]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r252056:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/trim_map.h>
47
48 SYSCTL_DECL(_vfs_zfs);
49 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50
51 /*
52  * Virtual device management.
53  */
54
55 static vdev_ops_t *vdev_ops_table[] = {
56         &vdev_root_ops,
57         &vdev_raidz_ops,
58         &vdev_mirror_ops,
59         &vdev_replacing_ops,
60         &vdev_spare_ops,
61 #ifdef _KERNEL
62         &vdev_geom_ops,
63 #else
64         &vdev_disk_ops,
65 #endif
66         &vdev_file_ops,
67         &vdev_missing_ops,
68         &vdev_hole_ops,
69         NULL
70 };
71
72
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79         vdev_ops_t *ops, **opspp;
80
81         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82                 if (strcmp(ops->vdev_op_type, type) == 0)
83                         break;
84
85         return (ops);
86 }
87
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96         uint64_t csize;
97
98         for (int c = 0; c < vd->vdev_children; c++) {
99                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100                 asize = MAX(asize, csize);
101         }
102
103         return (asize);
104 }
105
106 /*
107  * Get the minimum allocatable size. We define the allocatable size as
108  * the vdev's asize rounded to the nearest metaslab. This allows us to
109  * replace or attach devices which don't have the same physical size but
110  * can still satisfy the same number of allocations.
111  */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115         vdev_t *pvd = vd->vdev_parent;
116
117         /*
118          * If our parent is NULL (inactive spare or cache) or is the root,
119          * just return our own asize.
120          */
121         if (pvd == NULL)
122                 return (vd->vdev_asize);
123
124         /*
125          * The top-level vdev just returns the allocatable size rounded
126          * to the nearest metaslab.
127          */
128         if (vd == vd->vdev_top)
129                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131         /*
132          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133          * so each child must provide at least 1/Nth of its asize.
134          */
135         if (pvd->vdev_ops == &vdev_raidz_ops)
136                 return (pvd->vdev_min_asize / pvd->vdev_children);
137
138         return (pvd->vdev_min_asize);
139 }
140
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144         vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146         for (int c = 0; c < vd->vdev_children; c++)
147                 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153         vdev_t *rvd = spa->spa_root_vdev;
154
155         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157         if (vdev < rvd->vdev_children) {
158                 ASSERT(rvd->vdev_child[vdev] != NULL);
159                 return (rvd->vdev_child[vdev]);
160         }
161
162         return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168         vdev_t *mvd;
169
170         if (vd->vdev_guid == guid)
171                 return (vd);
172
173         for (int c = 0; c < vd->vdev_children; c++)
174                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175                     NULL)
176                         return (mvd);
177
178         return (NULL);
179 }
180
181 void
182 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
183 {
184         size_t oldsize, newsize;
185         uint64_t id = cvd->vdev_id;
186         vdev_t **newchild;
187
188         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189         ASSERT(cvd->vdev_parent == NULL);
190
191         cvd->vdev_parent = pvd;
192
193         if (pvd == NULL)
194                 return;
195
196         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197
198         oldsize = pvd->vdev_children * sizeof (vdev_t *);
199         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200         newsize = pvd->vdev_children * sizeof (vdev_t *);
201
202         newchild = kmem_zalloc(newsize, KM_SLEEP);
203         if (pvd->vdev_child != NULL) {
204                 bcopy(pvd->vdev_child, newchild, oldsize);
205                 kmem_free(pvd->vdev_child, oldsize);
206         }
207
208         pvd->vdev_child = newchild;
209         pvd->vdev_child[id] = cvd;
210
211         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213
214         /*
215          * Walk up all ancestors to update guid sum.
216          */
217         for (; pvd != NULL; pvd = pvd->vdev_parent)
218                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219 }
220
221 void
222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223 {
224         int c;
225         uint_t id = cvd->vdev_id;
226
227         ASSERT(cvd->vdev_parent == pvd);
228
229         if (pvd == NULL)
230                 return;
231
232         ASSERT(id < pvd->vdev_children);
233         ASSERT(pvd->vdev_child[id] == cvd);
234
235         pvd->vdev_child[id] = NULL;
236         cvd->vdev_parent = NULL;
237
238         for (c = 0; c < pvd->vdev_children; c++)
239                 if (pvd->vdev_child[c])
240                         break;
241
242         if (c == pvd->vdev_children) {
243                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244                 pvd->vdev_child = NULL;
245                 pvd->vdev_children = 0;
246         }
247
248         /*
249          * Walk up all ancestors to update guid sum.
250          */
251         for (; pvd != NULL; pvd = pvd->vdev_parent)
252                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253 }
254
255 /*
256  * Remove any holes in the child array.
257  */
258 void
259 vdev_compact_children(vdev_t *pvd)
260 {
261         vdev_t **newchild, *cvd;
262         int oldc = pvd->vdev_children;
263         int newc;
264
265         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266
267         for (int c = newc = 0; c < oldc; c++)
268                 if (pvd->vdev_child[c])
269                         newc++;
270
271         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272
273         for (int c = newc = 0; c < oldc; c++) {
274                 if ((cvd = pvd->vdev_child[c]) != NULL) {
275                         newchild[newc] = cvd;
276                         cvd->vdev_id = newc++;
277                 }
278         }
279
280         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281         pvd->vdev_child = newchild;
282         pvd->vdev_children = newc;
283 }
284
285 /*
286  * Allocate and minimally initialize a vdev_t.
287  */
288 vdev_t *
289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290 {
291         vdev_t *vd;
292
293         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294
295         if (spa->spa_root_vdev == NULL) {
296                 ASSERT(ops == &vdev_root_ops);
297                 spa->spa_root_vdev = vd;
298                 spa->spa_load_guid = spa_generate_guid(NULL);
299         }
300
301         if (guid == 0 && ops != &vdev_hole_ops) {
302                 if (spa->spa_root_vdev == vd) {
303                         /*
304                          * The root vdev's guid will also be the pool guid,
305                          * which must be unique among all pools.
306                          */
307                         guid = spa_generate_guid(NULL);
308                 } else {
309                         /*
310                          * Any other vdev's guid must be unique within the pool.
311                          */
312                         guid = spa_generate_guid(spa);
313                 }
314                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315         }
316
317         vd->vdev_spa = spa;
318         vd->vdev_id = id;
319         vd->vdev_guid = guid;
320         vd->vdev_guid_sum = guid;
321         vd->vdev_ops = ops;
322         vd->vdev_state = VDEV_STATE_CLOSED;
323         vd->vdev_ishole = (ops == &vdev_hole_ops);
324
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (int t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (SET_ERROR(EINVAL));
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (SET_ERROR(EINVAL));
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (SET_ERROR(EINVAL));
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (SET_ERROR(EINVAL));
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (SET_ERROR(EINVAL));
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (SET_ERROR(EINVAL));
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (SET_ERROR(EINVAL));
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (SET_ERROR(EINVAL));
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (SET_ERROR(ENOTSUP));
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (SET_ERROR(ENOTSUP));
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (SET_ERROR(EINVAL));
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (SET_ERROR(ENOTSUP));
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (SET_ERROR(ENOTSUP));
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (SET_ERROR(EINVAL));
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         spa_t *spa = vd->vdev_spa;
575
576         /*
577          * vdev_free() implies closing the vdev first.  This is simpler than
578          * trying to ensure complicated semantics for all callers.
579          */
580         vdev_close(vd);
581
582         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584
585         /*
586          * Free all children.
587          */
588         for (int c = 0; c < vd->vdev_children; c++)
589                 vdev_free(vd->vdev_child[c]);
590
591         ASSERT(vd->vdev_child == NULL);
592         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593
594         /*
595          * Discard allocation state.
596          */
597         if (vd->vdev_mg != NULL) {
598                 vdev_metaslab_fini(vd);
599                 metaslab_group_destroy(vd->vdev_mg);
600         }
601
602         ASSERT0(vd->vdev_stat.vs_space);
603         ASSERT0(vd->vdev_stat.vs_dspace);
604         ASSERT0(vd->vdev_stat.vs_alloc);
605
606         /*
607          * Remove this vdev from its parent's child list.
608          */
609         vdev_remove_child(vd->vdev_parent, vd);
610
611         ASSERT(vd->vdev_parent == NULL);
612
613         /*
614          * Clean up vdev structure.
615          */
616         vdev_queue_fini(vd);
617         vdev_cache_fini(vd);
618
619         if (vd->vdev_path)
620                 spa_strfree(vd->vdev_path);
621         if (vd->vdev_devid)
622                 spa_strfree(vd->vdev_devid);
623         if (vd->vdev_physpath)
624                 spa_strfree(vd->vdev_physpath);
625         if (vd->vdev_fru)
626                 spa_strfree(vd->vdev_fru);
627
628         if (vd->vdev_isspare)
629                 spa_spare_remove(vd);
630         if (vd->vdev_isl2cache)
631                 spa_l2cache_remove(vd);
632
633         txg_list_destroy(&vd->vdev_ms_list);
634         txg_list_destroy(&vd->vdev_dtl_list);
635
636         mutex_enter(&vd->vdev_dtl_lock);
637         for (int t = 0; t < DTL_TYPES; t++) {
638                 space_map_unload(&vd->vdev_dtl[t]);
639                 space_map_destroy(&vd->vdev_dtl[t]);
640         }
641         mutex_exit(&vd->vdev_dtl_lock);
642
643         mutex_destroy(&vd->vdev_dtl_lock);
644         mutex_destroy(&vd->vdev_stat_lock);
645         mutex_destroy(&vd->vdev_probe_lock);
646
647         if (vd == spa->spa_root_vdev)
648                 spa->spa_root_vdev = NULL;
649
650         kmem_free(vd, sizeof (vdev_t));
651 }
652
653 /*
654  * Transfer top-level vdev state from svd to tvd.
655  */
656 static void
657 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
658 {
659         spa_t *spa = svd->vdev_spa;
660         metaslab_t *msp;
661         vdev_t *vd;
662         int t;
663
664         ASSERT(tvd == tvd->vdev_top);
665
666         tvd->vdev_ms_array = svd->vdev_ms_array;
667         tvd->vdev_ms_shift = svd->vdev_ms_shift;
668         tvd->vdev_ms_count = svd->vdev_ms_count;
669
670         svd->vdev_ms_array = 0;
671         svd->vdev_ms_shift = 0;
672         svd->vdev_ms_count = 0;
673
674         if (tvd->vdev_mg)
675                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
676         tvd->vdev_mg = svd->vdev_mg;
677         tvd->vdev_ms = svd->vdev_ms;
678
679         svd->vdev_mg = NULL;
680         svd->vdev_ms = NULL;
681
682         if (tvd->vdev_mg != NULL)
683                 tvd->vdev_mg->mg_vd = tvd;
684
685         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
686         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
687         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
688
689         svd->vdev_stat.vs_alloc = 0;
690         svd->vdev_stat.vs_space = 0;
691         svd->vdev_stat.vs_dspace = 0;
692
693         for (t = 0; t < TXG_SIZE; t++) {
694                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
695                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
696                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
697                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
698                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
699                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
700         }
701
702         if (list_link_active(&svd->vdev_config_dirty_node)) {
703                 vdev_config_clean(svd);
704                 vdev_config_dirty(tvd);
705         }
706
707         if (list_link_active(&svd->vdev_state_dirty_node)) {
708                 vdev_state_clean(svd);
709                 vdev_state_dirty(tvd);
710         }
711
712         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
713         svd->vdev_deflate_ratio = 0;
714
715         tvd->vdev_islog = svd->vdev_islog;
716         svd->vdev_islog = 0;
717 }
718
719 static void
720 vdev_top_update(vdev_t *tvd, vdev_t *vd)
721 {
722         if (vd == NULL)
723                 return;
724
725         vd->vdev_top = tvd;
726
727         for (int c = 0; c < vd->vdev_children; c++)
728                 vdev_top_update(tvd, vd->vdev_child[c]);
729 }
730
731 /*
732  * Add a mirror/replacing vdev above an existing vdev.
733  */
734 vdev_t *
735 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736 {
737         spa_t *spa = cvd->vdev_spa;
738         vdev_t *pvd = cvd->vdev_parent;
739         vdev_t *mvd;
740
741         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744
745         mvd->vdev_asize = cvd->vdev_asize;
746         mvd->vdev_min_asize = cvd->vdev_min_asize;
747         mvd->vdev_max_asize = cvd->vdev_max_asize;
748         mvd->vdev_ashift = cvd->vdev_ashift;
749         mvd->vdev_state = cvd->vdev_state;
750         mvd->vdev_crtxg = cvd->vdev_crtxg;
751
752         vdev_remove_child(pvd, cvd);
753         vdev_add_child(pvd, mvd);
754         cvd->vdev_id = mvd->vdev_children;
755         vdev_add_child(mvd, cvd);
756         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
757
758         if (mvd == mvd->vdev_top)
759                 vdev_top_transfer(cvd, mvd);
760
761         return (mvd);
762 }
763
764 /*
765  * Remove a 1-way mirror/replacing vdev from the tree.
766  */
767 void
768 vdev_remove_parent(vdev_t *cvd)
769 {
770         vdev_t *mvd = cvd->vdev_parent;
771         vdev_t *pvd = mvd->vdev_parent;
772
773         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
774
775         ASSERT(mvd->vdev_children == 1);
776         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
777             mvd->vdev_ops == &vdev_replacing_ops ||
778             mvd->vdev_ops == &vdev_spare_ops);
779         cvd->vdev_ashift = mvd->vdev_ashift;
780
781         vdev_remove_child(mvd, cvd);
782         vdev_remove_child(pvd, mvd);
783
784         /*
785          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
786          * Otherwise, we could have detached an offline device, and when we
787          * go to import the pool we'll think we have two top-level vdevs,
788          * instead of a different version of the same top-level vdev.
789          */
790         if (mvd->vdev_top == mvd) {
791                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
792                 cvd->vdev_orig_guid = cvd->vdev_guid;
793                 cvd->vdev_guid += guid_delta;
794                 cvd->vdev_guid_sum += guid_delta;
795         }
796         cvd->vdev_id = mvd->vdev_id;
797         vdev_add_child(pvd, cvd);
798         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799
800         if (cvd == cvd->vdev_top)
801                 vdev_top_transfer(mvd, cvd);
802
803         ASSERT(mvd->vdev_children == 0);
804         vdev_free(mvd);
805 }
806
807 int
808 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
809 {
810         spa_t *spa = vd->vdev_spa;
811         objset_t *mos = spa->spa_meta_objset;
812         uint64_t m;
813         uint64_t oldc = vd->vdev_ms_count;
814         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
815         metaslab_t **mspp;
816         int error;
817
818         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
819
820         /*
821          * This vdev is not being allocated from yet or is a hole.
822          */
823         if (vd->vdev_ms_shift == 0)
824                 return (0);
825
826         ASSERT(!vd->vdev_ishole);
827
828         /*
829          * Compute the raidz-deflation ratio.  Note, we hard-code
830          * in 128k (1 << 17) because it is the current "typical" blocksize.
831          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
832          * or we will inconsistently account for existing bp's.
833          */
834         vd->vdev_deflate_ratio = (1 << 17) /
835             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
836
837         ASSERT(oldc <= newc);
838
839         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
840
841         if (oldc != 0) {
842                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
843                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
844         }
845
846         vd->vdev_ms = mspp;
847         vd->vdev_ms_count = newc;
848
849         for (m = oldc; m < newc; m++) {
850                 space_map_obj_t smo = { 0, 0, 0 };
851                 if (txg == 0) {
852                         uint64_t object = 0;
853                         error = dmu_read(mos, vd->vdev_ms_array,
854                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
855                             DMU_READ_PREFETCH);
856                         if (error)
857                                 return (error);
858                         if (object != 0) {
859                                 dmu_buf_t *db;
860                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
861                                 if (error)
862                                         return (error);
863                                 ASSERT3U(db->db_size, >=, sizeof (smo));
864                                 bcopy(db->db_data, &smo, sizeof (smo));
865                                 ASSERT3U(smo.smo_object, ==, object);
866                                 dmu_buf_rele(db, FTAG);
867                         }
868                 }
869                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
870                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
871         }
872
873         if (txg == 0)
874                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
875
876         /*
877          * If the vdev is being removed we don't activate
878          * the metaslabs since we want to ensure that no new
879          * allocations are performed on this device.
880          */
881         if (oldc == 0 && !vd->vdev_removing)
882                 metaslab_group_activate(vd->vdev_mg);
883
884         if (txg == 0)
885                 spa_config_exit(spa, SCL_ALLOC, FTAG);
886
887         return (0);
888 }
889
890 void
891 vdev_metaslab_fini(vdev_t *vd)
892 {
893         uint64_t m;
894         uint64_t count = vd->vdev_ms_count;
895
896         if (vd->vdev_ms != NULL) {
897                 metaslab_group_passivate(vd->vdev_mg);
898                 for (m = 0; m < count; m++)
899                         if (vd->vdev_ms[m] != NULL)
900                                 metaslab_fini(vd->vdev_ms[m]);
901                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
902                 vd->vdev_ms = NULL;
903         }
904 }
905
906 typedef struct vdev_probe_stats {
907         boolean_t       vps_readable;
908         boolean_t       vps_writeable;
909         int             vps_flags;
910 } vdev_probe_stats_t;
911
912 static void
913 vdev_probe_done(zio_t *zio)
914 {
915         spa_t *spa = zio->io_spa;
916         vdev_t *vd = zio->io_vd;
917         vdev_probe_stats_t *vps = zio->io_private;
918
919         ASSERT(vd->vdev_probe_zio != NULL);
920
921         if (zio->io_type == ZIO_TYPE_READ) {
922                 if (zio->io_error == 0)
923                         vps->vps_readable = 1;
924                 if (zio->io_error == 0 && spa_writeable(spa)) {
925                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
926                             zio->io_offset, zio->io_size, zio->io_data,
927                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
928                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
929                 } else {
930                         zio_buf_free(zio->io_data, zio->io_size);
931                 }
932         } else if (zio->io_type == ZIO_TYPE_WRITE) {
933                 if (zio->io_error == 0)
934                         vps->vps_writeable = 1;
935                 zio_buf_free(zio->io_data, zio->io_size);
936         } else if (zio->io_type == ZIO_TYPE_NULL) {
937                 zio_t *pio;
938
939                 vd->vdev_cant_read |= !vps->vps_readable;
940                 vd->vdev_cant_write |= !vps->vps_writeable;
941
942                 if (vdev_readable(vd) &&
943                     (vdev_writeable(vd) || !spa_writeable(spa))) {
944                         zio->io_error = 0;
945                 } else {
946                         ASSERT(zio->io_error != 0);
947                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
948                             spa, vd, NULL, 0, 0);
949                         zio->io_error = SET_ERROR(ENXIO);
950                 }
951
952                 mutex_enter(&vd->vdev_probe_lock);
953                 ASSERT(vd->vdev_probe_zio == zio);
954                 vd->vdev_probe_zio = NULL;
955                 mutex_exit(&vd->vdev_probe_lock);
956
957                 while ((pio = zio_walk_parents(zio)) != NULL)
958                         if (!vdev_accessible(vd, pio))
959                                 pio->io_error = SET_ERROR(ENXIO);
960
961                 kmem_free(vps, sizeof (*vps));
962         }
963 }
964
965 /*
966  * Determine whether this device is accessible by reading and writing
967  * to several known locations: the pad regions of each vdev label
968  * but the first (which we leave alone in case it contains a VTOC).
969  */
970 zio_t *
971 vdev_probe(vdev_t *vd, zio_t *zio)
972 {
973         spa_t *spa = vd->vdev_spa;
974         vdev_probe_stats_t *vps = NULL;
975         zio_t *pio;
976
977         ASSERT(vd->vdev_ops->vdev_op_leaf);
978
979         /*
980          * Don't probe the probe.
981          */
982         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
983                 return (NULL);
984
985         /*
986          * To prevent 'probe storms' when a device fails, we create
987          * just one probe i/o at a time.  All zios that want to probe
988          * this vdev will become parents of the probe io.
989          */
990         mutex_enter(&vd->vdev_probe_lock);
991
992         if ((pio = vd->vdev_probe_zio) == NULL) {
993                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
994
995                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
996                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
997                     ZIO_FLAG_TRYHARD;
998
999                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1000                         /*
1001                          * vdev_cant_read and vdev_cant_write can only
1002                          * transition from TRUE to FALSE when we have the
1003                          * SCL_ZIO lock as writer; otherwise they can only
1004                          * transition from FALSE to TRUE.  This ensures that
1005                          * any zio looking at these values can assume that
1006                          * failures persist for the life of the I/O.  That's
1007                          * important because when a device has intermittent
1008                          * connectivity problems, we want to ensure that
1009                          * they're ascribed to the device (ENXIO) and not
1010                          * the zio (EIO).
1011                          *
1012                          * Since we hold SCL_ZIO as writer here, clear both
1013                          * values so the probe can reevaluate from first
1014                          * principles.
1015                          */
1016                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1017                         vd->vdev_cant_read = B_FALSE;
1018                         vd->vdev_cant_write = B_FALSE;
1019                 }
1020
1021                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1022                     vdev_probe_done, vps,
1023                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1024
1025                 /*
1026                  * We can't change the vdev state in this context, so we
1027                  * kick off an async task to do it on our behalf.
1028                  */
1029                 if (zio != NULL) {
1030                         vd->vdev_probe_wanted = B_TRUE;
1031                         spa_async_request(spa, SPA_ASYNC_PROBE);
1032                 }
1033         }
1034
1035         if (zio != NULL)
1036                 zio_add_child(zio, pio);
1037
1038         mutex_exit(&vd->vdev_probe_lock);
1039
1040         if (vps == NULL) {
1041                 ASSERT(zio != NULL);
1042                 return (NULL);
1043         }
1044
1045         for (int l = 1; l < VDEV_LABELS; l++) {
1046                 zio_nowait(zio_read_phys(pio, vd,
1047                     vdev_label_offset(vd->vdev_psize, l,
1048                     offsetof(vdev_label_t, vl_pad2)),
1049                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1050                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1051                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1052         }
1053
1054         if (zio == NULL)
1055                 return (pio);
1056
1057         zio_nowait(pio);
1058         return (NULL);
1059 }
1060
1061 static void
1062 vdev_open_child(void *arg)
1063 {
1064         vdev_t *vd = arg;
1065
1066         vd->vdev_open_thread = curthread;
1067         vd->vdev_open_error = vdev_open(vd);
1068         vd->vdev_open_thread = NULL;
1069 }
1070
1071 boolean_t
1072 vdev_uses_zvols(vdev_t *vd)
1073 {
1074         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1075             strlen(ZVOL_DIR)) == 0)
1076                 return (B_TRUE);
1077         for (int c = 0; c < vd->vdev_children; c++)
1078                 if (vdev_uses_zvols(vd->vdev_child[c]))
1079                         return (B_TRUE);
1080         return (B_FALSE);
1081 }
1082
1083 void
1084 vdev_open_children(vdev_t *vd)
1085 {
1086         taskq_t *tq;
1087         int children = vd->vdev_children;
1088
1089         /*
1090          * in order to handle pools on top of zvols, do the opens
1091          * in a single thread so that the same thread holds the
1092          * spa_namespace_lock
1093          */
1094         if (B_TRUE || vdev_uses_zvols(vd)) {
1095                 for (int c = 0; c < children; c++)
1096                         vd->vdev_child[c]->vdev_open_error =
1097                             vdev_open(vd->vdev_child[c]);
1098                 return;
1099         }
1100         tq = taskq_create("vdev_open", children, minclsyspri,
1101             children, children, TASKQ_PREPOPULATE);
1102
1103         for (int c = 0; c < children; c++)
1104                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1105                     TQ_SLEEP) != 0);
1106
1107         taskq_destroy(tq);
1108 }
1109
1110 /*
1111  * Prepare a virtual device for access.
1112  */
1113 int
1114 vdev_open(vdev_t *vd)
1115 {
1116         spa_t *spa = vd->vdev_spa;
1117         int error;
1118         uint64_t osize = 0;
1119         uint64_t max_osize = 0;
1120         uint64_t asize, max_asize, psize;
1121         uint64_t ashift = 0;
1122
1123         ASSERT(vd->vdev_open_thread == curthread ||
1124             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1125         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1126             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1127             vd->vdev_state == VDEV_STATE_OFFLINE);
1128
1129         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1130         vd->vdev_cant_read = B_FALSE;
1131         vd->vdev_cant_write = B_FALSE;
1132         vd->vdev_min_asize = vdev_get_min_asize(vd);
1133
1134         /*
1135          * If this vdev is not removed, check its fault status.  If it's
1136          * faulted, bail out of the open.
1137          */
1138         if (!vd->vdev_removed && vd->vdev_faulted) {
1139                 ASSERT(vd->vdev_children == 0);
1140                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1141                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1142                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1143                     vd->vdev_label_aux);
1144                 return (SET_ERROR(ENXIO));
1145         } else if (vd->vdev_offline) {
1146                 ASSERT(vd->vdev_children == 0);
1147                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1148                 return (SET_ERROR(ENXIO));
1149         }
1150
1151         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1152
1153         /*
1154          * Reset the vdev_reopening flag so that we actually close
1155          * the vdev on error.
1156          */
1157         vd->vdev_reopening = B_FALSE;
1158         if (zio_injection_enabled && error == 0)
1159                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1160
1161         if (error) {
1162                 if (vd->vdev_removed &&
1163                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1164                         vd->vdev_removed = B_FALSE;
1165
1166                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1167                     vd->vdev_stat.vs_aux);
1168                 return (error);
1169         }
1170
1171         vd->vdev_removed = B_FALSE;
1172
1173         /*
1174          * Recheck the faulted flag now that we have confirmed that
1175          * the vdev is accessible.  If we're faulted, bail.
1176          */
1177         if (vd->vdev_faulted) {
1178                 ASSERT(vd->vdev_children == 0);
1179                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1180                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1181                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1182                     vd->vdev_label_aux);
1183                 return (SET_ERROR(ENXIO));
1184         }
1185
1186         if (vd->vdev_degraded) {
1187                 ASSERT(vd->vdev_children == 0);
1188                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189                     VDEV_AUX_ERR_EXCEEDED);
1190         } else {
1191                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1192         }
1193
1194         /*
1195          * For hole or missing vdevs we just return success.
1196          */
1197         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1198                 return (0);
1199
1200         if (vd->vdev_ops->vdev_op_leaf) {
1201                 vd->vdev_notrim = B_FALSE;
1202                 trim_map_create(vd);
1203         }
1204
1205         for (int c = 0; c < vd->vdev_children; c++) {
1206                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1207                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1208                             VDEV_AUX_NONE);
1209                         break;
1210                 }
1211         }
1212
1213         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1214         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1215
1216         if (vd->vdev_children == 0) {
1217                 if (osize < SPA_MINDEVSIZE) {
1218                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1219                             VDEV_AUX_TOO_SMALL);
1220                         return (SET_ERROR(EOVERFLOW));
1221                 }
1222                 psize = osize;
1223                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1224                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1225                     VDEV_LABEL_END_SIZE);
1226         } else {
1227                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1228                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1229                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1230                             VDEV_AUX_TOO_SMALL);
1231                         return (SET_ERROR(EOVERFLOW));
1232                 }
1233                 psize = 0;
1234                 asize = osize;
1235                 max_asize = max_osize;
1236         }
1237
1238         vd->vdev_psize = psize;
1239
1240         /*
1241          * Make sure the allocatable size hasn't shrunk.
1242          */
1243         if (asize < vd->vdev_min_asize) {
1244                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245                     VDEV_AUX_BAD_LABEL);
1246                 return (SET_ERROR(EINVAL));
1247         }
1248
1249         if (vd->vdev_asize == 0) {
1250                 /*
1251                  * This is the first-ever open, so use the computed values.
1252                  * For testing purposes, a higher ashift can be requested.
1253                  */
1254                 vd->vdev_asize = asize;
1255                 vd->vdev_max_asize = max_asize;
1256                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1257         } else {
1258                 /*
1259                  * Make sure the alignment requirement hasn't increased.
1260                  */
1261                 if (ashift > vd->vdev_top->vdev_ashift) {
1262                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263                             VDEV_AUX_BAD_LABEL);
1264                         return (EINVAL);
1265                 }
1266                 vd->vdev_max_asize = max_asize;
1267         }
1268
1269         /*
1270          * If all children are healthy and the asize has increased,
1271          * then we've experienced dynamic LUN growth.  If automatic
1272          * expansion is enabled then use the additional space.
1273          */
1274         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1275             (vd->vdev_expanding || spa->spa_autoexpand))
1276                 vd->vdev_asize = asize;
1277
1278         vdev_set_min_asize(vd);
1279
1280         /*
1281          * Ensure we can issue some IO before declaring the
1282          * vdev open for business.
1283          */
1284         if (vd->vdev_ops->vdev_op_leaf &&
1285             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1286                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1287                     VDEV_AUX_ERR_EXCEEDED);
1288                 return (error);
1289         }
1290
1291         /*
1292          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1293          * resilver.  But don't do this if we are doing a reopen for a scrub,
1294          * since this would just restart the scrub we are already doing.
1295          */
1296         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1297             vdev_resilver_needed(vd, NULL, NULL))
1298                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1299
1300         return (0);
1301 }
1302
1303 /*
1304  * Called once the vdevs are all opened, this routine validates the label
1305  * contents.  This needs to be done before vdev_load() so that we don't
1306  * inadvertently do repair I/Os to the wrong device.
1307  *
1308  * If 'strict' is false ignore the spa guid check. This is necessary because
1309  * if the machine crashed during a re-guid the new guid might have been written
1310  * to all of the vdev labels, but not the cached config. The strict check
1311  * will be performed when the pool is opened again using the mos config.
1312  *
1313  * This function will only return failure if one of the vdevs indicates that it
1314  * has since been destroyed or exported.  This is only possible if
1315  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1316  * will be updated but the function will return 0.
1317  */
1318 int
1319 vdev_validate(vdev_t *vd, boolean_t strict)
1320 {
1321         spa_t *spa = vd->vdev_spa;
1322         nvlist_t *label;
1323         uint64_t guid = 0, top_guid;
1324         uint64_t state;
1325
1326         for (int c = 0; c < vd->vdev_children; c++)
1327                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1328                         return (SET_ERROR(EBADF));
1329
1330         /*
1331          * If the device has already failed, or was marked offline, don't do
1332          * any further validation.  Otherwise, label I/O will fail and we will
1333          * overwrite the previous state.
1334          */
1335         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1336                 uint64_t aux_guid = 0;
1337                 nvlist_t *nvl;
1338                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1339                     spa_last_synced_txg(spa) : -1ULL;
1340
1341                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1342                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1343                             VDEV_AUX_BAD_LABEL);
1344                         return (0);
1345                 }
1346
1347                 /*
1348                  * Determine if this vdev has been split off into another
1349                  * pool.  If so, then refuse to open it.
1350                  */
1351                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1352                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1353                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354                             VDEV_AUX_SPLIT_POOL);
1355                         nvlist_free(label);
1356                         return (0);
1357                 }
1358
1359                 if (strict && (nvlist_lookup_uint64(label,
1360                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1361                     guid != spa_guid(spa))) {
1362                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1363                             VDEV_AUX_CORRUPT_DATA);
1364                         nvlist_free(label);
1365                         return (0);
1366                 }
1367
1368                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1369                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1370                     &aux_guid) != 0)
1371                         aux_guid = 0;
1372
1373                 /*
1374                  * If this vdev just became a top-level vdev because its
1375                  * sibling was detached, it will have adopted the parent's
1376                  * vdev guid -- but the label may or may not be on disk yet.
1377                  * Fortunately, either version of the label will have the
1378                  * same top guid, so if we're a top-level vdev, we can
1379                  * safely compare to that instead.
1380                  *
1381                  * If we split this vdev off instead, then we also check the
1382                  * original pool's guid.  We don't want to consider the vdev
1383                  * corrupt if it is partway through a split operation.
1384                  */
1385                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1386                     &guid) != 0 ||
1387                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1388                     &top_guid) != 0 ||
1389                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1390                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1391                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392                             VDEV_AUX_CORRUPT_DATA);
1393                         nvlist_free(label);
1394                         return (0);
1395                 }
1396
1397                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1398                     &state) != 0) {
1399                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1400                             VDEV_AUX_CORRUPT_DATA);
1401                         nvlist_free(label);
1402                         return (0);
1403                 }
1404
1405                 nvlist_free(label);
1406
1407                 /*
1408                  * If this is a verbatim import, no need to check the
1409                  * state of the pool.
1410                  */
1411                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1412                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1413                     state != POOL_STATE_ACTIVE)
1414                         return (SET_ERROR(EBADF));
1415
1416                 /*
1417                  * If we were able to open and validate a vdev that was
1418                  * previously marked permanently unavailable, clear that state
1419                  * now.
1420                  */
1421                 if (vd->vdev_not_present)
1422                         vd->vdev_not_present = 0;
1423         }
1424
1425         return (0);
1426 }
1427
1428 /*
1429  * Close a virtual device.
1430  */
1431 void
1432 vdev_close(vdev_t *vd)
1433 {
1434         spa_t *spa = vd->vdev_spa;
1435         vdev_t *pvd = vd->vdev_parent;
1436
1437         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1438
1439         /*
1440          * If our parent is reopening, then we are as well, unless we are
1441          * going offline.
1442          */
1443         if (pvd != NULL && pvd->vdev_reopening)
1444                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1445
1446         vd->vdev_ops->vdev_op_close(vd);
1447
1448         vdev_cache_purge(vd);
1449
1450         if (vd->vdev_ops->vdev_op_leaf)
1451                 trim_map_destroy(vd);
1452
1453         /*
1454          * We record the previous state before we close it, so that if we are
1455          * doing a reopen(), we don't generate FMA ereports if we notice that
1456          * it's still faulted.
1457          */
1458         vd->vdev_prevstate = vd->vdev_state;
1459
1460         if (vd->vdev_offline)
1461                 vd->vdev_state = VDEV_STATE_OFFLINE;
1462         else
1463                 vd->vdev_state = VDEV_STATE_CLOSED;
1464         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1465 }
1466
1467 void
1468 vdev_hold(vdev_t *vd)
1469 {
1470         spa_t *spa = vd->vdev_spa;
1471
1472         ASSERT(spa_is_root(spa));
1473         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1474                 return;
1475
1476         for (int c = 0; c < vd->vdev_children; c++)
1477                 vdev_hold(vd->vdev_child[c]);
1478
1479         if (vd->vdev_ops->vdev_op_leaf)
1480                 vd->vdev_ops->vdev_op_hold(vd);
1481 }
1482
1483 void
1484 vdev_rele(vdev_t *vd)
1485 {
1486         spa_t *spa = vd->vdev_spa;
1487
1488         ASSERT(spa_is_root(spa));
1489         for (int c = 0; c < vd->vdev_children; c++)
1490                 vdev_rele(vd->vdev_child[c]);
1491
1492         if (vd->vdev_ops->vdev_op_leaf)
1493                 vd->vdev_ops->vdev_op_rele(vd);
1494 }
1495
1496 /*
1497  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1498  * reopen leaf vdevs which had previously been opened as they might deadlock
1499  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1500  * If the leaf has never been opened then open it, as usual.
1501  */
1502 void
1503 vdev_reopen(vdev_t *vd)
1504 {
1505         spa_t *spa = vd->vdev_spa;
1506
1507         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1508
1509         /* set the reopening flag unless we're taking the vdev offline */
1510         vd->vdev_reopening = !vd->vdev_offline;
1511         vdev_close(vd);
1512         (void) vdev_open(vd);
1513
1514         /*
1515          * Call vdev_validate() here to make sure we have the same device.
1516          * Otherwise, a device with an invalid label could be successfully
1517          * opened in response to vdev_reopen().
1518          */
1519         if (vd->vdev_aux) {
1520                 (void) vdev_validate_aux(vd);
1521                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1522                     vd->vdev_aux == &spa->spa_l2cache &&
1523                     !l2arc_vdev_present(vd))
1524                         l2arc_add_vdev(spa, vd);
1525         } else {
1526                 (void) vdev_validate(vd, B_TRUE);
1527         }
1528
1529         /*
1530          * Reassess parent vdev's health.
1531          */
1532         vdev_propagate_state(vd);
1533 }
1534
1535 int
1536 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1537 {
1538         int error;
1539
1540         /*
1541          * Normally, partial opens (e.g. of a mirror) are allowed.
1542          * For a create, however, we want to fail the request if
1543          * there are any components we can't open.
1544          */
1545         error = vdev_open(vd);
1546
1547         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1548                 vdev_close(vd);
1549                 return (error ? error : ENXIO);
1550         }
1551
1552         /*
1553          * Recursively initialize all labels.
1554          */
1555         if ((error = vdev_label_init(vd, txg, isreplacing ?
1556             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1557                 vdev_close(vd);
1558                 return (error);
1559         }
1560
1561         return (0);
1562 }
1563
1564 void
1565 vdev_metaslab_set_size(vdev_t *vd)
1566 {
1567         /*
1568          * Aim for roughly 200 metaslabs per vdev.
1569          */
1570         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1571         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1572 }
1573
1574 void
1575 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1576 {
1577         ASSERT(vd == vd->vdev_top);
1578         ASSERT(!vd->vdev_ishole);
1579         ASSERT(ISP2(flags));
1580         ASSERT(spa_writeable(vd->vdev_spa));
1581
1582         if (flags & VDD_METASLAB)
1583                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1584
1585         if (flags & VDD_DTL)
1586                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1587
1588         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1589 }
1590
1591 /*
1592  * DTLs.
1593  *
1594  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1595  * the vdev has less than perfect replication.  There are four kinds of DTL:
1596  *
1597  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1598  *
1599  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1600  *
1601  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1602  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1603  *      txgs that was scrubbed.
1604  *
1605  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1606  *      persistent errors or just some device being offline.
1607  *      Unlike the other three, the DTL_OUTAGE map is not generally
1608  *      maintained; it's only computed when needed, typically to
1609  *      determine whether a device can be detached.
1610  *
1611  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1612  * either has the data or it doesn't.
1613  *
1614  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1615  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1616  * if any child is less than fully replicated, then so is its parent.
1617  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1618  * comprising only those txgs which appear in 'maxfaults' or more children;
1619  * those are the txgs we don't have enough replication to read.  For example,
1620  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1621  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1622  * two child DTL_MISSING maps.
1623  *
1624  * It should be clear from the above that to compute the DTLs and outage maps
1625  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1626  * Therefore, that is all we keep on disk.  When loading the pool, or after
1627  * a configuration change, we generate all other DTLs from first principles.
1628  */
1629 void
1630 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1631 {
1632         space_map_t *sm = &vd->vdev_dtl[t];
1633
1634         ASSERT(t < DTL_TYPES);
1635         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1636         ASSERT(spa_writeable(vd->vdev_spa));
1637
1638         mutex_enter(sm->sm_lock);
1639         if (!space_map_contains(sm, txg, size))
1640                 space_map_add(sm, txg, size);
1641         mutex_exit(sm->sm_lock);
1642 }
1643
1644 boolean_t
1645 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1646 {
1647         space_map_t *sm = &vd->vdev_dtl[t];
1648         boolean_t dirty = B_FALSE;
1649
1650         ASSERT(t < DTL_TYPES);
1651         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1652
1653         mutex_enter(sm->sm_lock);
1654         if (sm->sm_space != 0)
1655                 dirty = space_map_contains(sm, txg, size);
1656         mutex_exit(sm->sm_lock);
1657
1658         return (dirty);
1659 }
1660
1661 boolean_t
1662 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1663 {
1664         space_map_t *sm = &vd->vdev_dtl[t];
1665         boolean_t empty;
1666
1667         mutex_enter(sm->sm_lock);
1668         empty = (sm->sm_space == 0);
1669         mutex_exit(sm->sm_lock);
1670
1671         return (empty);
1672 }
1673
1674 /*
1675  * Reassess DTLs after a config change or scrub completion.
1676  */
1677 void
1678 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1679 {
1680         spa_t *spa = vd->vdev_spa;
1681         avl_tree_t reftree;
1682         int minref;
1683
1684         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1685
1686         for (int c = 0; c < vd->vdev_children; c++)
1687                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1688                     scrub_txg, scrub_done);
1689
1690         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1691                 return;
1692
1693         if (vd->vdev_ops->vdev_op_leaf) {
1694                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1695
1696                 mutex_enter(&vd->vdev_dtl_lock);
1697                 if (scrub_txg != 0 &&
1698                     (spa->spa_scrub_started ||
1699                     (scn && scn->scn_phys.scn_errors == 0))) {
1700                         /*
1701                          * We completed a scrub up to scrub_txg.  If we
1702                          * did it without rebooting, then the scrub dtl
1703                          * will be valid, so excise the old region and
1704                          * fold in the scrub dtl.  Otherwise, leave the
1705                          * dtl as-is if there was an error.
1706                          *
1707                          * There's little trick here: to excise the beginning
1708                          * of the DTL_MISSING map, we put it into a reference
1709                          * tree and then add a segment with refcnt -1 that
1710                          * covers the range [0, scrub_txg).  This means
1711                          * that each txg in that range has refcnt -1 or 0.
1712                          * We then add DTL_SCRUB with a refcnt of 2, so that
1713                          * entries in the range [0, scrub_txg) will have a
1714                          * positive refcnt -- either 1 or 2.  We then convert
1715                          * the reference tree into the new DTL_MISSING map.
1716                          */
1717                         space_map_ref_create(&reftree);
1718                         space_map_ref_add_map(&reftree,
1719                             &vd->vdev_dtl[DTL_MISSING], 1);
1720                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1721                         space_map_ref_add_map(&reftree,
1722                             &vd->vdev_dtl[DTL_SCRUB], 2);
1723                         space_map_ref_generate_map(&reftree,
1724                             &vd->vdev_dtl[DTL_MISSING], 1);
1725                         space_map_ref_destroy(&reftree);
1726                 }
1727                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1728                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1729                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1730                 if (scrub_done)
1731                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1732                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1733                 if (!vdev_readable(vd))
1734                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1735                 else
1736                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1737                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1738                 mutex_exit(&vd->vdev_dtl_lock);
1739
1740                 if (txg != 0)
1741                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1742                 return;
1743         }
1744
1745         mutex_enter(&vd->vdev_dtl_lock);
1746         for (int t = 0; t < DTL_TYPES; t++) {
1747                 /* account for child's outage in parent's missing map */
1748                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1749                 if (t == DTL_SCRUB)
1750                         continue;                       /* leaf vdevs only */
1751                 if (t == DTL_PARTIAL)
1752                         minref = 1;                     /* i.e. non-zero */
1753                 else if (vd->vdev_nparity != 0)
1754                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1755                 else
1756                         minref = vd->vdev_children;     /* any kind of mirror */
1757                 space_map_ref_create(&reftree);
1758                 for (int c = 0; c < vd->vdev_children; c++) {
1759                         vdev_t *cvd = vd->vdev_child[c];
1760                         mutex_enter(&cvd->vdev_dtl_lock);
1761                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1762                         mutex_exit(&cvd->vdev_dtl_lock);
1763                 }
1764                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1765                 space_map_ref_destroy(&reftree);
1766         }
1767         mutex_exit(&vd->vdev_dtl_lock);
1768 }
1769
1770 static int
1771 vdev_dtl_load(vdev_t *vd)
1772 {
1773         spa_t *spa = vd->vdev_spa;
1774         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1775         objset_t *mos = spa->spa_meta_objset;
1776         dmu_buf_t *db;
1777         int error;
1778
1779         ASSERT(vd->vdev_children == 0);
1780
1781         if (smo->smo_object == 0)
1782                 return (0);
1783
1784         ASSERT(!vd->vdev_ishole);
1785
1786         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1787                 return (error);
1788
1789         ASSERT3U(db->db_size, >=, sizeof (*smo));
1790         bcopy(db->db_data, smo, sizeof (*smo));
1791         dmu_buf_rele(db, FTAG);
1792
1793         mutex_enter(&vd->vdev_dtl_lock);
1794         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1795             NULL, SM_ALLOC, smo, mos);
1796         mutex_exit(&vd->vdev_dtl_lock);
1797
1798         return (error);
1799 }
1800
1801 void
1802 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1803 {
1804         spa_t *spa = vd->vdev_spa;
1805         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1806         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1807         objset_t *mos = spa->spa_meta_objset;
1808         space_map_t smsync;
1809         kmutex_t smlock;
1810         dmu_buf_t *db;
1811         dmu_tx_t *tx;
1812
1813         ASSERT(!vd->vdev_ishole);
1814
1815         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1816
1817         if (vd->vdev_detached) {
1818                 if (smo->smo_object != 0) {
1819                         int err = dmu_object_free(mos, smo->smo_object, tx);
1820                         ASSERT0(err);
1821                         smo->smo_object = 0;
1822                 }
1823                 dmu_tx_commit(tx);
1824                 return;
1825         }
1826
1827         if (smo->smo_object == 0) {
1828                 ASSERT(smo->smo_objsize == 0);
1829                 ASSERT(smo->smo_alloc == 0);
1830                 smo->smo_object = dmu_object_alloc(mos,
1831                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1832                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1833                 ASSERT(smo->smo_object != 0);
1834                 vdev_config_dirty(vd->vdev_top);
1835         }
1836
1837         bzero(&smlock, sizeof (smlock));
1838         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1839
1840         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1841             &smlock);
1842
1843         mutex_enter(&smlock);
1844
1845         mutex_enter(&vd->vdev_dtl_lock);
1846         space_map_walk(sm, space_map_add, &smsync);
1847         mutex_exit(&vd->vdev_dtl_lock);
1848
1849         space_map_truncate(smo, mos, tx);
1850         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1851         space_map_vacate(&smsync, NULL, NULL);
1852
1853         space_map_destroy(&smsync);
1854
1855         mutex_exit(&smlock);
1856         mutex_destroy(&smlock);
1857
1858         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1859         dmu_buf_will_dirty(db, tx);
1860         ASSERT3U(db->db_size, >=, sizeof (*smo));
1861         bcopy(smo, db->db_data, sizeof (*smo));
1862         dmu_buf_rele(db, FTAG);
1863
1864         dmu_tx_commit(tx);
1865 }
1866
1867 /*
1868  * Determine whether the specified vdev can be offlined/detached/removed
1869  * without losing data.
1870  */
1871 boolean_t
1872 vdev_dtl_required(vdev_t *vd)
1873 {
1874         spa_t *spa = vd->vdev_spa;
1875         vdev_t *tvd = vd->vdev_top;
1876         uint8_t cant_read = vd->vdev_cant_read;
1877         boolean_t required;
1878
1879         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1880
1881         if (vd == spa->spa_root_vdev || vd == tvd)
1882                 return (B_TRUE);
1883
1884         /*
1885          * Temporarily mark the device as unreadable, and then determine
1886          * whether this results in any DTL outages in the top-level vdev.
1887          * If not, we can safely offline/detach/remove the device.
1888          */
1889         vd->vdev_cant_read = B_TRUE;
1890         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1891         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1892         vd->vdev_cant_read = cant_read;
1893         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1894
1895         if (!required && zio_injection_enabled)
1896                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1897
1898         return (required);
1899 }
1900
1901 /*
1902  * Determine if resilver is needed, and if so the txg range.
1903  */
1904 boolean_t
1905 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1906 {
1907         boolean_t needed = B_FALSE;
1908         uint64_t thismin = UINT64_MAX;
1909         uint64_t thismax = 0;
1910
1911         if (vd->vdev_children == 0) {
1912                 mutex_enter(&vd->vdev_dtl_lock);
1913                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1914                     vdev_writeable(vd)) {
1915                         space_seg_t *ss;
1916
1917                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1918                         thismin = ss->ss_start - 1;
1919                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1920                         thismax = ss->ss_end;
1921                         needed = B_TRUE;
1922                 }
1923                 mutex_exit(&vd->vdev_dtl_lock);
1924         } else {
1925                 for (int c = 0; c < vd->vdev_children; c++) {
1926                         vdev_t *cvd = vd->vdev_child[c];
1927                         uint64_t cmin, cmax;
1928
1929                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1930                                 thismin = MIN(thismin, cmin);
1931                                 thismax = MAX(thismax, cmax);
1932                                 needed = B_TRUE;
1933                         }
1934                 }
1935         }
1936
1937         if (needed && minp) {
1938                 *minp = thismin;
1939                 *maxp = thismax;
1940         }
1941         return (needed);
1942 }
1943
1944 void
1945 vdev_load(vdev_t *vd)
1946 {
1947         /*
1948          * Recursively load all children.
1949          */
1950         for (int c = 0; c < vd->vdev_children; c++)
1951                 vdev_load(vd->vdev_child[c]);
1952
1953         /*
1954          * If this is a top-level vdev, initialize its metaslabs.
1955          */
1956         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1957             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1958             vdev_metaslab_init(vd, 0) != 0))
1959                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1960                     VDEV_AUX_CORRUPT_DATA);
1961
1962         /*
1963          * If this is a leaf vdev, load its DTL.
1964          */
1965         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1966                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1967                     VDEV_AUX_CORRUPT_DATA);
1968 }
1969
1970 /*
1971  * The special vdev case is used for hot spares and l2cache devices.  Its
1972  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1973  * we make sure that we can open the underlying device, then try to read the
1974  * label, and make sure that the label is sane and that it hasn't been
1975  * repurposed to another pool.
1976  */
1977 int
1978 vdev_validate_aux(vdev_t *vd)
1979 {
1980         nvlist_t *label;
1981         uint64_t guid, version;
1982         uint64_t state;
1983
1984         if (!vdev_readable(vd))
1985                 return (0);
1986
1987         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1988                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1989                     VDEV_AUX_CORRUPT_DATA);
1990                 return (-1);
1991         }
1992
1993         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1994             !SPA_VERSION_IS_SUPPORTED(version) ||
1995             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1996             guid != vd->vdev_guid ||
1997             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1998                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1999                     VDEV_AUX_CORRUPT_DATA);
2000                 nvlist_free(label);
2001                 return (-1);
2002         }
2003
2004         /*
2005          * We don't actually check the pool state here.  If it's in fact in
2006          * use by another pool, we update this fact on the fly when requested.
2007          */
2008         nvlist_free(label);
2009         return (0);
2010 }
2011
2012 void
2013 vdev_remove(vdev_t *vd, uint64_t txg)
2014 {
2015         spa_t *spa = vd->vdev_spa;
2016         objset_t *mos = spa->spa_meta_objset;
2017         dmu_tx_t *tx;
2018
2019         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2020
2021         if (vd->vdev_dtl_smo.smo_object) {
2022                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2023                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2024                 vd->vdev_dtl_smo.smo_object = 0;
2025         }
2026
2027         if (vd->vdev_ms != NULL) {
2028                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2029                         metaslab_t *msp = vd->vdev_ms[m];
2030
2031                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2032                                 continue;
2033
2034                         ASSERT0(msp->ms_smo.smo_alloc);
2035                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2036                         msp->ms_smo.smo_object = 0;
2037                 }
2038         }
2039
2040         if (vd->vdev_ms_array) {
2041                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2042                 vd->vdev_ms_array = 0;
2043                 vd->vdev_ms_shift = 0;
2044         }
2045         dmu_tx_commit(tx);
2046 }
2047
2048 void
2049 vdev_sync_done(vdev_t *vd, uint64_t txg)
2050 {
2051         metaslab_t *msp;
2052         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2053
2054         ASSERT(!vd->vdev_ishole);
2055
2056         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2057                 metaslab_sync_done(msp, txg);
2058
2059         if (reassess)
2060                 metaslab_sync_reassess(vd->vdev_mg);
2061 }
2062
2063 void
2064 vdev_sync(vdev_t *vd, uint64_t txg)
2065 {
2066         spa_t *spa = vd->vdev_spa;
2067         vdev_t *lvd;
2068         metaslab_t *msp;
2069         dmu_tx_t *tx;
2070
2071         ASSERT(!vd->vdev_ishole);
2072
2073         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2074                 ASSERT(vd == vd->vdev_top);
2075                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2076                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2077                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2078                 ASSERT(vd->vdev_ms_array != 0);
2079                 vdev_config_dirty(vd);
2080                 dmu_tx_commit(tx);
2081         }
2082
2083         /*
2084          * Remove the metadata associated with this vdev once it's empty.
2085          */
2086         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2087                 vdev_remove(vd, txg);
2088
2089         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2090                 metaslab_sync(msp, txg);
2091                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2092         }
2093
2094         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2095                 vdev_dtl_sync(lvd, txg);
2096
2097         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2098 }
2099
2100 uint64_t
2101 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2102 {
2103         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2104 }
2105
2106 /*
2107  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2108  * not be opened, and no I/O is attempted.
2109  */
2110 int
2111 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2112 {
2113         vdev_t *vd, *tvd;
2114
2115         spa_vdev_state_enter(spa, SCL_NONE);
2116
2117         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2118                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2119
2120         if (!vd->vdev_ops->vdev_op_leaf)
2121                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2122
2123         tvd = vd->vdev_top;
2124
2125         /*
2126          * We don't directly use the aux state here, but if we do a
2127          * vdev_reopen(), we need this value to be present to remember why we
2128          * were faulted.
2129          */
2130         vd->vdev_label_aux = aux;
2131
2132         /*
2133          * Faulted state takes precedence over degraded.
2134          */
2135         vd->vdev_delayed_close = B_FALSE;
2136         vd->vdev_faulted = 1ULL;
2137         vd->vdev_degraded = 0ULL;
2138         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2139
2140         /*
2141          * If this device has the only valid copy of the data, then
2142          * back off and simply mark the vdev as degraded instead.
2143          */
2144         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2145                 vd->vdev_degraded = 1ULL;
2146                 vd->vdev_faulted = 0ULL;
2147
2148                 /*
2149                  * If we reopen the device and it's not dead, only then do we
2150                  * mark it degraded.
2151                  */
2152                 vdev_reopen(tvd);
2153
2154                 if (vdev_readable(vd))
2155                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2156         }
2157
2158         return (spa_vdev_state_exit(spa, vd, 0));
2159 }
2160
2161 /*
2162  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2163  * user that something is wrong.  The vdev continues to operate as normal as far
2164  * as I/O is concerned.
2165  */
2166 int
2167 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2168 {
2169         vdev_t *vd;
2170
2171         spa_vdev_state_enter(spa, SCL_NONE);
2172
2173         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2174                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2175
2176         if (!vd->vdev_ops->vdev_op_leaf)
2177                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2178
2179         /*
2180          * If the vdev is already faulted, then don't do anything.
2181          */
2182         if (vd->vdev_faulted || vd->vdev_degraded)
2183                 return (spa_vdev_state_exit(spa, NULL, 0));
2184
2185         vd->vdev_degraded = 1ULL;
2186         if (!vdev_is_dead(vd))
2187                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2188                     aux);
2189
2190         return (spa_vdev_state_exit(spa, vd, 0));
2191 }
2192
2193 /*
2194  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2195  * any attached spare device should be detached when the device finishes
2196  * resilvering.  Second, the online should be treated like a 'test' online case,
2197  * so no FMA events are generated if the device fails to open.
2198  */
2199 int
2200 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2201 {
2202         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2203
2204         spa_vdev_state_enter(spa, SCL_NONE);
2205
2206         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2207                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2208
2209         if (!vd->vdev_ops->vdev_op_leaf)
2210                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2211
2212         tvd = vd->vdev_top;
2213         vd->vdev_offline = B_FALSE;
2214         vd->vdev_tmpoffline = B_FALSE;
2215         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2216         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2217
2218         /* XXX - L2ARC 1.0 does not support expansion */
2219         if (!vd->vdev_aux) {
2220                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2221                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2222         }
2223
2224         vdev_reopen(tvd);
2225         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2226
2227         if (!vd->vdev_aux) {
2228                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2229                         pvd->vdev_expanding = B_FALSE;
2230         }
2231
2232         if (newstate)
2233                 *newstate = vd->vdev_state;
2234         if ((flags & ZFS_ONLINE_UNSPARE) &&
2235             !vdev_is_dead(vd) && vd->vdev_parent &&
2236             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2237             vd->vdev_parent->vdev_child[0] == vd)
2238                 vd->vdev_unspare = B_TRUE;
2239
2240         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2241
2242                 /* XXX - L2ARC 1.0 does not support expansion */
2243                 if (vd->vdev_aux)
2244                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2245                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2246         }
2247         return (spa_vdev_state_exit(spa, vd, 0));
2248 }
2249
2250 static int
2251 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2252 {
2253         vdev_t *vd, *tvd;
2254         int error = 0;
2255         uint64_t generation;
2256         metaslab_group_t *mg;
2257
2258 top:
2259         spa_vdev_state_enter(spa, SCL_ALLOC);
2260
2261         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2262                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2263
2264         if (!vd->vdev_ops->vdev_op_leaf)
2265                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2266
2267         tvd = vd->vdev_top;
2268         mg = tvd->vdev_mg;
2269         generation = spa->spa_config_generation + 1;
2270
2271         /*
2272          * If the device isn't already offline, try to offline it.
2273          */
2274         if (!vd->vdev_offline) {
2275                 /*
2276                  * If this device has the only valid copy of some data,
2277                  * don't allow it to be offlined. Log devices are always
2278                  * expendable.
2279                  */
2280                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2281                     vdev_dtl_required(vd))
2282                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2283
2284                 /*
2285                  * If the top-level is a slog and it has had allocations
2286                  * then proceed.  We check that the vdev's metaslab group
2287                  * is not NULL since it's possible that we may have just
2288                  * added this vdev but not yet initialized its metaslabs.
2289                  */
2290                 if (tvd->vdev_islog && mg != NULL) {
2291                         /*
2292                          * Prevent any future allocations.
2293                          */
2294                         metaslab_group_passivate(mg);
2295                         (void) spa_vdev_state_exit(spa, vd, 0);
2296
2297                         error = spa_offline_log(spa);
2298
2299                         spa_vdev_state_enter(spa, SCL_ALLOC);
2300
2301                         /*
2302                          * Check to see if the config has changed.
2303                          */
2304                         if (error || generation != spa->spa_config_generation) {
2305                                 metaslab_group_activate(mg);
2306                                 if (error)
2307                                         return (spa_vdev_state_exit(spa,
2308                                             vd, error));
2309                                 (void) spa_vdev_state_exit(spa, vd, 0);
2310                                 goto top;
2311                         }
2312                         ASSERT0(tvd->vdev_stat.vs_alloc);
2313                 }
2314
2315                 /*
2316                  * Offline this device and reopen its top-level vdev.
2317                  * If the top-level vdev is a log device then just offline
2318                  * it. Otherwise, if this action results in the top-level
2319                  * vdev becoming unusable, undo it and fail the request.
2320                  */
2321                 vd->vdev_offline = B_TRUE;
2322                 vdev_reopen(tvd);
2323
2324                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2325                     vdev_is_dead(tvd)) {
2326                         vd->vdev_offline = B_FALSE;
2327                         vdev_reopen(tvd);
2328                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2329                 }
2330
2331                 /*
2332                  * Add the device back into the metaslab rotor so that
2333                  * once we online the device it's open for business.
2334                  */
2335                 if (tvd->vdev_islog && mg != NULL)
2336                         metaslab_group_activate(mg);
2337         }
2338
2339         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2340
2341         return (spa_vdev_state_exit(spa, vd, 0));
2342 }
2343
2344 int
2345 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2346 {
2347         int error;
2348
2349         mutex_enter(&spa->spa_vdev_top_lock);
2350         error = vdev_offline_locked(spa, guid, flags);
2351         mutex_exit(&spa->spa_vdev_top_lock);
2352
2353         return (error);
2354 }
2355
2356 /*
2357  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2358  * vdev_offline(), we assume the spa config is locked.  We also clear all
2359  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2360  */
2361 void
2362 vdev_clear(spa_t *spa, vdev_t *vd)
2363 {
2364         vdev_t *rvd = spa->spa_root_vdev;
2365
2366         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2367
2368         if (vd == NULL)
2369                 vd = rvd;
2370
2371         vd->vdev_stat.vs_read_errors = 0;
2372         vd->vdev_stat.vs_write_errors = 0;
2373         vd->vdev_stat.vs_checksum_errors = 0;
2374
2375         for (int c = 0; c < vd->vdev_children; c++)
2376                 vdev_clear(spa, vd->vdev_child[c]);
2377
2378         /*
2379          * If we're in the FAULTED state or have experienced failed I/O, then
2380          * clear the persistent state and attempt to reopen the device.  We
2381          * also mark the vdev config dirty, so that the new faulted state is
2382          * written out to disk.
2383          */
2384         if (vd->vdev_faulted || vd->vdev_degraded ||
2385             !vdev_readable(vd) || !vdev_writeable(vd)) {
2386
2387                 /*
2388                  * When reopening in reponse to a clear event, it may be due to
2389                  * a fmadm repair request.  In this case, if the device is
2390                  * still broken, we want to still post the ereport again.
2391                  */
2392                 vd->vdev_forcefault = B_TRUE;
2393
2394                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2395                 vd->vdev_cant_read = B_FALSE;
2396                 vd->vdev_cant_write = B_FALSE;
2397
2398                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2399
2400                 vd->vdev_forcefault = B_FALSE;
2401
2402                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2403                         vdev_state_dirty(vd->vdev_top);
2404
2405                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2406                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2407
2408                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2409         }
2410
2411         /*
2412          * When clearing a FMA-diagnosed fault, we always want to
2413          * unspare the device, as we assume that the original spare was
2414          * done in response to the FMA fault.
2415          */
2416         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2417             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2418             vd->vdev_parent->vdev_child[0] == vd)
2419                 vd->vdev_unspare = B_TRUE;
2420 }
2421
2422 boolean_t
2423 vdev_is_dead(vdev_t *vd)
2424 {
2425         /*
2426          * Holes and missing devices are always considered "dead".
2427          * This simplifies the code since we don't have to check for
2428          * these types of devices in the various code paths.
2429          * Instead we rely on the fact that we skip over dead devices
2430          * before issuing I/O to them.
2431          */
2432         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2433             vd->vdev_ops == &vdev_missing_ops);
2434 }
2435
2436 boolean_t
2437 vdev_readable(vdev_t *vd)
2438 {
2439         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2440 }
2441
2442 boolean_t
2443 vdev_writeable(vdev_t *vd)
2444 {
2445         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2446 }
2447
2448 boolean_t
2449 vdev_allocatable(vdev_t *vd)
2450 {
2451         uint64_t state = vd->vdev_state;
2452
2453         /*
2454          * We currently allow allocations from vdevs which may be in the
2455          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2456          * fails to reopen then we'll catch it later when we're holding
2457          * the proper locks.  Note that we have to get the vdev state
2458          * in a local variable because although it changes atomically,
2459          * we're asking two separate questions about it.
2460          */
2461         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2462             !vd->vdev_cant_write && !vd->vdev_ishole);
2463 }
2464
2465 boolean_t
2466 vdev_accessible(vdev_t *vd, zio_t *zio)
2467 {
2468         ASSERT(zio->io_vd == vd);
2469
2470         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2471                 return (B_FALSE);
2472
2473         if (zio->io_type == ZIO_TYPE_READ)
2474                 return (!vd->vdev_cant_read);
2475
2476         if (zio->io_type == ZIO_TYPE_WRITE)
2477                 return (!vd->vdev_cant_write);
2478
2479         return (B_TRUE);
2480 }
2481
2482 /*
2483  * Get statistics for the given vdev.
2484  */
2485 void
2486 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2487 {
2488         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2489
2490         mutex_enter(&vd->vdev_stat_lock);
2491         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2492         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2493         vs->vs_state = vd->vdev_state;
2494         vs->vs_rsize = vdev_get_min_asize(vd);
2495         if (vd->vdev_ops->vdev_op_leaf)
2496                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2497         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2498         mutex_exit(&vd->vdev_stat_lock);
2499
2500         /*
2501          * If we're getting stats on the root vdev, aggregate the I/O counts
2502          * over all top-level vdevs (i.e. the direct children of the root).
2503          */
2504         if (vd == rvd) {
2505                 for (int c = 0; c < rvd->vdev_children; c++) {
2506                         vdev_t *cvd = rvd->vdev_child[c];
2507                         vdev_stat_t *cvs = &cvd->vdev_stat;
2508
2509                         mutex_enter(&vd->vdev_stat_lock);
2510                         for (int t = 0; t < ZIO_TYPES; t++) {
2511                                 vs->vs_ops[t] += cvs->vs_ops[t];
2512                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2513                         }
2514                         cvs->vs_scan_removing = cvd->vdev_removing;
2515                         mutex_exit(&vd->vdev_stat_lock);
2516                 }
2517         }
2518 }
2519
2520 void
2521 vdev_clear_stats(vdev_t *vd)
2522 {
2523         mutex_enter(&vd->vdev_stat_lock);
2524         vd->vdev_stat.vs_space = 0;
2525         vd->vdev_stat.vs_dspace = 0;
2526         vd->vdev_stat.vs_alloc = 0;
2527         mutex_exit(&vd->vdev_stat_lock);
2528 }
2529
2530 void
2531 vdev_scan_stat_init(vdev_t *vd)
2532 {
2533         vdev_stat_t *vs = &vd->vdev_stat;
2534
2535         for (int c = 0; c < vd->vdev_children; c++)
2536                 vdev_scan_stat_init(vd->vdev_child[c]);
2537
2538         mutex_enter(&vd->vdev_stat_lock);
2539         vs->vs_scan_processed = 0;
2540         mutex_exit(&vd->vdev_stat_lock);
2541 }
2542
2543 void
2544 vdev_stat_update(zio_t *zio, uint64_t psize)
2545 {
2546         spa_t *spa = zio->io_spa;
2547         vdev_t *rvd = spa->spa_root_vdev;
2548         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2549         vdev_t *pvd;
2550         uint64_t txg = zio->io_txg;
2551         vdev_stat_t *vs = &vd->vdev_stat;
2552         zio_type_t type = zio->io_type;
2553         int flags = zio->io_flags;
2554
2555         /*
2556          * If this i/o is a gang leader, it didn't do any actual work.
2557          */
2558         if (zio->io_gang_tree)
2559                 return;
2560
2561         if (zio->io_error == 0) {
2562                 /*
2563                  * If this is a root i/o, don't count it -- we've already
2564                  * counted the top-level vdevs, and vdev_get_stats() will
2565                  * aggregate them when asked.  This reduces contention on
2566                  * the root vdev_stat_lock and implicitly handles blocks
2567                  * that compress away to holes, for which there is no i/o.
2568                  * (Holes never create vdev children, so all the counters
2569                  * remain zero, which is what we want.)
2570                  *
2571                  * Note: this only applies to successful i/o (io_error == 0)
2572                  * because unlike i/o counts, errors are not additive.
2573                  * When reading a ditto block, for example, failure of
2574                  * one top-level vdev does not imply a root-level error.
2575                  */
2576                 if (vd == rvd)
2577                         return;
2578
2579                 ASSERT(vd == zio->io_vd);
2580
2581                 if (flags & ZIO_FLAG_IO_BYPASS)
2582                         return;
2583
2584                 mutex_enter(&vd->vdev_stat_lock);
2585
2586                 if (flags & ZIO_FLAG_IO_REPAIR) {
2587                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2588                                 dsl_scan_phys_t *scn_phys =
2589                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2590                                 uint64_t *processed = &scn_phys->scn_processed;
2591
2592                                 /* XXX cleanup? */
2593                                 if (vd->vdev_ops->vdev_op_leaf)
2594                                         atomic_add_64(processed, psize);
2595                                 vs->vs_scan_processed += psize;
2596                         }
2597
2598                         if (flags & ZIO_FLAG_SELF_HEAL)
2599                                 vs->vs_self_healed += psize;
2600                 }
2601
2602                 vs->vs_ops[type]++;
2603                 vs->vs_bytes[type] += psize;
2604
2605                 mutex_exit(&vd->vdev_stat_lock);
2606                 return;
2607         }
2608
2609         if (flags & ZIO_FLAG_SPECULATIVE)
2610                 return;
2611
2612         /*
2613          * If this is an I/O error that is going to be retried, then ignore the
2614          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2615          * hard errors, when in reality they can happen for any number of
2616          * innocuous reasons (bus resets, MPxIO link failure, etc).
2617          */
2618         if (zio->io_error == EIO &&
2619             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2620                 return;
2621
2622         /*
2623          * Intent logs writes won't propagate their error to the root
2624          * I/O so don't mark these types of failures as pool-level
2625          * errors.
2626          */
2627         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2628                 return;
2629
2630         mutex_enter(&vd->vdev_stat_lock);
2631         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2632                 if (zio->io_error == ECKSUM)
2633                         vs->vs_checksum_errors++;
2634                 else
2635                         vs->vs_read_errors++;
2636         }
2637         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2638                 vs->vs_write_errors++;
2639         mutex_exit(&vd->vdev_stat_lock);
2640
2641         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2642             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2643             (flags & ZIO_FLAG_SCAN_THREAD) ||
2644             spa->spa_claiming)) {
2645                 /*
2646                  * This is either a normal write (not a repair), or it's
2647                  * a repair induced by the scrub thread, or it's a repair
2648                  * made by zil_claim() during spa_load() in the first txg.
2649                  * In the normal case, we commit the DTL change in the same
2650                  * txg as the block was born.  In the scrub-induced repair
2651                  * case, we know that scrubs run in first-pass syncing context,
2652                  * so we commit the DTL change in spa_syncing_txg(spa).
2653                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2654                  *
2655                  * We currently do not make DTL entries for failed spontaneous
2656                  * self-healing writes triggered by normal (non-scrubbing)
2657                  * reads, because we have no transactional context in which to
2658                  * do so -- and it's not clear that it'd be desirable anyway.
2659                  */
2660                 if (vd->vdev_ops->vdev_op_leaf) {
2661                         uint64_t commit_txg = txg;
2662                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2663                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2664                                 ASSERT(spa_sync_pass(spa) == 1);
2665                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2666                                 commit_txg = spa_syncing_txg(spa);
2667                         } else if (spa->spa_claiming) {
2668                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2669                                 commit_txg = spa_first_txg(spa);
2670                         }
2671                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2672                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2673                                 return;
2674                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2675                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2676                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2677                 }
2678                 if (vd != rvd)
2679                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2680         }
2681 }
2682
2683 /*
2684  * Update the in-core space usage stats for this vdev, its metaslab class,
2685  * and the root vdev.
2686  */
2687 void
2688 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2689     int64_t space_delta)
2690 {
2691         int64_t dspace_delta = space_delta;
2692         spa_t *spa = vd->vdev_spa;
2693         vdev_t *rvd = spa->spa_root_vdev;
2694         metaslab_group_t *mg = vd->vdev_mg;
2695         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2696
2697         ASSERT(vd == vd->vdev_top);
2698
2699         /*
2700          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2701          * factor.  We must calculate this here and not at the root vdev
2702          * because the root vdev's psize-to-asize is simply the max of its
2703          * childrens', thus not accurate enough for us.
2704          */
2705         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2706         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2707         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2708             vd->vdev_deflate_ratio;
2709
2710         mutex_enter(&vd->vdev_stat_lock);
2711         vd->vdev_stat.vs_alloc += alloc_delta;
2712         vd->vdev_stat.vs_space += space_delta;
2713         vd->vdev_stat.vs_dspace += dspace_delta;
2714         mutex_exit(&vd->vdev_stat_lock);
2715
2716         if (mc == spa_normal_class(spa)) {
2717                 mutex_enter(&rvd->vdev_stat_lock);
2718                 rvd->vdev_stat.vs_alloc += alloc_delta;
2719                 rvd->vdev_stat.vs_space += space_delta;
2720                 rvd->vdev_stat.vs_dspace += dspace_delta;
2721                 mutex_exit(&rvd->vdev_stat_lock);
2722         }
2723
2724         if (mc != NULL) {
2725                 ASSERT(rvd == vd->vdev_parent);
2726                 ASSERT(vd->vdev_ms_count != 0);
2727
2728                 metaslab_class_space_update(mc,
2729                     alloc_delta, defer_delta, space_delta, dspace_delta);
2730         }
2731 }
2732
2733 /*
2734  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2735  * so that it will be written out next time the vdev configuration is synced.
2736  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2737  */
2738 void
2739 vdev_config_dirty(vdev_t *vd)
2740 {
2741         spa_t *spa = vd->vdev_spa;
2742         vdev_t *rvd = spa->spa_root_vdev;
2743         int c;
2744
2745         ASSERT(spa_writeable(spa));
2746
2747         /*
2748          * If this is an aux vdev (as with l2cache and spare devices), then we
2749          * update the vdev config manually and set the sync flag.
2750          */
2751         if (vd->vdev_aux != NULL) {
2752                 spa_aux_vdev_t *sav = vd->vdev_aux;
2753                 nvlist_t **aux;
2754                 uint_t naux;
2755
2756                 for (c = 0; c < sav->sav_count; c++) {
2757                         if (sav->sav_vdevs[c] == vd)
2758                                 break;
2759                 }
2760
2761                 if (c == sav->sav_count) {
2762                         /*
2763                          * We're being removed.  There's nothing more to do.
2764                          */
2765                         ASSERT(sav->sav_sync == B_TRUE);
2766                         return;
2767                 }
2768
2769                 sav->sav_sync = B_TRUE;
2770
2771                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2772                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2773                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2774                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2775                 }
2776
2777                 ASSERT(c < naux);
2778
2779                 /*
2780                  * Setting the nvlist in the middle if the array is a little
2781                  * sketchy, but it will work.
2782                  */
2783                 nvlist_free(aux[c]);
2784                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2785
2786                 return;
2787         }
2788
2789         /*
2790          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2791          * must either hold SCL_CONFIG as writer, or must be the sync thread
2792          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2793          * so this is sufficient to ensure mutual exclusion.
2794          */
2795         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2796             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2797             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2798
2799         if (vd == rvd) {
2800                 for (c = 0; c < rvd->vdev_children; c++)
2801                         vdev_config_dirty(rvd->vdev_child[c]);
2802         } else {
2803                 ASSERT(vd == vd->vdev_top);
2804
2805                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2806                     !vd->vdev_ishole)
2807                         list_insert_head(&spa->spa_config_dirty_list, vd);
2808         }
2809 }
2810
2811 void
2812 vdev_config_clean(vdev_t *vd)
2813 {
2814         spa_t *spa = vd->vdev_spa;
2815
2816         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2817             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2818             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2819
2820         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2821         list_remove(&spa->spa_config_dirty_list, vd);
2822 }
2823
2824 /*
2825  * Mark a top-level vdev's state as dirty, so that the next pass of
2826  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2827  * the state changes from larger config changes because they require
2828  * much less locking, and are often needed for administrative actions.
2829  */
2830 void
2831 vdev_state_dirty(vdev_t *vd)
2832 {
2833         spa_t *spa = vd->vdev_spa;
2834
2835         ASSERT(spa_writeable(spa));
2836         ASSERT(vd == vd->vdev_top);
2837
2838         /*
2839          * The state list is protected by the SCL_STATE lock.  The caller
2840          * must either hold SCL_STATE as writer, or must be the sync thread
2841          * (which holds SCL_STATE as reader).  There's only one sync thread,
2842          * so this is sufficient to ensure mutual exclusion.
2843          */
2844         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2845             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2846             spa_config_held(spa, SCL_STATE, RW_READER)));
2847
2848         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2849                 list_insert_head(&spa->spa_state_dirty_list, vd);
2850 }
2851
2852 void
2853 vdev_state_clean(vdev_t *vd)
2854 {
2855         spa_t *spa = vd->vdev_spa;
2856
2857         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2858             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2859             spa_config_held(spa, SCL_STATE, RW_READER)));
2860
2861         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2862         list_remove(&spa->spa_state_dirty_list, vd);
2863 }
2864
2865 /*
2866  * Propagate vdev state up from children to parent.
2867  */
2868 void
2869 vdev_propagate_state(vdev_t *vd)
2870 {
2871         spa_t *spa = vd->vdev_spa;
2872         vdev_t *rvd = spa->spa_root_vdev;
2873         int degraded = 0, faulted = 0;
2874         int corrupted = 0;
2875         vdev_t *child;
2876
2877         if (vd->vdev_children > 0) {
2878                 for (int c = 0; c < vd->vdev_children; c++) {
2879                         child = vd->vdev_child[c];
2880
2881                         /*
2882                          * Don't factor holes into the decision.
2883                          */
2884                         if (child->vdev_ishole)
2885                                 continue;
2886
2887                         if (!vdev_readable(child) ||
2888                             (!vdev_writeable(child) && spa_writeable(spa))) {
2889                                 /*
2890                                  * Root special: if there is a top-level log
2891                                  * device, treat the root vdev as if it were
2892                                  * degraded.
2893                                  */
2894                                 if (child->vdev_islog && vd == rvd)
2895                                         degraded++;
2896                                 else
2897                                         faulted++;
2898                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2899                                 degraded++;
2900                         }
2901
2902                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2903                                 corrupted++;
2904                 }
2905
2906                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2907
2908                 /*
2909                  * Root special: if there is a top-level vdev that cannot be
2910                  * opened due to corrupted metadata, then propagate the root
2911                  * vdev's aux state as 'corrupt' rather than 'insufficient
2912                  * replicas'.
2913                  */
2914                 if (corrupted && vd == rvd &&
2915                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2916                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2917                             VDEV_AUX_CORRUPT_DATA);
2918         }
2919
2920         if (vd->vdev_parent)
2921                 vdev_propagate_state(vd->vdev_parent);
2922 }
2923
2924 /*
2925  * Set a vdev's state.  If this is during an open, we don't update the parent
2926  * state, because we're in the process of opening children depth-first.
2927  * Otherwise, we propagate the change to the parent.
2928  *
2929  * If this routine places a device in a faulted state, an appropriate ereport is
2930  * generated.
2931  */
2932 void
2933 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2934 {
2935         uint64_t save_state;
2936         spa_t *spa = vd->vdev_spa;
2937
2938         if (state == vd->vdev_state) {
2939                 vd->vdev_stat.vs_aux = aux;
2940                 return;
2941         }
2942
2943         save_state = vd->vdev_state;
2944
2945         vd->vdev_state = state;
2946         vd->vdev_stat.vs_aux = aux;
2947
2948         /*
2949          * If we are setting the vdev state to anything but an open state, then
2950          * always close the underlying device unless the device has requested
2951          * a delayed close (i.e. we're about to remove or fault the device).
2952          * Otherwise, we keep accessible but invalid devices open forever.
2953          * We don't call vdev_close() itself, because that implies some extra
2954          * checks (offline, etc) that we don't want here.  This is limited to
2955          * leaf devices, because otherwise closing the device will affect other
2956          * children.
2957          */
2958         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2959             vd->vdev_ops->vdev_op_leaf)
2960                 vd->vdev_ops->vdev_op_close(vd);
2961
2962         /*
2963          * If we have brought this vdev back into service, we need
2964          * to notify fmd so that it can gracefully repair any outstanding
2965          * cases due to a missing device.  We do this in all cases, even those
2966          * that probably don't correlate to a repaired fault.  This is sure to
2967          * catch all cases, and we let the zfs-retire agent sort it out.  If
2968          * this is a transient state it's OK, as the retire agent will
2969          * double-check the state of the vdev before repairing it.
2970          */
2971         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2972             vd->vdev_prevstate != state)
2973                 zfs_post_state_change(spa, vd);
2974
2975         if (vd->vdev_removed &&
2976             state == VDEV_STATE_CANT_OPEN &&
2977             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2978                 /*
2979                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2980                  * device was previously marked removed and someone attempted to
2981                  * reopen it.  If this failed due to a nonexistent device, then
2982                  * keep the device in the REMOVED state.  We also let this be if
2983                  * it is one of our special test online cases, which is only
2984                  * attempting to online the device and shouldn't generate an FMA
2985                  * fault.
2986                  */
2987                 vd->vdev_state = VDEV_STATE_REMOVED;
2988                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2989         } else if (state == VDEV_STATE_REMOVED) {
2990                 vd->vdev_removed = B_TRUE;
2991         } else if (state == VDEV_STATE_CANT_OPEN) {
2992                 /*
2993                  * If we fail to open a vdev during an import or recovery, we
2994                  * mark it as "not available", which signifies that it was
2995                  * never there to begin with.  Failure to open such a device
2996                  * is not considered an error.
2997                  */
2998                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2999                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3000                     vd->vdev_ops->vdev_op_leaf)
3001                         vd->vdev_not_present = 1;
3002
3003                 /*
3004                  * Post the appropriate ereport.  If the 'prevstate' field is
3005                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3006                  * that this is part of a vdev_reopen().  In this case, we don't
3007                  * want to post the ereport if the device was already in the
3008                  * CANT_OPEN state beforehand.
3009                  *
3010                  * If the 'checkremove' flag is set, then this is an attempt to
3011                  * online the device in response to an insertion event.  If we
3012                  * hit this case, then we have detected an insertion event for a
3013                  * faulted or offline device that wasn't in the removed state.
3014                  * In this scenario, we don't post an ereport because we are
3015                  * about to replace the device, or attempt an online with
3016                  * vdev_forcefault, which will generate the fault for us.
3017                  */
3018                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3019                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3020                     vd != spa->spa_root_vdev) {
3021                         const char *class;
3022
3023                         switch (aux) {
3024                         case VDEV_AUX_OPEN_FAILED:
3025                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3026                                 break;
3027                         case VDEV_AUX_CORRUPT_DATA:
3028                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3029                                 break;
3030                         case VDEV_AUX_NO_REPLICAS:
3031                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3032                                 break;
3033                         case VDEV_AUX_BAD_GUID_SUM:
3034                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3035                                 break;
3036                         case VDEV_AUX_TOO_SMALL:
3037                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3038                                 break;
3039                         case VDEV_AUX_BAD_LABEL:
3040                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3041                                 break;
3042                         default:
3043                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3044                         }
3045
3046                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3047                 }
3048
3049                 /* Erase any notion of persistent removed state */
3050                 vd->vdev_removed = B_FALSE;
3051         } else {
3052                 vd->vdev_removed = B_FALSE;
3053         }
3054
3055         if (!isopen && vd->vdev_parent)
3056                 vdev_propagate_state(vd->vdev_parent);
3057 }
3058
3059 /*
3060  * Check the vdev configuration to ensure that it's capable of supporting
3061  * a root pool.
3062  *
3063  * On Solaris, we do not support RAID-Z or partial configuration.  In
3064  * addition, only a single top-level vdev is allowed and none of the
3065  * leaves can be wholedisks.
3066  *
3067  * For FreeBSD, we can boot from any configuration. There is a
3068  * limitation that the boot filesystem must be either uncompressed or
3069  * compresses with lzjb compression but I'm not sure how to enforce
3070  * that here.
3071  */
3072 boolean_t
3073 vdev_is_bootable(vdev_t *vd)
3074 {
3075 #ifdef sun
3076         if (!vd->vdev_ops->vdev_op_leaf) {
3077                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3078
3079                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3080                     vd->vdev_children > 1) {
3081                         return (B_FALSE);
3082                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3083                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3084                         return (B_FALSE);
3085                 }
3086         } else if (vd->vdev_wholedisk == 1) {
3087                 return (B_FALSE);
3088         }
3089
3090         for (int c = 0; c < vd->vdev_children; c++) {
3091                 if (!vdev_is_bootable(vd->vdev_child[c]))
3092                         return (B_FALSE);
3093         }
3094 #endif  /* sun */
3095         return (B_TRUE);
3096 }
3097
3098 /*
3099  * Load the state from the original vdev tree (ovd) which
3100  * we've retrieved from the MOS config object. If the original
3101  * vdev was offline or faulted then we transfer that state to the
3102  * device in the current vdev tree (nvd).
3103  */
3104 void
3105 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3106 {
3107         spa_t *spa = nvd->vdev_spa;
3108
3109         ASSERT(nvd->vdev_top->vdev_islog);
3110         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3111         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3112
3113         for (int c = 0; c < nvd->vdev_children; c++)
3114                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3115
3116         if (nvd->vdev_ops->vdev_op_leaf) {
3117                 /*
3118                  * Restore the persistent vdev state
3119                  */
3120                 nvd->vdev_offline = ovd->vdev_offline;
3121                 nvd->vdev_faulted = ovd->vdev_faulted;
3122                 nvd->vdev_degraded = ovd->vdev_degraded;
3123                 nvd->vdev_removed = ovd->vdev_removed;
3124         }
3125 }
3126
3127 /*
3128  * Determine if a log device has valid content.  If the vdev was
3129  * removed or faulted in the MOS config then we know that
3130  * the content on the log device has already been written to the pool.
3131  */
3132 boolean_t
3133 vdev_log_state_valid(vdev_t *vd)
3134 {
3135         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3136             !vd->vdev_removed)
3137                 return (B_TRUE);
3138
3139         for (int c = 0; c < vd->vdev_children; c++)
3140                 if (vdev_log_state_valid(vd->vdev_child[c]))
3141                         return (B_TRUE);
3142
3143         return (B_FALSE);
3144 }
3145
3146 /*
3147  * Expand a vdev if possible.
3148  */
3149 void
3150 vdev_expand(vdev_t *vd, uint64_t txg)
3151 {
3152         ASSERT(vd->vdev_top == vd);
3153         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3154
3155         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3156                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3157                 vdev_config_dirty(vd);
3158         }
3159 }
3160
3161 /*
3162  * Split a vdev.
3163  */
3164 void
3165 vdev_split(vdev_t *vd)
3166 {
3167         vdev_t *cvd, *pvd = vd->vdev_parent;
3168
3169         vdev_remove_child(pvd, vd);
3170         vdev_compact_children(pvd);
3171
3172         cvd = pvd->vdev_child[0];
3173         if (pvd->vdev_children == 1) {
3174                 vdev_remove_parent(cvd);
3175                 cvd->vdev_splitting = B_TRUE;
3176         }
3177         vdev_propagate_state(cvd);
3178 }
3179
3180 void
3181 vdev_deadman(vdev_t *vd)
3182 {
3183         for (int c = 0; c < vd->vdev_children; c++) {
3184                 vdev_t *cvd = vd->vdev_child[c];
3185
3186                 vdev_deadman(cvd);
3187         }
3188
3189         if (vd->vdev_ops->vdev_op_leaf) {
3190                 vdev_queue_t *vq = &vd->vdev_queue;
3191
3192                 mutex_enter(&vq->vq_lock);
3193                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3194                         spa_t *spa = vd->vdev_spa;
3195                         zio_t *fio;
3196                         uint64_t delta;
3197
3198                         /*
3199                          * Look at the head of all the pending queues,
3200                          * if any I/O has been outstanding for longer than
3201                          * the spa_deadman_synctime we panic the system.
3202                          */
3203                         fio = avl_first(&vq->vq_pending_tree);
3204                         delta = gethrtime() - fio->io_timestamp;
3205                         if (delta > spa_deadman_synctime(spa)) {
3206                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3207                                     "delta %lluns, last io %lluns",
3208                                     fio->io_timestamp, delta,
3209                                     vq->vq_io_complete_ts);
3210                                 fm_panic("I/O to pool '%s' appears to be "
3211                                     "hung on vdev guid %llu at '%s'.",
3212                                     spa_name(spa),
3213                                     (long long unsigned int) vd->vdev_guid,
3214                                     vd->vdev_path);
3215                         }
3216                 }
3217                 mutex_exit(&vq->vq_lock);
3218         }
3219 }