]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/geom/part/g_part_gpt.c
Copy head to stable/9 as part of 9.0-RELEASE release cycle.
[FreeBSD/stable/9.git] / sys / geom / part / g_part_gpt.c
1 /*-
2  * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/part/g_part.h>
48
49 #include "g_part_if.h"
50
51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52
53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54 CTASSERT(sizeof(struct gpt_ent) == 128);
55
56 #define EQUUID(a,b)     (memcmp(a, b, sizeof(struct uuid)) == 0)
57
58 #define MBRSIZE         512
59
60 enum gpt_elt {
61         GPT_ELT_PRIHDR,
62         GPT_ELT_PRITBL,
63         GPT_ELT_SECHDR,
64         GPT_ELT_SECTBL,
65         GPT_ELT_COUNT
66 };
67
68 enum gpt_state {
69         GPT_STATE_UNKNOWN,      /* Not determined. */
70         GPT_STATE_MISSING,      /* No signature found. */
71         GPT_STATE_CORRUPT,      /* Checksum mismatch. */
72         GPT_STATE_INVALID,      /* Nonconformant/invalid. */
73         GPT_STATE_OK            /* Perfectly fine. */
74 };
75
76 struct g_part_gpt_table {
77         struct g_part_table     base;
78         u_char                  mbr[MBRSIZE];
79         struct gpt_hdr          *hdr;
80         quad_t                  lba[GPT_ELT_COUNT];
81         enum gpt_state          state[GPT_ELT_COUNT];
82 };
83
84 struct g_part_gpt_entry {
85         struct g_part_entry     base;
86         struct gpt_ent          ent;
87 };
88
89 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
90 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
91 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
92
93 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
94     struct g_part_parms *);
95 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
96 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
97 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
98 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
99     struct sbuf *, const char *);
100 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
101 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
102     struct g_part_parms *);
103 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
104     char *, size_t);
105 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
106 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
107 static int g_part_gpt_setunset(struct g_part_table *table,
108     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
109 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
110     char *, size_t);
111 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
112 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
113     struct g_part_parms *);
114 static int g_part_gpt_recover(struct g_part_table *);
115
116 static kobj_method_t g_part_gpt_methods[] = {
117         KOBJMETHOD(g_part_add,          g_part_gpt_add),
118         KOBJMETHOD(g_part_bootcode,     g_part_gpt_bootcode),
119         KOBJMETHOD(g_part_create,       g_part_gpt_create),
120         KOBJMETHOD(g_part_destroy,      g_part_gpt_destroy),
121         KOBJMETHOD(g_part_dumpconf,     g_part_gpt_dumpconf),
122         KOBJMETHOD(g_part_dumpto,       g_part_gpt_dumpto),
123         KOBJMETHOD(g_part_modify,       g_part_gpt_modify),
124         KOBJMETHOD(g_part_resize,       g_part_gpt_resize),
125         KOBJMETHOD(g_part_name,         g_part_gpt_name),
126         KOBJMETHOD(g_part_probe,        g_part_gpt_probe),
127         KOBJMETHOD(g_part_read,         g_part_gpt_read),
128         KOBJMETHOD(g_part_recover,      g_part_gpt_recover),
129         KOBJMETHOD(g_part_setunset,     g_part_gpt_setunset),
130         KOBJMETHOD(g_part_type,         g_part_gpt_type),
131         KOBJMETHOD(g_part_write,        g_part_gpt_write),
132         { 0, 0 }
133 };
134
135 static struct g_part_scheme g_part_gpt_scheme = {
136         "GPT",
137         g_part_gpt_methods,
138         sizeof(struct g_part_gpt_table),
139         .gps_entrysz = sizeof(struct g_part_gpt_entry),
140         .gps_minent = 128,
141         .gps_maxent = 4096,
142         .gps_bootcodesz = MBRSIZE,
143 };
144 G_PART_SCHEME_DECLARE(g_part_gpt);
145
146 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
147 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
148 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
149 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
150 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
151 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
152 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
153 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
154 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
155 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
156 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
157 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
158 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
159 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
160 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
161 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
162 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
163 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
164 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
165 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
166 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
167 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
168 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
169 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
170 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
171 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
172 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
173 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
174 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
175 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
176 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
177
178 static struct g_part_uuid_alias {
179         struct uuid *uuid;
180         int alias;
181 } gpt_uuid_alias_match[] = {
182         { &gpt_uuid_apple_boot,         G_PART_ALIAS_APPLE_BOOT },
183         { &gpt_uuid_apple_hfs,          G_PART_ALIAS_APPLE_HFS },
184         { &gpt_uuid_apple_label,        G_PART_ALIAS_APPLE_LABEL },
185         { &gpt_uuid_apple_raid,         G_PART_ALIAS_APPLE_RAID },
186         { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE },
187         { &gpt_uuid_apple_tv_recovery,  G_PART_ALIAS_APPLE_TV_RECOVERY },
188         { &gpt_uuid_apple_ufs,          G_PART_ALIAS_APPLE_UFS },
189         { &gpt_uuid_bios_boot,          G_PART_ALIAS_BIOS_BOOT },
190         { &gpt_uuid_efi,                G_PART_ALIAS_EFI },
191         { &gpt_uuid_freebsd,            G_PART_ALIAS_FREEBSD },
192         { &gpt_uuid_freebsd_boot,       G_PART_ALIAS_FREEBSD_BOOT },
193         { &gpt_uuid_freebsd_swap,       G_PART_ALIAS_FREEBSD_SWAP },
194         { &gpt_uuid_freebsd_ufs,        G_PART_ALIAS_FREEBSD_UFS },
195         { &gpt_uuid_freebsd_vinum,      G_PART_ALIAS_FREEBSD_VINUM },
196         { &gpt_uuid_freebsd_zfs,        G_PART_ALIAS_FREEBSD_ZFS },
197         { &gpt_uuid_linux_data,         G_PART_ALIAS_LINUX_DATA },
198         { &gpt_uuid_linux_lvm,          G_PART_ALIAS_LINUX_LVM },
199         { &gpt_uuid_linux_raid,         G_PART_ALIAS_LINUX_RAID },
200         { &gpt_uuid_linux_swap,         G_PART_ALIAS_LINUX_SWAP },
201         { &gpt_uuid_mbr,                G_PART_ALIAS_MBR },
202         { &gpt_uuid_ms_basic_data,      G_PART_ALIAS_MS_BASIC_DATA },
203         { &gpt_uuid_ms_ldm_data,        G_PART_ALIAS_MS_LDM_DATA },
204         { &gpt_uuid_ms_ldm_metadata,    G_PART_ALIAS_MS_LDM_METADATA },
205         { &gpt_uuid_ms_reserved,        G_PART_ALIAS_MS_RESERVED },
206         { &gpt_uuid_netbsd_ccd,         G_PART_ALIAS_NETBSD_CCD },
207         { &gpt_uuid_netbsd_cgd,         G_PART_ALIAS_NETBSD_CGD },
208         { &gpt_uuid_netbsd_ffs,         G_PART_ALIAS_NETBSD_FFS },
209         { &gpt_uuid_netbsd_lfs,         G_PART_ALIAS_NETBSD_LFS },
210         { &gpt_uuid_netbsd_raid,        G_PART_ALIAS_NETBSD_RAID },
211         { &gpt_uuid_netbsd_swap,        G_PART_ALIAS_NETBSD_SWAP },
212
213         { NULL, 0 }
214 };
215
216 static struct gpt_hdr *
217 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
218     enum gpt_elt elt)
219 {
220         struct gpt_hdr *buf, *hdr;
221         struct g_provider *pp;
222         quad_t lba, last;
223         int error;
224         uint32_t crc, sz;
225
226         pp = cp->provider;
227         last = (pp->mediasize / pp->sectorsize) - 1;
228         table->state[elt] = GPT_STATE_MISSING;
229         /*
230          * If the primary header is valid look for secondary
231          * header in AlternateLBA, otherwise in the last medium's LBA.
232          */
233         if (elt == GPT_ELT_SECHDR) {
234                 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
235                         table->lba[elt] = last;
236         } else
237                 table->lba[elt] = 1;
238         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
239             &error);
240         if (buf == NULL)
241                 return (NULL);
242         hdr = NULL;
243         if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
244                 goto fail;
245
246         table->state[elt] = GPT_STATE_CORRUPT;
247         sz = le32toh(buf->hdr_size);
248         if (sz < 92 || sz > pp->sectorsize)
249                 goto fail;
250
251         hdr = g_malloc(sz, M_WAITOK | M_ZERO);
252         bcopy(buf, hdr, sz);
253         hdr->hdr_size = sz;
254
255         crc = le32toh(buf->hdr_crc_self);
256         buf->hdr_crc_self = 0;
257         if (crc32(buf, sz) != crc)
258                 goto fail;
259         hdr->hdr_crc_self = crc;
260
261         table->state[elt] = GPT_STATE_INVALID;
262         hdr->hdr_revision = le32toh(buf->hdr_revision);
263         if (hdr->hdr_revision < GPT_HDR_REVISION)
264                 goto fail;
265         hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
266         if (hdr->hdr_lba_self != table->lba[elt])
267                 goto fail;
268         hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
269         if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
270             hdr->hdr_lba_alt > last)
271                 goto fail;
272
273         /* Check the managed area. */
274         hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
275         if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
276                 goto fail;
277         hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
278         if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
279                 goto fail;
280
281         /* Check the table location and size of the table. */
282         hdr->hdr_entries = le32toh(buf->hdr_entries);
283         hdr->hdr_entsz = le32toh(buf->hdr_entsz);
284         if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
285             (hdr->hdr_entsz & 7) != 0)
286                 goto fail;
287         hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
288         if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
289                 goto fail;
290         if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
291             hdr->hdr_lba_table <= hdr->hdr_lba_end)
292                 goto fail;
293         lba = hdr->hdr_lba_table +
294             (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
295             pp->sectorsize - 1;
296         if (lba >= last)
297                 goto fail;
298         if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
299                 goto fail;
300
301         table->state[elt] = GPT_STATE_OK;
302         le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
303         hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
304
305         /* save LBA for secondary header */
306         if (elt == GPT_ELT_PRIHDR)
307                 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
308
309         g_free(buf);
310         return (hdr);
311
312  fail:
313         if (hdr != NULL)
314                 g_free(hdr);
315         g_free(buf);
316         return (NULL);
317 }
318
319 static struct gpt_ent *
320 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
321     enum gpt_elt elt, struct gpt_hdr *hdr)
322 {
323         struct g_provider *pp;
324         struct gpt_ent *ent, *tbl;
325         char *buf, *p;
326         unsigned int idx, sectors, tblsz, size;
327         int error;
328
329         if (hdr == NULL)
330                 return (NULL);
331
332         pp = cp->provider;
333         table->lba[elt] = hdr->hdr_lba_table;
334
335         table->state[elt] = GPT_STATE_MISSING;
336         tblsz = hdr->hdr_entries * hdr->hdr_entsz;
337         sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
338         buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
339         for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
340                 size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
341                     (sectors - idx) * pp->sectorsize;
342                 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
343                     size, &error);
344                 if (p == NULL) {
345                         g_free(buf);
346                         return (NULL);
347                 }
348                 bcopy(p, buf + idx * pp->sectorsize, size);
349                 g_free(p);
350         }
351         table->state[elt] = GPT_STATE_CORRUPT;
352         if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
353                 g_free(buf);
354                 return (NULL);
355         }
356
357         table->state[elt] = GPT_STATE_OK;
358         tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
359             M_WAITOK | M_ZERO);
360
361         for (idx = 0, ent = tbl, p = buf;
362              idx < hdr->hdr_entries;
363              idx++, ent++, p += hdr->hdr_entsz) {
364                 le_uuid_dec(p, &ent->ent_type);
365                 le_uuid_dec(p + 16, &ent->ent_uuid);
366                 ent->ent_lba_start = le64dec(p + 32);
367                 ent->ent_lba_end = le64dec(p + 40);
368                 ent->ent_attr = le64dec(p + 48);
369                 /* Keep UTF-16 in little-endian. */
370                 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
371         }
372
373         g_free(buf);
374         return (tbl);
375 }
376
377 static int
378 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
379 {
380
381         if (pri == NULL || sec == NULL)
382                 return (0);
383
384         if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
385                 return (0);
386         return ((pri->hdr_revision == sec->hdr_revision &&
387             pri->hdr_size == sec->hdr_size &&
388             pri->hdr_lba_start == sec->hdr_lba_start &&
389             pri->hdr_lba_end == sec->hdr_lba_end &&
390             pri->hdr_entries == sec->hdr_entries &&
391             pri->hdr_entsz == sec->hdr_entsz &&
392             pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
393 }
394
395 static int
396 gpt_parse_type(const char *type, struct uuid *uuid)
397 {
398         struct uuid tmp;
399         const char *alias;
400         int error;
401         struct g_part_uuid_alias *uap;
402
403         if (type[0] == '!') {
404                 error = parse_uuid(type + 1, &tmp);
405                 if (error)
406                         return (error);
407                 if (EQUUID(&tmp, &gpt_uuid_unused))
408                         return (EINVAL);
409                 *uuid = tmp;
410                 return (0);
411         }
412         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
413                 alias = g_part_alias_name(uap->alias);
414                 if (!strcasecmp(type, alias)) {
415                         *uuid = *uap->uuid;
416                         return (0);
417                 }
418         }
419         return (EINVAL);
420 }
421
422 static int
423 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
424     struct g_part_parms *gpp)
425 {
426         struct g_part_gpt_entry *entry;
427         int error;
428
429         entry = (struct g_part_gpt_entry *)baseentry;
430         error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
431         if (error)
432                 return (error);
433         kern_uuidgen(&entry->ent.ent_uuid, 1);
434         entry->ent.ent_lba_start = baseentry->gpe_start;
435         entry->ent.ent_lba_end = baseentry->gpe_end;
436         if (baseentry->gpe_deleted) {
437                 entry->ent.ent_attr = 0;
438                 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
439         }
440         if (gpp->gpp_parms & G_PART_PARM_LABEL)
441                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
442                     sizeof(entry->ent.ent_name) /
443                     sizeof(entry->ent.ent_name[0]));
444         return (0);
445 }
446
447 static int
448 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
449 {
450         struct g_part_gpt_table *table;
451         size_t codesz;
452
453         codesz = DOSPARTOFF;
454         table = (struct g_part_gpt_table *)basetable;
455         bzero(table->mbr, codesz);
456         codesz = MIN(codesz, gpp->gpp_codesize);
457         if (codesz > 0)
458                 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
459
460         /* Mark the PMBR active since some BIOS require it */
461         table->mbr[DOSPARTOFF] = 0x80;          /* status */
462         return (0);
463 }
464
465 static int
466 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
467 {
468         struct g_provider *pp;
469         struct g_part_gpt_table *table;
470         quad_t last;
471         size_t tblsz;
472
473         /* We don't nest, which means that our depth should be 0. */
474         if (basetable->gpt_depth != 0)
475                 return (ENXIO);
476
477         table = (struct g_part_gpt_table *)basetable;
478         pp = gpp->gpp_provider;
479         tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
480             pp->sectorsize - 1) / pp->sectorsize;
481         if (pp->sectorsize < MBRSIZE ||
482             pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
483             pp->sectorsize)
484                 return (ENOSPC);
485
486         last = (pp->mediasize / pp->sectorsize) - 1;
487
488         le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
489         table->mbr[DOSPARTOFF + 1] = 0x01;              /* shd */
490         table->mbr[DOSPARTOFF + 2] = 0x01;              /* ssect */
491         table->mbr[DOSPARTOFF + 3] = 0x00;              /* scyl */
492         table->mbr[DOSPARTOFF + 4] = 0xee;              /* typ */
493         table->mbr[DOSPARTOFF + 5] = 0xff;              /* ehd */
494         table->mbr[DOSPARTOFF + 6] = 0xff;              /* esect */
495         table->mbr[DOSPARTOFF + 7] = 0xff;              /* ecyl */
496         le32enc(table->mbr + DOSPARTOFF + 8, 1);        /* start */
497         le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, UINT32_MAX));
498
499         /* Allocate space for the header */
500         table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
501
502         bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
503         table->hdr->hdr_revision = GPT_HDR_REVISION;
504         table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
505         kern_uuidgen(&table->hdr->hdr_uuid, 1);
506         table->hdr->hdr_entries = basetable->gpt_entries;
507         table->hdr->hdr_entsz = sizeof(struct gpt_ent);
508
509         g_gpt_set_defaults(basetable, pp);
510         return (0);
511 }
512
513 static int
514 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
515 {
516         struct g_part_gpt_table *table;
517         struct g_provider *pp;
518
519         table = (struct g_part_gpt_table *)basetable;
520         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
521         g_free(table->hdr);
522         table->hdr = NULL;
523
524         /*
525          * Wipe the first 2 sectors to clear the partitioning. Wipe the last
526          * sector only if it has valid secondary header.
527          */
528         basetable->gpt_smhead |= 3;
529         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
530             table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
531                 basetable->gpt_smtail |= 1;
532         return (0);
533 }
534
535 static void
536 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 
537     struct sbuf *sb, const char *indent)
538 {
539         struct g_part_gpt_entry *entry;
540  
541         entry = (struct g_part_gpt_entry *)baseentry;
542         if (indent == NULL) {
543                 /* conftxt: libdisk compatibility */
544                 sbuf_printf(sb, " xs GPT xt ");
545                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
546         } else if (entry != NULL) {
547                 /* confxml: partition entry information */
548                 sbuf_printf(sb, "%s<label>", indent);
549                 g_gpt_printf_utf16(sb, entry->ent.ent_name,
550                     sizeof(entry->ent.ent_name) >> 1);
551                 sbuf_printf(sb, "</label>\n");
552                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
553                         sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
554                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
555                         sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
556                             indent);
557                 }
558                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
559                         sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
560                             indent);
561                 }
562                 sbuf_printf(sb, "%s<rawtype>", indent);
563                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
564                 sbuf_printf(sb, "</rawtype>\n");
565                 sbuf_printf(sb, "%s<rawuuid>", indent);
566                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
567                 sbuf_printf(sb, "</rawuuid>\n");
568         } else {
569                 /* confxml: scheme information */
570         }
571 }
572
573 static int
574 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)  
575 {
576         struct g_part_gpt_entry *entry;
577
578         entry = (struct g_part_gpt_entry *)baseentry;
579         return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
580             EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
581 }
582
583 static int
584 g_part_gpt_modify(struct g_part_table *basetable,
585     struct g_part_entry *baseentry, struct g_part_parms *gpp)
586 {
587         struct g_part_gpt_entry *entry;
588         int error;
589
590         entry = (struct g_part_gpt_entry *)baseentry;
591         if (gpp->gpp_parms & G_PART_PARM_TYPE) {
592                 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
593                 if (error)
594                         return (error);
595         }
596         if (gpp->gpp_parms & G_PART_PARM_LABEL)
597                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
598                     sizeof(entry->ent.ent_name) /
599                     sizeof(entry->ent.ent_name[0]));
600         return (0);
601 }
602
603 static int
604 g_part_gpt_resize(struct g_part_table *basetable,
605     struct g_part_entry *baseentry, struct g_part_parms *gpp)
606 {
607         struct g_part_gpt_entry *entry;
608         entry = (struct g_part_gpt_entry *)baseentry;
609
610         baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
611         entry->ent.ent_lba_end = baseentry->gpe_end;
612
613         return (0);
614 }
615
616 static const char *
617 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
618     char *buf, size_t bufsz)
619 {
620         struct g_part_gpt_entry *entry;
621         char c;
622
623         entry = (struct g_part_gpt_entry *)baseentry;
624         c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
625         snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
626         return (buf);
627 }
628
629 static int
630 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
631 {
632         struct g_provider *pp;
633         char *buf;
634         int error, res;
635
636         /* We don't nest, which means that our depth should be 0. */
637         if (table->gpt_depth != 0)
638                 return (ENXIO);
639
640         pp = cp->provider;
641
642         /*
643          * Sanity-check the provider. Since the first sector on the provider
644          * must be a PMBR and a PMBR is 512 bytes large, the sector size
645          * must be at least 512 bytes.  Also, since the theoretical minimum
646          * number of sectors needed by GPT is 6, any medium that has less
647          * than 6 sectors is never going to be able to hold a GPT. The
648          * number 6 comes from:
649          *      1 sector for the PMBR
650          *      2 sectors for the GPT headers (each 1 sector)
651          *      2 sectors for the GPT tables (each 1 sector)
652          *      1 sector for an actual partition
653          * It's better to catch this pathological case early than behaving
654          * pathologically later on...
655          */
656         if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
657                 return (ENOSPC);
658
659         /* Check that there's a MBR. */
660         buf = g_read_data(cp, 0L, pp->sectorsize, &error);
661         if (buf == NULL)
662                 return (error);
663         res = le16dec(buf + DOSMAGICOFFSET);
664         g_free(buf);
665         if (res != DOSMAGIC) 
666                 return (ENXIO);
667
668         /* Check that there's a primary header. */
669         buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
670         if (buf == NULL)
671                 return (error);
672         res = memcmp(buf, GPT_HDR_SIG, 8);
673         g_free(buf);
674         if (res == 0)
675                 return (G_PART_PROBE_PRI_HIGH);
676
677         /* No primary? Check that there's a secondary. */
678         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
679             &error);
680         if (buf == NULL)
681                 return (error);
682         res = memcmp(buf, GPT_HDR_SIG, 8); 
683         g_free(buf);
684         return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
685 }
686
687 static int
688 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
689 {
690         struct gpt_hdr *prihdr, *sechdr;
691         struct gpt_ent *tbl, *pritbl, *sectbl;
692         struct g_provider *pp;
693         struct g_part_gpt_table *table;
694         struct g_part_gpt_entry *entry;
695         u_char *buf;
696         uint64_t last;
697         int error, index;
698
699         table = (struct g_part_gpt_table *)basetable;
700         pp = cp->provider;
701         last = (pp->mediasize / pp->sectorsize) - 1;
702
703         /* Read the PMBR */
704         buf = g_read_data(cp, 0, pp->sectorsize, &error);
705         if (buf == NULL)
706                 return (error);
707         bcopy(buf, table->mbr, MBRSIZE);
708         g_free(buf);
709
710         /* Read the primary header and table. */
711         prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
712         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
713                 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
714         } else {
715                 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
716                 pritbl = NULL;
717         }
718
719         /* Read the secondary header and table. */
720         sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
721         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
722                 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
723         } else {
724                 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
725                 sectbl = NULL;
726         }
727
728         /* Fail if we haven't got any good tables at all. */
729         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
730             table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
731                 printf("GEOM: %s: corrupt or invalid GPT detected.\n",
732                     pp->name);
733                 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
734                     pp->name);
735                 return (EINVAL);
736         }
737
738         /*
739          * If both headers are good but they disagree with each other,
740          * then invalidate one. We prefer to keep the primary header,
741          * unless the primary table is corrupt.
742          */
743         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
744             table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
745             !gpt_matched_hdrs(prihdr, sechdr)) {
746                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
747                         table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
748                         table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
749                         g_free(sechdr);
750                         sechdr = NULL;
751                 } else {
752                         table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
753                         table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
754                         g_free(prihdr);
755                         prihdr = NULL;
756                 }
757         }
758
759         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
760                 printf("GEOM: %s: the primary GPT table is corrupt or "
761                     "invalid.\n", pp->name);
762                 printf("GEOM: %s: using the secondary instead -- recovery "
763                     "strongly advised.\n", pp->name);
764                 table->hdr = sechdr;
765                 basetable->gpt_corrupt = 1;
766                 if (prihdr != NULL)
767                         g_free(prihdr);
768                 tbl = sectbl;
769                 if (pritbl != NULL)
770                         g_free(pritbl);
771         } else {
772                 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
773                         printf("GEOM: %s: the secondary GPT table is corrupt "
774                             "or invalid.\n", pp->name);
775                         printf("GEOM: %s: using the primary only -- recovery "
776                             "suggested.\n", pp->name);
777                         basetable->gpt_corrupt = 1;
778                 } else if (table->lba[GPT_ELT_SECHDR] != last) {
779                         printf( "GEOM: %s: the secondary GPT header is not in "
780                             "the last LBA.\n", pp->name);
781                         basetable->gpt_corrupt = 1;
782                 }
783                 table->hdr = prihdr;
784                 if (sechdr != NULL)
785                         g_free(sechdr);
786                 tbl = pritbl;
787                 if (sectbl != NULL)
788                         g_free(sectbl);
789         }
790
791         basetable->gpt_first = table->hdr->hdr_lba_start;
792         basetable->gpt_last = table->hdr->hdr_lba_end;
793         basetable->gpt_entries = table->hdr->hdr_entries;
794
795         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
796                 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
797                         continue;
798                 entry = (struct g_part_gpt_entry *)g_part_new_entry(
799                     basetable, index + 1, tbl[index].ent_lba_start,
800                     tbl[index].ent_lba_end);
801                 entry->ent = tbl[index];
802         }
803
804         g_free(tbl);
805         return (0);
806 }
807
808 static int
809 g_part_gpt_recover(struct g_part_table *basetable)
810 {
811
812         g_gpt_set_defaults(basetable,
813             LIST_FIRST(&basetable->gpt_gp->consumer)->provider);
814         basetable->gpt_corrupt = 0;
815         return (0);
816 }
817
818 static int
819 g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry,
820     const char *attrib, unsigned int set)
821 {
822         struct g_part_entry *iter;
823         struct g_part_gpt_entry *entry;
824         int changed, bootme, bootonce, bootfailed;
825
826         bootme = bootonce = bootfailed = 0;
827         if (strcasecmp(attrib, "bootme") == 0) {
828                 bootme = 1;
829         } else if (strcasecmp(attrib, "bootonce") == 0) {
830                 /* BOOTME is set automatically with BOOTONCE, but not unset. */
831                 bootonce = 1;
832                 if (set)
833                         bootme = 1;
834         } else if (strcasecmp(attrib, "bootfailed") == 0) {
835                 /*
836                  * It should only be possible to unset BOOTFAILED, but it might
837                  * be useful for test purposes to also be able to set it.
838                  */
839                 bootfailed = 1;
840         }
841         if (!bootme && !bootonce && !bootfailed)
842                 return (EINVAL);
843
844         LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) {
845                 if (iter->gpe_deleted)
846                         continue;
847                 if (iter != baseentry)
848                         continue;
849                 changed = 0;
850                 entry = (struct g_part_gpt_entry *)iter;
851                 if (set) {
852                         if (bootme &&
853                             !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
854                                 entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTME;
855                                 changed = 1;
856                         }
857                         if (bootonce &&
858                             !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
859                                 entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTONCE;
860                                 changed = 1;
861                         }
862                         if (bootfailed &&
863                             !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
864                                 entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTFAILED;
865                                 changed = 1;
866                         }
867                 } else {
868                         if (bootme &&
869                             (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
870                                 entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTME;
871                                 changed = 1;
872                         }
873                         if (bootonce &&
874                             (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
875                                 entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTONCE;
876                                 changed = 1;
877                         }
878                         if (bootfailed &&
879                             (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
880                                 entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTFAILED;
881                                 changed = 1;
882                         }
883                 }
884                 if (changed && !iter->gpe_created)
885                         iter->gpe_modified = 1;
886         }
887         return (0);
888 }
889
890 static const char *
891 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 
892     char *buf, size_t bufsz)
893 {
894         struct g_part_gpt_entry *entry;
895         struct uuid *type;
896         struct g_part_uuid_alias *uap;
897  
898         entry = (struct g_part_gpt_entry *)baseentry;
899         type = &entry->ent.ent_type;
900         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
901                 if (EQUUID(type, uap->uuid))
902                         return (g_part_alias_name(uap->alias));
903         buf[0] = '!';
904         snprintf_uuid(buf + 1, bufsz - 1, type);
905
906         return (buf);
907 }
908
909 static int
910 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
911 {
912         unsigned char *buf, *bp;
913         struct g_provider *pp;
914         struct g_part_entry *baseentry;
915         struct g_part_gpt_entry *entry;
916         struct g_part_gpt_table *table;
917         size_t tblsz;
918         uint32_t crc;
919         int error, index;
920
921         pp = cp->provider;
922         table = (struct g_part_gpt_table *)basetable;
923         tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
924             pp->sectorsize - 1) / pp->sectorsize;
925
926         /* Write the PMBR */
927         buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
928         bcopy(table->mbr, buf, MBRSIZE);
929         error = g_write_data(cp, 0, buf, pp->sectorsize);
930         g_free(buf);
931         if (error)
932                 return (error);
933
934         /* Allocate space for the header and entries. */
935         buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
936
937         memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
938         le32enc(buf + 8, table->hdr->hdr_revision);
939         le32enc(buf + 12, table->hdr->hdr_size);
940         le64enc(buf + 40, table->hdr->hdr_lba_start);
941         le64enc(buf + 48, table->hdr->hdr_lba_end);
942         le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
943         le32enc(buf + 80, table->hdr->hdr_entries);
944         le32enc(buf + 84, table->hdr->hdr_entsz);
945
946         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
947                 if (baseentry->gpe_deleted)
948                         continue;
949                 entry = (struct g_part_gpt_entry *)baseentry;
950                 index = baseentry->gpe_index - 1;
951                 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
952                 le_uuid_enc(bp, &entry->ent.ent_type);
953                 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
954                 le64enc(bp + 32, entry->ent.ent_lba_start);
955                 le64enc(bp + 40, entry->ent.ent_lba_end);
956                 le64enc(bp + 48, entry->ent.ent_attr);
957                 memcpy(bp + 56, entry->ent.ent_name,
958                     sizeof(entry->ent.ent_name));
959         }
960
961         crc = crc32(buf + pp->sectorsize,
962             table->hdr->hdr_entries * table->hdr->hdr_entsz);
963         le32enc(buf + 88, crc);
964
965         /* Write primary meta-data. */
966         le32enc(buf + 16, 0);   /* hdr_crc_self. */
967         le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_self. */
968         le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_alt. */
969         le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);  /* hdr_lba_table. */
970         crc = crc32(buf, table->hdr->hdr_size);
971         le32enc(buf + 16, crc);
972
973         for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
974                 error = g_write_data(cp,
975                     (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
976                     buf + (index + 1) * pp->sectorsize,
977                     (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
978                     (tblsz - index) * pp->sectorsize);
979                 if (error)
980                         goto out;
981         }
982         error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
983             buf, pp->sectorsize);
984         if (error)
985                 goto out;
986
987         /* Write secondary meta-data. */
988         le32enc(buf + 16, 0);   /* hdr_crc_self. */
989         le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_self. */
990         le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_alt. */
991         le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);  /* hdr_lba_table. */
992         crc = crc32(buf, table->hdr->hdr_size);
993         le32enc(buf + 16, crc);
994
995         for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
996                 error = g_write_data(cp,
997                     (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
998                     buf + (index + 1) * pp->sectorsize,
999                     (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1000                     (tblsz - index) * pp->sectorsize);
1001                 if (error)
1002                         goto out;
1003         }
1004         error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1005             buf, pp->sectorsize);
1006
1007  out:
1008         g_free(buf);
1009         return (error);
1010 }
1011
1012 static void
1013 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1014 {
1015         struct g_part_gpt_table *table;
1016         quad_t last;
1017         size_t tblsz;
1018
1019         table = (struct g_part_gpt_table *)basetable;
1020         last = pp->mediasize / pp->sectorsize - 1;
1021         tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1022             pp->sectorsize - 1) / pp->sectorsize;
1023
1024         table->lba[GPT_ELT_PRIHDR] = 1;
1025         table->lba[GPT_ELT_PRITBL] = 2;
1026         table->lba[GPT_ELT_SECHDR] = last;
1027         table->lba[GPT_ELT_SECTBL] = last - tblsz;
1028         table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1029         table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1030         table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1031         table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1032
1033         table->hdr->hdr_lba_start = 2 + tblsz;
1034         table->hdr->hdr_lba_end = last - tblsz - 1;
1035
1036         basetable->gpt_first = table->hdr->hdr_lba_start;
1037         basetable->gpt_last = table->hdr->hdr_lba_end;
1038 }
1039
1040 static void
1041 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1042 {
1043         u_int bo;
1044         uint32_t ch;
1045         uint16_t c;
1046
1047         bo = LITTLE_ENDIAN;     /* GPT is little-endian */
1048         while (len > 0 && *str != 0) {
1049                 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1050                 str++, len--;
1051                 if ((ch & 0xf800) == 0xd800) {
1052                         if (len > 0) {
1053                                 c = (bo == BIG_ENDIAN) ? be16toh(*str)
1054                                     : le16toh(*str);
1055                                 str++, len--;
1056                         } else
1057                                 c = 0xfffd;
1058                         if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1059                                 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1060                                 ch += 0x10000;
1061                         } else
1062                                 ch = 0xfffd;
1063                 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1064                         bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1065                         continue;
1066                 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1067                         continue;
1068
1069                 /* Write the Unicode character in UTF-8 */
1070                 if (ch < 0x80)
1071                         sbuf_printf(sb, "%c", ch);
1072                 else if (ch < 0x800)
1073                         sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1074                             0x80 | (ch & 0x3f));
1075                 else if (ch < 0x10000)
1076                         sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1077                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1078                 else if (ch < 0x200000)
1079                         sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1080                             0x80 | ((ch >> 12) & 0x3f),
1081                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1082         }
1083 }
1084
1085 static void
1086 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1087 {
1088         size_t s16idx, s8idx;
1089         uint32_t utfchar;
1090         unsigned int c, utfbytes;
1091
1092         s8idx = s16idx = 0;
1093         utfchar = 0;
1094         utfbytes = 0;
1095         bzero(s16, s16len << 1);
1096         while (s8[s8idx] != 0 && s16idx < s16len) {
1097                 c = s8[s8idx++];
1098                 if ((c & 0xc0) != 0x80) {
1099                         /* Initial characters. */
1100                         if (utfbytes != 0) {
1101                                 /* Incomplete encoding of previous char. */
1102                                 s16[s16idx++] = htole16(0xfffd);
1103                         }
1104                         if ((c & 0xf8) == 0xf0) {
1105                                 utfchar = c & 0x07;
1106                                 utfbytes = 3;
1107                         } else if ((c & 0xf0) == 0xe0) {
1108                                 utfchar = c & 0x0f;
1109                                 utfbytes = 2;
1110                         } else if ((c & 0xe0) == 0xc0) {
1111                                 utfchar = c & 0x1f;
1112                                 utfbytes = 1;
1113                         } else {
1114                                 utfchar = c & 0x7f;
1115                                 utfbytes = 0;
1116                         }
1117                 } else {
1118                         /* Followup characters. */
1119                         if (utfbytes > 0) {
1120                                 utfchar = (utfchar << 6) + (c & 0x3f);
1121                                 utfbytes--;
1122                         } else if (utfbytes == 0)
1123                                 utfbytes = ~0;
1124                 }
1125                 /*
1126                  * Write the complete Unicode character as UTF-16 when we
1127                  * have all the UTF-8 charactars collected.
1128                  */
1129                 if (utfbytes == 0) {
1130                         /*
1131                          * If we need to write 2 UTF-16 characters, but
1132                          * we only have room for 1, then we truncate the
1133                          * string by writing a 0 instead.
1134                          */
1135                         if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1136                                 s16[s16idx++] =
1137                                     htole16(0xd800 | ((utfchar >> 10) - 0x40));
1138                                 s16[s16idx++] =
1139                                     htole16(0xdc00 | (utfchar & 0x3ff));
1140                         } else
1141                                 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1142                                     htole16(utfchar);
1143                 }
1144         }
1145         /*
1146          * If our input string was truncated, append an invalid encoding
1147          * character to the output string.
1148          */
1149         if (utfbytes != 0 && s16idx < s16len)
1150                 s16[s16idx++] = htole16(0xfffd);
1151 }