]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r258717: MFV r258371,r258372: 4101 metaslab_debug should allow for
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /**
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *
65  * On pool creation or the addition of a new top-leve vdev, ZFS will
66  * bump the ashift of the top-level vdev to 2048.
67  *
68  * Example: one or more 512B emulation child vdevs
69  *          child->vdev_ashift = 9 (512 bytes)
70  *          child->vdev_physical_ashift = 12 (4096 bytes)
71  *          zfs_max_auto_ashift = 13 (8192 bytes)
72  *
73  * On pool creation or the addition of a new top-leve vdev, ZFS will
74  * bump the ashift of the top-level vdev to 4096.
75  */
76 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
77
78 static int
79 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
80 {
81         uint64_t val;
82         int err;
83
84         val = zfs_max_auto_ashift;
85         err = sysctl_handle_64(oidp, &val, 0, req);
86         if (err != 0 || req->newptr == NULL)
87                 return (err);
88
89         if (val > SPA_MAXASHIFT)
90                 val = SPA_MAXASHIFT;
91
92         zfs_max_auto_ashift = val;
93
94         return (0);
95 }
96 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
97     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
98     sysctl_vfs_zfs_max_auto_ashift, "QU",
99     "Cap on logical -> physical ashift adjustment on new top-level vdevs.");
100
101 static vdev_ops_t *vdev_ops_table[] = {
102         &vdev_root_ops,
103         &vdev_raidz_ops,
104         &vdev_mirror_ops,
105         &vdev_replacing_ops,
106         &vdev_spare_ops,
107 #ifdef _KERNEL
108         &vdev_geom_ops,
109 #else
110         &vdev_disk_ops,
111 #endif
112         &vdev_file_ops,
113         &vdev_missing_ops,
114         &vdev_hole_ops,
115         NULL
116 };
117
118
119 /*
120  * Given a vdev type, return the appropriate ops vector.
121  */
122 static vdev_ops_t *
123 vdev_getops(const char *type)
124 {
125         vdev_ops_t *ops, **opspp;
126
127         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
128                 if (strcmp(ops->vdev_op_type, type) == 0)
129                         break;
130
131         return (ops);
132 }
133
134 /*
135  * Default asize function: return the MAX of psize with the asize of
136  * all children.  This is what's used by anything other than RAID-Z.
137  */
138 uint64_t
139 vdev_default_asize(vdev_t *vd, uint64_t psize)
140 {
141         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
142         uint64_t csize;
143
144         for (int c = 0; c < vd->vdev_children; c++) {
145                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
146                 asize = MAX(asize, csize);
147         }
148
149         return (asize);
150 }
151
152 /*
153  * Get the minimum allocatable size. We define the allocatable size as
154  * the vdev's asize rounded to the nearest metaslab. This allows us to
155  * replace or attach devices which don't have the same physical size but
156  * can still satisfy the same number of allocations.
157  */
158 uint64_t
159 vdev_get_min_asize(vdev_t *vd)
160 {
161         vdev_t *pvd = vd->vdev_parent;
162
163         /*
164          * If our parent is NULL (inactive spare or cache) or is the root,
165          * just return our own asize.
166          */
167         if (pvd == NULL)
168                 return (vd->vdev_asize);
169
170         /*
171          * The top-level vdev just returns the allocatable size rounded
172          * to the nearest metaslab.
173          */
174         if (vd == vd->vdev_top)
175                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
176
177         /*
178          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
179          * so each child must provide at least 1/Nth of its asize.
180          */
181         if (pvd->vdev_ops == &vdev_raidz_ops)
182                 return (pvd->vdev_min_asize / pvd->vdev_children);
183
184         return (pvd->vdev_min_asize);
185 }
186
187 void
188 vdev_set_min_asize(vdev_t *vd)
189 {
190         vd->vdev_min_asize = vdev_get_min_asize(vd);
191
192         for (int c = 0; c < vd->vdev_children; c++)
193                 vdev_set_min_asize(vd->vdev_child[c]);
194 }
195
196 vdev_t *
197 vdev_lookup_top(spa_t *spa, uint64_t vdev)
198 {
199         vdev_t *rvd = spa->spa_root_vdev;
200
201         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
202
203         if (vdev < rvd->vdev_children) {
204                 ASSERT(rvd->vdev_child[vdev] != NULL);
205                 return (rvd->vdev_child[vdev]);
206         }
207
208         return (NULL);
209 }
210
211 vdev_t *
212 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
213 {
214         vdev_t *mvd;
215
216         if (vd->vdev_guid == guid)
217                 return (vd);
218
219         for (int c = 0; c < vd->vdev_children; c++)
220                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
221                     NULL)
222                         return (mvd);
223
224         return (NULL);
225 }
226
227 void
228 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
229 {
230         size_t oldsize, newsize;
231         uint64_t id = cvd->vdev_id;
232         vdev_t **newchild;
233
234         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
235         ASSERT(cvd->vdev_parent == NULL);
236
237         cvd->vdev_parent = pvd;
238
239         if (pvd == NULL)
240                 return;
241
242         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
243
244         oldsize = pvd->vdev_children * sizeof (vdev_t *);
245         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
246         newsize = pvd->vdev_children * sizeof (vdev_t *);
247
248         newchild = kmem_zalloc(newsize, KM_SLEEP);
249         if (pvd->vdev_child != NULL) {
250                 bcopy(pvd->vdev_child, newchild, oldsize);
251                 kmem_free(pvd->vdev_child, oldsize);
252         }
253
254         pvd->vdev_child = newchild;
255         pvd->vdev_child[id] = cvd;
256
257         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
258         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
259
260         /*
261          * Walk up all ancestors to update guid sum.
262          */
263         for (; pvd != NULL; pvd = pvd->vdev_parent)
264                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
265 }
266
267 void
268 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
269 {
270         int c;
271         uint_t id = cvd->vdev_id;
272
273         ASSERT(cvd->vdev_parent == pvd);
274
275         if (pvd == NULL)
276                 return;
277
278         ASSERT(id < pvd->vdev_children);
279         ASSERT(pvd->vdev_child[id] == cvd);
280
281         pvd->vdev_child[id] = NULL;
282         cvd->vdev_parent = NULL;
283
284         for (c = 0; c < pvd->vdev_children; c++)
285                 if (pvd->vdev_child[c])
286                         break;
287
288         if (c == pvd->vdev_children) {
289                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
290                 pvd->vdev_child = NULL;
291                 pvd->vdev_children = 0;
292         }
293
294         /*
295          * Walk up all ancestors to update guid sum.
296          */
297         for (; pvd != NULL; pvd = pvd->vdev_parent)
298                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
299 }
300
301 /*
302  * Remove any holes in the child array.
303  */
304 void
305 vdev_compact_children(vdev_t *pvd)
306 {
307         vdev_t **newchild, *cvd;
308         int oldc = pvd->vdev_children;
309         int newc;
310
311         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
312
313         for (int c = newc = 0; c < oldc; c++)
314                 if (pvd->vdev_child[c])
315                         newc++;
316
317         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
318
319         for (int c = newc = 0; c < oldc; c++) {
320                 if ((cvd = pvd->vdev_child[c]) != NULL) {
321                         newchild[newc] = cvd;
322                         cvd->vdev_id = newc++;
323                 }
324         }
325
326         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
327         pvd->vdev_child = newchild;
328         pvd->vdev_children = newc;
329 }
330
331 /*
332  * Allocate and minimally initialize a vdev_t.
333  */
334 vdev_t *
335 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
336 {
337         vdev_t *vd;
338
339         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
340
341         if (spa->spa_root_vdev == NULL) {
342                 ASSERT(ops == &vdev_root_ops);
343                 spa->spa_root_vdev = vd;
344                 spa->spa_load_guid = spa_generate_guid(NULL);
345         }
346
347         if (guid == 0 && ops != &vdev_hole_ops) {
348                 if (spa->spa_root_vdev == vd) {
349                         /*
350                          * The root vdev's guid will also be the pool guid,
351                          * which must be unique among all pools.
352                          */
353                         guid = spa_generate_guid(NULL);
354                 } else {
355                         /*
356                          * Any other vdev's guid must be unique within the pool.
357                          */
358                         guid = spa_generate_guid(spa);
359                 }
360                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
361         }
362
363         vd->vdev_spa = spa;
364         vd->vdev_id = id;
365         vd->vdev_guid = guid;
366         vd->vdev_guid_sum = guid;
367         vd->vdev_ops = ops;
368         vd->vdev_state = VDEV_STATE_CLOSED;
369         vd->vdev_ishole = (ops == &vdev_hole_ops);
370
371         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
372         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
373         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
374         for (int t = 0; t < DTL_TYPES; t++) {
375                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
376                     &vd->vdev_dtl_lock);
377         }
378         txg_list_create(&vd->vdev_ms_list,
379             offsetof(struct metaslab, ms_txg_node));
380         txg_list_create(&vd->vdev_dtl_list,
381             offsetof(struct vdev, vdev_dtl_node));
382         vd->vdev_stat.vs_timestamp = gethrtime();
383         vdev_queue_init(vd);
384         vdev_cache_init(vd);
385
386         return (vd);
387 }
388
389 /*
390  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
391  * creating a new vdev or loading an existing one - the behavior is slightly
392  * different for each case.
393  */
394 int
395 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
396     int alloctype)
397 {
398         vdev_ops_t *ops;
399         char *type;
400         uint64_t guid = 0, islog, nparity;
401         vdev_t *vd;
402
403         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
404
405         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
406                 return (SET_ERROR(EINVAL));
407
408         if ((ops = vdev_getops(type)) == NULL)
409                 return (SET_ERROR(EINVAL));
410
411         /*
412          * If this is a load, get the vdev guid from the nvlist.
413          * Otherwise, vdev_alloc_common() will generate one for us.
414          */
415         if (alloctype == VDEV_ALLOC_LOAD) {
416                 uint64_t label_id;
417
418                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
419                     label_id != id)
420                         return (SET_ERROR(EINVAL));
421
422                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423                         return (SET_ERROR(EINVAL));
424         } else if (alloctype == VDEV_ALLOC_SPARE) {
425                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
426                         return (SET_ERROR(EINVAL));
427         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
428                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
429                         return (SET_ERROR(EINVAL));
430         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
431                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
432                         return (SET_ERROR(EINVAL));
433         }
434
435         /*
436          * The first allocated vdev must be of type 'root'.
437          */
438         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
439                 return (SET_ERROR(EINVAL));
440
441         /*
442          * Determine whether we're a log vdev.
443          */
444         islog = 0;
445         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
446         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
447                 return (SET_ERROR(ENOTSUP));
448
449         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
450                 return (SET_ERROR(ENOTSUP));
451
452         /*
453          * Set the nparity property for RAID-Z vdevs.
454          */
455         nparity = -1ULL;
456         if (ops == &vdev_raidz_ops) {
457                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
458                     &nparity) == 0) {
459                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
460                                 return (SET_ERROR(EINVAL));
461                         /*
462                          * Previous versions could only support 1 or 2 parity
463                          * device.
464                          */
465                         if (nparity > 1 &&
466                             spa_version(spa) < SPA_VERSION_RAIDZ2)
467                                 return (SET_ERROR(ENOTSUP));
468                         if (nparity > 2 &&
469                             spa_version(spa) < SPA_VERSION_RAIDZ3)
470                                 return (SET_ERROR(ENOTSUP));
471                 } else {
472                         /*
473                          * We require the parity to be specified for SPAs that
474                          * support multiple parity levels.
475                          */
476                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
477                                 return (SET_ERROR(EINVAL));
478                         /*
479                          * Otherwise, we default to 1 parity device for RAID-Z.
480                          */
481                         nparity = 1;
482                 }
483         } else {
484                 nparity = 0;
485         }
486         ASSERT(nparity != -1ULL);
487
488         vd = vdev_alloc_common(spa, id, guid, ops);
489
490         vd->vdev_islog = islog;
491         vd->vdev_nparity = nparity;
492
493         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
494                 vd->vdev_path = spa_strdup(vd->vdev_path);
495         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
496                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
497         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
498             &vd->vdev_physpath) == 0)
499                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
500         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
501                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
502
503         /*
504          * Set the whole_disk property.  If it's not specified, leave the value
505          * as -1.
506          */
507         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
508             &vd->vdev_wholedisk) != 0)
509                 vd->vdev_wholedisk = -1ULL;
510
511         /*
512          * Look for the 'not present' flag.  This will only be set if the device
513          * was not present at the time of import.
514          */
515         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
516             &vd->vdev_not_present);
517
518         /*
519          * Get the alignment requirement.
520          */
521         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
522
523         /*
524          * Retrieve the vdev creation time.
525          */
526         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
527             &vd->vdev_crtxg);
528
529         /*
530          * If we're a top-level vdev, try to load the allocation parameters.
531          */
532         if (parent && !parent->vdev_parent &&
533             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
534                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
535                     &vd->vdev_ms_array);
536                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
537                     &vd->vdev_ms_shift);
538                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
539                     &vd->vdev_asize);
540                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
541                     &vd->vdev_removing);
542         }
543
544         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
545                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
546                     alloctype == VDEV_ALLOC_ADD ||
547                     alloctype == VDEV_ALLOC_SPLIT ||
548                     alloctype == VDEV_ALLOC_ROOTPOOL);
549                 vd->vdev_mg = metaslab_group_create(islog ?
550                     spa_log_class(spa) : spa_normal_class(spa), vd);
551         }
552
553         /*
554          * If we're a leaf vdev, try to load the DTL object and other state.
555          */
556         if (vd->vdev_ops->vdev_op_leaf &&
557             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
558             alloctype == VDEV_ALLOC_ROOTPOOL)) {
559                 if (alloctype == VDEV_ALLOC_LOAD) {
560                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
561                             &vd->vdev_dtl_object);
562                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
563                             &vd->vdev_unspare);
564                 }
565
566                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
567                         uint64_t spare = 0;
568
569                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
570                             &spare) == 0 && spare)
571                                 spa_spare_add(vd);
572                 }
573
574                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
575                     &vd->vdev_offline);
576
577                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
578                     &vd->vdev_resilver_txg);
579
580                 /*
581                  * When importing a pool, we want to ignore the persistent fault
582                  * state, as the diagnosis made on another system may not be
583                  * valid in the current context.  Local vdevs will
584                  * remain in the faulted state.
585                  */
586                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
587                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
588                             &vd->vdev_faulted);
589                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
590                             &vd->vdev_degraded);
591                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
592                             &vd->vdev_removed);
593
594                         if (vd->vdev_faulted || vd->vdev_degraded) {
595                                 char *aux;
596
597                                 vd->vdev_label_aux =
598                                     VDEV_AUX_ERR_EXCEEDED;
599                                 if (nvlist_lookup_string(nv,
600                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
601                                     strcmp(aux, "external") == 0)
602                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
603                         }
604                 }
605         }
606
607         /*
608          * Add ourselves to the parent's list of children.
609          */
610         vdev_add_child(parent, vd);
611
612         *vdp = vd;
613
614         return (0);
615 }
616
617 void
618 vdev_free(vdev_t *vd)
619 {
620         spa_t *spa = vd->vdev_spa;
621
622         /*
623          * vdev_free() implies closing the vdev first.  This is simpler than
624          * trying to ensure complicated semantics for all callers.
625          */
626         vdev_close(vd);
627
628         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
629         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
630
631         /*
632          * Free all children.
633          */
634         for (int c = 0; c < vd->vdev_children; c++)
635                 vdev_free(vd->vdev_child[c]);
636
637         ASSERT(vd->vdev_child == NULL);
638         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
639
640         /*
641          * Discard allocation state.
642          */
643         if (vd->vdev_mg != NULL) {
644                 vdev_metaslab_fini(vd);
645                 metaslab_group_destroy(vd->vdev_mg);
646         }
647
648         ASSERT0(vd->vdev_stat.vs_space);
649         ASSERT0(vd->vdev_stat.vs_dspace);
650         ASSERT0(vd->vdev_stat.vs_alloc);
651
652         /*
653          * Remove this vdev from its parent's child list.
654          */
655         vdev_remove_child(vd->vdev_parent, vd);
656
657         ASSERT(vd->vdev_parent == NULL);
658
659         /*
660          * Clean up vdev structure.
661          */
662         vdev_queue_fini(vd);
663         vdev_cache_fini(vd);
664
665         if (vd->vdev_path)
666                 spa_strfree(vd->vdev_path);
667         if (vd->vdev_devid)
668                 spa_strfree(vd->vdev_devid);
669         if (vd->vdev_physpath)
670                 spa_strfree(vd->vdev_physpath);
671         if (vd->vdev_fru)
672                 spa_strfree(vd->vdev_fru);
673
674         if (vd->vdev_isspare)
675                 spa_spare_remove(vd);
676         if (vd->vdev_isl2cache)
677                 spa_l2cache_remove(vd);
678
679         txg_list_destroy(&vd->vdev_ms_list);
680         txg_list_destroy(&vd->vdev_dtl_list);
681
682         mutex_enter(&vd->vdev_dtl_lock);
683         space_map_close(vd->vdev_dtl_sm);
684         for (int t = 0; t < DTL_TYPES; t++) {
685                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
686                 range_tree_destroy(vd->vdev_dtl[t]);
687         }
688         mutex_exit(&vd->vdev_dtl_lock);
689
690         mutex_destroy(&vd->vdev_dtl_lock);
691         mutex_destroy(&vd->vdev_stat_lock);
692         mutex_destroy(&vd->vdev_probe_lock);
693
694         if (vd == spa->spa_root_vdev)
695                 spa->spa_root_vdev = NULL;
696
697         kmem_free(vd, sizeof (vdev_t));
698 }
699
700 /*
701  * Transfer top-level vdev state from svd to tvd.
702  */
703 static void
704 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
705 {
706         spa_t *spa = svd->vdev_spa;
707         metaslab_t *msp;
708         vdev_t *vd;
709         int t;
710
711         ASSERT(tvd == tvd->vdev_top);
712
713         tvd->vdev_ms_array = svd->vdev_ms_array;
714         tvd->vdev_ms_shift = svd->vdev_ms_shift;
715         tvd->vdev_ms_count = svd->vdev_ms_count;
716
717         svd->vdev_ms_array = 0;
718         svd->vdev_ms_shift = 0;
719         svd->vdev_ms_count = 0;
720
721         if (tvd->vdev_mg)
722                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
723         tvd->vdev_mg = svd->vdev_mg;
724         tvd->vdev_ms = svd->vdev_ms;
725
726         svd->vdev_mg = NULL;
727         svd->vdev_ms = NULL;
728
729         if (tvd->vdev_mg != NULL)
730                 tvd->vdev_mg->mg_vd = tvd;
731
732         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
733         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
734         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
735
736         svd->vdev_stat.vs_alloc = 0;
737         svd->vdev_stat.vs_space = 0;
738         svd->vdev_stat.vs_dspace = 0;
739
740         for (t = 0; t < TXG_SIZE; t++) {
741                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
742                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
743                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
744                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
745                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
746                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
747         }
748
749         if (list_link_active(&svd->vdev_config_dirty_node)) {
750                 vdev_config_clean(svd);
751                 vdev_config_dirty(tvd);
752         }
753
754         if (list_link_active(&svd->vdev_state_dirty_node)) {
755                 vdev_state_clean(svd);
756                 vdev_state_dirty(tvd);
757         }
758
759         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
760         svd->vdev_deflate_ratio = 0;
761
762         tvd->vdev_islog = svd->vdev_islog;
763         svd->vdev_islog = 0;
764 }
765
766 static void
767 vdev_top_update(vdev_t *tvd, vdev_t *vd)
768 {
769         if (vd == NULL)
770                 return;
771
772         vd->vdev_top = tvd;
773
774         for (int c = 0; c < vd->vdev_children; c++)
775                 vdev_top_update(tvd, vd->vdev_child[c]);
776 }
777
778 /*
779  * Add a mirror/replacing vdev above an existing vdev.
780  */
781 vdev_t *
782 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
783 {
784         spa_t *spa = cvd->vdev_spa;
785         vdev_t *pvd = cvd->vdev_parent;
786         vdev_t *mvd;
787
788         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
789
790         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
791
792         mvd->vdev_asize = cvd->vdev_asize;
793         mvd->vdev_min_asize = cvd->vdev_min_asize;
794         mvd->vdev_max_asize = cvd->vdev_max_asize;
795         mvd->vdev_ashift = cvd->vdev_ashift;
796         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
797         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
798         mvd->vdev_state = cvd->vdev_state;
799         mvd->vdev_crtxg = cvd->vdev_crtxg;
800
801         vdev_remove_child(pvd, cvd);
802         vdev_add_child(pvd, mvd);
803         cvd->vdev_id = mvd->vdev_children;
804         vdev_add_child(mvd, cvd);
805         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
806
807         if (mvd == mvd->vdev_top)
808                 vdev_top_transfer(cvd, mvd);
809
810         return (mvd);
811 }
812
813 /*
814  * Remove a 1-way mirror/replacing vdev from the tree.
815  */
816 void
817 vdev_remove_parent(vdev_t *cvd)
818 {
819         vdev_t *mvd = cvd->vdev_parent;
820         vdev_t *pvd = mvd->vdev_parent;
821
822         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
823
824         ASSERT(mvd->vdev_children == 1);
825         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
826             mvd->vdev_ops == &vdev_replacing_ops ||
827             mvd->vdev_ops == &vdev_spare_ops);
828         cvd->vdev_ashift = mvd->vdev_ashift;
829         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
830         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
831
832         vdev_remove_child(mvd, cvd);
833         vdev_remove_child(pvd, mvd);
834
835         /*
836          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
837          * Otherwise, we could have detached an offline device, and when we
838          * go to import the pool we'll think we have two top-level vdevs,
839          * instead of a different version of the same top-level vdev.
840          */
841         if (mvd->vdev_top == mvd) {
842                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
843                 cvd->vdev_orig_guid = cvd->vdev_guid;
844                 cvd->vdev_guid += guid_delta;
845                 cvd->vdev_guid_sum += guid_delta;
846         }
847         cvd->vdev_id = mvd->vdev_id;
848         vdev_add_child(pvd, cvd);
849         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
850
851         if (cvd == cvd->vdev_top)
852                 vdev_top_transfer(mvd, cvd);
853
854         ASSERT(mvd->vdev_children == 0);
855         vdev_free(mvd);
856 }
857
858 int
859 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
860 {
861         spa_t *spa = vd->vdev_spa;
862         objset_t *mos = spa->spa_meta_objset;
863         uint64_t m;
864         uint64_t oldc = vd->vdev_ms_count;
865         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
866         metaslab_t **mspp;
867         int error;
868
869         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
870
871         /*
872          * This vdev is not being allocated from yet or is a hole.
873          */
874         if (vd->vdev_ms_shift == 0)
875                 return (0);
876
877         ASSERT(!vd->vdev_ishole);
878
879         /*
880          * Compute the raidz-deflation ratio.  Note, we hard-code
881          * in 128k (1 << 17) because it is the current "typical" blocksize.
882          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
883          * or we will inconsistently account for existing bp's.
884          */
885         vd->vdev_deflate_ratio = (1 << 17) /
886             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
887
888         ASSERT(oldc <= newc);
889
890         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
891
892         if (oldc != 0) {
893                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
894                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
895         }
896
897         vd->vdev_ms = mspp;
898         vd->vdev_ms_count = newc;
899
900         for (m = oldc; m < newc; m++) {
901                 uint64_t object = 0;
902
903                 if (txg == 0) {
904                         error = dmu_read(mos, vd->vdev_ms_array,
905                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
906                             DMU_READ_PREFETCH);
907                         if (error)
908                                 return (error);
909                 }
910                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
911         }
912
913         if (txg == 0)
914                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
915
916         /*
917          * If the vdev is being removed we don't activate
918          * the metaslabs since we want to ensure that no new
919          * allocations are performed on this device.
920          */
921         if (oldc == 0 && !vd->vdev_removing)
922                 metaslab_group_activate(vd->vdev_mg);
923
924         if (txg == 0)
925                 spa_config_exit(spa, SCL_ALLOC, FTAG);
926
927         return (0);
928 }
929
930 void
931 vdev_metaslab_fini(vdev_t *vd)
932 {
933         uint64_t m;
934         uint64_t count = vd->vdev_ms_count;
935
936         if (vd->vdev_ms != NULL) {
937                 metaslab_group_passivate(vd->vdev_mg);
938                 for (m = 0; m < count; m++) {
939                         metaslab_t *msp = vd->vdev_ms[m];
940
941                         if (msp != NULL)
942                                 metaslab_fini(msp);
943                 }
944                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
945                 vd->vdev_ms = NULL;
946         }
947 }
948
949 typedef struct vdev_probe_stats {
950         boolean_t       vps_readable;
951         boolean_t       vps_writeable;
952         int             vps_flags;
953 } vdev_probe_stats_t;
954
955 static void
956 vdev_probe_done(zio_t *zio)
957 {
958         spa_t *spa = zio->io_spa;
959         vdev_t *vd = zio->io_vd;
960         vdev_probe_stats_t *vps = zio->io_private;
961
962         ASSERT(vd->vdev_probe_zio != NULL);
963
964         if (zio->io_type == ZIO_TYPE_READ) {
965                 if (zio->io_error == 0)
966                         vps->vps_readable = 1;
967                 if (zio->io_error == 0 && spa_writeable(spa)) {
968                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
969                             zio->io_offset, zio->io_size, zio->io_data,
970                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
971                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
972                 } else {
973                         zio_buf_free(zio->io_data, zio->io_size);
974                 }
975         } else if (zio->io_type == ZIO_TYPE_WRITE) {
976                 if (zio->io_error == 0)
977                         vps->vps_writeable = 1;
978                 zio_buf_free(zio->io_data, zio->io_size);
979         } else if (zio->io_type == ZIO_TYPE_NULL) {
980                 zio_t *pio;
981
982                 vd->vdev_cant_read |= !vps->vps_readable;
983                 vd->vdev_cant_write |= !vps->vps_writeable;
984
985                 if (vdev_readable(vd) &&
986                     (vdev_writeable(vd) || !spa_writeable(spa))) {
987                         zio->io_error = 0;
988                 } else {
989                         ASSERT(zio->io_error != 0);
990                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
991                             spa, vd, NULL, 0, 0);
992                         zio->io_error = SET_ERROR(ENXIO);
993                 }
994
995                 mutex_enter(&vd->vdev_probe_lock);
996                 ASSERT(vd->vdev_probe_zio == zio);
997                 vd->vdev_probe_zio = NULL;
998                 mutex_exit(&vd->vdev_probe_lock);
999
1000                 while ((pio = zio_walk_parents(zio)) != NULL)
1001                         if (!vdev_accessible(vd, pio))
1002                                 pio->io_error = SET_ERROR(ENXIO);
1003
1004                 kmem_free(vps, sizeof (*vps));
1005         }
1006 }
1007
1008 /*
1009  * Determine whether this device is accessible.
1010  *
1011  * Read and write to several known locations: the pad regions of each
1012  * vdev label but the first, which we leave alone in case it contains
1013  * a VTOC.
1014  */
1015 zio_t *
1016 vdev_probe(vdev_t *vd, zio_t *zio)
1017 {
1018         spa_t *spa = vd->vdev_spa;
1019         vdev_probe_stats_t *vps = NULL;
1020         zio_t *pio;
1021
1022         ASSERT(vd->vdev_ops->vdev_op_leaf);
1023
1024         /*
1025          * Don't probe the probe.
1026          */
1027         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1028                 return (NULL);
1029
1030         /*
1031          * To prevent 'probe storms' when a device fails, we create
1032          * just one probe i/o at a time.  All zios that want to probe
1033          * this vdev will become parents of the probe io.
1034          */
1035         mutex_enter(&vd->vdev_probe_lock);
1036
1037         if ((pio = vd->vdev_probe_zio) == NULL) {
1038                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1039
1040                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1041                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1042                     ZIO_FLAG_TRYHARD;
1043
1044                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1045                         /*
1046                          * vdev_cant_read and vdev_cant_write can only
1047                          * transition from TRUE to FALSE when we have the
1048                          * SCL_ZIO lock as writer; otherwise they can only
1049                          * transition from FALSE to TRUE.  This ensures that
1050                          * any zio looking at these values can assume that
1051                          * failures persist for the life of the I/O.  That's
1052                          * important because when a device has intermittent
1053                          * connectivity problems, we want to ensure that
1054                          * they're ascribed to the device (ENXIO) and not
1055                          * the zio (EIO).
1056                          *
1057                          * Since we hold SCL_ZIO as writer here, clear both
1058                          * values so the probe can reevaluate from first
1059                          * principles.
1060                          */
1061                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1062                         vd->vdev_cant_read = B_FALSE;
1063                         vd->vdev_cant_write = B_FALSE;
1064                 }
1065
1066                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1067                     vdev_probe_done, vps,
1068                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1069
1070                 /*
1071                  * We can't change the vdev state in this context, so we
1072                  * kick off an async task to do it on our behalf.
1073                  */
1074                 if (zio != NULL) {
1075                         vd->vdev_probe_wanted = B_TRUE;
1076                         spa_async_request(spa, SPA_ASYNC_PROBE);
1077                 }
1078         }
1079
1080         if (zio != NULL)
1081                 zio_add_child(zio, pio);
1082
1083         mutex_exit(&vd->vdev_probe_lock);
1084
1085         if (vps == NULL) {
1086                 ASSERT(zio != NULL);
1087                 return (NULL);
1088         }
1089
1090         for (int l = 1; l < VDEV_LABELS; l++) {
1091                 zio_nowait(zio_read_phys(pio, vd,
1092                     vdev_label_offset(vd->vdev_psize, l,
1093                     offsetof(vdev_label_t, vl_pad2)),
1094                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1095                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1096                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1097         }
1098
1099         if (zio == NULL)
1100                 return (pio);
1101
1102         zio_nowait(pio);
1103         return (NULL);
1104 }
1105
1106 static void
1107 vdev_open_child(void *arg)
1108 {
1109         vdev_t *vd = arg;
1110
1111         vd->vdev_open_thread = curthread;
1112         vd->vdev_open_error = vdev_open(vd);
1113         vd->vdev_open_thread = NULL;
1114 }
1115
1116 boolean_t
1117 vdev_uses_zvols(vdev_t *vd)
1118 {
1119         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1120             strlen(ZVOL_DIR)) == 0)
1121                 return (B_TRUE);
1122         for (int c = 0; c < vd->vdev_children; c++)
1123                 if (vdev_uses_zvols(vd->vdev_child[c]))
1124                         return (B_TRUE);
1125         return (B_FALSE);
1126 }
1127
1128 void
1129 vdev_open_children(vdev_t *vd)
1130 {
1131         taskq_t *tq;
1132         int children = vd->vdev_children;
1133
1134         /*
1135          * in order to handle pools on top of zvols, do the opens
1136          * in a single thread so that the same thread holds the
1137          * spa_namespace_lock
1138          */
1139         if (B_TRUE || vdev_uses_zvols(vd)) {
1140                 for (int c = 0; c < children; c++)
1141                         vd->vdev_child[c]->vdev_open_error =
1142                             vdev_open(vd->vdev_child[c]);
1143                 return;
1144         }
1145         tq = taskq_create("vdev_open", children, minclsyspri,
1146             children, children, TASKQ_PREPOPULATE);
1147
1148         for (int c = 0; c < children; c++)
1149                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1150                     TQ_SLEEP) != 0);
1151
1152         taskq_destroy(tq);
1153 }
1154
1155 /*
1156  * Prepare a virtual device for access.
1157  */
1158 int
1159 vdev_open(vdev_t *vd)
1160 {
1161         spa_t *spa = vd->vdev_spa;
1162         int error;
1163         uint64_t osize = 0;
1164         uint64_t max_osize = 0;
1165         uint64_t asize, max_asize, psize;
1166         uint64_t logical_ashift = 0;
1167         uint64_t physical_ashift = 0;
1168
1169         ASSERT(vd->vdev_open_thread == curthread ||
1170             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1171         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1172             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1173             vd->vdev_state == VDEV_STATE_OFFLINE);
1174
1175         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1176         vd->vdev_cant_read = B_FALSE;
1177         vd->vdev_cant_write = B_FALSE;
1178         vd->vdev_min_asize = vdev_get_min_asize(vd);
1179
1180         /*
1181          * If this vdev is not removed, check its fault status.  If it's
1182          * faulted, bail out of the open.
1183          */
1184         if (!vd->vdev_removed && vd->vdev_faulted) {
1185                 ASSERT(vd->vdev_children == 0);
1186                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1187                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1188                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1189                     vd->vdev_label_aux);
1190                 return (SET_ERROR(ENXIO));
1191         } else if (vd->vdev_offline) {
1192                 ASSERT(vd->vdev_children == 0);
1193                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1194                 return (SET_ERROR(ENXIO));
1195         }
1196
1197         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1198             &logical_ashift, &physical_ashift);
1199
1200         /*
1201          * Reset the vdev_reopening flag so that we actually close
1202          * the vdev on error.
1203          */
1204         vd->vdev_reopening = B_FALSE;
1205         if (zio_injection_enabled && error == 0)
1206                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1207
1208         if (error) {
1209                 if (vd->vdev_removed &&
1210                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1211                         vd->vdev_removed = B_FALSE;
1212
1213                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214                     vd->vdev_stat.vs_aux);
1215                 return (error);
1216         }
1217
1218         vd->vdev_removed = B_FALSE;
1219
1220         /*
1221          * Recheck the faulted flag now that we have confirmed that
1222          * the vdev is accessible.  If we're faulted, bail.
1223          */
1224         if (vd->vdev_faulted) {
1225                 ASSERT(vd->vdev_children == 0);
1226                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1227                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1228                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1229                     vd->vdev_label_aux);
1230                 return (SET_ERROR(ENXIO));
1231         }
1232
1233         if (vd->vdev_degraded) {
1234                 ASSERT(vd->vdev_children == 0);
1235                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1236                     VDEV_AUX_ERR_EXCEEDED);
1237         } else {
1238                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1239         }
1240
1241         /*
1242          * For hole or missing vdevs we just return success.
1243          */
1244         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1245                 return (0);
1246
1247         if (vd->vdev_ops->vdev_op_leaf) {
1248                 vd->vdev_notrim = B_FALSE;
1249                 trim_map_create(vd);
1250         }
1251
1252         for (int c = 0; c < vd->vdev_children; c++) {
1253                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1254                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1255                             VDEV_AUX_NONE);
1256                         break;
1257                 }
1258         }
1259
1260         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1261         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1262
1263         if (vd->vdev_children == 0) {
1264                 if (osize < SPA_MINDEVSIZE) {
1265                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1266                             VDEV_AUX_TOO_SMALL);
1267                         return (SET_ERROR(EOVERFLOW));
1268                 }
1269                 psize = osize;
1270                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1271                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1272                     VDEV_LABEL_END_SIZE);
1273         } else {
1274                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1275                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1276                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1277                             VDEV_AUX_TOO_SMALL);
1278                         return (SET_ERROR(EOVERFLOW));
1279                 }
1280                 psize = 0;
1281                 asize = osize;
1282                 max_asize = max_osize;
1283         }
1284
1285         vd->vdev_psize = psize;
1286
1287         /*
1288          * Make sure the allocatable size hasn't shrunk.
1289          */
1290         if (asize < vd->vdev_min_asize) {
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292                     VDEV_AUX_BAD_LABEL);
1293                 return (SET_ERROR(EINVAL));
1294         }
1295
1296         vd->vdev_physical_ashift =
1297             MAX(physical_ashift, vd->vdev_physical_ashift);
1298         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1299         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1300
1301         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1302                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1303                     VDEV_AUX_ASHIFT_TOO_BIG);
1304                 return (EINVAL);
1305         }
1306
1307         if (vd->vdev_asize == 0) {
1308                 /*
1309                  * This is the first-ever open, so use the computed values.
1310                  * For testing purposes, a higher ashift can be requested.
1311                  */
1312                 vd->vdev_asize = asize;
1313                 vd->vdev_max_asize = max_asize;
1314         } else {
1315                 /*
1316                  * Make sure the alignment requirement hasn't increased.
1317                  */
1318                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1319                     vd->vdev_ops->vdev_op_leaf) {
1320                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1321                             VDEV_AUX_BAD_LABEL);
1322                         return (EINVAL);
1323                 }
1324                 vd->vdev_max_asize = max_asize;
1325         }
1326
1327         /*
1328          * If all children are healthy and the asize has increased,
1329          * then we've experienced dynamic LUN growth.  If automatic
1330          * expansion is enabled then use the additional space.
1331          */
1332         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1333             (vd->vdev_expanding || spa->spa_autoexpand))
1334                 vd->vdev_asize = asize;
1335
1336         vdev_set_min_asize(vd);
1337
1338         /*
1339          * Ensure we can issue some IO before declaring the
1340          * vdev open for business.
1341          */
1342         if (vd->vdev_ops->vdev_op_leaf &&
1343             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1344                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1345                     VDEV_AUX_ERR_EXCEEDED);
1346                 return (error);
1347         }
1348
1349         /*
1350          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1351          * resilver.  But don't do this if we are doing a reopen for a scrub,
1352          * since this would just restart the scrub we are already doing.
1353          */
1354         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1355             vdev_resilver_needed(vd, NULL, NULL))
1356                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1357
1358         return (0);
1359 }
1360
1361 /*
1362  * Called once the vdevs are all opened, this routine validates the label
1363  * contents.  This needs to be done before vdev_load() so that we don't
1364  * inadvertently do repair I/Os to the wrong device.
1365  *
1366  * If 'strict' is false ignore the spa guid check. This is necessary because
1367  * if the machine crashed during a re-guid the new guid might have been written
1368  * to all of the vdev labels, but not the cached config. The strict check
1369  * will be performed when the pool is opened again using the mos config.
1370  *
1371  * This function will only return failure if one of the vdevs indicates that it
1372  * has since been destroyed or exported.  This is only possible if
1373  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1374  * will be updated but the function will return 0.
1375  */
1376 int
1377 vdev_validate(vdev_t *vd, boolean_t strict)
1378 {
1379         spa_t *spa = vd->vdev_spa;
1380         nvlist_t *label;
1381         uint64_t guid = 0, top_guid;
1382         uint64_t state;
1383
1384         for (int c = 0; c < vd->vdev_children; c++)
1385                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1386                         return (SET_ERROR(EBADF));
1387
1388         /*
1389          * If the device has already failed, or was marked offline, don't do
1390          * any further validation.  Otherwise, label I/O will fail and we will
1391          * overwrite the previous state.
1392          */
1393         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1394                 uint64_t aux_guid = 0;
1395                 nvlist_t *nvl;
1396                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1397                     spa_last_synced_txg(spa) : -1ULL;
1398
1399                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1400                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1401                             VDEV_AUX_BAD_LABEL);
1402                         return (0);
1403                 }
1404
1405                 /*
1406                  * Determine if this vdev has been split off into another
1407                  * pool.  If so, then refuse to open it.
1408                  */
1409                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1410                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1411                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1412                             VDEV_AUX_SPLIT_POOL);
1413                         nvlist_free(label);
1414                         return (0);
1415                 }
1416
1417                 if (strict && (nvlist_lookup_uint64(label,
1418                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1419                     guid != spa_guid(spa))) {
1420                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1421                             VDEV_AUX_CORRUPT_DATA);
1422                         nvlist_free(label);
1423                         return (0);
1424                 }
1425
1426                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1427                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1428                     &aux_guid) != 0)
1429                         aux_guid = 0;
1430
1431                 /*
1432                  * If this vdev just became a top-level vdev because its
1433                  * sibling was detached, it will have adopted the parent's
1434                  * vdev guid -- but the label may or may not be on disk yet.
1435                  * Fortunately, either version of the label will have the
1436                  * same top guid, so if we're a top-level vdev, we can
1437                  * safely compare to that instead.
1438                  *
1439                  * If we split this vdev off instead, then we also check the
1440                  * original pool's guid.  We don't want to consider the vdev
1441                  * corrupt if it is partway through a split operation.
1442                  */
1443                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1444                     &guid) != 0 ||
1445                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1446                     &top_guid) != 0 ||
1447                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1448                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1449                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1450                             VDEV_AUX_CORRUPT_DATA);
1451                         nvlist_free(label);
1452                         return (0);
1453                 }
1454
1455                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1456                     &state) != 0) {
1457                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1458                             VDEV_AUX_CORRUPT_DATA);
1459                         nvlist_free(label);
1460                         return (0);
1461                 }
1462
1463                 nvlist_free(label);
1464
1465                 /*
1466                  * If this is a verbatim import, no need to check the
1467                  * state of the pool.
1468                  */
1469                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1470                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1471                     state != POOL_STATE_ACTIVE)
1472                         return (SET_ERROR(EBADF));
1473
1474                 /*
1475                  * If we were able to open and validate a vdev that was
1476                  * previously marked permanently unavailable, clear that state
1477                  * now.
1478                  */
1479                 if (vd->vdev_not_present)
1480                         vd->vdev_not_present = 0;
1481         }
1482
1483         return (0);
1484 }
1485
1486 /*
1487  * Close a virtual device.
1488  */
1489 void
1490 vdev_close(vdev_t *vd)
1491 {
1492         spa_t *spa = vd->vdev_spa;
1493         vdev_t *pvd = vd->vdev_parent;
1494
1495         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1496
1497         /*
1498          * If our parent is reopening, then we are as well, unless we are
1499          * going offline.
1500          */
1501         if (pvd != NULL && pvd->vdev_reopening)
1502                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1503
1504         vd->vdev_ops->vdev_op_close(vd);
1505
1506         vdev_cache_purge(vd);
1507
1508         if (vd->vdev_ops->vdev_op_leaf)
1509                 trim_map_destroy(vd);
1510
1511         /*
1512          * We record the previous state before we close it, so that if we are
1513          * doing a reopen(), we don't generate FMA ereports if we notice that
1514          * it's still faulted.
1515          */
1516         vd->vdev_prevstate = vd->vdev_state;
1517
1518         if (vd->vdev_offline)
1519                 vd->vdev_state = VDEV_STATE_OFFLINE;
1520         else
1521                 vd->vdev_state = VDEV_STATE_CLOSED;
1522         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1523 }
1524
1525 void
1526 vdev_hold(vdev_t *vd)
1527 {
1528         spa_t *spa = vd->vdev_spa;
1529
1530         ASSERT(spa_is_root(spa));
1531         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1532                 return;
1533
1534         for (int c = 0; c < vd->vdev_children; c++)
1535                 vdev_hold(vd->vdev_child[c]);
1536
1537         if (vd->vdev_ops->vdev_op_leaf)
1538                 vd->vdev_ops->vdev_op_hold(vd);
1539 }
1540
1541 void
1542 vdev_rele(vdev_t *vd)
1543 {
1544         spa_t *spa = vd->vdev_spa;
1545
1546         ASSERT(spa_is_root(spa));
1547         for (int c = 0; c < vd->vdev_children; c++)
1548                 vdev_rele(vd->vdev_child[c]);
1549
1550         if (vd->vdev_ops->vdev_op_leaf)
1551                 vd->vdev_ops->vdev_op_rele(vd);
1552 }
1553
1554 /*
1555  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1556  * reopen leaf vdevs which had previously been opened as they might deadlock
1557  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1558  * If the leaf has never been opened then open it, as usual.
1559  */
1560 void
1561 vdev_reopen(vdev_t *vd)
1562 {
1563         spa_t *spa = vd->vdev_spa;
1564
1565         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1566
1567         /* set the reopening flag unless we're taking the vdev offline */
1568         vd->vdev_reopening = !vd->vdev_offline;
1569         vdev_close(vd);
1570         (void) vdev_open(vd);
1571
1572         /*
1573          * Call vdev_validate() here to make sure we have the same device.
1574          * Otherwise, a device with an invalid label could be successfully
1575          * opened in response to vdev_reopen().
1576          */
1577         if (vd->vdev_aux) {
1578                 (void) vdev_validate_aux(vd);
1579                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1580                     vd->vdev_aux == &spa->spa_l2cache &&
1581                     !l2arc_vdev_present(vd))
1582                         l2arc_add_vdev(spa, vd);
1583         } else {
1584                 (void) vdev_validate(vd, B_TRUE);
1585         }
1586
1587         /*
1588          * Reassess parent vdev's health.
1589          */
1590         vdev_propagate_state(vd);
1591 }
1592
1593 int
1594 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1595 {
1596         int error;
1597
1598         /*
1599          * Normally, partial opens (e.g. of a mirror) are allowed.
1600          * For a create, however, we want to fail the request if
1601          * there are any components we can't open.
1602          */
1603         error = vdev_open(vd);
1604
1605         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1606                 vdev_close(vd);
1607                 return (error ? error : ENXIO);
1608         }
1609
1610         /*
1611          * Recursively load DTLs and initialize all labels.
1612          */
1613         if ((error = vdev_dtl_load(vd)) != 0 ||
1614             (error = vdev_label_init(vd, txg, isreplacing ?
1615             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1616                 vdev_close(vd);
1617                 return (error);
1618         }
1619
1620         return (0);
1621 }
1622
1623 void
1624 vdev_metaslab_set_size(vdev_t *vd)
1625 {
1626         /*
1627          * Aim for roughly 200 metaslabs per vdev.
1628          */
1629         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1630         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1631 }
1632
1633 /*
1634  * Maximize performance by inflating the configured ashift for
1635  * top level vdevs to be as close to the physical ashift as
1636  * possible without exceeding the administrator specified
1637  * limit.
1638  */
1639 void
1640 vdev_ashift_optimize(vdev_t *vd)
1641 {
1642         if (vd == vd->vdev_top &&
1643             (vd->vdev_ashift < vd->vdev_physical_ashift) &&
1644             (vd->vdev_ashift < zfs_max_auto_ashift)) {
1645                 vd->vdev_ashift = MIN(zfs_max_auto_ashift,
1646                     vd->vdev_physical_ashift);
1647         }
1648 }
1649
1650 void
1651 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1652 {
1653         ASSERT(vd == vd->vdev_top);
1654         ASSERT(!vd->vdev_ishole);
1655         ASSERT(ISP2(flags));
1656         ASSERT(spa_writeable(vd->vdev_spa));
1657
1658         if (flags & VDD_METASLAB)
1659                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1660
1661         if (flags & VDD_DTL)
1662                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1663
1664         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1665 }
1666
1667 void
1668 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1669 {
1670         for (int c = 0; c < vd->vdev_children; c++)
1671                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1672
1673         if (vd->vdev_ops->vdev_op_leaf)
1674                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1675 }
1676
1677 /*
1678  * DTLs.
1679  *
1680  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1681  * the vdev has less than perfect replication.  There are four kinds of DTL:
1682  *
1683  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1684  *
1685  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1686  *
1687  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1688  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1689  *      txgs that was scrubbed.
1690  *
1691  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1692  *      persistent errors or just some device being offline.
1693  *      Unlike the other three, the DTL_OUTAGE map is not generally
1694  *      maintained; it's only computed when needed, typically to
1695  *      determine whether a device can be detached.
1696  *
1697  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1698  * either has the data or it doesn't.
1699  *
1700  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1701  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1702  * if any child is less than fully replicated, then so is its parent.
1703  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1704  * comprising only those txgs which appear in 'maxfaults' or more children;
1705  * those are the txgs we don't have enough replication to read.  For example,
1706  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1707  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1708  * two child DTL_MISSING maps.
1709  *
1710  * It should be clear from the above that to compute the DTLs and outage maps
1711  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1712  * Therefore, that is all we keep on disk.  When loading the pool, or after
1713  * a configuration change, we generate all other DTLs from first principles.
1714  */
1715 void
1716 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1717 {
1718         range_tree_t *rt = vd->vdev_dtl[t];
1719
1720         ASSERT(t < DTL_TYPES);
1721         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1722         ASSERT(spa_writeable(vd->vdev_spa));
1723
1724         mutex_enter(rt->rt_lock);
1725         if (!range_tree_contains(rt, txg, size))
1726                 range_tree_add(rt, txg, size);
1727         mutex_exit(rt->rt_lock);
1728 }
1729
1730 boolean_t
1731 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1732 {
1733         range_tree_t *rt = vd->vdev_dtl[t];
1734         boolean_t dirty = B_FALSE;
1735
1736         ASSERT(t < DTL_TYPES);
1737         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1738
1739         mutex_enter(rt->rt_lock);
1740         if (range_tree_space(rt) != 0)
1741                 dirty = range_tree_contains(rt, txg, size);
1742         mutex_exit(rt->rt_lock);
1743
1744         return (dirty);
1745 }
1746
1747 boolean_t
1748 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1749 {
1750         range_tree_t *rt = vd->vdev_dtl[t];
1751         boolean_t empty;
1752
1753         mutex_enter(rt->rt_lock);
1754         empty = (range_tree_space(rt) == 0);
1755         mutex_exit(rt->rt_lock);
1756
1757         return (empty);
1758 }
1759
1760 /*
1761  * Returns the lowest txg in the DTL range.
1762  */
1763 static uint64_t
1764 vdev_dtl_min(vdev_t *vd)
1765 {
1766         range_seg_t *rs;
1767
1768         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1769         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1770         ASSERT0(vd->vdev_children);
1771
1772         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1773         return (rs->rs_start - 1);
1774 }
1775
1776 /*
1777  * Returns the highest txg in the DTL.
1778  */
1779 static uint64_t
1780 vdev_dtl_max(vdev_t *vd)
1781 {
1782         range_seg_t *rs;
1783
1784         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1785         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1786         ASSERT0(vd->vdev_children);
1787
1788         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1789         return (rs->rs_end);
1790 }
1791
1792 /*
1793  * Determine if a resilvering vdev should remove any DTL entries from
1794  * its range. If the vdev was resilvering for the entire duration of the
1795  * scan then it should excise that range from its DTLs. Otherwise, this
1796  * vdev is considered partially resilvered and should leave its DTL
1797  * entries intact. The comment in vdev_dtl_reassess() describes how we
1798  * excise the DTLs.
1799  */
1800 static boolean_t
1801 vdev_dtl_should_excise(vdev_t *vd)
1802 {
1803         spa_t *spa = vd->vdev_spa;
1804         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1805
1806         ASSERT0(scn->scn_phys.scn_errors);
1807         ASSERT0(vd->vdev_children);
1808
1809         if (vd->vdev_resilver_txg == 0 ||
1810             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1811                 return (B_TRUE);
1812
1813         /*
1814          * When a resilver is initiated the scan will assign the scn_max_txg
1815          * value to the highest txg value that exists in all DTLs. If this
1816          * device's max DTL is not part of this scan (i.e. it is not in
1817          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1818          * for excision.
1819          */
1820         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1821                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1822                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1823                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1824                 return (B_TRUE);
1825         }
1826         return (B_FALSE);
1827 }
1828
1829 /*
1830  * Reassess DTLs after a config change or scrub completion.
1831  */
1832 void
1833 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1834 {
1835         spa_t *spa = vd->vdev_spa;
1836         avl_tree_t reftree;
1837         int minref;
1838
1839         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1840
1841         for (int c = 0; c < vd->vdev_children; c++)
1842                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1843                     scrub_txg, scrub_done);
1844
1845         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1846                 return;
1847
1848         if (vd->vdev_ops->vdev_op_leaf) {
1849                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1850
1851                 mutex_enter(&vd->vdev_dtl_lock);
1852
1853                 /*
1854                  * If we've completed a scan cleanly then determine
1855                  * if this vdev should remove any DTLs. We only want to
1856                  * excise regions on vdevs that were available during
1857                  * the entire duration of this scan.
1858                  */
1859                 if (scrub_txg != 0 &&
1860                     (spa->spa_scrub_started ||
1861                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1862                     vdev_dtl_should_excise(vd)) {
1863                         /*
1864                          * We completed a scrub up to scrub_txg.  If we
1865                          * did it without rebooting, then the scrub dtl
1866                          * will be valid, so excise the old region and
1867                          * fold in the scrub dtl.  Otherwise, leave the
1868                          * dtl as-is if there was an error.
1869                          *
1870                          * There's little trick here: to excise the beginning
1871                          * of the DTL_MISSING map, we put it into a reference
1872                          * tree and then add a segment with refcnt -1 that
1873                          * covers the range [0, scrub_txg).  This means
1874                          * that each txg in that range has refcnt -1 or 0.
1875                          * We then add DTL_SCRUB with a refcnt of 2, so that
1876                          * entries in the range [0, scrub_txg) will have a
1877                          * positive refcnt -- either 1 or 2.  We then convert
1878                          * the reference tree into the new DTL_MISSING map.
1879                          */
1880                         space_reftree_create(&reftree);
1881                         space_reftree_add_map(&reftree,
1882                             vd->vdev_dtl[DTL_MISSING], 1);
1883                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1884                         space_reftree_add_map(&reftree,
1885                             vd->vdev_dtl[DTL_SCRUB], 2);
1886                         space_reftree_generate_map(&reftree,
1887                             vd->vdev_dtl[DTL_MISSING], 1);
1888                         space_reftree_destroy(&reftree);
1889                 }
1890                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1891                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1892                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1893                 if (scrub_done)
1894                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1895                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1896                 if (!vdev_readable(vd))
1897                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1898                 else
1899                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1900                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1901
1902                 /*
1903                  * If the vdev was resilvering and no longer has any
1904                  * DTLs then reset its resilvering flag.
1905                  */
1906                 if (vd->vdev_resilver_txg != 0 &&
1907                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1908                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1909                         vd->vdev_resilver_txg = 0;
1910
1911                 mutex_exit(&vd->vdev_dtl_lock);
1912
1913                 if (txg != 0)
1914                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1915                 return;
1916         }
1917
1918         mutex_enter(&vd->vdev_dtl_lock);
1919         for (int t = 0; t < DTL_TYPES; t++) {
1920                 /* account for child's outage in parent's missing map */
1921                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1922                 if (t == DTL_SCRUB)
1923                         continue;                       /* leaf vdevs only */
1924                 if (t == DTL_PARTIAL)
1925                         minref = 1;                     /* i.e. non-zero */
1926                 else if (vd->vdev_nparity != 0)
1927                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1928                 else
1929                         minref = vd->vdev_children;     /* any kind of mirror */
1930                 space_reftree_create(&reftree);
1931                 for (int c = 0; c < vd->vdev_children; c++) {
1932                         vdev_t *cvd = vd->vdev_child[c];
1933                         mutex_enter(&cvd->vdev_dtl_lock);
1934                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1935                         mutex_exit(&cvd->vdev_dtl_lock);
1936                 }
1937                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1938                 space_reftree_destroy(&reftree);
1939         }
1940         mutex_exit(&vd->vdev_dtl_lock);
1941 }
1942
1943 int
1944 vdev_dtl_load(vdev_t *vd)
1945 {
1946         spa_t *spa = vd->vdev_spa;
1947         objset_t *mos = spa->spa_meta_objset;
1948         int error = 0;
1949
1950         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1951                 ASSERT(!vd->vdev_ishole);
1952
1953                 error = space_map_open(&vd->vdev_dtl_sm, mos,
1954                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1955                 if (error)
1956                         return (error);
1957                 ASSERT(vd->vdev_dtl_sm != NULL);
1958
1959                 mutex_enter(&vd->vdev_dtl_lock);
1960
1961                 /*
1962                  * Now that we've opened the space_map we need to update
1963                  * the in-core DTL.
1964                  */
1965                 space_map_update(vd->vdev_dtl_sm);
1966
1967                 error = space_map_load(vd->vdev_dtl_sm,
1968                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1969                 mutex_exit(&vd->vdev_dtl_lock);
1970
1971                 return (error);
1972         }
1973
1974         for (int c = 0; c < vd->vdev_children; c++) {
1975                 error = vdev_dtl_load(vd->vdev_child[c]);
1976                 if (error != 0)
1977                         break;
1978         }
1979
1980         return (error);
1981 }
1982
1983 void
1984 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1985 {
1986         spa_t *spa = vd->vdev_spa;
1987         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1988         objset_t *mos = spa->spa_meta_objset;
1989         range_tree_t *rtsync;
1990         kmutex_t rtlock;
1991         dmu_tx_t *tx;
1992         uint64_t object = space_map_object(vd->vdev_dtl_sm);
1993
1994         ASSERT(!vd->vdev_ishole);
1995         ASSERT(vd->vdev_ops->vdev_op_leaf);
1996
1997         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1998
1999         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2000                 mutex_enter(&vd->vdev_dtl_lock);
2001                 space_map_free(vd->vdev_dtl_sm, tx);
2002                 space_map_close(vd->vdev_dtl_sm);
2003                 vd->vdev_dtl_sm = NULL;
2004                 mutex_exit(&vd->vdev_dtl_lock);
2005                 dmu_tx_commit(tx);
2006                 return;
2007         }
2008
2009         if (vd->vdev_dtl_sm == NULL) {
2010                 uint64_t new_object;
2011
2012                 new_object = space_map_alloc(mos, tx);
2013                 VERIFY3U(new_object, !=, 0);
2014
2015                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2016                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2017                 ASSERT(vd->vdev_dtl_sm != NULL);
2018         }
2019
2020         bzero(&rtlock, sizeof(rtlock));
2021         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2022
2023         rtsync = range_tree_create(NULL, NULL, &rtlock);
2024
2025         mutex_enter(&rtlock);
2026
2027         mutex_enter(&vd->vdev_dtl_lock);
2028         range_tree_walk(rt, range_tree_add, rtsync);
2029         mutex_exit(&vd->vdev_dtl_lock);
2030
2031         space_map_truncate(vd->vdev_dtl_sm, tx);
2032         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2033         range_tree_vacate(rtsync, NULL, NULL);
2034
2035         range_tree_destroy(rtsync);
2036
2037         mutex_exit(&rtlock);
2038         mutex_destroy(&rtlock);
2039
2040         /*
2041          * If the object for the space map has changed then dirty
2042          * the top level so that we update the config.
2043          */
2044         if (object != space_map_object(vd->vdev_dtl_sm)) {
2045                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2046                     "new object %llu", txg, spa_name(spa), object,
2047                     space_map_object(vd->vdev_dtl_sm));
2048                 vdev_config_dirty(vd->vdev_top);
2049         }
2050
2051         dmu_tx_commit(tx);
2052
2053         mutex_enter(&vd->vdev_dtl_lock);
2054         space_map_update(vd->vdev_dtl_sm);
2055         mutex_exit(&vd->vdev_dtl_lock);
2056 }
2057
2058 /*
2059  * Determine whether the specified vdev can be offlined/detached/removed
2060  * without losing data.
2061  */
2062 boolean_t
2063 vdev_dtl_required(vdev_t *vd)
2064 {
2065         spa_t *spa = vd->vdev_spa;
2066         vdev_t *tvd = vd->vdev_top;
2067         uint8_t cant_read = vd->vdev_cant_read;
2068         boolean_t required;
2069
2070         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2071
2072         if (vd == spa->spa_root_vdev || vd == tvd)
2073                 return (B_TRUE);
2074
2075         /*
2076          * Temporarily mark the device as unreadable, and then determine
2077          * whether this results in any DTL outages in the top-level vdev.
2078          * If not, we can safely offline/detach/remove the device.
2079          */
2080         vd->vdev_cant_read = B_TRUE;
2081         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2082         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2083         vd->vdev_cant_read = cant_read;
2084         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2085
2086         if (!required && zio_injection_enabled)
2087                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2088
2089         return (required);
2090 }
2091
2092 /*
2093  * Determine if resilver is needed, and if so the txg range.
2094  */
2095 boolean_t
2096 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2097 {
2098         boolean_t needed = B_FALSE;
2099         uint64_t thismin = UINT64_MAX;
2100         uint64_t thismax = 0;
2101
2102         if (vd->vdev_children == 0) {
2103                 mutex_enter(&vd->vdev_dtl_lock);
2104                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2105                     vdev_writeable(vd)) {
2106
2107                         thismin = vdev_dtl_min(vd);
2108                         thismax = vdev_dtl_max(vd);
2109                         needed = B_TRUE;
2110                 }
2111                 mutex_exit(&vd->vdev_dtl_lock);
2112         } else {
2113                 for (int c = 0; c < vd->vdev_children; c++) {
2114                         vdev_t *cvd = vd->vdev_child[c];
2115                         uint64_t cmin, cmax;
2116
2117                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2118                                 thismin = MIN(thismin, cmin);
2119                                 thismax = MAX(thismax, cmax);
2120                                 needed = B_TRUE;
2121                         }
2122                 }
2123         }
2124
2125         if (needed && minp) {
2126                 *minp = thismin;
2127                 *maxp = thismax;
2128         }
2129         return (needed);
2130 }
2131
2132 void
2133 vdev_load(vdev_t *vd)
2134 {
2135         /*
2136          * Recursively load all children.
2137          */
2138         for (int c = 0; c < vd->vdev_children; c++)
2139                 vdev_load(vd->vdev_child[c]);
2140
2141         /*
2142          * If this is a top-level vdev, initialize its metaslabs.
2143          */
2144         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2145             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2146             vdev_metaslab_init(vd, 0) != 0))
2147                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2148                     VDEV_AUX_CORRUPT_DATA);
2149
2150         /*
2151          * If this is a leaf vdev, load its DTL.
2152          */
2153         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2154                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2155                     VDEV_AUX_CORRUPT_DATA);
2156 }
2157
2158 /*
2159  * The special vdev case is used for hot spares and l2cache devices.  Its
2160  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2161  * we make sure that we can open the underlying device, then try to read the
2162  * label, and make sure that the label is sane and that it hasn't been
2163  * repurposed to another pool.
2164  */
2165 int
2166 vdev_validate_aux(vdev_t *vd)
2167 {
2168         nvlist_t *label;
2169         uint64_t guid, version;
2170         uint64_t state;
2171
2172         if (!vdev_readable(vd))
2173                 return (0);
2174
2175         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2176                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2177                     VDEV_AUX_CORRUPT_DATA);
2178                 return (-1);
2179         }
2180
2181         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2182             !SPA_VERSION_IS_SUPPORTED(version) ||
2183             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2184             guid != vd->vdev_guid ||
2185             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2186                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2187                     VDEV_AUX_CORRUPT_DATA);
2188                 nvlist_free(label);
2189                 return (-1);
2190         }
2191
2192         /*
2193          * We don't actually check the pool state here.  If it's in fact in
2194          * use by another pool, we update this fact on the fly when requested.
2195          */
2196         nvlist_free(label);
2197         return (0);
2198 }
2199
2200 void
2201 vdev_remove(vdev_t *vd, uint64_t txg)
2202 {
2203         spa_t *spa = vd->vdev_spa;
2204         objset_t *mos = spa->spa_meta_objset;
2205         dmu_tx_t *tx;
2206
2207         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2208
2209         if (vd->vdev_ms != NULL) {
2210                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2211                         metaslab_t *msp = vd->vdev_ms[m];
2212
2213                         if (msp == NULL || msp->ms_sm == NULL)
2214                                 continue;
2215
2216                         mutex_enter(&msp->ms_lock);
2217                         VERIFY0(space_map_allocated(msp->ms_sm));
2218                         space_map_free(msp->ms_sm, tx);
2219                         space_map_close(msp->ms_sm);
2220                         msp->ms_sm = NULL;
2221                         mutex_exit(&msp->ms_lock);
2222                 }
2223         }
2224
2225         if (vd->vdev_ms_array) {
2226                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2227                 vd->vdev_ms_array = 0;
2228         }
2229         dmu_tx_commit(tx);
2230 }
2231
2232 void
2233 vdev_sync_done(vdev_t *vd, uint64_t txg)
2234 {
2235         metaslab_t *msp;
2236         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2237
2238         ASSERT(!vd->vdev_ishole);
2239
2240         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2241                 metaslab_sync_done(msp, txg);
2242
2243         if (reassess)
2244                 metaslab_sync_reassess(vd->vdev_mg);
2245 }
2246
2247 void
2248 vdev_sync(vdev_t *vd, uint64_t txg)
2249 {
2250         spa_t *spa = vd->vdev_spa;
2251         vdev_t *lvd;
2252         metaslab_t *msp;
2253         dmu_tx_t *tx;
2254
2255         ASSERT(!vd->vdev_ishole);
2256
2257         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2258                 ASSERT(vd == vd->vdev_top);
2259                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2260                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2261                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2262                 ASSERT(vd->vdev_ms_array != 0);
2263                 vdev_config_dirty(vd);
2264                 dmu_tx_commit(tx);
2265         }
2266
2267         /*
2268          * Remove the metadata associated with this vdev once it's empty.
2269          */
2270         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2271                 vdev_remove(vd, txg);
2272
2273         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2274                 metaslab_sync(msp, txg);
2275                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2276         }
2277
2278         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2279                 vdev_dtl_sync(lvd, txg);
2280
2281         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2282 }
2283
2284 uint64_t
2285 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2286 {
2287         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2288 }
2289
2290 /*
2291  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2292  * not be opened, and no I/O is attempted.
2293  */
2294 int
2295 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2296 {
2297         vdev_t *vd, *tvd;
2298
2299         spa_vdev_state_enter(spa, SCL_NONE);
2300
2301         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2302                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2303
2304         if (!vd->vdev_ops->vdev_op_leaf)
2305                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2306
2307         tvd = vd->vdev_top;
2308
2309         /*
2310          * We don't directly use the aux state here, but if we do a
2311          * vdev_reopen(), we need this value to be present to remember why we
2312          * were faulted.
2313          */
2314         vd->vdev_label_aux = aux;
2315
2316         /*
2317          * Faulted state takes precedence over degraded.
2318          */
2319         vd->vdev_delayed_close = B_FALSE;
2320         vd->vdev_faulted = 1ULL;
2321         vd->vdev_degraded = 0ULL;
2322         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2323
2324         /*
2325          * If this device has the only valid copy of the data, then
2326          * back off and simply mark the vdev as degraded instead.
2327          */
2328         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2329                 vd->vdev_degraded = 1ULL;
2330                 vd->vdev_faulted = 0ULL;
2331
2332                 /*
2333                  * If we reopen the device and it's not dead, only then do we
2334                  * mark it degraded.
2335                  */
2336                 vdev_reopen(tvd);
2337
2338                 if (vdev_readable(vd))
2339                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2340         }
2341
2342         return (spa_vdev_state_exit(spa, vd, 0));
2343 }
2344
2345 /*
2346  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2347  * user that something is wrong.  The vdev continues to operate as normal as far
2348  * as I/O is concerned.
2349  */
2350 int
2351 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2352 {
2353         vdev_t *vd;
2354
2355         spa_vdev_state_enter(spa, SCL_NONE);
2356
2357         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2358                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2359
2360         if (!vd->vdev_ops->vdev_op_leaf)
2361                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2362
2363         /*
2364          * If the vdev is already faulted, then don't do anything.
2365          */
2366         if (vd->vdev_faulted || vd->vdev_degraded)
2367                 return (spa_vdev_state_exit(spa, NULL, 0));
2368
2369         vd->vdev_degraded = 1ULL;
2370         if (!vdev_is_dead(vd))
2371                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2372                     aux);
2373
2374         return (spa_vdev_state_exit(spa, vd, 0));
2375 }
2376
2377 /*
2378  * Online the given vdev.
2379  *
2380  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2381  * spare device should be detached when the device finishes resilvering.
2382  * Second, the online should be treated like a 'test' online case, so no FMA
2383  * events are generated if the device fails to open.
2384  */
2385 int
2386 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2387 {
2388         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2389
2390         spa_vdev_state_enter(spa, SCL_NONE);
2391
2392         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2393                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2394
2395         if (!vd->vdev_ops->vdev_op_leaf)
2396                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2397
2398         tvd = vd->vdev_top;
2399         vd->vdev_offline = B_FALSE;
2400         vd->vdev_tmpoffline = B_FALSE;
2401         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2402         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2403
2404         /* XXX - L2ARC 1.0 does not support expansion */
2405         if (!vd->vdev_aux) {
2406                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2407                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2408         }
2409
2410         vdev_reopen(tvd);
2411         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2412
2413         if (!vd->vdev_aux) {
2414                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2415                         pvd->vdev_expanding = B_FALSE;
2416         }
2417
2418         if (newstate)
2419                 *newstate = vd->vdev_state;
2420         if ((flags & ZFS_ONLINE_UNSPARE) &&
2421             !vdev_is_dead(vd) && vd->vdev_parent &&
2422             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2423             vd->vdev_parent->vdev_child[0] == vd)
2424                 vd->vdev_unspare = B_TRUE;
2425
2426         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2427
2428                 /* XXX - L2ARC 1.0 does not support expansion */
2429                 if (vd->vdev_aux)
2430                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2431                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2432         }
2433         return (spa_vdev_state_exit(spa, vd, 0));
2434 }
2435
2436 static int
2437 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2438 {
2439         vdev_t *vd, *tvd;
2440         int error = 0;
2441         uint64_t generation;
2442         metaslab_group_t *mg;
2443
2444 top:
2445         spa_vdev_state_enter(spa, SCL_ALLOC);
2446
2447         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2448                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2449
2450         if (!vd->vdev_ops->vdev_op_leaf)
2451                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2452
2453         tvd = vd->vdev_top;
2454         mg = tvd->vdev_mg;
2455         generation = spa->spa_config_generation + 1;
2456
2457         /*
2458          * If the device isn't already offline, try to offline it.
2459          */
2460         if (!vd->vdev_offline) {
2461                 /*
2462                  * If this device has the only valid copy of some data,
2463                  * don't allow it to be offlined. Log devices are always
2464                  * expendable.
2465                  */
2466                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2467                     vdev_dtl_required(vd))
2468                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2469
2470                 /*
2471                  * If the top-level is a slog and it has had allocations
2472                  * then proceed.  We check that the vdev's metaslab group
2473                  * is not NULL since it's possible that we may have just
2474                  * added this vdev but not yet initialized its metaslabs.
2475                  */
2476                 if (tvd->vdev_islog && mg != NULL) {
2477                         /*
2478                          * Prevent any future allocations.
2479                          */
2480                         metaslab_group_passivate(mg);
2481                         (void) spa_vdev_state_exit(spa, vd, 0);
2482
2483                         error = spa_offline_log(spa);
2484
2485                         spa_vdev_state_enter(spa, SCL_ALLOC);
2486
2487                         /*
2488                          * Check to see if the config has changed.
2489                          */
2490                         if (error || generation != spa->spa_config_generation) {
2491                                 metaslab_group_activate(mg);
2492                                 if (error)
2493                                         return (spa_vdev_state_exit(spa,
2494                                             vd, error));
2495                                 (void) spa_vdev_state_exit(spa, vd, 0);
2496                                 goto top;
2497                         }
2498                         ASSERT0(tvd->vdev_stat.vs_alloc);
2499                 }
2500
2501                 /*
2502                  * Offline this device and reopen its top-level vdev.
2503                  * If the top-level vdev is a log device then just offline
2504                  * it. Otherwise, if this action results in the top-level
2505                  * vdev becoming unusable, undo it and fail the request.
2506                  */
2507                 vd->vdev_offline = B_TRUE;
2508                 vdev_reopen(tvd);
2509
2510                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2511                     vdev_is_dead(tvd)) {
2512                         vd->vdev_offline = B_FALSE;
2513                         vdev_reopen(tvd);
2514                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2515                 }
2516
2517                 /*
2518                  * Add the device back into the metaslab rotor so that
2519                  * once we online the device it's open for business.
2520                  */
2521                 if (tvd->vdev_islog && mg != NULL)
2522                         metaslab_group_activate(mg);
2523         }
2524
2525         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2526
2527         return (spa_vdev_state_exit(spa, vd, 0));
2528 }
2529
2530 int
2531 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2532 {
2533         int error;
2534
2535         mutex_enter(&spa->spa_vdev_top_lock);
2536         error = vdev_offline_locked(spa, guid, flags);
2537         mutex_exit(&spa->spa_vdev_top_lock);
2538
2539         return (error);
2540 }
2541
2542 /*
2543  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2544  * vdev_offline(), we assume the spa config is locked.  We also clear all
2545  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2546  */
2547 void
2548 vdev_clear(spa_t *spa, vdev_t *vd)
2549 {
2550         vdev_t *rvd = spa->spa_root_vdev;
2551
2552         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2553
2554         if (vd == NULL)
2555                 vd = rvd;
2556
2557         vd->vdev_stat.vs_read_errors = 0;
2558         vd->vdev_stat.vs_write_errors = 0;
2559         vd->vdev_stat.vs_checksum_errors = 0;
2560
2561         for (int c = 0; c < vd->vdev_children; c++)
2562                 vdev_clear(spa, vd->vdev_child[c]);
2563
2564         if (vd == rvd) {
2565                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2566                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2567
2568                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2569                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2570         }
2571
2572         /*
2573          * If we're in the FAULTED state or have experienced failed I/O, then
2574          * clear the persistent state and attempt to reopen the device.  We
2575          * also mark the vdev config dirty, so that the new faulted state is
2576          * written out to disk.
2577          */
2578         if (vd->vdev_faulted || vd->vdev_degraded ||
2579             !vdev_readable(vd) || !vdev_writeable(vd)) {
2580
2581                 /*
2582                  * When reopening in reponse to a clear event, it may be due to
2583                  * a fmadm repair request.  In this case, if the device is
2584                  * still broken, we want to still post the ereport again.
2585                  */
2586                 vd->vdev_forcefault = B_TRUE;
2587
2588                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2589                 vd->vdev_cant_read = B_FALSE;
2590                 vd->vdev_cant_write = B_FALSE;
2591
2592                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2593
2594                 vd->vdev_forcefault = B_FALSE;
2595
2596                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2597                         vdev_state_dirty(vd->vdev_top);
2598
2599                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2600                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2601
2602                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2603         }
2604
2605         /*
2606          * When clearing a FMA-diagnosed fault, we always want to
2607          * unspare the device, as we assume that the original spare was
2608          * done in response to the FMA fault.
2609          */
2610         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2611             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2612             vd->vdev_parent->vdev_child[0] == vd)
2613                 vd->vdev_unspare = B_TRUE;
2614 }
2615
2616 boolean_t
2617 vdev_is_dead(vdev_t *vd)
2618 {
2619         /*
2620          * Holes and missing devices are always considered "dead".
2621          * This simplifies the code since we don't have to check for
2622          * these types of devices in the various code paths.
2623          * Instead we rely on the fact that we skip over dead devices
2624          * before issuing I/O to them.
2625          */
2626         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2627             vd->vdev_ops == &vdev_missing_ops);
2628 }
2629
2630 boolean_t
2631 vdev_readable(vdev_t *vd)
2632 {
2633         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2634 }
2635
2636 boolean_t
2637 vdev_writeable(vdev_t *vd)
2638 {
2639         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2640 }
2641
2642 boolean_t
2643 vdev_allocatable(vdev_t *vd)
2644 {
2645         uint64_t state = vd->vdev_state;
2646
2647         /*
2648          * We currently allow allocations from vdevs which may be in the
2649          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2650          * fails to reopen then we'll catch it later when we're holding
2651          * the proper locks.  Note that we have to get the vdev state
2652          * in a local variable because although it changes atomically,
2653          * we're asking two separate questions about it.
2654          */
2655         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2656             !vd->vdev_cant_write && !vd->vdev_ishole);
2657 }
2658
2659 boolean_t
2660 vdev_accessible(vdev_t *vd, zio_t *zio)
2661 {
2662         ASSERT(zio->io_vd == vd);
2663
2664         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2665                 return (B_FALSE);
2666
2667         if (zio->io_type == ZIO_TYPE_READ)
2668                 return (!vd->vdev_cant_read);
2669
2670         if (zio->io_type == ZIO_TYPE_WRITE)
2671                 return (!vd->vdev_cant_write);
2672
2673         return (B_TRUE);
2674 }
2675
2676 /*
2677  * Get statistics for the given vdev.
2678  */
2679 void
2680 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2681 {
2682         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2683
2684         mutex_enter(&vd->vdev_stat_lock);
2685         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2686         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2687         vs->vs_state = vd->vdev_state;
2688         vs->vs_rsize = vdev_get_min_asize(vd);
2689         if (vd->vdev_ops->vdev_op_leaf)
2690                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2691         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2692         vs->vs_configured_ashift = vd->vdev_top != NULL
2693             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2694         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2695         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2696         mutex_exit(&vd->vdev_stat_lock);
2697
2698         /*
2699          * If we're getting stats on the root vdev, aggregate the I/O counts
2700          * over all top-level vdevs (i.e. the direct children of the root).
2701          */
2702         if (vd == rvd) {
2703                 for (int c = 0; c < rvd->vdev_children; c++) {
2704                         vdev_t *cvd = rvd->vdev_child[c];
2705                         vdev_stat_t *cvs = &cvd->vdev_stat;
2706
2707                         mutex_enter(&vd->vdev_stat_lock);
2708                         for (int t = 0; t < ZIO_TYPES; t++) {
2709                                 vs->vs_ops[t] += cvs->vs_ops[t];
2710                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2711                         }
2712                         cvs->vs_scan_removing = cvd->vdev_removing;
2713                         mutex_exit(&vd->vdev_stat_lock);
2714                 }
2715         }
2716 }
2717
2718 void
2719 vdev_clear_stats(vdev_t *vd)
2720 {
2721         mutex_enter(&vd->vdev_stat_lock);
2722         vd->vdev_stat.vs_space = 0;
2723         vd->vdev_stat.vs_dspace = 0;
2724         vd->vdev_stat.vs_alloc = 0;
2725         mutex_exit(&vd->vdev_stat_lock);
2726 }
2727
2728 void
2729 vdev_scan_stat_init(vdev_t *vd)
2730 {
2731         vdev_stat_t *vs = &vd->vdev_stat;
2732
2733         for (int c = 0; c < vd->vdev_children; c++)
2734                 vdev_scan_stat_init(vd->vdev_child[c]);
2735
2736         mutex_enter(&vd->vdev_stat_lock);
2737         vs->vs_scan_processed = 0;
2738         mutex_exit(&vd->vdev_stat_lock);
2739 }
2740
2741 void
2742 vdev_stat_update(zio_t *zio, uint64_t psize)
2743 {
2744         spa_t *spa = zio->io_spa;
2745         vdev_t *rvd = spa->spa_root_vdev;
2746         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2747         vdev_t *pvd;
2748         uint64_t txg = zio->io_txg;
2749         vdev_stat_t *vs = &vd->vdev_stat;
2750         zio_type_t type = zio->io_type;
2751         int flags = zio->io_flags;
2752
2753         /*
2754          * If this i/o is a gang leader, it didn't do any actual work.
2755          */
2756         if (zio->io_gang_tree)
2757                 return;
2758
2759         if (zio->io_error == 0) {
2760                 /*
2761                  * If this is a root i/o, don't count it -- we've already
2762                  * counted the top-level vdevs, and vdev_get_stats() will
2763                  * aggregate them when asked.  This reduces contention on
2764                  * the root vdev_stat_lock and implicitly handles blocks
2765                  * that compress away to holes, for which there is no i/o.
2766                  * (Holes never create vdev children, so all the counters
2767                  * remain zero, which is what we want.)
2768                  *
2769                  * Note: this only applies to successful i/o (io_error == 0)
2770                  * because unlike i/o counts, errors are not additive.
2771                  * When reading a ditto block, for example, failure of
2772                  * one top-level vdev does not imply a root-level error.
2773                  */
2774                 if (vd == rvd)
2775                         return;
2776
2777                 ASSERT(vd == zio->io_vd);
2778
2779                 if (flags & ZIO_FLAG_IO_BYPASS)
2780                         return;
2781
2782                 mutex_enter(&vd->vdev_stat_lock);
2783
2784                 if (flags & ZIO_FLAG_IO_REPAIR) {
2785                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2786                                 dsl_scan_phys_t *scn_phys =
2787                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2788                                 uint64_t *processed = &scn_phys->scn_processed;
2789
2790                                 /* XXX cleanup? */
2791                                 if (vd->vdev_ops->vdev_op_leaf)
2792                                         atomic_add_64(processed, psize);
2793                                 vs->vs_scan_processed += psize;
2794                         }
2795
2796                         if (flags & ZIO_FLAG_SELF_HEAL)
2797                                 vs->vs_self_healed += psize;
2798                 }
2799
2800                 vs->vs_ops[type]++;
2801                 vs->vs_bytes[type] += psize;
2802
2803                 mutex_exit(&vd->vdev_stat_lock);
2804                 return;
2805         }
2806
2807         if (flags & ZIO_FLAG_SPECULATIVE)
2808                 return;
2809
2810         /*
2811          * If this is an I/O error that is going to be retried, then ignore the
2812          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2813          * hard errors, when in reality they can happen for any number of
2814          * innocuous reasons (bus resets, MPxIO link failure, etc).
2815          */
2816         if (zio->io_error == EIO &&
2817             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2818                 return;
2819
2820         /*
2821          * Intent logs writes won't propagate their error to the root
2822          * I/O so don't mark these types of failures as pool-level
2823          * errors.
2824          */
2825         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2826                 return;
2827
2828         mutex_enter(&vd->vdev_stat_lock);
2829         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2830                 if (zio->io_error == ECKSUM)
2831                         vs->vs_checksum_errors++;
2832                 else
2833                         vs->vs_read_errors++;
2834         }
2835         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2836                 vs->vs_write_errors++;
2837         mutex_exit(&vd->vdev_stat_lock);
2838
2839         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2840             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2841             (flags & ZIO_FLAG_SCAN_THREAD) ||
2842             spa->spa_claiming)) {
2843                 /*
2844                  * This is either a normal write (not a repair), or it's
2845                  * a repair induced by the scrub thread, or it's a repair
2846                  * made by zil_claim() during spa_load() in the first txg.
2847                  * In the normal case, we commit the DTL change in the same
2848                  * txg as the block was born.  In the scrub-induced repair
2849                  * case, we know that scrubs run in first-pass syncing context,
2850                  * so we commit the DTL change in spa_syncing_txg(spa).
2851                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2852                  *
2853                  * We currently do not make DTL entries for failed spontaneous
2854                  * self-healing writes triggered by normal (non-scrubbing)
2855                  * reads, because we have no transactional context in which to
2856                  * do so -- and it's not clear that it'd be desirable anyway.
2857                  */
2858                 if (vd->vdev_ops->vdev_op_leaf) {
2859                         uint64_t commit_txg = txg;
2860                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2861                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2862                                 ASSERT(spa_sync_pass(spa) == 1);
2863                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2864                                 commit_txg = spa_syncing_txg(spa);
2865                         } else if (spa->spa_claiming) {
2866                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2867                                 commit_txg = spa_first_txg(spa);
2868                         }
2869                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2870                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2871                                 return;
2872                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2873                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2874                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2875                 }
2876                 if (vd != rvd)
2877                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2878         }
2879 }
2880
2881 /*
2882  * Update the in-core space usage stats for this vdev, its metaslab class,
2883  * and the root vdev.
2884  */
2885 void
2886 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2887     int64_t space_delta)
2888 {
2889         int64_t dspace_delta = space_delta;
2890         spa_t *spa = vd->vdev_spa;
2891         vdev_t *rvd = spa->spa_root_vdev;
2892         metaslab_group_t *mg = vd->vdev_mg;
2893         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2894
2895         ASSERT(vd == vd->vdev_top);
2896
2897         /*
2898          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2899          * factor.  We must calculate this here and not at the root vdev
2900          * because the root vdev's psize-to-asize is simply the max of its
2901          * childrens', thus not accurate enough for us.
2902          */
2903         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2904         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2905         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2906             vd->vdev_deflate_ratio;
2907
2908         mutex_enter(&vd->vdev_stat_lock);
2909         vd->vdev_stat.vs_alloc += alloc_delta;
2910         vd->vdev_stat.vs_space += space_delta;
2911         vd->vdev_stat.vs_dspace += dspace_delta;
2912         mutex_exit(&vd->vdev_stat_lock);
2913
2914         if (mc == spa_normal_class(spa)) {
2915                 mutex_enter(&rvd->vdev_stat_lock);
2916                 rvd->vdev_stat.vs_alloc += alloc_delta;
2917                 rvd->vdev_stat.vs_space += space_delta;
2918                 rvd->vdev_stat.vs_dspace += dspace_delta;
2919                 mutex_exit(&rvd->vdev_stat_lock);
2920         }
2921
2922         if (mc != NULL) {
2923                 ASSERT(rvd == vd->vdev_parent);
2924                 ASSERT(vd->vdev_ms_count != 0);
2925
2926                 metaslab_class_space_update(mc,
2927                     alloc_delta, defer_delta, space_delta, dspace_delta);
2928         }
2929 }
2930
2931 /*
2932  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2933  * so that it will be written out next time the vdev configuration is synced.
2934  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2935  */
2936 void
2937 vdev_config_dirty(vdev_t *vd)
2938 {
2939         spa_t *spa = vd->vdev_spa;
2940         vdev_t *rvd = spa->spa_root_vdev;
2941         int c;
2942
2943         ASSERT(spa_writeable(spa));
2944
2945         /*
2946          * If this is an aux vdev (as with l2cache and spare devices), then we
2947          * update the vdev config manually and set the sync flag.
2948          */
2949         if (vd->vdev_aux != NULL) {
2950                 spa_aux_vdev_t *sav = vd->vdev_aux;
2951                 nvlist_t **aux;
2952                 uint_t naux;
2953
2954                 for (c = 0; c < sav->sav_count; c++) {
2955                         if (sav->sav_vdevs[c] == vd)
2956                                 break;
2957                 }
2958
2959                 if (c == sav->sav_count) {
2960                         /*
2961                          * We're being removed.  There's nothing more to do.
2962                          */
2963                         ASSERT(sav->sav_sync == B_TRUE);
2964                         return;
2965                 }
2966
2967                 sav->sav_sync = B_TRUE;
2968
2969                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2970                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2971                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2972                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2973                 }
2974
2975                 ASSERT(c < naux);
2976
2977                 /*
2978                  * Setting the nvlist in the middle if the array is a little
2979                  * sketchy, but it will work.
2980                  */
2981                 nvlist_free(aux[c]);
2982                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2983
2984                 return;
2985         }
2986
2987         /*
2988          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2989          * must either hold SCL_CONFIG as writer, or must be the sync thread
2990          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2991          * so this is sufficient to ensure mutual exclusion.
2992          */
2993         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2994             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2995             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2996
2997         if (vd == rvd) {
2998                 for (c = 0; c < rvd->vdev_children; c++)
2999                         vdev_config_dirty(rvd->vdev_child[c]);
3000         } else {
3001                 ASSERT(vd == vd->vdev_top);
3002
3003                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3004                     !vd->vdev_ishole)
3005                         list_insert_head(&spa->spa_config_dirty_list, vd);
3006         }
3007 }
3008
3009 void
3010 vdev_config_clean(vdev_t *vd)
3011 {
3012         spa_t *spa = vd->vdev_spa;
3013
3014         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3015             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3016             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3017
3018         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3019         list_remove(&spa->spa_config_dirty_list, vd);
3020 }
3021
3022 /*
3023  * Mark a top-level vdev's state as dirty, so that the next pass of
3024  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3025  * the state changes from larger config changes because they require
3026  * much less locking, and are often needed for administrative actions.
3027  */
3028 void
3029 vdev_state_dirty(vdev_t *vd)
3030 {
3031         spa_t *spa = vd->vdev_spa;
3032
3033         ASSERT(spa_writeable(spa));
3034         ASSERT(vd == vd->vdev_top);
3035
3036         /*
3037          * The state list is protected by the SCL_STATE lock.  The caller
3038          * must either hold SCL_STATE as writer, or must be the sync thread
3039          * (which holds SCL_STATE as reader).  There's only one sync thread,
3040          * so this is sufficient to ensure mutual exclusion.
3041          */
3042         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3043             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3044             spa_config_held(spa, SCL_STATE, RW_READER)));
3045
3046         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3047                 list_insert_head(&spa->spa_state_dirty_list, vd);
3048 }
3049
3050 void
3051 vdev_state_clean(vdev_t *vd)
3052 {
3053         spa_t *spa = vd->vdev_spa;
3054
3055         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3056             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3057             spa_config_held(spa, SCL_STATE, RW_READER)));
3058
3059         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3060         list_remove(&spa->spa_state_dirty_list, vd);
3061 }
3062
3063 /*
3064  * Propagate vdev state up from children to parent.
3065  */
3066 void
3067 vdev_propagate_state(vdev_t *vd)
3068 {
3069         spa_t *spa = vd->vdev_spa;
3070         vdev_t *rvd = spa->spa_root_vdev;
3071         int degraded = 0, faulted = 0;
3072         int corrupted = 0;
3073         vdev_t *child;
3074
3075         if (vd->vdev_children > 0) {
3076                 for (int c = 0; c < vd->vdev_children; c++) {
3077                         child = vd->vdev_child[c];
3078
3079                         /*
3080                          * Don't factor holes into the decision.
3081                          */
3082                         if (child->vdev_ishole)
3083                                 continue;
3084
3085                         if (!vdev_readable(child) ||
3086                             (!vdev_writeable(child) && spa_writeable(spa))) {
3087                                 /*
3088                                  * Root special: if there is a top-level log
3089                                  * device, treat the root vdev as if it were
3090                                  * degraded.
3091                                  */
3092                                 if (child->vdev_islog && vd == rvd)
3093                                         degraded++;
3094                                 else
3095                                         faulted++;
3096                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3097                                 degraded++;
3098                         }
3099
3100                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3101                                 corrupted++;
3102                 }
3103
3104                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3105
3106                 /*
3107                  * Root special: if there is a top-level vdev that cannot be
3108                  * opened due to corrupted metadata, then propagate the root
3109                  * vdev's aux state as 'corrupt' rather than 'insufficient
3110                  * replicas'.
3111                  */
3112                 if (corrupted && vd == rvd &&
3113                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3114                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3115                             VDEV_AUX_CORRUPT_DATA);
3116         }
3117
3118         if (vd->vdev_parent)
3119                 vdev_propagate_state(vd->vdev_parent);
3120 }
3121
3122 /*
3123  * Set a vdev's state.  If this is during an open, we don't update the parent
3124  * state, because we're in the process of opening children depth-first.
3125  * Otherwise, we propagate the change to the parent.
3126  *
3127  * If this routine places a device in a faulted state, an appropriate ereport is
3128  * generated.
3129  */
3130 void
3131 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3132 {
3133         uint64_t save_state;
3134         spa_t *spa = vd->vdev_spa;
3135
3136         if (state == vd->vdev_state) {
3137                 vd->vdev_stat.vs_aux = aux;
3138                 return;
3139         }
3140
3141         save_state = vd->vdev_state;
3142
3143         vd->vdev_state = state;
3144         vd->vdev_stat.vs_aux = aux;
3145
3146         /*
3147          * If we are setting the vdev state to anything but an open state, then
3148          * always close the underlying device unless the device has requested
3149          * a delayed close (i.e. we're about to remove or fault the device).
3150          * Otherwise, we keep accessible but invalid devices open forever.
3151          * We don't call vdev_close() itself, because that implies some extra
3152          * checks (offline, etc) that we don't want here.  This is limited to
3153          * leaf devices, because otherwise closing the device will affect other
3154          * children.
3155          */
3156         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3157             vd->vdev_ops->vdev_op_leaf)
3158                 vd->vdev_ops->vdev_op_close(vd);
3159
3160         /*
3161          * If we have brought this vdev back into service, we need
3162          * to notify fmd so that it can gracefully repair any outstanding
3163          * cases due to a missing device.  We do this in all cases, even those
3164          * that probably don't correlate to a repaired fault.  This is sure to
3165          * catch all cases, and we let the zfs-retire agent sort it out.  If
3166          * this is a transient state it's OK, as the retire agent will
3167          * double-check the state of the vdev before repairing it.
3168          */
3169         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3170             vd->vdev_prevstate != state)
3171                 zfs_post_state_change(spa, vd);
3172
3173         if (vd->vdev_removed &&
3174             state == VDEV_STATE_CANT_OPEN &&
3175             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3176                 /*
3177                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3178                  * device was previously marked removed and someone attempted to
3179                  * reopen it.  If this failed due to a nonexistent device, then
3180                  * keep the device in the REMOVED state.  We also let this be if
3181                  * it is one of our special test online cases, which is only
3182                  * attempting to online the device and shouldn't generate an FMA
3183                  * fault.
3184                  */
3185                 vd->vdev_state = VDEV_STATE_REMOVED;
3186                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3187         } else if (state == VDEV_STATE_REMOVED) {
3188                 vd->vdev_removed = B_TRUE;
3189         } else if (state == VDEV_STATE_CANT_OPEN) {
3190                 /*
3191                  * If we fail to open a vdev during an import or recovery, we
3192                  * mark it as "not available", which signifies that it was
3193                  * never there to begin with.  Failure to open such a device
3194                  * is not considered an error.
3195                  */
3196                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3197                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3198                     vd->vdev_ops->vdev_op_leaf)
3199                         vd->vdev_not_present = 1;
3200
3201                 /*
3202                  * Post the appropriate ereport.  If the 'prevstate' field is
3203                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3204                  * that this is part of a vdev_reopen().  In this case, we don't
3205                  * want to post the ereport if the device was already in the
3206                  * CANT_OPEN state beforehand.
3207                  *
3208                  * If the 'checkremove' flag is set, then this is an attempt to
3209                  * online the device in response to an insertion event.  If we
3210                  * hit this case, then we have detected an insertion event for a
3211                  * faulted or offline device that wasn't in the removed state.
3212                  * In this scenario, we don't post an ereport because we are
3213                  * about to replace the device, or attempt an online with
3214                  * vdev_forcefault, which will generate the fault for us.
3215                  */
3216                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3217                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3218                     vd != spa->spa_root_vdev) {
3219                         const char *class;
3220
3221                         switch (aux) {
3222                         case VDEV_AUX_OPEN_FAILED:
3223                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3224                                 break;
3225                         case VDEV_AUX_CORRUPT_DATA:
3226                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3227                                 break;
3228                         case VDEV_AUX_NO_REPLICAS:
3229                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3230                                 break;
3231                         case VDEV_AUX_BAD_GUID_SUM:
3232                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3233                                 break;
3234                         case VDEV_AUX_TOO_SMALL:
3235                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3236                                 break;
3237                         case VDEV_AUX_BAD_LABEL:
3238                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3239                                 break;
3240                         default:
3241                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3242                         }
3243
3244                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3245                 }
3246
3247                 /* Erase any notion of persistent removed state */
3248                 vd->vdev_removed = B_FALSE;
3249         } else {
3250                 vd->vdev_removed = B_FALSE;
3251         }
3252
3253         if (!isopen && vd->vdev_parent)
3254                 vdev_propagate_state(vd->vdev_parent);
3255 }
3256
3257 /*
3258  * Check the vdev configuration to ensure that it's capable of supporting
3259  * a root pool.
3260  *
3261  * On Solaris, we do not support RAID-Z or partial configuration.  In
3262  * addition, only a single top-level vdev is allowed and none of the
3263  * leaves can be wholedisks.
3264  *
3265  * For FreeBSD, we can boot from any configuration. There is a
3266  * limitation that the boot filesystem must be either uncompressed or
3267  * compresses with lzjb compression but I'm not sure how to enforce
3268  * that here.
3269  */
3270 boolean_t
3271 vdev_is_bootable(vdev_t *vd)
3272 {
3273 #ifdef sun
3274         if (!vd->vdev_ops->vdev_op_leaf) {
3275                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3276
3277                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3278                     vd->vdev_children > 1) {
3279                         return (B_FALSE);
3280                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3281                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3282                         return (B_FALSE);
3283                 }
3284         } else if (vd->vdev_wholedisk == 1) {
3285                 return (B_FALSE);
3286         }
3287
3288         for (int c = 0; c < vd->vdev_children; c++) {
3289                 if (!vdev_is_bootable(vd->vdev_child[c]))
3290                         return (B_FALSE);
3291         }
3292 #endif  /* sun */
3293         return (B_TRUE);
3294 }
3295
3296 /*
3297  * Load the state from the original vdev tree (ovd) which
3298  * we've retrieved from the MOS config object. If the original
3299  * vdev was offline or faulted then we transfer that state to the
3300  * device in the current vdev tree (nvd).
3301  */
3302 void
3303 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3304 {
3305         spa_t *spa = nvd->vdev_spa;
3306
3307         ASSERT(nvd->vdev_top->vdev_islog);
3308         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3309         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3310
3311         for (int c = 0; c < nvd->vdev_children; c++)
3312                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3313
3314         if (nvd->vdev_ops->vdev_op_leaf) {
3315                 /*
3316                  * Restore the persistent vdev state
3317                  */
3318                 nvd->vdev_offline = ovd->vdev_offline;
3319                 nvd->vdev_faulted = ovd->vdev_faulted;
3320                 nvd->vdev_degraded = ovd->vdev_degraded;
3321                 nvd->vdev_removed = ovd->vdev_removed;
3322         }
3323 }
3324
3325 /*
3326  * Determine if a log device has valid content.  If the vdev was
3327  * removed or faulted in the MOS config then we know that
3328  * the content on the log device has already been written to the pool.
3329  */
3330 boolean_t
3331 vdev_log_state_valid(vdev_t *vd)
3332 {
3333         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3334             !vd->vdev_removed)
3335                 return (B_TRUE);
3336
3337         for (int c = 0; c < vd->vdev_children; c++)
3338                 if (vdev_log_state_valid(vd->vdev_child[c]))
3339                         return (B_TRUE);
3340
3341         return (B_FALSE);
3342 }
3343
3344 /*
3345  * Expand a vdev if possible.
3346  */
3347 void
3348 vdev_expand(vdev_t *vd, uint64_t txg)
3349 {
3350         ASSERT(vd->vdev_top == vd);
3351         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3352
3353         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3354                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3355                 vdev_config_dirty(vd);
3356         }
3357 }
3358
3359 /*
3360  * Split a vdev.
3361  */
3362 void
3363 vdev_split(vdev_t *vd)
3364 {
3365         vdev_t *cvd, *pvd = vd->vdev_parent;
3366
3367         vdev_remove_child(pvd, vd);
3368         vdev_compact_children(pvd);
3369
3370         cvd = pvd->vdev_child[0];
3371         if (pvd->vdev_children == 1) {
3372                 vdev_remove_parent(cvd);
3373                 cvd->vdev_splitting = B_TRUE;
3374         }
3375         vdev_propagate_state(cvd);
3376 }
3377
3378 void
3379 vdev_deadman(vdev_t *vd)
3380 {
3381         for (int c = 0; c < vd->vdev_children; c++) {
3382                 vdev_t *cvd = vd->vdev_child[c];
3383
3384                 vdev_deadman(cvd);
3385         }
3386
3387         if (vd->vdev_ops->vdev_op_leaf) {
3388                 vdev_queue_t *vq = &vd->vdev_queue;
3389
3390                 mutex_enter(&vq->vq_lock);
3391                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3392                         spa_t *spa = vd->vdev_spa;
3393                         zio_t *fio;
3394                         uint64_t delta;
3395
3396                         /*
3397                          * Look at the head of all the pending queues,
3398                          * if any I/O has been outstanding for longer than
3399                          * the spa_deadman_synctime we panic the system.
3400                          */
3401                         fio = avl_first(&vq->vq_active_tree);
3402                         delta = gethrtime() - fio->io_timestamp;
3403                         if (delta > spa_deadman_synctime(spa)) {
3404                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3405                                     "delta %lluns, last io %lluns",
3406                                     fio->io_timestamp, delta,
3407                                     vq->vq_io_complete_ts);
3408                                 fm_panic("I/O to pool '%s' appears to be "
3409                                     "hung on vdev guid %llu at '%s'.",
3410                                     spa_name(spa),
3411                                     (long long unsigned int) vd->vdev_guid,
3412                                     vd->vdev_path);
3413                         }
3414                 }
3415                 mutex_exit(&vq->vq_lock);
3416         }
3417 }