]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/CFLGraph.h
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / CFLGraph.h
1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based
11 /// alias analysis.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
16 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H
17
18 #include "AliasAnalysisSummary.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <vector>
43
44 namespace llvm {
45 namespace cflaa {
46
47 /// The Program Expression Graph (PEG) of CFL analysis
48 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
49 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
50 /// the main purpose of this graph is to abstract away unrelated facts and
51 /// translate the rest into a form that can be easily digested by CFL analyses.
52 /// Each Node in the graph is an InstantiatedValue, and each edge represent a
53 /// pointer assignment between InstantiatedValue. Pointer
54 /// references/dereferences are not explicitly stored in the graph: we
55 /// implicitly assume that for each node (X, I) it has a dereference edge to (X,
56 /// I+1) and a reference edge to (X, I-1).
57 class CFLGraph {
58 public:
59   using Node = InstantiatedValue;
60
61   struct Edge {
62     Node Other;
63     int64_t Offset;
64   };
65
66   using EdgeList = std::vector<Edge>;
67
68   struct NodeInfo {
69     EdgeList Edges, ReverseEdges;
70     AliasAttrs Attr;
71   };
72
73   class ValueInfo {
74     std::vector<NodeInfo> Levels;
75
76   public:
77     bool addNodeToLevel(unsigned Level) {
78       auto NumLevels = Levels.size();
79       if (NumLevels > Level)
80         return false;
81       Levels.resize(Level + 1);
82       return true;
83     }
84
85     NodeInfo &getNodeInfoAtLevel(unsigned Level) {
86       assert(Level < Levels.size());
87       return Levels[Level];
88     }
89     const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
90       assert(Level < Levels.size());
91       return Levels[Level];
92     }
93
94     unsigned getNumLevels() const { return Levels.size(); }
95   };
96
97 private:
98   using ValueMap = DenseMap<Value *, ValueInfo>;
99
100   ValueMap ValueImpls;
101
102   NodeInfo *getNode(Node N) {
103     auto Itr = ValueImpls.find(N.Val);
104     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
105       return nullptr;
106     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
107   }
108
109 public:
110   using const_value_iterator = ValueMap::const_iterator;
111
112   bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
113     assert(N.Val != nullptr);
114     auto &ValInfo = ValueImpls[N.Val];
115     auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
116     ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
117     return Changed;
118   }
119
120   void addAttr(Node N, AliasAttrs Attr) {
121     auto *Info = getNode(N);
122     assert(Info != nullptr);
123     Info->Attr |= Attr;
124   }
125
126   void addEdge(Node From, Node To, int64_t Offset = 0) {
127     auto *FromInfo = getNode(From);
128     assert(FromInfo != nullptr);
129     auto *ToInfo = getNode(To);
130     assert(ToInfo != nullptr);
131
132     FromInfo->Edges.push_back(Edge{To, Offset});
133     ToInfo->ReverseEdges.push_back(Edge{From, Offset});
134   }
135
136   const NodeInfo *getNode(Node N) const {
137     auto Itr = ValueImpls.find(N.Val);
138     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
139       return nullptr;
140     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
141   }
142
143   AliasAttrs attrFor(Node N) const {
144     auto *Info = getNode(N);
145     assert(Info != nullptr);
146     return Info->Attr;
147   }
148
149   iterator_range<const_value_iterator> value_mappings() const {
150     return make_range<const_value_iterator>(ValueImpls.begin(),
151                                             ValueImpls.end());
152   }
153 };
154
155 /// A builder class used to create CFLGraph instance from a given function
156 /// The CFL-AA that uses this builder must provide its own type as a template
157 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder
158 /// needs a way of obtaining the summary of other functions when callinsts are
159 /// encountered.
160 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
161 /// member function that takes a Function& and returns the corresponding summary
162 /// as a const AliasSummary*.
163 template <typename CFLAA> class CFLGraphBuilder {
164   // Input of the builder
165   CFLAA &Analysis;
166   const TargetLibraryInfo &TLI;
167
168   // Output of the builder
169   CFLGraph Graph;
170   SmallVector<Value *, 4> ReturnedValues;
171
172   // Helper class
173   /// Gets the edges our graph should have, based on an Instruction*
174   class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
175     CFLAA &AA;
176     const DataLayout &DL;
177     const TargetLibraryInfo &TLI;
178
179     CFLGraph &Graph;
180     SmallVectorImpl<Value *> &ReturnValues;
181
182     static bool hasUsefulEdges(ConstantExpr *CE) {
183       // ConstantExpr doesn't have terminators, invokes, or fences, so only
184       // needs to check for compares.
185       return CE->getOpcode() != Instruction::ICmp &&
186              CE->getOpcode() != Instruction::FCmp;
187     }
188
189     // Returns possible functions called by CS into the given SmallVectorImpl.
190     // Returns true if targets found, false otherwise.
191     static bool getPossibleTargets(CallBase &Call,
192                                    SmallVectorImpl<Function *> &Output) {
193       if (auto *Fn = Call.getCalledFunction()) {
194         Output.push_back(Fn);
195         return true;
196       }
197
198       // TODO: If the call is indirect, we might be able to enumerate all
199       // potential targets of the call and return them, rather than just
200       // failing.
201       return false;
202     }
203
204     void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
205       assert(Val != nullptr && Val->getType()->isPointerTy());
206       if (auto GVal = dyn_cast<GlobalValue>(Val)) {
207         if (Graph.addNode(InstantiatedValue{GVal, 0},
208                           getGlobalOrArgAttrFromValue(*GVal)))
209           Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
210       } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
211         if (hasUsefulEdges(CExpr)) {
212           if (Graph.addNode(InstantiatedValue{CExpr, 0}))
213             visitConstantExpr(CExpr);
214         }
215       } else
216         Graph.addNode(InstantiatedValue{Val, 0}, Attr);
217     }
218
219     void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
220       assert(From != nullptr && To != nullptr);
221       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
222         return;
223       addNode(From);
224       if (To != From) {
225         addNode(To);
226         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
227                       Offset);
228       }
229     }
230
231     void addDerefEdge(Value *From, Value *To, bool IsRead) {
232       assert(From != nullptr && To != nullptr);
233       // FIXME: This is subtly broken, due to how we model some instructions
234       // (e.g. extractvalue, extractelement) as loads. Since those take
235       // non-pointer operands, we'll entirely skip adding edges for those.
236       //
237       // addAssignEdge seems to have a similar issue with insertvalue, etc.
238       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
239         return;
240       addNode(From);
241       addNode(To);
242       if (IsRead) {
243         Graph.addNode(InstantiatedValue{From, 1});
244         Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
245       } else {
246         Graph.addNode(InstantiatedValue{To, 1});
247         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
248       }
249     }
250
251     void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
252     void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
253
254   public:
255     GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
256         : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
257           ReturnValues(Builder.ReturnedValues) {}
258
259     void visitInstruction(Instruction &) {
260       llvm_unreachable("Unsupported instruction encountered");
261     }
262
263     void visitReturnInst(ReturnInst &Inst) {
264       if (auto RetVal = Inst.getReturnValue()) {
265         if (RetVal->getType()->isPointerTy()) {
266           addNode(RetVal);
267           ReturnValues.push_back(RetVal);
268         }
269       }
270     }
271
272     void visitPtrToIntInst(PtrToIntInst &Inst) {
273       auto *Ptr = Inst.getOperand(0);
274       addNode(Ptr, getAttrEscaped());
275     }
276
277     void visitIntToPtrInst(IntToPtrInst &Inst) {
278       auto *Ptr = &Inst;
279       addNode(Ptr, getAttrUnknown());
280     }
281
282     void visitCastInst(CastInst &Inst) {
283       auto *Src = Inst.getOperand(0);
284       addAssignEdge(Src, &Inst);
285     }
286
287     void visitBinaryOperator(BinaryOperator &Inst) {
288       auto *Op1 = Inst.getOperand(0);
289       auto *Op2 = Inst.getOperand(1);
290       addAssignEdge(Op1, &Inst);
291       addAssignEdge(Op2, &Inst);
292     }
293
294     void visitUnaryOperator(UnaryOperator &Inst) {
295       auto *Src = Inst.getOperand(0);
296       addAssignEdge(Src, &Inst);
297     }
298
299     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
300       auto *Ptr = Inst.getPointerOperand();
301       auto *Val = Inst.getNewValOperand();
302       addStoreEdge(Val, Ptr);
303     }
304
305     void visitAtomicRMWInst(AtomicRMWInst &Inst) {
306       auto *Ptr = Inst.getPointerOperand();
307       auto *Val = Inst.getValOperand();
308       addStoreEdge(Val, Ptr);
309     }
310
311     void visitPHINode(PHINode &Inst) {
312       for (Value *Val : Inst.incoming_values())
313         addAssignEdge(Val, &Inst);
314     }
315
316     void visitGEP(GEPOperator &GEPOp) {
317       uint64_t Offset = UnknownOffset;
318       APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
319                      0);
320       if (GEPOp.accumulateConstantOffset(DL, APOffset))
321         Offset = APOffset.getSExtValue();
322
323       auto *Op = GEPOp.getPointerOperand();
324       addAssignEdge(Op, &GEPOp, Offset);
325     }
326
327     void visitGetElementPtrInst(GetElementPtrInst &Inst) {
328       auto *GEPOp = cast<GEPOperator>(&Inst);
329       visitGEP(*GEPOp);
330     }
331
332     void visitSelectInst(SelectInst &Inst) {
333       // Condition is not processed here (The actual statement producing
334       // the condition result is processed elsewhere). For select, the
335       // condition is evaluated, but not loaded, stored, or assigned
336       // simply as a result of being the condition of a select.
337
338       auto *TrueVal = Inst.getTrueValue();
339       auto *FalseVal = Inst.getFalseValue();
340       addAssignEdge(TrueVal, &Inst);
341       addAssignEdge(FalseVal, &Inst);
342     }
343
344     void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
345
346     void visitLoadInst(LoadInst &Inst) {
347       auto *Ptr = Inst.getPointerOperand();
348       auto *Val = &Inst;
349       addLoadEdge(Ptr, Val);
350     }
351
352     void visitStoreInst(StoreInst &Inst) {
353       auto *Ptr = Inst.getPointerOperand();
354       auto *Val = Inst.getValueOperand();
355       addStoreEdge(Val, Ptr);
356     }
357
358     void visitVAArgInst(VAArgInst &Inst) {
359       // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
360       // does
361       // two things:
362       //  1. Loads a value from *((T*)*Ptr).
363       //  2. Increments (stores to) *Ptr by some target-specific amount.
364       // For now, we'll handle this like a landingpad instruction (by placing
365       // the
366       // result in its own group, and having that group alias externals).
367       if (Inst.getType()->isPointerTy())
368         addNode(&Inst, getAttrUnknown());
369     }
370
371     static bool isFunctionExternal(Function *Fn) {
372       return !Fn->hasExactDefinition();
373     }
374
375     bool tryInterproceduralAnalysis(CallBase &Call,
376                                     const SmallVectorImpl<Function *> &Fns) {
377       assert(Fns.size() > 0);
378
379       if (Call.arg_size() > MaxSupportedArgsInSummary)
380         return false;
381
382       // Exit early if we'll fail anyway
383       for (auto *Fn : Fns) {
384         if (isFunctionExternal(Fn) || Fn->isVarArg())
385           return false;
386         // Fail if the caller does not provide enough arguments
387         assert(Fn->arg_size() <= Call.arg_size());
388         if (!AA.getAliasSummary(*Fn))
389           return false;
390       }
391
392       for (auto *Fn : Fns) {
393         auto Summary = AA.getAliasSummary(*Fn);
394         assert(Summary != nullptr);
395
396         auto &RetParamRelations = Summary->RetParamRelations;
397         for (auto &Relation : RetParamRelations) {
398           auto IRelation = instantiateExternalRelation(Relation, Call);
399           if (IRelation.hasValue()) {
400             Graph.addNode(IRelation->From);
401             Graph.addNode(IRelation->To);
402             Graph.addEdge(IRelation->From, IRelation->To);
403           }
404         }
405
406         auto &RetParamAttributes = Summary->RetParamAttributes;
407         for (auto &Attribute : RetParamAttributes) {
408           auto IAttr = instantiateExternalAttribute(Attribute, Call);
409           if (IAttr.hasValue())
410             Graph.addNode(IAttr->IValue, IAttr->Attr);
411         }
412       }
413
414       return true;
415     }
416
417     void visitCallBase(CallBase &Call) {
418       // Make sure all arguments and return value are added to the graph first
419       for (Value *V : Call.args())
420         if (V->getType()->isPointerTy())
421           addNode(V);
422       if (Call.getType()->isPointerTy())
423         addNode(&Call);
424
425       // Check if Inst is a call to a library function that
426       // allocates/deallocates on the heap. Those kinds of functions do not
427       // introduce any aliases.
428       // TODO: address other common library functions such as realloc(),
429       // strdup(), etc.
430       if (isMallocOrCallocLikeFn(&Call, &TLI) || isFreeCall(&Call, &TLI))
431         return;
432
433       // TODO: Add support for noalias args/all the other fun function
434       // attributes that we can tack on.
435       SmallVector<Function *, 4> Targets;
436       if (getPossibleTargets(Call, Targets))
437         if (tryInterproceduralAnalysis(Call, Targets))
438           return;
439
440       // Because the function is opaque, we need to note that anything
441       // could have happened to the arguments (unless the function is marked
442       // readonly or readnone), and that the result could alias just about
443       // anything, too (unless the result is marked noalias).
444       if (!Call.onlyReadsMemory())
445         for (Value *V : Call.args()) {
446           if (V->getType()->isPointerTy()) {
447             // The argument itself escapes.
448             Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
449             // The fate of argument memory is unknown. Note that since
450             // AliasAttrs is transitive with respect to dereference, we only
451             // need to specify it for the first-level memory.
452             Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
453           }
454         }
455
456       if (Call.getType()->isPointerTy()) {
457         auto *Fn = Call.getCalledFunction();
458         if (Fn == nullptr || !Fn->returnDoesNotAlias())
459           // No need to call addNode() since we've added Inst at the
460           // beginning of this function and we know it is not a global.
461           Graph.addAttr(InstantiatedValue{&Call, 0}, getAttrUnknown());
462       }
463     }
464
465     /// Because vectors/aggregates are immutable and unaddressable, there's
466     /// nothing we can do to coax a value out of them, other than calling
467     /// Extract{Element,Value}. We can effectively treat them as pointers to
468     /// arbitrary memory locations we can store in and load from.
469     void visitExtractElementInst(ExtractElementInst &Inst) {
470       auto *Ptr = Inst.getVectorOperand();
471       auto *Val = &Inst;
472       addLoadEdge(Ptr, Val);
473     }
474
475     void visitInsertElementInst(InsertElementInst &Inst) {
476       auto *Vec = Inst.getOperand(0);
477       auto *Val = Inst.getOperand(1);
478       addAssignEdge(Vec, &Inst);
479       addStoreEdge(Val, &Inst);
480     }
481
482     void visitLandingPadInst(LandingPadInst &Inst) {
483       // Exceptions come from "nowhere", from our analysis' perspective.
484       // So we place the instruction its own group, noting that said group may
485       // alias externals
486       if (Inst.getType()->isPointerTy())
487         addNode(&Inst, getAttrUnknown());
488     }
489
490     void visitInsertValueInst(InsertValueInst &Inst) {
491       auto *Agg = Inst.getOperand(0);
492       auto *Val = Inst.getOperand(1);
493       addAssignEdge(Agg, &Inst);
494       addStoreEdge(Val, &Inst);
495     }
496
497     void visitExtractValueInst(ExtractValueInst &Inst) {
498       auto *Ptr = Inst.getAggregateOperand();
499       addLoadEdge(Ptr, &Inst);
500     }
501
502     void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
503       auto *From1 = Inst.getOperand(0);
504       auto *From2 = Inst.getOperand(1);
505       addAssignEdge(From1, &Inst);
506       addAssignEdge(From2, &Inst);
507     }
508
509     void visitConstantExpr(ConstantExpr *CE) {
510       switch (CE->getOpcode()) {
511       case Instruction::GetElementPtr: {
512         auto GEPOp = cast<GEPOperator>(CE);
513         visitGEP(*GEPOp);
514         break;
515       }
516
517       case Instruction::PtrToInt: {
518         addNode(CE->getOperand(0), getAttrEscaped());
519         break;
520       }
521
522       case Instruction::IntToPtr: {
523         addNode(CE, getAttrUnknown());
524         break;
525       }
526
527       case Instruction::BitCast:
528       case Instruction::AddrSpaceCast:
529       case Instruction::Trunc:
530       case Instruction::ZExt:
531       case Instruction::SExt:
532       case Instruction::FPExt:
533       case Instruction::FPTrunc:
534       case Instruction::UIToFP:
535       case Instruction::SIToFP:
536       case Instruction::FPToUI:
537       case Instruction::FPToSI: {
538         addAssignEdge(CE->getOperand(0), CE);
539         break;
540       }
541
542       case Instruction::Select: {
543         addAssignEdge(CE->getOperand(1), CE);
544         addAssignEdge(CE->getOperand(2), CE);
545         break;
546       }
547
548       case Instruction::InsertElement:
549       case Instruction::InsertValue: {
550         addAssignEdge(CE->getOperand(0), CE);
551         addStoreEdge(CE->getOperand(1), CE);
552         break;
553       }
554
555       case Instruction::ExtractElement:
556       case Instruction::ExtractValue: {
557         addLoadEdge(CE->getOperand(0), CE);
558         break;
559       }
560
561       case Instruction::Add:
562       case Instruction::FAdd:
563       case Instruction::Sub:
564       case Instruction::FSub:
565       case Instruction::Mul:
566       case Instruction::FMul:
567       case Instruction::UDiv:
568       case Instruction::SDiv:
569       case Instruction::FDiv:
570       case Instruction::URem:
571       case Instruction::SRem:
572       case Instruction::FRem:
573       case Instruction::And:
574       case Instruction::Or:
575       case Instruction::Xor:
576       case Instruction::Shl:
577       case Instruction::LShr:
578       case Instruction::AShr:
579       case Instruction::ICmp:
580       case Instruction::FCmp:
581       case Instruction::ShuffleVector: {
582         addAssignEdge(CE->getOperand(0), CE);
583         addAssignEdge(CE->getOperand(1), CE);
584         break;
585       }
586
587       case Instruction::FNeg: {
588         addAssignEdge(CE->getOperand(0), CE);
589         break;
590       }
591
592       default:
593         llvm_unreachable("Unknown instruction type encountered!");
594       }
595     }
596   };
597
598   // Helper functions
599
600   // Determines whether or not we an instruction is useless to us (e.g.
601   // FenceInst)
602   static bool hasUsefulEdges(Instruction *Inst) {
603     bool IsNonInvokeRetTerminator = Inst->isTerminator() &&
604                                     !isa<InvokeInst>(Inst) &&
605                                     !isa<ReturnInst>(Inst);
606     return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
607            !IsNonInvokeRetTerminator;
608   }
609
610   void addArgumentToGraph(Argument &Arg) {
611     if (Arg.getType()->isPointerTy()) {
612       Graph.addNode(InstantiatedValue{&Arg, 0},
613                     getGlobalOrArgAttrFromValue(Arg));
614       // Pointees of a formal parameter is known to the caller
615       Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
616     }
617   }
618
619   // Given an Instruction, this will add it to the graph, along with any
620   // Instructions that are potentially only available from said Instruction
621   // For example, given the following line:
622   //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
623   // addInstructionToGraph would add both the `load` and `getelementptr`
624   // instructions to the graph appropriately.
625   void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
626     if (!hasUsefulEdges(&Inst))
627       return;
628
629     Visitor.visit(Inst);
630   }
631
632   // Builds the graph needed for constructing the StratifiedSets for the given
633   // function
634   void buildGraphFrom(Function &Fn) {
635     GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
636
637     for (auto &Bb : Fn.getBasicBlockList())
638       for (auto &Inst : Bb.getInstList())
639         addInstructionToGraph(Visitor, Inst);
640
641     for (auto &Arg : Fn.args())
642       addArgumentToGraph(Arg);
643   }
644
645 public:
646   CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
647       : Analysis(Analysis), TLI(TLI) {
648     buildGraphFrom(Fn);
649   }
650
651   const CFLGraph &getCFLGraph() const { return Graph; }
652   const SmallVector<Value *, 4> &getReturnValues() const {
653     return ReturnedValues;
654   }
655 };
656
657 } // end namespace cflaa
658 } // end namespace llvm
659
660 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H