]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/kern/kern_thread.c
MFC r363988:
[FreeBSD/stable/9.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rangelock.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sdt.h>
45 #include <sys/smp.h>
46 #include <sys/sched.h>
47 #include <sys/sleepqueue.h>
48 #include <sys/selinfo.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef  HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57
58 #include <security/audit/audit.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <sys/eventhandler.h>
64
65 SDT_PROVIDER_DECLARE(proc);
66 SDT_PROBE_DEFINE(proc, , , lwp__exit);
67
68
69 /*
70  * thread related storage.
71  */
72 static uma_zone_t thread_zone;
73
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79
80 #define TID_BUFFER_SIZE 1024
81
82 struct mtx tid_lock;
83 static struct unrhdr *tid_unrhdr;
84 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85 static int tid_head, tid_tail;
86 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87
88 struct  tidhashhead *tidhashtbl;
89 u_long  tidhash;
90 struct  rwlock tidhash_lock;
91
92 static lwpid_t
93 tid_alloc(void)
94 {
95         lwpid_t tid;
96
97         tid = alloc_unr(tid_unrhdr);
98         if (tid != -1)
99                 return (tid);
100         mtx_lock(&tid_lock);
101         if (tid_head == tid_tail) {
102                 mtx_unlock(&tid_lock);
103                 return (-1);
104         }
105         tid = tid_buffer[tid_head];
106         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
107         mtx_unlock(&tid_lock);
108         return (tid);
109 }
110
111 static void
112 tid_free(lwpid_t tid)
113 {
114         lwpid_t tmp_tid = -1;
115
116         mtx_lock(&tid_lock);
117         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118                 tmp_tid = tid_buffer[tid_head];
119                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120         }
121         tid_buffer[tid_tail] = tid;
122         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
123         mtx_unlock(&tid_lock);
124         if (tmp_tid != -1)
125                 free_unr(tid_unrhdr, tmp_tid);
126 }
127
128 /*
129  * Prepare a thread for use.
130  */
131 static int
132 thread_ctor(void *mem, int size, void *arg, int flags)
133 {
134         struct thread   *td;
135
136         td = (struct thread *)mem;
137         td->td_state = TDS_INACTIVE;
138         td->td_oncpu = NOCPU;
139
140         td->td_tid = tid_alloc();
141
142         /*
143          * Note that td_critnest begins life as 1 because the thread is not
144          * running and is thereby implicitly waiting to be on the receiving
145          * end of a context switch.
146          */
147         td->td_critnest = 1;
148         td->td_lend_user_pri = PRI_MAX;
149         EVENTHANDLER_INVOKE(thread_ctor, td);
150 #ifdef AUDIT
151         audit_thread_alloc(td);
152 #endif
153         umtx_thread_alloc(td);
154         return (0);
155 }
156
157 /*
158  * Reclaim a thread after use.
159  */
160 static void
161 thread_dtor(void *mem, int size, void *arg)
162 {
163         struct thread *td;
164
165         td = (struct thread *)mem;
166
167 #ifdef INVARIANTS
168         /* Verify that this thread is in a safe state to free. */
169         switch (td->td_state) {
170         case TDS_INHIBITED:
171         case TDS_RUNNING:
172         case TDS_CAN_RUN:
173         case TDS_RUNQ:
174                 /*
175                  * We must never unlink a thread that is in one of
176                  * these states, because it is currently active.
177                  */
178                 panic("bad state for thread unlinking");
179                 /* NOTREACHED */
180         case TDS_INACTIVE:
181                 break;
182         default:
183                 panic("bad thread state");
184                 /* NOTREACHED */
185         }
186 #endif
187 #ifdef AUDIT
188         audit_thread_free(td);
189 #endif
190         /* Free all OSD associated to this thread. */
191         osd_thread_exit(td);
192
193         EVENTHANDLER_INVOKE(thread_dtor, td);
194         tid_free(td->td_tid);
195 }
196
197 /*
198  * Initialize type-stable parts of a thread (when newly created).
199  */
200 static int
201 thread_init(void *mem, int size, int flags)
202 {
203         struct thread *td;
204
205         td = (struct thread *)mem;
206
207         td->td_sleepqueue = sleepq_alloc();
208         td->td_turnstile = turnstile_alloc();
209         td->td_rlqe = NULL;
210         td->td_vp_reserv = 0;
211         EVENTHANDLER_INVOKE(thread_init, td);
212         td->td_sched = (struct td_sched *)&td[1];
213         umtx_thread_init(td);
214         td->td_kstack = 0;
215         td->td_sel = NULL;
216         return (0);
217 }
218
219 /*
220  * Tear down type-stable parts of a thread (just before being discarded).
221  */
222 static void
223 thread_fini(void *mem, int size)
224 {
225         struct thread *td;
226
227         td = (struct thread *)mem;
228         EVENTHANDLER_INVOKE(thread_fini, td);
229         rlqentry_free(td->td_rlqe);
230         turnstile_free(td->td_turnstile);
231         sleepq_free(td->td_sleepqueue);
232         umtx_thread_fini(td);
233         seltdfini(td);
234 }
235
236 /*
237  * For a newly created process,
238  * link up all the structures and its initial threads etc.
239  * called from:
240  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
241  * proc_dtor() (should go away)
242  * proc_init()
243  */
244 void
245 proc_linkup0(struct proc *p, struct thread *td)
246 {
247         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
248         proc_linkup(p, td);
249 }
250
251 void
252 proc_linkup(struct proc *p, struct thread *td)
253 {
254
255         sigqueue_init(&p->p_sigqueue, p);
256         p->p_ksi = ksiginfo_alloc(1);
257         if (p->p_ksi != NULL) {
258                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
259                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
260         }
261         LIST_INIT(&p->p_mqnotifier);
262         p->p_numthreads = 0;
263         thread_link(td, p);
264 }
265
266 /*
267  * Initialize global thread allocation resources.
268  */
269 void
270 threadinit(void)
271 {
272
273         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
274
275         /*
276          * pid_max cannot be greater than PID_MAX.
277          * leave one number for thread0.
278          */
279         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
280
281         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
282             thread_ctor, thread_dtor, thread_init, thread_fini,
283             16 - 1, 0);
284         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
285         rw_init(&tidhash_lock, "tidhash");
286 }
287
288 /*
289  * Place an unused thread on the zombie list.
290  * Use the slpq as that must be unused by now.
291  */
292 void
293 thread_zombie(struct thread *td)
294 {
295         mtx_lock_spin(&zombie_lock);
296         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
297         mtx_unlock_spin(&zombie_lock);
298 }
299
300 /*
301  * Release a thread that has exited after cpu_throw().
302  */
303 void
304 thread_stash(struct thread *td)
305 {
306         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
307         thread_zombie(td);
308 }
309
310 /*
311  * Reap zombie resources.
312  */
313 void
314 thread_reap(void)
315 {
316         struct thread *td_first, *td_next;
317
318         /*
319          * Don't even bother to lock if none at this instant,
320          * we really don't care about the next instant..
321          */
322         if (!TAILQ_EMPTY(&zombie_threads)) {
323                 mtx_lock_spin(&zombie_lock);
324                 td_first = TAILQ_FIRST(&zombie_threads);
325                 if (td_first)
326                         TAILQ_INIT(&zombie_threads);
327                 mtx_unlock_spin(&zombie_lock);
328                 while (td_first) {
329                         td_next = TAILQ_NEXT(td_first, td_slpq);
330                         if (td_first->td_ucred)
331                                 crfree(td_first->td_ucred);
332                         thread_free(td_first);
333                         td_first = td_next;
334                 }
335         }
336 }
337
338 /*
339  * Allocate a thread.
340  */
341 struct thread *
342 thread_alloc(int pages)
343 {
344         struct thread *td;
345
346         thread_reap(); /* check if any zombies to get */
347
348         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
349         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
350         if (!vm_thread_new(td, pages)) {
351                 uma_zfree(thread_zone, td);
352                 return (NULL);
353         }
354         cpu_thread_alloc(td);
355         return (td);
356 }
357
358 int
359 thread_alloc_stack(struct thread *td, int pages)
360 {
361
362         KASSERT(td->td_kstack == 0,
363             ("thread_alloc_stack called on a thread with kstack"));
364         if (!vm_thread_new(td, pages))
365                 return (0);
366         cpu_thread_alloc(td);
367         return (1);
368 }
369
370 /*
371  * Deallocate a thread.
372  */
373 void
374 thread_free(struct thread *td)
375 {
376
377         lock_profile_thread_exit(td);
378         if (td->td_cpuset)
379                 cpuset_rel(td->td_cpuset);
380         td->td_cpuset = NULL;
381         cpu_thread_free(td);
382         if (td->td_kstack != 0)
383                 vm_thread_dispose(td);
384         uma_zfree(thread_zone, td);
385 }
386
387 /*
388  * Discard the current thread and exit from its context.
389  * Always called with scheduler locked.
390  *
391  * Because we can't free a thread while we're operating under its context,
392  * push the current thread into our CPU's deadthread holder. This means
393  * we needn't worry about someone else grabbing our context before we
394  * do a cpu_throw().
395  */
396 void
397 thread_exit(void)
398 {
399         uint64_t runtime, new_switchtime;
400         struct thread *td;
401         struct thread *td2;
402         struct proc *p;
403         int wakeup_swapper;
404
405         td = curthread;
406         p = td->td_proc;
407
408         PROC_SLOCK_ASSERT(p, MA_OWNED);
409         mtx_assert(&Giant, MA_NOTOWNED);
410
411         PROC_LOCK_ASSERT(p, MA_OWNED);
412         KASSERT(p != NULL, ("thread exiting without a process"));
413         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
414             (long)p->p_pid, td->td_name);
415         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
416
417 #ifdef AUDIT
418         AUDIT_SYSCALL_EXIT(0, td);
419 #endif
420         umtx_thread_exit(td);
421         /*
422          * drop FPU & debug register state storage, or any other
423          * architecture specific resources that
424          * would not be on a new untouched process.
425          */
426         cpu_thread_exit(td);    /* XXXSMP */
427
428         /*
429          * The last thread is left attached to the process
430          * So that the whole bundle gets recycled. Skip
431          * all this stuff if we never had threads.
432          * EXIT clears all sign of other threads when
433          * it goes to single threading, so the last thread always
434          * takes the short path.
435          */
436         if (p->p_flag & P_HADTHREADS) {
437                 if (p->p_numthreads > 1) {
438                         thread_unlink(td);
439                         td2 = FIRST_THREAD_IN_PROC(p);
440                         sched_exit_thread(td2, td);
441
442                         /*
443                          * The test below is NOT true if we are the
444                          * sole exiting thread. P_STOPPED_SINGLE is unset
445                          * in exit1() after it is the only survivor.
446                          */
447                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
448                                 if (p->p_numthreads == p->p_suspcount) {
449                                         thread_lock(p->p_singlethread);
450                                         wakeup_swapper = thread_unsuspend_one(
451                                                 p->p_singlethread);
452                                         thread_unlock(p->p_singlethread);
453                                         if (wakeup_swapper)
454                                                 kick_proc0();
455                                 }
456                         }
457
458                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
459                         PCPU_SET(deadthread, td);
460                 } else {
461                         /*
462                          * The last thread is exiting.. but not through exit()
463                          */
464                         panic ("thread_exit: Last thread exiting on its own");
465                 }
466         } 
467 #ifdef  HWPMC_HOOKS
468         /*
469          * If this thread is part of a process that is being tracked by hwpmc(4),
470          * inform the module of the thread's impending exit.
471          */
472         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
473                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
474 #endif
475         PROC_UNLOCK(p);
476
477         /* Do the same timestamp bookkeeping that mi_switch() would do. */
478         new_switchtime = cpu_ticks();
479         runtime = new_switchtime - PCPU_GET(switchtime);
480         td->td_runtime += runtime;
481         td->td_incruntime += runtime;
482         PCPU_SET(switchtime, new_switchtime);
483         PCPU_SET(switchticks, ticks);
484         PCPU_INC(cnt.v_swtch);
485
486         /* Save our resource usage in our process. */
487         td->td_ru.ru_nvcsw++;
488         ruxagg(p, td);
489         rucollect(&p->p_ru, &td->td_ru);
490
491         thread_lock(td);
492         PROC_SUNLOCK(p);
493         td->td_state = TDS_INACTIVE;
494 #ifdef WITNESS
495         witness_thread_exit(td);
496 #endif
497         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
498         sched_throw(td);
499         panic("I'm a teapot!");
500         /* NOTREACHED */
501 }
502
503 /*
504  * Do any thread specific cleanups that may be needed in wait()
505  * called with Giant, proc and schedlock not held.
506  */
507 void
508 thread_wait(struct proc *p)
509 {
510         struct thread *td;
511
512         mtx_assert(&Giant, MA_NOTOWNED);
513         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
514         td = FIRST_THREAD_IN_PROC(p);
515         /* Lock the last thread so we spin until it exits cpu_throw(). */
516         thread_lock(td);
517         thread_unlock(td);
518         /* Wait for any remaining threads to exit cpu_throw(). */
519         while (p->p_exitthreads)
520                 sched_relinquish(curthread);
521         lock_profile_thread_exit(td);
522         cpuset_rel(td->td_cpuset);
523         td->td_cpuset = NULL;
524         cpu_thread_clean(td);
525         crfree(td->td_ucred);
526         thread_reap();  /* check for zombie threads etc. */
527 }
528
529 /*
530  * Link a thread to a process.
531  * set up anything that needs to be initialized for it to
532  * be used by the process.
533  */
534 void
535 thread_link(struct thread *td, struct proc *p)
536 {
537
538         /*
539          * XXX This can't be enabled because it's called for proc0 before
540          * its lock has been created.
541          * PROC_LOCK_ASSERT(p, MA_OWNED);
542          */
543         td->td_state    = TDS_INACTIVE;
544         td->td_proc     = p;
545         td->td_flags    = TDF_INMEM;
546
547         LIST_INIT(&td->td_contested);
548         LIST_INIT(&td->td_lprof[0]);
549         LIST_INIT(&td->td_lprof[1]);
550         sigqueue_init(&td->td_sigqueue, p);
551         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
552         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
553         p->p_numthreads++;
554 }
555
556 /*
557  * Convert a process with one thread to an unthreaded process.
558  */
559 void
560 thread_unthread(struct thread *td)
561 {
562         struct proc *p = td->td_proc;
563
564         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
565         p->p_flag &= ~P_HADTHREADS;
566 }
567
568 /*
569  * Called from:
570  *  thread_exit()
571  */
572 void
573 thread_unlink(struct thread *td)
574 {
575         struct proc *p = td->td_proc;
576
577         PROC_LOCK_ASSERT(p, MA_OWNED);
578         TAILQ_REMOVE(&p->p_threads, td, td_plist);
579         p->p_numthreads--;
580         /* could clear a few other things here */
581         /* Must  NOT clear links to proc! */
582 }
583
584 static int
585 calc_remaining(struct proc *p, int mode)
586 {
587         int remaining;
588
589         PROC_LOCK_ASSERT(p, MA_OWNED);
590         PROC_SLOCK_ASSERT(p, MA_OWNED);
591         if (mode == SINGLE_EXIT)
592                 remaining = p->p_numthreads;
593         else if (mode == SINGLE_BOUNDARY)
594                 remaining = p->p_numthreads - p->p_boundary_count;
595         else if (mode == SINGLE_NO_EXIT)
596                 remaining = p->p_numthreads - p->p_suspcount;
597         else
598                 panic("calc_remaining: wrong mode %d", mode);
599         return (remaining);
600 }
601
602 /*
603  * Enforce single-threading.
604  *
605  * Returns 1 if the caller must abort (another thread is waiting to
606  * exit the process or similar). Process is locked!
607  * Returns 0 when you are successfully the only thread running.
608  * A process has successfully single threaded in the suspend mode when
609  * There are no threads in user mode. Threads in the kernel must be
610  * allowed to continue until they get to the user boundary. They may even
611  * copy out their return values and data before suspending. They may however be
612  * accelerated in reaching the user boundary as we will wake up
613  * any sleeping threads that are interruptable. (PCATCH).
614  */
615 int
616 thread_single(int mode)
617 {
618         struct thread *td;
619         struct thread *td2;
620         struct proc *p;
621         int remaining, wakeup_swapper;
622
623         td = curthread;
624         p = td->td_proc;
625         mtx_assert(&Giant, MA_NOTOWNED);
626         PROC_LOCK_ASSERT(p, MA_OWNED);
627
628         if ((p->p_flag & P_HADTHREADS) == 0)
629                 return (0);
630
631         /* Is someone already single threading? */
632         if (p->p_singlethread != NULL && p->p_singlethread != td)
633                 return (1);
634
635         if (mode == SINGLE_EXIT) {
636                 p->p_flag |= P_SINGLE_EXIT;
637                 p->p_flag &= ~P_SINGLE_BOUNDARY;
638         } else {
639                 p->p_flag &= ~P_SINGLE_EXIT;
640                 if (mode == SINGLE_BOUNDARY)
641                         p->p_flag |= P_SINGLE_BOUNDARY;
642                 else
643                         p->p_flag &= ~P_SINGLE_BOUNDARY;
644         }
645         p->p_flag |= P_STOPPED_SINGLE;
646         PROC_SLOCK(p);
647         p->p_singlethread = td;
648         remaining = calc_remaining(p, mode);
649         while (remaining != 1) {
650                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
651                         goto stopme;
652                 wakeup_swapper = 0;
653                 FOREACH_THREAD_IN_PROC(p, td2) {
654                         if (td2 == td)
655                                 continue;
656                         thread_lock(td2);
657                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
658                         if (TD_IS_INHIBITED(td2)) {
659                                 switch (mode) {
660                                 case SINGLE_EXIT:
661                                         if (TD_IS_SUSPENDED(td2))
662                                                 wakeup_swapper |=
663                                                     thread_unsuspend_one(td2);
664                                         if (TD_ON_SLEEPQ(td2) &&
665                                             (td2->td_flags & TDF_SINTR))
666                                                 wakeup_swapper |=
667                                                     sleepq_abort(td2, EINTR);
668                                         break;
669                                 case SINGLE_BOUNDARY:
670                                         if (TD_IS_SUSPENDED(td2) &&
671                                             !(td2->td_flags & TDF_BOUNDARY))
672                                                 wakeup_swapper |=
673                                                     thread_unsuspend_one(td2);
674                                         if (TD_ON_SLEEPQ(td2) &&
675                                             (td2->td_flags & TDF_SINTR))
676                                                 wakeup_swapper |=
677                                                     sleepq_abort(td2, ERESTART);
678                                         break;
679                                 case SINGLE_NO_EXIT:
680                                         if (TD_IS_SUSPENDED(td2) &&
681                                             !(td2->td_flags & TDF_BOUNDARY))
682                                                 wakeup_swapper |=
683                                                     thread_unsuspend_one(td2);
684                                         if (TD_ON_SLEEPQ(td2) &&
685                                             (td2->td_flags & TDF_SINTR))
686                                                 wakeup_swapper |=
687                                                     sleepq_abort(td2, ERESTART);
688                                         break;
689                                 default:
690                                         break;
691                                 }
692                         }
693 #ifdef SMP
694                         else if (TD_IS_RUNNING(td2) && td != td2) {
695                                 forward_signal(td2);
696                         }
697 #endif
698                         thread_unlock(td2);
699                 }
700                 if (wakeup_swapper)
701                         kick_proc0();
702                 remaining = calc_remaining(p, mode);
703
704                 /*
705                  * Maybe we suspended some threads.. was it enough?
706                  */
707                 if (remaining == 1)
708                         break;
709
710 stopme:
711                 /*
712                  * Wake us up when everyone else has suspended.
713                  * In the mean time we suspend as well.
714                  */
715                 thread_suspend_switch(td);
716                 remaining = calc_remaining(p, mode);
717         }
718         if (mode == SINGLE_EXIT) {
719                 /*
720                  * We have gotten rid of all the other threads and we
721                  * are about to either exit or exec. In either case,
722                  * we try our utmost  to revert to being a non-threaded
723                  * process.
724                  */
725                 p->p_singlethread = NULL;
726                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
727                 thread_unthread(td);
728         }
729         PROC_SUNLOCK(p);
730         return (0);
731 }
732
733 /*
734  * Called in from locations that can safely check to see
735  * whether we have to suspend or at least throttle for a
736  * single-thread event (e.g. fork).
737  *
738  * Such locations include userret().
739  * If the "return_instead" argument is non zero, the thread must be able to
740  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
741  *
742  * The 'return_instead' argument tells the function if it may do a
743  * thread_exit() or suspend, or whether the caller must abort and back
744  * out instead.
745  *
746  * If the thread that set the single_threading request has set the
747  * P_SINGLE_EXIT bit in the process flags then this call will never return
748  * if 'return_instead' is false, but will exit.
749  *
750  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
751  *---------------+--------------------+---------------------
752  *       0       | returns 0          |   returns 0 or 1
753  *               | when ST ends       |   immediatly
754  *---------------+--------------------+---------------------
755  *       1       | thread exits       |   returns 1
756  *               |                    |  immediatly
757  * 0 = thread_exit() or suspension ok,
758  * other = return error instead of stopping the thread.
759  *
760  * While a full suspension is under effect, even a single threading
761  * thread would be suspended if it made this call (but it shouldn't).
762  * This call should only be made from places where
763  * thread_exit() would be safe as that may be the outcome unless
764  * return_instead is set.
765  */
766 int
767 thread_suspend_check(int return_instead)
768 {
769         struct thread *td;
770         struct proc *p;
771         int wakeup_swapper;
772
773         td = curthread;
774         p = td->td_proc;
775         mtx_assert(&Giant, MA_NOTOWNED);
776         PROC_LOCK_ASSERT(p, MA_OWNED);
777         while (P_SHOULDSTOP(p) ||
778               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
779                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
780                         KASSERT(p->p_singlethread != NULL,
781                             ("singlethread not set"));
782                         /*
783                          * The only suspension in action is a
784                          * single-threading. Single threader need not stop.
785                          * XXX Should be safe to access unlocked
786                          * as it can only be set to be true by us.
787                          */
788                         if (p->p_singlethread == td)
789                                 return (0);     /* Exempt from stopping. */
790                 }
791                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
792                         return (EINTR);
793
794                 /* Should we goto user boundary if we didn't come from there? */
795                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
796                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
797                         return (ERESTART);
798
799                 /*
800                  * Ignore suspend requests for stop signals if they
801                  * are deferred.
802                  */
803                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG &&
804                     td->td_flags & TDF_SBDRY) {
805                         KASSERT(return_instead,
806                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
807                         return (0);
808                 }
809
810                 /*
811                  * If the process is waiting for us to exit,
812                  * this thread should just suicide.
813                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
814                  */
815                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
816                         PROC_UNLOCK(p);
817                         tidhash_remove(td);
818                         PROC_LOCK(p);
819                         tdsigcleanup(td);
820                         PROC_SLOCK(p);
821                         thread_stopped(p);
822                         thread_exit();
823                 }
824
825                 PROC_SLOCK(p);
826                 thread_stopped(p);
827                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
828                         if (p->p_numthreads == p->p_suspcount + 1) {
829                                 thread_lock(p->p_singlethread);
830                                 wakeup_swapper =
831                                     thread_unsuspend_one(p->p_singlethread);
832                                 thread_unlock(p->p_singlethread);
833                                 if (wakeup_swapper)
834                                         kick_proc0();
835                         }
836                 }
837                 PROC_UNLOCK(p);
838                 thread_lock(td);
839                 /*
840                  * When a thread suspends, it just
841                  * gets taken off all queues.
842                  */
843                 thread_suspend_one(td);
844                 if (return_instead == 0) {
845                         p->p_boundary_count++;
846                         td->td_flags |= TDF_BOUNDARY;
847                 }
848                 PROC_SUNLOCK(p);
849                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
850                 if (return_instead == 0)
851                         td->td_flags &= ~TDF_BOUNDARY;
852                 thread_unlock(td);
853                 PROC_LOCK(p);
854                 if (return_instead == 0) {
855                         PROC_SLOCK(p);
856                         p->p_boundary_count--;
857                         PROC_SUNLOCK(p);
858                 }
859         }
860         return (0);
861 }
862
863 void
864 thread_suspend_switch(struct thread *td)
865 {
866         struct proc *p;
867
868         p = td->td_proc;
869         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
870         PROC_LOCK_ASSERT(p, MA_OWNED);
871         PROC_SLOCK_ASSERT(p, MA_OWNED);
872         /*
873          * We implement thread_suspend_one in stages here to avoid
874          * dropping the proc lock while the thread lock is owned.
875          */
876         thread_stopped(p);
877         p->p_suspcount++;
878         PROC_UNLOCK(p);
879         thread_lock(td);
880         td->td_flags &= ~TDF_NEEDSUSPCHK;
881         TD_SET_SUSPENDED(td);
882         sched_sleep(td, 0);
883         PROC_SUNLOCK(p);
884         DROP_GIANT();
885         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
886         thread_unlock(td);
887         PICKUP_GIANT();
888         PROC_LOCK(p);
889         PROC_SLOCK(p);
890 }
891
892 void
893 thread_suspend_one(struct thread *td)
894 {
895         struct proc *p = td->td_proc;
896
897         PROC_SLOCK_ASSERT(p, MA_OWNED);
898         THREAD_LOCK_ASSERT(td, MA_OWNED);
899         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
900         p->p_suspcount++;
901         td->td_flags &= ~TDF_NEEDSUSPCHK;
902         TD_SET_SUSPENDED(td);
903         sched_sleep(td, 0);
904 }
905
906 int
907 thread_unsuspend_one(struct thread *td)
908 {
909         struct proc *p = td->td_proc;
910
911         PROC_SLOCK_ASSERT(p, MA_OWNED);
912         THREAD_LOCK_ASSERT(td, MA_OWNED);
913         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
914         TD_CLR_SUSPENDED(td);
915         p->p_suspcount--;
916         return (setrunnable(td));
917 }
918
919 /*
920  * Allow all threads blocked by single threading to continue running.
921  */
922 void
923 thread_unsuspend(struct proc *p)
924 {
925         struct thread *td;
926         int wakeup_swapper;
927
928         PROC_LOCK_ASSERT(p, MA_OWNED);
929         PROC_SLOCK_ASSERT(p, MA_OWNED);
930         wakeup_swapper = 0;
931         if (!P_SHOULDSTOP(p)) {
932                 FOREACH_THREAD_IN_PROC(p, td) {
933                         thread_lock(td);
934                         if (TD_IS_SUSPENDED(td)) {
935                                 wakeup_swapper |= thread_unsuspend_one(td);
936                         }
937                         thread_unlock(td);
938                 }
939         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
940             (p->p_numthreads == p->p_suspcount)) {
941                 /*
942                  * Stopping everything also did the job for the single
943                  * threading request. Now we've downgraded to single-threaded,
944                  * let it continue.
945                  */
946                 thread_lock(p->p_singlethread);
947                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
948                 thread_unlock(p->p_singlethread);
949         }
950         if (wakeup_swapper)
951                 kick_proc0();
952 }
953
954 /*
955  * End the single threading mode..
956  */
957 void
958 thread_single_end(void)
959 {
960         struct thread *td;
961         struct proc *p;
962         int wakeup_swapper;
963
964         td = curthread;
965         p = td->td_proc;
966         PROC_LOCK_ASSERT(p, MA_OWNED);
967         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
968         PROC_SLOCK(p);
969         p->p_singlethread = NULL;
970         wakeup_swapper = 0;
971         /*
972          * If there are other threads they may now run,
973          * unless of course there is a blanket 'stop order'
974          * on the process. The single threader must be allowed
975          * to continue however as this is a bad place to stop.
976          */
977         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
978                 FOREACH_THREAD_IN_PROC(p, td) {
979                         thread_lock(td);
980                         if (TD_IS_SUSPENDED(td)) {
981                                 wakeup_swapper |= thread_unsuspend_one(td);
982                         }
983                         thread_unlock(td);
984                 }
985         }
986         PROC_SUNLOCK(p);
987         if (wakeup_swapper)
988                 kick_proc0();
989 }
990
991 struct thread *
992 thread_find(struct proc *p, lwpid_t tid)
993 {
994         struct thread *td;
995
996         PROC_LOCK_ASSERT(p, MA_OWNED);
997         FOREACH_THREAD_IN_PROC(p, td) {
998                 if (td->td_tid == tid)
999                         break;
1000         }
1001         return (td);
1002 }
1003
1004 /* Locate a thread by number; return with proc lock held. */
1005 struct thread *
1006 tdfind(lwpid_t tid, pid_t pid)
1007 {
1008 #define RUN_THRESH      16
1009         struct thread *td;
1010         int run = 0;
1011
1012         rw_rlock(&tidhash_lock);
1013         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1014                 if (td->td_tid == tid) {
1015                         if (pid != -1 && td->td_proc->p_pid != pid) {
1016                                 td = NULL;
1017                                 break;
1018                         }
1019                         PROC_LOCK(td->td_proc);
1020                         if (td->td_proc->p_state == PRS_NEW) {
1021                                 PROC_UNLOCK(td->td_proc);
1022                                 td = NULL;
1023                                 break;
1024                         }
1025                         if (run > RUN_THRESH) {
1026                                 if (rw_try_upgrade(&tidhash_lock)) {
1027                                         LIST_REMOVE(td, td_hash);
1028                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1029                                                 td, td_hash);
1030                                         rw_wunlock(&tidhash_lock);
1031                                         return (td);
1032                                 }
1033                         }
1034                         break;
1035                 }
1036                 run++;
1037         }
1038         rw_runlock(&tidhash_lock);
1039         return (td);
1040 }
1041
1042 void
1043 tidhash_add(struct thread *td)
1044 {
1045         rw_wlock(&tidhash_lock);
1046         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1047         rw_wunlock(&tidhash_lock);
1048 }
1049
1050 void
1051 tidhash_remove(struct thread *td)
1052 {
1053         rw_wlock(&tidhash_lock);
1054         LIST_REMOVE(td, td_hash);
1055         rw_wunlock(&tidhash_lock);
1056 }