                 dtrace_buffer_t *buf;
16616
16617                                 spec = &state->dts_speculations[j];
16618                                 buf = &spec->dtsp_buffer[i];
16619                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16620                         }
16621                 }
16622
16623                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16624                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16625                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16626                 stat.dtst_dblerrors = state->dts_dblerrors;
16627                 stat.dtst_killed =
16628                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16629                 stat.dtst_errors = nerrs;
16630
16631                 mutex_exit(&dtrace_lock);
16632
16633                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16634                         return (EFAULT);
16635
16636                 return (0);
16637         }
16638
16639         case DTRACEIOC_FORMAT: {
16640                 dtrace_fmtdesc_t fmt;
16641                 char *str;
16642                 int len;
16643
16644                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16645                         return (EFAULT);
16646
16647                 mutex_enter(&dtrace_lock);
16648
16649                 if (fmt.dtfd_format == 0 ||
16650                     fmt.dtfd_format > state->dts_nformats) {
16651                         mutex_exit(&dtrace_lock);
16652                         return (EINVAL);
16653                 }
16654
16655                 /*
16656                  * Format strings are allocated contiguously and they are
16657                  * never freed; if a format index is less than the number
16658                  * of formats, we can assert that the format map is non-NULL
16659                  * and that the format for the specified index is non-NULL.
16660                  */
16661                 ASSERT(state->dts_formats != NULL);
16662                 str = state->dts_formats[fmt.dtfd_format - 1];
16663                 ASSERT(str != NULL);
16664
16665                 len = strlen(str) + 1;
16666
16667                 if (len > fmt.dtfd_length) {
16668                         fmt.dtfd_length = len;
16669
16670                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16671                                 mutex_exit(&dtrace_lock);
16672                                 return (EINVAL);
16673                         }
16674                 } else {
16675                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16676                                 mutex_exit(&dtrace_lock);
16677                                 return (EINVAL);
16678                         }
16679                 }
16680
16681                 mutex_exit(&dtrace_lock);
16682                 return (0);
16683         }
16684
16685         default:
16686                 break;
16687         }
16688
16689         return (ENOTTY);
16690 }
16691
16692 /*ARGSUSED*/
16693 static int
16694 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16695 {
16696         dtrace_state_t *state;
16697
16698         switch (cmd) {
16699         case DDI_DETACH:
16700                 break;
16701
16702         case DDI_SUSPEND:
16703                 return (DDI_SUCCESS);
16704
16705         default:
16706                 return (DDI_FAILURE);
16707         }
16708
16709         mutex_enter(&cpu_lock);
16710         mutex_enter(&dtrace_provider_lock);
16711         mutex_enter(&dtrace_lock);
16712
16713         ASSERT(dtrace_opens == 0);
16714
16715         if (dtrace_helpers > 0) {
16716                 mutex_exit(&dtrace_provider_lock);
16717                 mutex_exit(&dtrace_lock);
16718                 mutex_exit(&cpu_lock);
16719                 return (DDI_FAILURE);
16720         }
16721
16722         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16723                 mutex_exit(&dtrace_provider_lock);
16724                 mutex_exit(&dtrace_lock);
16725                 mutex_exit(&cpu_lock);
16726                 return (DDI_FAILURE);
16727         }
16728
16729         dtrace_provider = NULL;
16730
16731         if ((state = dtrace_anon_grab()) != NULL) {
16732                 /*
16733                  * If there were ECBs on this state, the provider should
16734                  * have not been allowed to detach; assert that there is
16735                  * none.
16736                  */
16737                 ASSERT(state->dts_necbs == 0);
16738                 dtrace_state_destroy(state);
16739
16740                 /*
16741                  * If we're being detached with anonymous state, we need to
16742                  * indicate to the kernel debugger that DTrace is now inactive.
16743                  */
16744                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16745         }
16746
16747         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16748         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16749         dtrace_cpu_init = NULL;
16750         dtrace_helpers_cleanup = NULL;
16751         dtrace_helpers_fork = NULL;
16752         dtrace_cpustart_init = NULL;
16753         dtrace_cpustart_fini = NULL;
16754         dtrace_debugger_init = NULL;
16755         dtrace_debugger_fini = NULL;
16756         dtrace_modload = NULL;
16757         dtrace_modunload = NULL;
16758
16759         mutex_exit(&cpu_lock);
16760
16761         if (dtrace_helptrace_enabled) {
16762                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16763                 dtrace_helptrace_buffer = NULL;
16764         }
16765
16766         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16767         dtrace_probes = NULL;
16768         dtrace_nprobes = 0;
16769
16770         dtrace_hash_destroy(dtrace_bymod);
16771         dtrace_hash_destroy(dtrace_byfunc);
16772         dtrace_hash_destroy(dtrace_byname);
16773         dtrace_bymod = NULL;
16774         dtrace_byfunc = NULL;
16775         dtrace_byname = NULL;
16776
16777         kmem_cache_destroy(dtrace_state_cache);
16778         vmem_destroy(dtrace_minor);
16779         vmem_destroy(dtrace_arena);
16780
16781         if (dtrace_toxrange != NULL) {
16782                 kmem_free(dtrace_toxrange,
16783                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16784                 dtrace_toxrange = NULL;
16785                 dtrace_toxranges = 0;
16786                 dtrace_toxranges_max = 0;
16787         }
16788
16789         ddi_remove_minor_node(dtrace_devi, NULL);
16790         dtrace_devi = NULL;
16791
16792         ddi_soft_state_fini(&dtrace_softstate);
16793
16794         ASSERT(dtrace_vtime_references == 0);
16795         ASSERT(dtrace_opens == 0);
16796         ASSERT(dtrace_retained == NULL);
16797
16798         mutex_exit(&dtrace_lock);
16799         mutex_exit(&dtrace_provider_lock);
16800
16801         /*
16802          * We don't destroy the task queue until after we have dropped our
16803          * locks (taskq_destroy() may block on running tasks).  To prevent
16804          * attempting to do work after we have effectively detached but before
16805          * the task queue has been destroyed, all tasks dispatched via the
16806          * task queue must check that DTrace is still attached before
16807          * performing any operation.
16808          */
16809         taskq_destroy(dtrace_taskq);
16810         dtrace_taskq = NULL;
16811
16812         return (DDI_SUCCESS);
16813 }
16814 #endif
16815
16816 #if defined(sun)
16817 /*ARGSUSED*/
16818 static int
16819 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16820 {
16821         int error;
16822
16823         switch (infocmd) {
16824         case DDI_INFO_DEVT2DEVINFO:
16825                 *result = (void *)dtrace_devi;
16826                 error = DDI_SUCCESS;
16827                 break;
16828         case DDI_INFO_DEVT2INSTANCE:
16829                 *result = (void *)0;
16830                 error = DDI_SUCCESS;
16831                 break;
16832         default:
16833                 error = DDI_FAILURE;
16834         }
16835         return (error);
16836 }
16837 #endif
16838
16839 #if defined(sun)
16840 static struct cb_ops dtrace_cb_ops = {
16841         dtrace_open,            /* open */
16842         dtrace_close,           /* close */
16843         nulldev,                /* strategy */
16844         nulldev,                /* print */
16845         nodev,                  /* dump */
16846         nodev,                  /* read */
16847         nodev,                  /* write */
16848         dtrace_ioctl,           /* ioctl */
16849         nodev,                  /* devmap */
16850         nodev,                  /* mmap */
16851         nodev,                  /* segmap */
16852         nochpoll,               /* poll */
16853         ddi_prop_op,            /* cb_prop_op */
16854         0,                      /* streamtab  */
16855         D_NEW | D_MP            /* Driver compatibility flag */
16856 };
16857
16858 static struct dev_ops dtrace_ops = {
16859         DEVO_REV,               /* devo_rev */
16860         0,                      /* refcnt */
16861         dtrace_info,            /* get_dev_info */
16862         nulldev,                /* identify */
16863         nulldev,                /* probe */
16864         dtrace_attach,          /* attach */
16865         dtrace_detach,          /* detach */
16866         nodev,                  /* reset */
16867         &dtrace_cb_ops,         /* driver operations */
16868         NULL,                   /* bus operations */
16869         nodev                   /* dev power */
16870 };
16871
16872 static struct modldrv modldrv = {
16873         &mod_driverops,         /* module type (this is a pseudo driver) */
16874         "Dynamic Tracing",      /* name of module */
16875         &dtrace_ops,            /* driver ops */
16876 };
16877
16878 static struct modlinkage modlinkage = {
16879         MODREV_1,
16880         (void *)&modldrv,
16881         NULL
16882 };
16883
16884 int
16885 _init(void)
16886 {
16887         return (mod_install(&modlinkage));
16888 }
16889
16890 int
16891 _info(struct modinfo *modinfop)
16892 {
16893         return (mod_info(&modlinkage, modinfop));
16894 }
16895
16896 int
16897 _fini(void)
16898 {
16899         return (mod_remove(&modlinkage));
16900 }
16901 #else
16902
16903 static d_ioctl_t        dtrace_ioctl;
16904 static d_ioctl_t        dtrace_ioctl_helper;
16905 static void             dtrace_load(void *);
16906 static int              dtrace_unload(void);
16907 #if __FreeBSD_version < 800039
16908 static void             dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16909 static struct clonedevs *dtrace_clones;         /* Ptr to the array of cloned devices. */
16910 static eventhandler_tag eh_tag;                 /* Event handler tag. */
16911 #else
16912 static struct cdev      *dtrace_dev;
16913 static struct cdev      *helper_dev;
16914 #endif
16915
16916 void dtrace_invop_init(void);
16917 void dtrace_invop_uninit(void);
16918
16919 static struct cdevsw dtrace_cdevsw = {
16920         .d_version      = D_VERSION,
16921         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16922         .d_close        = dtrace_close,
16923         .d_ioctl        = dtrace_ioctl,
16924         .d_open         = dtrace_open,
16925         .d_name         = "dtrace",
16926 };
16927
16928 static struct cdevsw helper_cdevsw = {
16929         .d_version      = D_VERSION,
16930         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16931         .d_ioctl        = dtrace_ioctl_helper,
16932         .d_name         = "helper",
16933 };
16934
16935 #include <dtrace_anon.c>
16936 #if __FreeBSD_version < 800039
16937 #include <dtrace_clone.c>
16938 #endif
16939 #include <dtrace_ioctl.c>
16940 #include <dtrace_load.c>
16941 #include <dtrace_modevent.c>
16942 #include <dtrace_sysctl.c>
16943 #include <dtrace_unload.c>
16944 #include <dtrace_vtime.c>
16945 #include <dtrace_hacks.c>
16946 #include <dtrace_isa.c>
16947
16948 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16949 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16950 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16951
16952 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16953 MODULE_VERSION(dtrace, 1);
16954 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16955 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16956 #endif