]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/dev/smc/if_smc.c
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / sys / dev / smc / if_smc.c
1 /*-
2  * Copyright (c) 2008 Benno Rice.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Driver for SMSC LAN91C111, may work for older variants.
30  */
31
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_device_polling.h"
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/kernel.h>
40 #include <sys/sockio.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/syslog.h>
46 #include <sys/taskqueue.h>
47
48 #include <sys/module.h>
49 #include <sys/bus.h>
50
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 #include <sys/rman.h>
54
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_dl.h>
59 #include <net/if_types.h>
60 #include <net/if_mib.h>
61 #include <net/if_media.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #endif
69
70 #include <net/bpf.h>
71 #include <net/bpfdesc.h>
72
73 #include <dev/smc/if_smcreg.h>
74 #include <dev/smc/if_smcvar.h>
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78
79 #define SMC_LOCK(sc)            mtx_lock(&(sc)->smc_mtx)
80 #define SMC_UNLOCK(sc)          mtx_unlock(&(sc)->smc_mtx)
81 #define SMC_ASSERT_LOCKED(sc)   mtx_assert(&(sc)->smc_mtx, MA_OWNED)
82
83 #define SMC_INTR_PRIORITY       0
84 #define SMC_RX_PRIORITY         5
85 #define SMC_TX_PRIORITY         10
86
87 devclass_t      smc_devclass;
88
89 static const char *smc_chip_ids[16] = {
90         NULL, NULL, NULL,
91         /* 3 */ "SMSC LAN91C90 or LAN91C92",
92         /* 4 */ "SMSC LAN91C94",
93         /* 5 */ "SMSC LAN91C95",
94         /* 6 */ "SMSC LAN91C96",
95         /* 7 */ "SMSC LAN91C100",
96         /* 8 */ "SMSC LAN91C100FD",
97         /* 9 */ "SMSC LAN91C110FD or LAN91C111FD",
98         NULL, NULL, NULL,
99         NULL, NULL, NULL
100 };
101
102 static void     smc_init(void *);
103 static void     smc_start(struct ifnet *);
104 static void     smc_stop(struct smc_softc *);
105 static int      smc_ioctl(struct ifnet *, u_long, caddr_t);
106
107 static void     smc_init_locked(struct smc_softc *);
108 static void     smc_start_locked(struct ifnet *);
109 static void     smc_reset(struct smc_softc *);
110 static int      smc_mii_ifmedia_upd(struct ifnet *);
111 static void     smc_mii_ifmedia_sts(struct ifnet *, struct ifmediareq *);
112 static void     smc_mii_tick(void *);
113 static void     smc_mii_mediachg(struct smc_softc *);
114 static int      smc_mii_mediaioctl(struct smc_softc *, struct ifreq *, u_long);
115
116 static void     smc_task_intr(void *, int);
117 static void     smc_task_rx(void *, int);
118 static void     smc_task_tx(void *, int);
119
120 static driver_filter_t  smc_intr;
121 static timeout_t        smc_watchdog;
122 #ifdef DEVICE_POLLING
123 static poll_handler_t   smc_poll;
124 #endif
125
126 static __inline void
127 smc_select_bank(struct smc_softc *sc, uint16_t bank)
128 {
129
130         bus_write_2(sc->smc_reg, BSR, bank & BSR_BANK_MASK);
131 }
132
133 /* Never call this when not in bank 2. */
134 static __inline void
135 smc_mmu_wait(struct smc_softc *sc)
136 {
137
138         KASSERT((bus_read_2(sc->smc_reg, BSR) &
139             BSR_BANK_MASK) == 2, ("%s: smc_mmu_wait called when not in bank 2",
140             device_get_nameunit(sc->smc_dev)));
141         while (bus_read_2(sc->smc_reg, MMUCR) & MMUCR_BUSY)
142                 ;
143 }
144
145 static __inline uint8_t
146 smc_read_1(struct smc_softc *sc, bus_addr_t offset)
147 {
148
149         return (bus_read_1(sc->smc_reg, offset));
150 }
151
152 static __inline void
153 smc_write_1(struct smc_softc *sc, bus_addr_t offset, uint8_t val)
154 {
155
156         bus_write_1(sc->smc_reg, offset, val);
157 }
158
159 static __inline uint16_t
160 smc_read_2(struct smc_softc *sc, bus_addr_t offset)
161 {
162
163         return (bus_read_2(sc->smc_reg, offset));
164 }
165
166 static __inline void
167 smc_write_2(struct smc_softc *sc, bus_addr_t offset, uint16_t val)
168 {
169
170         bus_write_2(sc->smc_reg, offset, val);
171 }
172
173 static __inline void
174 smc_read_multi_2(struct smc_softc *sc, bus_addr_t offset, uint16_t *datap,
175     bus_size_t count)
176 {
177
178         bus_read_multi_2(sc->smc_reg, offset, datap, count);
179 }
180
181 static __inline void
182 smc_write_multi_2(struct smc_softc *sc, bus_addr_t offset, uint16_t *datap,
183     bus_size_t count)
184 {
185
186         bus_write_multi_2(sc->smc_reg, offset, datap, count);
187 }
188
189 int
190 smc_probe(device_t dev)
191 {
192         int                     rid, type, error;
193         uint16_t                val;
194         struct smc_softc        *sc;
195         struct resource         *reg;
196
197         sc = device_get_softc(dev);
198         rid = 0;
199         type = SYS_RES_IOPORT;
200         error = 0;
201
202         if (sc->smc_usemem)
203                 type = SYS_RES_MEMORY;
204
205         reg = bus_alloc_resource(dev, type, &rid, 0, ~0, 16, RF_ACTIVE);
206         if (reg == NULL) {
207                 if (bootverbose)
208                         device_printf(dev,
209                             "could not allocate I/O resource for probe\n");
210                 return (ENXIO);
211         }
212
213         /* Check for the identification value in the BSR. */
214         val = bus_read_2(reg, BSR);
215         if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
216                 if (bootverbose)
217                         device_printf(dev, "identification value not in BSR\n");
218                 error = ENXIO;
219                 goto done;
220         }
221
222         /*
223          * Try switching banks and make sure we still get the identification
224          * value.
225          */
226         bus_write_2(reg, BSR, 0);
227         val = bus_read_2(reg, BSR);
228         if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
229                 if (bootverbose)
230                         device_printf(dev,
231                             "identification value not in BSR after write\n");
232                 error = ENXIO;
233                 goto done;
234         }
235
236 #if 0
237         /* Check the BAR. */
238         bus_write_2(reg, BSR, 1);
239         val = bus_read_2(reg, BAR);
240         val = BAR_ADDRESS(val);
241         if (rman_get_start(reg) != val) {
242                 if (bootverbose)
243                         device_printf(dev, "BAR address %x does not match "
244                             "I/O resource address %lx\n", val,
245                             rman_get_start(reg));
246                 error = ENXIO;
247                 goto done;
248         }
249 #endif
250
251         /* Compare REV against known chip revisions. */
252         bus_write_2(reg, BSR, 3);
253         val = bus_read_2(reg, REV);
254         val = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
255         if (smc_chip_ids[val] == NULL) {
256                 if (bootverbose)
257                         device_printf(dev, "Unknown chip revision: %d\n", val);
258                 error = ENXIO;
259                 goto done;
260         }
261
262         device_set_desc(dev, smc_chip_ids[val]);
263
264 done:
265         bus_release_resource(dev, type, rid, reg);
266         return (error);
267 }
268
269 int
270 smc_attach(device_t dev)
271 {
272         int                     type, error;
273         uint16_t                val;
274         u_char                  eaddr[ETHER_ADDR_LEN];
275         struct smc_softc        *sc;
276         struct ifnet            *ifp;
277
278         sc = device_get_softc(dev);
279         error = 0;
280
281         sc->smc_dev = dev;
282
283         ifp = sc->smc_ifp = if_alloc(IFT_ETHER);
284         if (ifp == NULL) {
285                 error = ENOSPC;
286                 goto done;
287         }
288
289         mtx_init(&sc->smc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
290
291         /* Set up watchdog callout. */
292         callout_init_mtx(&sc->smc_watchdog, &sc->smc_mtx, 0);
293
294         type = SYS_RES_IOPORT;
295         if (sc->smc_usemem)
296                 type = SYS_RES_MEMORY;
297
298         sc->smc_reg_rid = 0;
299         sc->smc_reg = bus_alloc_resource(dev, type, &sc->smc_reg_rid, 0, ~0,
300             16, RF_ACTIVE);
301         if (sc->smc_reg == NULL) {
302                 error = ENXIO;
303                 goto done;
304         }
305
306         sc->smc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->smc_irq_rid, 0,
307             ~0, 1, RF_ACTIVE | RF_SHAREABLE);
308         if (sc->smc_irq == NULL) {
309                 error = ENXIO;
310                 goto done;
311         }
312
313         SMC_LOCK(sc);
314         smc_reset(sc);
315         SMC_UNLOCK(sc);
316
317         smc_select_bank(sc, 3);
318         val = smc_read_2(sc, REV);
319         sc->smc_chip = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
320         sc->smc_rev = (val * REV_REV_MASK) >> REV_REV_SHIFT;
321         if (bootverbose)
322                 device_printf(dev, "revision %x\n", sc->smc_rev);
323
324         callout_init_mtx(&sc->smc_mii_tick_ch, &sc->smc_mtx,
325             CALLOUT_RETURNUNLOCKED);
326         if (sc->smc_chip >= REV_CHIP_91110FD) {
327                 (void)mii_attach(dev, &sc->smc_miibus, ifp,
328                     smc_mii_ifmedia_upd, smc_mii_ifmedia_sts, BMSR_DEFCAPMASK,
329                     MII_PHY_ANY, MII_OFFSET_ANY, 0);
330                 if (sc->smc_miibus != NULL) {
331                         sc->smc_mii_tick = smc_mii_tick;
332                         sc->smc_mii_mediachg = smc_mii_mediachg;
333                         sc->smc_mii_mediaioctl = smc_mii_mediaioctl;
334                 }
335         }
336
337         smc_select_bank(sc, 1);
338         eaddr[0] = smc_read_1(sc, IAR0);
339         eaddr[1] = smc_read_1(sc, IAR1);
340         eaddr[2] = smc_read_1(sc, IAR2);
341         eaddr[3] = smc_read_1(sc, IAR3);
342         eaddr[4] = smc_read_1(sc, IAR4);
343         eaddr[5] = smc_read_1(sc, IAR5);
344
345         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
346         ifp->if_softc = sc;
347         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
348         ifp->if_init = smc_init;
349         ifp->if_ioctl = smc_ioctl;
350         ifp->if_start = smc_start;
351         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
352         IFQ_SET_READY(&ifp->if_snd);
353
354         ifp->if_capabilities = ifp->if_capenable = 0;
355
356 #ifdef DEVICE_POLLING
357         ifp->if_capabilities |= IFCAP_POLLING;
358 #endif
359
360         ether_ifattach(ifp, eaddr);
361
362         /* Set up taskqueue */
363         TASK_INIT(&sc->smc_intr, SMC_INTR_PRIORITY, smc_task_intr, ifp);
364         TASK_INIT(&sc->smc_rx, SMC_RX_PRIORITY, smc_task_rx, ifp);
365         TASK_INIT(&sc->smc_tx, SMC_TX_PRIORITY, smc_task_tx, ifp);
366         sc->smc_tq = taskqueue_create_fast("smc_taskq", M_NOWAIT,
367             taskqueue_thread_enqueue, &sc->smc_tq);
368         taskqueue_start_threads(&sc->smc_tq, 1, PI_NET, "%s taskq",
369             device_get_nameunit(sc->smc_dev));
370
371         /* Mask all interrupts. */
372         sc->smc_mask = 0;
373         smc_write_1(sc, MSK, 0);
374
375         /* Wire up interrupt */
376         error = bus_setup_intr(dev, sc->smc_irq,
377             INTR_TYPE_NET|INTR_MPSAFE, smc_intr, NULL, sc, &sc->smc_ih);
378         if (error != 0)
379                 goto done;
380
381 done:
382         if (error != 0)
383                 smc_detach(dev);
384         return (error);
385 }
386
387 int
388 smc_detach(device_t dev)
389 {
390         int                     type;
391         struct smc_softc        *sc;
392
393         sc = device_get_softc(dev);
394         SMC_LOCK(sc);
395         smc_stop(sc);
396         SMC_UNLOCK(sc);
397
398         if (sc->smc_ifp != NULL) {
399                 ether_ifdetach(sc->smc_ifp);
400         }
401         
402         callout_drain(&sc->smc_watchdog);
403         callout_drain(&sc->smc_mii_tick_ch);
404         
405 #ifdef DEVICE_POLLING
406         if (sc->smc_ifp->if_capenable & IFCAP_POLLING)
407                 ether_poll_deregister(sc->smc_ifp);
408 #endif
409
410         if (sc->smc_ih != NULL)
411                 bus_teardown_intr(sc->smc_dev, sc->smc_irq, sc->smc_ih);
412
413         if (sc->smc_tq != NULL) {
414                 taskqueue_drain(sc->smc_tq, &sc->smc_intr);
415                 taskqueue_drain(sc->smc_tq, &sc->smc_rx);
416                 taskqueue_drain(sc->smc_tq, &sc->smc_tx);
417                 taskqueue_free(sc->smc_tq);
418                 sc->smc_tq = NULL;
419         }
420
421         if (sc->smc_ifp != NULL) {
422                 if_free(sc->smc_ifp);
423         }
424
425         if (sc->smc_miibus != NULL) {
426                 device_delete_child(sc->smc_dev, sc->smc_miibus);
427                 bus_generic_detach(sc->smc_dev);
428         }
429
430         if (sc->smc_reg != NULL) {
431                 type = SYS_RES_IOPORT;
432                 if (sc->smc_usemem)
433                         type = SYS_RES_MEMORY;
434
435                 bus_release_resource(sc->smc_dev, type, sc->smc_reg_rid,
436                     sc->smc_reg);
437         }
438
439         if (sc->smc_irq != NULL)
440                 bus_release_resource(sc->smc_dev, SYS_RES_IRQ, sc->smc_irq_rid,
441                    sc->smc_irq);
442
443         if (mtx_initialized(&sc->smc_mtx))
444                 mtx_destroy(&sc->smc_mtx);
445
446         return (0);
447 }
448
449 static void
450 smc_start(struct ifnet *ifp)
451 {
452         struct smc_softc        *sc;
453
454         sc = ifp->if_softc;
455         SMC_LOCK(sc);
456         smc_start_locked(ifp);
457         SMC_UNLOCK(sc);
458 }
459
460 static void
461 smc_start_locked(struct ifnet *ifp)
462 {
463         struct smc_softc        *sc;
464         struct mbuf             *m;
465         u_int                   len, npages, spin_count;
466
467         sc = ifp->if_softc;
468         SMC_ASSERT_LOCKED(sc);
469
470         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
471                 return;
472         if (IFQ_IS_EMPTY(&ifp->if_snd))
473                 return;
474
475         /*
476          * Grab the next packet.  If it's too big, drop it.
477          */
478         IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
479         len = m_length(m, NULL);
480         len += (len & 1);
481         if (len > ETHER_MAX_LEN - ETHER_CRC_LEN) {
482                 if_printf(ifp, "large packet discarded\n");
483                 ++ifp->if_oerrors;
484                 m_freem(m);
485                 return; /* XXX readcheck? */
486         }
487
488         /*
489          * Flag that we're busy.
490          */
491         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
492         sc->smc_pending = m;
493
494         /*
495          * Work out how many 256 byte "pages" we need.  We have to include the
496          * control data for the packet in this calculation.
497          */
498         npages = (len * PKT_CTRL_DATA_LEN) >> 8;
499         if (npages == 0)
500                 npages = 1;
501
502         /*
503          * Request memory.
504          */
505         smc_select_bank(sc, 2);
506         smc_mmu_wait(sc);
507         smc_write_2(sc, MMUCR, MMUCR_CMD_TX_ALLOC | npages);
508
509         /*
510          * Spin briefly to see if the allocation succeeds.
511          */
512         spin_count = TX_ALLOC_WAIT_TIME;
513         do {
514                 if (smc_read_1(sc, IST) & ALLOC_INT) {
515                         smc_write_1(sc, ACK, ALLOC_INT);
516                         break;
517                 }
518         } while (--spin_count);
519
520         /*
521          * If the allocation is taking too long, unmask the alloc interrupt
522          * and wait.
523          */
524         if (spin_count == 0) {
525                 sc->smc_mask |= ALLOC_INT;
526                 if ((ifp->if_capenable & IFCAP_POLLING) == 0)
527                         smc_write_1(sc, MSK, sc->smc_mask);
528                 return;
529         }
530
531         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
532 }
533
534 static void
535 smc_task_tx(void *context, int pending)
536 {
537         struct ifnet            *ifp;
538         struct smc_softc        *sc;
539         struct mbuf             *m, *m0;
540         u_int                   packet, len;
541         int                     last_len;
542         uint8_t                 *data;
543
544         (void)pending;
545         ifp = (struct ifnet *)context;
546         sc = ifp->if_softc;
547
548         SMC_LOCK(sc);
549         
550         if (sc->smc_pending == NULL) {
551                 SMC_UNLOCK(sc);
552                 goto next_packet;
553         }
554
555         m = m0 = sc->smc_pending;
556         sc->smc_pending = NULL;
557         smc_select_bank(sc, 2);
558
559         /*
560          * Check the allocation result.
561          */
562         packet = smc_read_1(sc, ARR);
563
564         /*
565          * If the allocation failed, requeue the packet and retry.
566          */
567         if (packet & ARR_FAILED) {
568                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
569                 ++ifp->if_oerrors;
570                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
571                 smc_start_locked(ifp);
572                 SMC_UNLOCK(sc);
573                 return;
574         }
575
576         /*
577          * Tell the device to write to our packet number.
578          */
579         smc_write_1(sc, PNR, packet);
580         smc_write_2(sc, PTR, 0 | PTR_AUTO_INCR);
581
582         /*
583          * Tell the device how long the packet is (including control data).
584          */
585         len = m_length(m, 0);
586         len += PKT_CTRL_DATA_LEN;
587         smc_write_2(sc, DATA0, 0);
588         smc_write_2(sc, DATA0, len);
589
590         /*
591          * Push the data out to the device.
592          */
593         data = NULL;
594         last_len = 0;
595         for (; m != NULL; m = m->m_next) {
596                 data = mtod(m, uint8_t *);
597                 smc_write_multi_2(sc, DATA0, (uint16_t *)data, m->m_len / 2);
598                 last_len = m->m_len;
599         }
600
601         /*
602          * Push out the control byte and and the odd byte if needed.
603          */
604         if ((len & 1) != 0 && data != NULL)
605                 smc_write_2(sc, DATA0, (CTRL_ODD << 8) | data[last_len - 1]);
606         else
607                 smc_write_2(sc, DATA0, 0);
608
609         /*
610          * Unmask the TX empty interrupt.
611          */
612         sc->smc_mask |= TX_EMPTY_INT;
613         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
614                 smc_write_1(sc, MSK, sc->smc_mask);
615
616         /*
617          * Enqueue the packet.
618          */
619         smc_mmu_wait(sc);
620         smc_write_2(sc, MMUCR, MMUCR_CMD_ENQUEUE);
621         callout_reset(&sc->smc_watchdog, hz * 2, smc_watchdog, sc);
622
623         /*
624          * Finish up.
625          */
626         ifp->if_opackets++;
627         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
628         SMC_UNLOCK(sc);
629         BPF_MTAP(ifp, m0);
630         m_freem(m0);
631
632 next_packet:
633         /*
634          * See if there's anything else to do.
635          */
636         smc_start(ifp);
637 }
638
639 static void
640 smc_task_rx(void *context, int pending)
641 {
642         u_int                   packet, status, len;
643         uint8_t                 *data;
644         struct ifnet            *ifp;
645         struct smc_softc        *sc;
646         struct mbuf             *m, *mhead, *mtail;
647
648         (void)pending;
649         ifp = (struct ifnet *)context;
650         sc = ifp->if_softc;
651         mhead = mtail = NULL;
652
653         SMC_LOCK(sc);
654
655         packet = smc_read_1(sc, FIFO_RX);
656         while ((packet & FIFO_EMPTY) == 0) {
657                 /*
658                  * Grab an mbuf and attach a cluster.
659                  */
660                 MGETHDR(m, M_DONTWAIT, MT_DATA);
661                 if (m == NULL) {
662                         break;
663                 }
664                 MCLGET(m, M_DONTWAIT);
665                 if ((m->m_flags & M_EXT) == 0) {
666                         m_freem(m);
667                         break;
668                 }
669         
670                 /*
671                  * Point to the start of the packet.
672                  */
673                 smc_select_bank(sc, 2);
674                 smc_write_1(sc, PNR, packet);
675                 smc_write_2(sc, PTR, 0 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
676
677                 /*
678                  * Grab status and packet length.
679                  */
680                 status = smc_read_2(sc, DATA0);
681                 len = smc_read_2(sc, DATA0) & RX_LEN_MASK;
682                 len -= 6;
683                 if (status & RX_ODDFRM)
684                         len += 1;
685
686                 /*
687                  * Check for errors.
688                  */
689                 if (status & (RX_TOOSHORT | RX_TOOLNG | RX_BADCRC | RX_ALGNERR)) {
690                         smc_mmu_wait(sc);
691                         smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
692                         ifp->if_ierrors++;
693                         m_freem(m);
694                         break;
695                 }
696         
697                 /*
698                  * Set the mbuf up the way we want it.
699                  */
700                 m->m_pkthdr.rcvif = ifp;
701                 m->m_pkthdr.len = m->m_len = len + 2; /* XXX: Is this right? */
702                 m_adj(m, ETHER_ALIGN);
703         
704                 /*
705                  * Pull the packet out of the device.  Make sure we're in the
706                  * right bank first as things may have changed while we were
707                  * allocating our mbuf.
708                  */
709                 smc_select_bank(sc, 2);
710                 smc_write_1(sc, PNR, packet);
711                 smc_write_2(sc, PTR, 4 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
712                 data = mtod(m, uint8_t *);
713                 smc_read_multi_2(sc, DATA0, (uint16_t *)data, len >> 1);
714                 if (len & 1) {
715                         data += len & ~1;
716                         *data = smc_read_1(sc, DATA0);
717                 }
718
719                 /*
720                  * Tell the device we're done.
721                  */
722                 smc_mmu_wait(sc);
723                 smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
724                 if (m == NULL) {
725                         break;
726                 }
727                 
728                 if (mhead == NULL) {
729                         mhead = mtail = m;
730                         m->m_next = NULL;
731                 } else {
732                         mtail->m_next = m;
733                         mtail = m;
734                 }
735                 packet = smc_read_1(sc, FIFO_RX);
736         }
737
738         sc->smc_mask |= RCV_INT;
739         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
740                 smc_write_1(sc, MSK, sc->smc_mask);
741
742         SMC_UNLOCK(sc);
743
744         while (mhead != NULL) {
745                 m = mhead;
746                 mhead = mhead->m_next;
747                 m->m_next = NULL;
748                 ifp->if_ipackets++;
749                 (*ifp->if_input)(ifp, m);
750         }
751 }
752
753 #ifdef DEVICE_POLLING
754 static void
755 smc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
756 {
757         struct smc_softc        *sc;
758
759         sc = ifp->if_softc;
760
761         SMC_LOCK(sc);
762         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
763                 SMC_UNLOCK(sc);
764                 return;
765         }
766         SMC_UNLOCK(sc);
767
768         if (cmd == POLL_AND_CHECK_STATUS)
769                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
770 }
771 #endif
772
773 static int
774 smc_intr(void *context)
775 {
776         struct smc_softc        *sc;
777         
778         sc = (struct smc_softc *)context;
779         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
780         return (FILTER_HANDLED);
781 }
782
783 static void
784 smc_task_intr(void *context, int pending)
785 {
786         struct smc_softc        *sc;
787         struct ifnet            *ifp;
788         u_int                   status, packet, counter, tcr;
789
790         (void)pending;
791         ifp = (struct ifnet *)context;
792         sc = ifp->if_softc;
793
794         SMC_LOCK(sc);
795         
796         smc_select_bank(sc, 2);
797
798         /*
799          * Get the current mask, and then block all interrupts while we're
800          * working.
801          */
802         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
803                 smc_write_1(sc, MSK, 0);
804
805         /*
806          * Find out what interrupts are flagged.
807          */
808         status = smc_read_1(sc, IST) & sc->smc_mask;
809
810         /*
811          * Transmit error
812          */
813         if (status & TX_INT) {
814                 /*
815                  * Kill off the packet if there is one and re-enable transmit.
816                  */
817                 packet = smc_read_1(sc, FIFO_TX);
818                 if ((packet & FIFO_EMPTY) == 0) {
819                         smc_write_1(sc, PNR, packet);
820                         smc_write_2(sc, PTR, 0 | PTR_READ | 
821                             PTR_AUTO_INCR);
822                         tcr = smc_read_2(sc, DATA0);
823                         if ((tcr & EPHSR_TX_SUC) == 0)
824                                 device_printf(sc->smc_dev,
825                                     "bad packet\n");
826                         smc_mmu_wait(sc);
827                         smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE_PKT);
828
829                         smc_select_bank(sc, 0);
830                         tcr = smc_read_2(sc, TCR);
831                         tcr |= TCR_TXENA | TCR_PAD_EN;
832                         smc_write_2(sc, TCR, tcr);
833                         smc_select_bank(sc, 2);
834                         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
835                 }
836
837                 /*
838                  * Ack the interrupt.
839                  */
840                 smc_write_1(sc, ACK, TX_INT);
841         }
842
843         /*
844          * Receive
845          */
846         if (status & RCV_INT) {
847                 smc_write_1(sc, ACK, RCV_INT);
848                 sc->smc_mask &= ~RCV_INT;
849                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_rx);
850         }
851
852         /*
853          * Allocation
854          */
855         if (status & ALLOC_INT) {
856                 smc_write_1(sc, ACK, ALLOC_INT);
857                 sc->smc_mask &= ~ALLOC_INT;
858                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
859         }
860
861         /*
862          * Receive overrun
863          */
864         if (status & RX_OVRN_INT) {
865                 smc_write_1(sc, ACK, RX_OVRN_INT);
866                 ifp->if_ierrors++;
867         }
868
869         /*
870          * Transmit empty
871          */
872         if (status & TX_EMPTY_INT) {
873                 smc_write_1(sc, ACK, TX_EMPTY_INT);
874                 sc->smc_mask &= ~TX_EMPTY_INT;
875                 callout_stop(&sc->smc_watchdog);
876
877                 /*
878                  * Update collision stats.
879                  */
880                 smc_select_bank(sc, 0);
881                 counter = smc_read_2(sc, ECR);
882                 smc_select_bank(sc, 2);
883                 ifp->if_collisions +=
884                     (counter & ECR_SNGLCOL_MASK) >> ECR_SNGLCOL_SHIFT;
885                 ifp->if_collisions +=
886                     (counter & ECR_MULCOL_MASK) >> ECR_MULCOL_SHIFT;
887
888                 /*
889                  * See if there are any packets to transmit.
890                  */
891                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
892         }
893
894         /*
895          * Update the interrupt mask.
896          */
897         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
898                 smc_write_1(sc, MSK, sc->smc_mask);
899
900         SMC_UNLOCK(sc);
901 }
902
903 static u_int
904 smc_mii_readbits(struct smc_softc *sc, int nbits)
905 {
906         u_int   mgmt, mask, val;
907
908         SMC_ASSERT_LOCKED(sc);
909         KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
910             ("%s: smc_mii_readbits called with bank %d (!= 3)",
911             device_get_nameunit(sc->smc_dev),
912             smc_read_2(sc, BSR) & BSR_BANK_MASK));
913
914         /*
915          * Set up the MGMT (aka MII) register.
916          */
917         mgmt = smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO);
918         smc_write_2(sc, MGMT, mgmt);
919
920         /*
921          * Read the bits in.
922          */
923         for (mask = 1 << (nbits - 1), val = 0; mask; mask >>= 1) {
924                 if (smc_read_2(sc, MGMT) & MGMT_MDI)
925                         val |= mask;
926
927                 smc_write_2(sc, MGMT, mgmt);
928                 DELAY(1);
929                 smc_write_2(sc, MGMT, mgmt | MGMT_MCLK);
930                 DELAY(1);
931         }
932
933         return (val);
934 }
935
936 static void
937 smc_mii_writebits(struct smc_softc *sc, u_int val, int nbits)
938 {
939         u_int   mgmt, mask;
940
941         SMC_ASSERT_LOCKED(sc);
942         KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
943             ("%s: smc_mii_writebits called with bank %d (!= 3)",
944             device_get_nameunit(sc->smc_dev),
945             smc_read_2(sc, BSR) & BSR_BANK_MASK));
946
947         /*
948          * Set up the MGMT (aka MII) register).
949          */
950         mgmt = smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO);
951         mgmt |= MGMT_MDOE;
952
953         /*
954          * Push the bits out.
955          */
956         for (mask = 1 << (nbits - 1); mask; mask >>= 1) {
957                 if (val & mask)
958                         mgmt |= MGMT_MDO;
959                 else
960                         mgmt &= ~MGMT_MDO;
961
962                 smc_write_2(sc, MGMT, mgmt);
963                 DELAY(1);
964                 smc_write_2(sc, MGMT, mgmt | MGMT_MCLK);
965                 DELAY(1);
966         }
967 }
968
969 int
970 smc_miibus_readreg(device_t dev, int phy, int reg)
971 {
972         struct smc_softc        *sc;
973         int                     val;
974
975         sc = device_get_softc(dev);
976
977         SMC_LOCK(sc);
978
979         smc_select_bank(sc, 3);
980
981         /*
982          * Send out the idle pattern.
983          */
984         smc_mii_writebits(sc, 0xffffffff, 32);
985
986         /*
987          * Start code + read opcode + phy address + phy register
988          */
989         smc_mii_writebits(sc, 6 << 10 | phy << 5 | reg, 14);
990
991         /*
992          * Turnaround + data
993          */
994         val = smc_mii_readbits(sc, 18);
995
996         /*
997          * Reset the MDIO interface.
998          */
999         smc_write_2(sc, MGMT,
1000             smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO));
1001
1002         SMC_UNLOCK(sc);
1003         return (val);
1004 }
1005
1006 int
1007 smc_miibus_writereg(device_t dev, int phy, int reg, int data)
1008 {
1009         struct smc_softc        *sc;
1010
1011         sc = device_get_softc(dev);
1012
1013         SMC_LOCK(sc);
1014
1015         smc_select_bank(sc, 3);
1016
1017         /*
1018          * Send idle pattern.
1019          */
1020         smc_mii_writebits(sc, 0xffffffff, 32);
1021
1022         /*
1023          * Start code + write opcode + phy address + phy register + turnaround
1024          * + data.
1025          */
1026         smc_mii_writebits(sc, 5 << 28 | phy << 23 | reg << 18 | 2 << 16 | data,
1027             32);
1028
1029         /*
1030          * Reset MDIO interface.
1031          */
1032         smc_write_2(sc, MGMT,
1033             smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO));
1034
1035         SMC_UNLOCK(sc);
1036         return (0);
1037 }
1038
1039 void
1040 smc_miibus_statchg(device_t dev)
1041 {
1042         struct smc_softc        *sc;
1043         struct mii_data         *mii;
1044         uint16_t                tcr;
1045
1046         sc = device_get_softc(dev);
1047         mii = device_get_softc(sc->smc_miibus);
1048
1049         SMC_LOCK(sc);
1050
1051         smc_select_bank(sc, 0);
1052         tcr = smc_read_2(sc, TCR);
1053
1054         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1055                 tcr |= TCR_SWFDUP;
1056         else
1057                 tcr &= ~TCR_SWFDUP;
1058
1059         smc_write_2(sc, TCR, tcr);
1060
1061         SMC_UNLOCK(sc);
1062 }
1063
1064 static int
1065 smc_mii_ifmedia_upd(struct ifnet *ifp)
1066 {
1067         struct smc_softc        *sc;
1068         struct mii_data         *mii;
1069
1070         sc = ifp->if_softc;
1071         if (sc->smc_miibus == NULL)
1072                 return (ENXIO);
1073
1074         mii = device_get_softc(sc->smc_miibus);
1075         return (mii_mediachg(mii));
1076 }
1077
1078 static void
1079 smc_mii_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1080 {
1081         struct smc_softc        *sc;
1082         struct mii_data         *mii;
1083
1084         sc = ifp->if_softc;
1085         if (sc->smc_miibus == NULL)
1086                 return;
1087
1088         mii = device_get_softc(sc->smc_miibus);
1089         mii_pollstat(mii);
1090         ifmr->ifm_active = mii->mii_media_active;
1091         ifmr->ifm_status = mii->mii_media_status;
1092 }
1093
1094 static void
1095 smc_mii_tick(void *context)
1096 {
1097         struct smc_softc        *sc;
1098
1099         sc = (struct smc_softc *)context;
1100
1101         if (sc->smc_miibus == NULL)
1102                 return;
1103
1104         SMC_UNLOCK(sc);
1105
1106         mii_tick(device_get_softc(sc->smc_miibus));
1107         callout_reset(&sc->smc_mii_tick_ch, hz, smc_mii_tick, sc);
1108 }
1109
1110 static void
1111 smc_mii_mediachg(struct smc_softc *sc)
1112 {
1113
1114         if (sc->smc_miibus == NULL)
1115                 return;
1116         mii_mediachg(device_get_softc(sc->smc_miibus));
1117 }
1118
1119 static int
1120 smc_mii_mediaioctl(struct smc_softc *sc, struct ifreq *ifr, u_long command)
1121 {
1122         struct mii_data *mii;
1123
1124         if (sc->smc_miibus == NULL)
1125                 return (EINVAL);
1126
1127         mii = device_get_softc(sc->smc_miibus);
1128         return (ifmedia_ioctl(sc->smc_ifp, ifr, &mii->mii_media, command));
1129 }
1130
1131 static void
1132 smc_reset(struct smc_softc *sc)
1133 {
1134         u_int   ctr;
1135
1136         SMC_ASSERT_LOCKED(sc);
1137
1138         smc_select_bank(sc, 2);
1139
1140         /*
1141          * Mask all interrupts.
1142          */
1143         smc_write_1(sc, MSK, 0);
1144
1145         /*
1146          * Tell the device to reset.
1147          */
1148         smc_select_bank(sc, 0);
1149         smc_write_2(sc, RCR, RCR_SOFT_RST);
1150
1151         /*
1152          * Set up the configuration register.
1153          */
1154         smc_select_bank(sc, 1);
1155         smc_write_2(sc, CR, CR_EPH_POWER_EN);
1156         DELAY(1);
1157
1158         /*
1159          * Turn off transmit and receive.
1160          */
1161         smc_select_bank(sc, 0);
1162         smc_write_2(sc, TCR, 0);
1163         smc_write_2(sc, RCR, 0);
1164
1165         /*
1166          * Set up the control register.
1167          */
1168         smc_select_bank(sc, 1);
1169         ctr = smc_read_2(sc, CTR);
1170         ctr |= CTR_LE_ENABLE | CTR_AUTO_RELEASE;
1171         smc_write_2(sc, CTR, ctr);
1172
1173         /*
1174          * Reset the MMU.
1175          */
1176         smc_select_bank(sc, 2);
1177         smc_mmu_wait(sc);
1178         smc_write_2(sc, MMUCR, MMUCR_CMD_MMU_RESET);
1179 }
1180
1181 static void
1182 smc_enable(struct smc_softc *sc)
1183 {
1184         struct ifnet            *ifp;
1185
1186         SMC_ASSERT_LOCKED(sc);
1187         ifp = sc->smc_ifp;
1188
1189         /*
1190          * Set up the receive/PHY control register.
1191          */
1192         smc_select_bank(sc, 0);
1193         smc_write_2(sc, RPCR, RPCR_ANEG | (RPCR_LED_LINK_ANY << RPCR_LSA_SHIFT)
1194             | (RPCR_LED_ACT_ANY << RPCR_LSB_SHIFT));
1195
1196         /*
1197          * Set up the transmit and receive control registers.
1198          */
1199         smc_write_2(sc, TCR, TCR_TXENA | TCR_PAD_EN);
1200         smc_write_2(sc, RCR, RCR_RXEN | RCR_STRIP_CRC);
1201
1202         /*
1203          * Set up the interrupt mask.
1204          */
1205         smc_select_bank(sc, 2);
1206         sc->smc_mask = EPH_INT | RX_OVRN_INT | RCV_INT | TX_INT;
1207         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1208                 smc_write_1(sc, MSK, sc->smc_mask);
1209 }
1210
1211 static void
1212 smc_stop(struct smc_softc *sc)
1213 {
1214
1215         SMC_ASSERT_LOCKED(sc);
1216
1217         /*
1218          * Turn off callouts.
1219          */
1220         callout_stop(&sc->smc_watchdog);
1221         callout_stop(&sc->smc_mii_tick_ch);
1222
1223         /*
1224          * Mask all interrupts.
1225          */
1226         smc_select_bank(sc, 2);
1227         sc->smc_mask = 0;
1228         smc_write_1(sc, MSK, 0);
1229 #ifdef DEVICE_POLLING
1230         ether_poll_deregister(sc->smc_ifp);
1231         sc->smc_ifp->if_capenable &= ~IFCAP_POLLING;
1232         sc->smc_ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT;
1233 #endif
1234
1235         /*
1236          * Disable transmit and receive.
1237          */
1238         smc_select_bank(sc, 0);
1239         smc_write_2(sc, TCR, 0);
1240         smc_write_2(sc, RCR, 0);
1241
1242         sc->smc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1243 }
1244
1245 static void
1246 smc_watchdog(void *arg)
1247 {
1248         struct smc_softc        *sc;
1249         
1250         sc = (struct smc_softc *)arg;
1251         device_printf(sc->smc_dev, "watchdog timeout\n");
1252         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
1253 }
1254
1255 static void
1256 smc_init(void *context)
1257 {
1258         struct smc_softc        *sc;
1259
1260         sc = (struct smc_softc *)context;
1261         SMC_LOCK(sc);
1262         smc_init_locked(sc);
1263         SMC_UNLOCK(sc);
1264 }
1265
1266 static void
1267 smc_init_locked(struct smc_softc *sc)
1268 {
1269         struct ifnet    *ifp;
1270
1271         ifp = sc->smc_ifp;
1272
1273         SMC_ASSERT_LOCKED(sc);
1274
1275         smc_reset(sc);
1276         smc_enable(sc);
1277
1278         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1279         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1280
1281         smc_start_locked(ifp);
1282
1283         if (sc->smc_mii_tick != NULL)
1284                 callout_reset(&sc->smc_mii_tick_ch, hz, sc->smc_mii_tick, sc);
1285
1286 #ifdef DEVICE_POLLING
1287         SMC_UNLOCK(sc);
1288         ether_poll_register(smc_poll, ifp);
1289         SMC_LOCK(sc);
1290         ifp->if_capenable |= IFCAP_POLLING;
1291         ifp->if_capenable |= IFCAP_POLLING_NOCOUNT;
1292 #endif
1293 }
1294
1295 static int
1296 smc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1297 {
1298         struct smc_softc        *sc;
1299         int                     error;
1300
1301         sc = ifp->if_softc;
1302         error = 0;
1303
1304         switch (cmd) {
1305         case SIOCSIFFLAGS:
1306                 if ((ifp->if_flags & IFF_UP) == 0 &&
1307                     (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1308                         SMC_LOCK(sc);
1309                         smc_stop(sc);
1310                         SMC_UNLOCK(sc);
1311                 } else {
1312                         smc_init(sc);
1313                         if (sc->smc_mii_mediachg != NULL)
1314                                 sc->smc_mii_mediachg(sc);
1315                 }
1316                 break;
1317
1318         case SIOCADDMULTI:
1319         case SIOCDELMULTI:
1320                 /* XXX
1321                 SMC_LOCK(sc);
1322                 smc_setmcast(sc);
1323                 SMC_UNLOCK(sc);
1324                 */
1325                 error = EINVAL;
1326                 break;
1327
1328         case SIOCGIFMEDIA:
1329         case SIOCSIFMEDIA:
1330                 if (sc->smc_mii_mediaioctl == NULL) {
1331                         error = EINVAL;
1332                         break;
1333                 }
1334                 sc->smc_mii_mediaioctl(sc, (struct ifreq *)data, cmd);
1335                 break;
1336
1337         default:
1338                 error = ether_ioctl(ifp, cmd, data);
1339                 break;
1340         }
1341
1342         return (error);
1343 }