]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/Hexagon/BitTracker.cpp
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / Hexagon / BitTracker.cpp
1 //===- BitTracker.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 // SSA-based bit propagation.
10 //
11 // The purpose of this code is, for a given virtual register, to provide
12 // information about the value of each bit in the register. The values
13 // of bits are represented by the class BitValue, and take one of four
14 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
15 // "ref" value means that the bit is a copy of another bit (which itself
16 // cannot be a copy of yet another bit---such chains are not allowed).
17 // A "ref" value is associated with a BitRef structure, which indicates
18 // which virtual register, and which bit in that register is the origin
19 // of the value. For example, given an instruction
20 //   %2 = ASL %1, 1
21 // assuming that nothing is known about bits of %1, bit 1 of %2
22 // will be a "ref" to (%1, 0). If there is a subsequent instruction
23 //   %3 = ASL %2, 2
24 // then bit 3 of %3 will be a "ref" to (%1, 0) as well.
25 // The "bottom" case means that the bit's value cannot be determined,
26 // and that this virtual register actually defines it. The "bottom" case
27 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
28 // to self", so for the %1 above, the bit 0 of it will be a "ref" to
29 // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
30 //
31 // The tracker implements the Wegman-Zadeck algorithm, originally developed
32 // for SSA-based constant propagation. Each register is represented as
33 // a sequence of bits, with the convention that bit 0 is the least signi-
34 // ficant bit. Each bit is propagated individually. The class RegisterCell
35 // implements the register's representation, and is also the subject of
36 // the lattice operations in the tracker.
37 //
38 // The intended usage of the bit tracker is to create a target-specific
39 // machine instruction evaluator, pass the evaluator to the BitTracker
40 // object, and run the tracker. The tracker will then collect the bit
41 // value information for a given machine function. After that, it can be
42 // queried for the cells for each virtual register.
43 // Sample code:
44 //   const TargetSpecificEvaluator TSE(TRI, MRI);
45 //   BitTracker BT(TSE, MF);
46 //   BT.run();
47 //   ...
48 //   unsigned Reg = interestingRegister();
49 //   RegisterCell RC = BT.get(Reg);
50 //   if (RC[3].is(1))
51 //      Reg0bit3 = 1;
52 //
53 // The code below is intended to be fully target-independent.
54
55 #include "BitTracker.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/BitVector.h"
58 #include "llvm/CodeGen/MachineBasicBlock.h"
59 #include "llvm/CodeGen/MachineFunction.h"
60 #include "llvm/CodeGen/MachineInstr.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70
71 using namespace llvm;
72
73 using BT = BitTracker;
74
75 namespace {
76
77   // Local trickery to pretty print a register (without the whole "%number"
78   // business).
79   struct printv {
80     printv(unsigned r) : R(r) {}
81
82     unsigned R;
83   };
84
85   raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
86     if (PV.R)
87       OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
88     else
89       OS << 's';
90     return OS;
91   }
92
93 } // end anonymous namespace
94
95 namespace llvm {
96
97   raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
98     switch (BV.Type) {
99       case BT::BitValue::Top:
100         OS << 'T';
101         break;
102       case BT::BitValue::Zero:
103         OS << '0';
104         break;
105       case BT::BitValue::One:
106         OS << '1';
107         break;
108       case BT::BitValue::Ref:
109         OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
110         break;
111     }
112     return OS;
113   }
114
115   raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
116     unsigned n = RC.Bits.size();
117     OS << "{ w:" << n;
118     // Instead of printing each bit value individually, try to group them
119     // into logical segments, such as sequences of 0 or 1 bits or references
120     // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
121     // "Start" will be the index of the beginning of the most recent segment.
122     unsigned Start = 0;
123     bool SeqRef = false;    // A sequence of refs to consecutive bits.
124     bool ConstRef = false;  // A sequence of refs to the same bit.
125
126     for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
127       const BT::BitValue &V = RC[i];
128       const BT::BitValue &SV = RC[Start];
129       bool IsRef = (V.Type == BT::BitValue::Ref);
130       // If the current value is the same as Start, skip to the next one.
131       if (!IsRef && V == SV)
132         continue;
133       if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
134         if (Start+1 == i) {
135           SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
136           ConstRef = (V.RefI.Pos == SV.RefI.Pos);
137         }
138         if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
139           continue;
140         if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
141           continue;
142       }
143
144       // The current value is different. Print the previous one and reset
145       // the Start.
146       OS << " [" << Start;
147       unsigned Count = i - Start;
148       if (Count == 1) {
149         OS << "]:" << SV;
150       } else {
151         OS << '-' << i-1 << "]:";
152         if (SV.Type == BT::BitValue::Ref && SeqRef)
153           OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
154              << SV.RefI.Pos+(Count-1) << ']';
155         else
156           OS << SV;
157       }
158       Start = i;
159       SeqRef = ConstRef = false;
160     }
161
162     OS << " [" << Start;
163     unsigned Count = n - Start;
164     if (n-Start == 1) {
165       OS << "]:" << RC[Start];
166     } else {
167       OS << '-' << n-1 << "]:";
168       const BT::BitValue &SV = RC[Start];
169       if (SV.Type == BT::BitValue::Ref && SeqRef)
170         OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
171            << SV.RefI.Pos+(Count-1) << ']';
172       else
173         OS << SV;
174     }
175     OS << " }";
176
177     return OS;
178   }
179
180 } // end namespace llvm
181
182 void BitTracker::print_cells(raw_ostream &OS) const {
183   for (const std::pair<unsigned, RegisterCell> P : Map)
184     dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
185 }
186
187 BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
188     : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
189 }
190
191 BitTracker::~BitTracker() {
192   delete &Map;
193 }
194
195 // If we were allowed to update a cell for a part of a register, the meet
196 // operation would need to be parametrized by the register number and the
197 // exact part of the register, so that the computer BitRefs correspond to
198 // the actual bits of the "self" register.
199 // While this cannot happen in the current implementation, I'm not sure
200 // if this should be ruled out in the future.
201 bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
202   // An example when "meet" can be invoked with SelfR == 0 is a phi node
203   // with a physical register as an operand.
204   assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
205   bool Changed = false;
206   for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
207     const BitValue &RCV = RC[i];
208     Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
209   }
210   return Changed;
211 }
212
213 // Insert the entire cell RC into the current cell at position given by M.
214 BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
215       const BitMask &M) {
216   uint16_t B = M.first(), E = M.last(), W = width();
217   // Sanity: M must be a valid mask for *this.
218   assert(B < W && E < W);
219   // Sanity: the masked part of *this must have the same number of bits
220   // as the source.
221   assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|.
222   assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|.
223   if (B <= E) {
224     for (uint16_t i = 0; i <= E-B; ++i)
225       Bits[i+B] = RC[i];
226   } else {
227     for (uint16_t i = 0; i < W-B; ++i)
228       Bits[i+B] = RC[i];
229     for (uint16_t i = 0; i <= E; ++i)
230       Bits[i] = RC[i+(W-B)];
231   }
232   return *this;
233 }
234
235 BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
236   uint16_t B = M.first(), E = M.last(), W = width();
237   assert(B < W && E < W);
238   if (B <= E) {
239     RegisterCell RC(E-B+1);
240     for (uint16_t i = B; i <= E; ++i)
241       RC.Bits[i-B] = Bits[i];
242     return RC;
243   }
244
245   RegisterCell RC(E+(W-B)+1);
246   for (uint16_t i = 0; i < W-B; ++i)
247     RC.Bits[i] = Bits[i+B];
248   for (uint16_t i = 0; i <= E; ++i)
249     RC.Bits[i+(W-B)] = Bits[i];
250   return RC;
251 }
252
253 BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
254   // Rotate left (i.e. towards increasing bit indices).
255   // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1]
256   uint16_t W = width();
257   Sh = Sh % W;
258   if (Sh == 0)
259     return *this;
260
261   RegisterCell Tmp(W-Sh);
262   // Tmp = [0..W-Sh-1].
263   for (uint16_t i = 0; i < W-Sh; ++i)
264     Tmp[i] = Bits[i];
265   // Shift [W-Sh..W-1] to [0..Sh-1].
266   for (uint16_t i = 0; i < Sh; ++i)
267     Bits[i] = Bits[W-Sh+i];
268   // Copy Tmp to [Sh..W-1].
269   for (uint16_t i = 0; i < W-Sh; ++i)
270     Bits[i+Sh] = Tmp.Bits[i];
271   return *this;
272 }
273
274 BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
275       const BitValue &V) {
276   assert(B <= E);
277   while (B < E)
278     Bits[B++] = V;
279   return *this;
280 }
281
282 BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
283   // Append the cell given as the argument to the "this" cell.
284   // Bit 0 of RC becomes bit W of the result, where W is this->width().
285   uint16_t W = width(), WRC = RC.width();
286   Bits.resize(W+WRC);
287   for (uint16_t i = 0; i < WRC; ++i)
288     Bits[i+W] = RC.Bits[i];
289   return *this;
290 }
291
292 uint16_t BT::RegisterCell::ct(bool B) const {
293   uint16_t W = width();
294   uint16_t C = 0;
295   BitValue V = B;
296   while (C < W && Bits[C] == V)
297     C++;
298   return C;
299 }
300
301 uint16_t BT::RegisterCell::cl(bool B) const {
302   uint16_t W = width();
303   uint16_t C = 0;
304   BitValue V = B;
305   while (C < W && Bits[W-(C+1)] == V)
306     C++;
307   return C;
308 }
309
310 bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
311   uint16_t W = Bits.size();
312   if (RC.Bits.size() != W)
313     return false;
314   for (uint16_t i = 0; i < W; ++i)
315     if (Bits[i] != RC[i])
316       return false;
317   return true;
318 }
319
320 BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
321   for (unsigned i = 0, n = width(); i < n; ++i) {
322     const BitValue &V = Bits[i];
323     if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
324       Bits[i].RefI = BitRef(R, i);
325   }
326   return *this;
327 }
328
329 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
330   // The general problem is with finding a register class that corresponds
331   // to a given reference reg:sub. There can be several such classes, and
332   // since we only care about the register size, it does not matter which
333   // such class we would find.
334   // The easiest way to accomplish what we want is to
335   // 1. find a physical register PhysR from the same class as RR.Reg,
336   // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
337   // 3. find a register class that contains PhysS.
338   if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
339     const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
340     return TRI.getRegSizeInBits(VC);
341   }
342   assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
343   unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub);
344   return getPhysRegBitWidth(PhysR);
345 }
346
347 BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
348       const CellMapType &M) const {
349   uint16_t BW = getRegBitWidth(RR);
350
351   // Physical registers are assumed to be present in the map with an unknown
352   // value. Don't actually insert anything in the map, just return the cell.
353   if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
354     return RegisterCell::self(0, BW);
355
356   assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
357   // For virtual registers that belong to a class that is not tracked,
358   // generate an "unknown" value as well.
359   const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
360   if (!track(C))
361     return RegisterCell::self(0, BW);
362
363   CellMapType::const_iterator F = M.find(RR.Reg);
364   if (F != M.end()) {
365     if (!RR.Sub)
366       return F->second;
367     BitMask M = mask(RR.Reg, RR.Sub);
368     return F->second.extract(M);
369   }
370   // If not found, create a "top" entry, but do not insert it in the map.
371   return RegisterCell::top(BW);
372 }
373
374 void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
375       CellMapType &M) const {
376   // While updating the cell map can be done in a meaningful way for
377   // a part of a register, it makes little sense to implement it as the
378   // SSA representation would never contain such "partial definitions".
379   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
380     return;
381   assert(RR.Sub == 0 && "Unexpected sub-register in definition");
382   // Eliminate all ref-to-reg-0 bit values: replace them with "self".
383   M[RR.Reg] = RC.regify(RR.Reg);
384 }
385
386 // Check if the cell represents a compile-time integer value.
387 bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
388   uint16_t W = A.width();
389   for (uint16_t i = 0; i < W; ++i)
390     if (!A[i].is(0) && !A[i].is(1))
391       return false;
392   return true;
393 }
394
395 // Convert a cell to the integer value. The result must fit in uint64_t.
396 uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
397   assert(isInt(A));
398   uint64_t Val = 0;
399   uint16_t W = A.width();
400   for (uint16_t i = 0; i < W; ++i) {
401     Val <<= 1;
402     Val |= A[i].is(1);
403   }
404   return Val;
405 }
406
407 // Evaluator helper functions. These implement some common operation on
408 // register cells that can be used to implement target-specific instructions
409 // in a target-specific evaluator.
410
411 BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
412   RegisterCell Res(W);
413   // For bits beyond the 63rd, this will generate the sign bit of V.
414   for (uint16_t i = 0; i < W; ++i) {
415     Res[i] = BitValue(V & 1);
416     V >>= 1;
417   }
418   return Res;
419 }
420
421 BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
422   const APInt &A = CI->getValue();
423   uint16_t BW = A.getBitWidth();
424   assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
425   RegisterCell Res(BW);
426   for (uint16_t i = 0; i < BW; ++i)
427     Res[i] = A[i];
428   return Res;
429 }
430
431 BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
432       const RegisterCell &A2) const {
433   uint16_t W = A1.width();
434   assert(W == A2.width());
435   RegisterCell Res(W);
436   bool Carry = false;
437   uint16_t I;
438   for (I = 0; I < W; ++I) {
439     const BitValue &V1 = A1[I];
440     const BitValue &V2 = A2[I];
441     if (!V1.num() || !V2.num())
442       break;
443     unsigned S = bool(V1) + bool(V2) + Carry;
444     Res[I] = BitValue(S & 1);
445     Carry = (S > 1);
446   }
447   for (; I < W; ++I) {
448     const BitValue &V1 = A1[I];
449     const BitValue &V2 = A2[I];
450     // If the next bit is same as Carry, the result will be 0 plus the
451     // other bit. The Carry bit will remain unchanged.
452     if (V1.is(Carry))
453       Res[I] = BitValue::ref(V2);
454     else if (V2.is(Carry))
455       Res[I] = BitValue::ref(V1);
456     else
457       break;
458   }
459   for (; I < W; ++I)
460     Res[I] = BitValue::self();
461   return Res;
462 }
463
464 BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
465       const RegisterCell &A2) const {
466   uint16_t W = A1.width();
467   assert(W == A2.width());
468   RegisterCell Res(W);
469   bool Borrow = false;
470   uint16_t I;
471   for (I = 0; I < W; ++I) {
472     const BitValue &V1 = A1[I];
473     const BitValue &V2 = A2[I];
474     if (!V1.num() || !V2.num())
475       break;
476     unsigned S = bool(V1) - bool(V2) - Borrow;
477     Res[I] = BitValue(S & 1);
478     Borrow = (S > 1);
479   }
480   for (; I < W; ++I) {
481     const BitValue &V1 = A1[I];
482     const BitValue &V2 = A2[I];
483     if (V1.is(Borrow)) {
484       Res[I] = BitValue::ref(V2);
485       break;
486     }
487     if (V2.is(Borrow))
488       Res[I] = BitValue::ref(V1);
489     else
490       break;
491   }
492   for (; I < W; ++I)
493     Res[I] = BitValue::self();
494   return Res;
495 }
496
497 BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
498       const RegisterCell &A2) const {
499   uint16_t W = A1.width() + A2.width();
500   uint16_t Z = A1.ct(false) + A2.ct(false);
501   RegisterCell Res(W);
502   Res.fill(0, Z, BitValue::Zero);
503   Res.fill(Z, W, BitValue::self());
504   return Res;
505 }
506
507 BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
508       const RegisterCell &A2) const {
509   uint16_t W = A1.width() + A2.width();
510   uint16_t Z = A1.ct(false) + A2.ct(false);
511   RegisterCell Res(W);
512   Res.fill(0, Z, BitValue::Zero);
513   Res.fill(Z, W, BitValue::self());
514   return Res;
515 }
516
517 BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
518       uint16_t Sh) const {
519   assert(Sh <= A1.width());
520   RegisterCell Res = RegisterCell::ref(A1);
521   Res.rol(Sh);
522   Res.fill(0, Sh, BitValue::Zero);
523   return Res;
524 }
525
526 BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
527       uint16_t Sh) const {
528   uint16_t W = A1.width();
529   assert(Sh <= W);
530   RegisterCell Res = RegisterCell::ref(A1);
531   Res.rol(W-Sh);
532   Res.fill(W-Sh, W, BitValue::Zero);
533   return Res;
534 }
535
536 BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
537       uint16_t Sh) const {
538   uint16_t W = A1.width();
539   assert(Sh <= W);
540   RegisterCell Res = RegisterCell::ref(A1);
541   BitValue Sign = Res[W-1];
542   Res.rol(W-Sh);
543   Res.fill(W-Sh, W, Sign);
544   return Res;
545 }
546
547 BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
548       const RegisterCell &A2) const {
549   uint16_t W = A1.width();
550   assert(W == A2.width());
551   RegisterCell Res(W);
552   for (uint16_t i = 0; i < W; ++i) {
553     const BitValue &V1 = A1[i];
554     const BitValue &V2 = A2[i];
555     if (V1.is(1))
556       Res[i] = BitValue::ref(V2);
557     else if (V2.is(1))
558       Res[i] = BitValue::ref(V1);
559     else if (V1.is(0) || V2.is(0))
560       Res[i] = BitValue::Zero;
561     else if (V1 == V2)
562       Res[i] = V1;
563     else
564       Res[i] = BitValue::self();
565   }
566   return Res;
567 }
568
569 BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
570       const RegisterCell &A2) const {
571   uint16_t W = A1.width();
572   assert(W == A2.width());
573   RegisterCell Res(W);
574   for (uint16_t i = 0; i < W; ++i) {
575     const BitValue &V1 = A1[i];
576     const BitValue &V2 = A2[i];
577     if (V1.is(1) || V2.is(1))
578       Res[i] = BitValue::One;
579     else if (V1.is(0))
580       Res[i] = BitValue::ref(V2);
581     else if (V2.is(0))
582       Res[i] = BitValue::ref(V1);
583     else if (V1 == V2)
584       Res[i] = V1;
585     else
586       Res[i] = BitValue::self();
587   }
588   return Res;
589 }
590
591 BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
592       const RegisterCell &A2) const {
593   uint16_t W = A1.width();
594   assert(W == A2.width());
595   RegisterCell Res(W);
596   for (uint16_t i = 0; i < W; ++i) {
597     const BitValue &V1 = A1[i];
598     const BitValue &V2 = A2[i];
599     if (V1.is(0))
600       Res[i] = BitValue::ref(V2);
601     else if (V2.is(0))
602       Res[i] = BitValue::ref(V1);
603     else if (V1 == V2)
604       Res[i] = BitValue::Zero;
605     else
606       Res[i] = BitValue::self();
607   }
608   return Res;
609 }
610
611 BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
612   uint16_t W = A1.width();
613   RegisterCell Res(W);
614   for (uint16_t i = 0; i < W; ++i) {
615     const BitValue &V = A1[i];
616     if (V.is(0))
617       Res[i] = BitValue::One;
618     else if (V.is(1))
619       Res[i] = BitValue::Zero;
620     else
621       Res[i] = BitValue::self();
622   }
623   return Res;
624 }
625
626 BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
627       uint16_t BitN) const {
628   assert(BitN < A1.width());
629   RegisterCell Res = RegisterCell::ref(A1);
630   Res[BitN] = BitValue::One;
631   return Res;
632 }
633
634 BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
635       uint16_t BitN) const {
636   assert(BitN < A1.width());
637   RegisterCell Res = RegisterCell::ref(A1);
638   Res[BitN] = BitValue::Zero;
639   return Res;
640 }
641
642 BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
643       uint16_t W) const {
644   uint16_t C = A1.cl(B), AW = A1.width();
645   // If the last leading non-B bit is not a constant, then we don't know
646   // the real count.
647   if ((C < AW && A1[AW-1-C].num()) || C == AW)
648     return eIMM(C, W);
649   return RegisterCell::self(0, W);
650 }
651
652 BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
653       uint16_t W) const {
654   uint16_t C = A1.ct(B), AW = A1.width();
655   // If the last trailing non-B bit is not a constant, then we don't know
656   // the real count.
657   if ((C < AW && A1[C].num()) || C == AW)
658     return eIMM(C, W);
659   return RegisterCell::self(0, W);
660 }
661
662 BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
663       uint16_t FromN) const {
664   uint16_t W = A1.width();
665   assert(FromN <= W);
666   RegisterCell Res = RegisterCell::ref(A1);
667   BitValue Sign = Res[FromN-1];
668   // Sign-extend "inreg".
669   Res.fill(FromN, W, Sign);
670   return Res;
671 }
672
673 BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
674       uint16_t FromN) const {
675   uint16_t W = A1.width();
676   assert(FromN <= W);
677   RegisterCell Res = RegisterCell::ref(A1);
678   Res.fill(FromN, W, BitValue::Zero);
679   return Res;
680 }
681
682 BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
683       uint16_t B, uint16_t E) const {
684   uint16_t W = A1.width();
685   assert(B < W && E <= W);
686   if (B == E)
687     return RegisterCell(0);
688   uint16_t Last = (E > 0) ? E-1 : W-1;
689   RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
690   // Return shorter cell.
691   return Res;
692 }
693
694 BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
695       const RegisterCell &A2, uint16_t AtN) const {
696   uint16_t W1 = A1.width(), W2 = A2.width();
697   (void)W1;
698   assert(AtN < W1 && AtN+W2 <= W1);
699   // Copy bits from A1, insert A2 at position AtN.
700   RegisterCell Res = RegisterCell::ref(A1);
701   if (W2 > 0)
702     Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
703   return Res;
704 }
705
706 BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
707   assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
708   uint16_t W = getRegBitWidth(Reg);
709   assert(W > 0 && "Cannot generate mask for empty register");
710   return BitMask(0, W-1);
711 }
712
713 uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
714   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
715   const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
716   return TRI.getRegSizeInBits(PC);
717 }
718
719 bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
720                                     const CellMapType &Inputs,
721                                     CellMapType &Outputs) const {
722   unsigned Opc = MI.getOpcode();
723   switch (Opc) {
724     case TargetOpcode::REG_SEQUENCE: {
725       RegisterRef RD = MI.getOperand(0);
726       assert(RD.Sub == 0);
727       RegisterRef RS = MI.getOperand(1);
728       unsigned SS = MI.getOperand(2).getImm();
729       RegisterRef RT = MI.getOperand(3);
730       unsigned ST = MI.getOperand(4).getImm();
731       assert(SS != ST);
732
733       uint16_t W = getRegBitWidth(RD);
734       RegisterCell Res(W);
735       Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
736       Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
737       putCell(RD, Res, Outputs);
738       break;
739     }
740
741     case TargetOpcode::COPY: {
742       // COPY can transfer a smaller register into a wider one.
743       // If that is the case, fill the remaining high bits with 0.
744       RegisterRef RD = MI.getOperand(0);
745       RegisterRef RS = MI.getOperand(1);
746       assert(RD.Sub == 0);
747       uint16_t WD = getRegBitWidth(RD);
748       uint16_t WS = getRegBitWidth(RS);
749       assert(WD >= WS);
750       RegisterCell Src = getCell(RS, Inputs);
751       RegisterCell Res(WD);
752       Res.insert(Src, BitMask(0, WS-1));
753       Res.fill(WS, WD, BitValue::Zero);
754       putCell(RD, Res, Outputs);
755       break;
756     }
757
758     default:
759       return false;
760   }
761
762   return true;
763 }
764
765 bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
766                                        const MachineInstr *InstB) const {
767   // This is a comparison function for a priority queue: give higher priority
768   // to earlier instructions.
769   // This operator is used as "less", so returning "true" gives InstB higher
770   // priority (because then InstA < InstB).
771   if (InstA == InstB)
772     return false;
773   const MachineBasicBlock *BA = InstA->getParent();
774   const MachineBasicBlock *BB = InstB->getParent();
775   if (BA != BB) {
776     // If the blocks are different, ideally the dominating block would
777     // have a higher priority, but it may be too expensive to check.
778     return BA->getNumber() > BB->getNumber();
779   }
780
781   auto getDist = [this] (const MachineInstr *MI) {
782     auto F = Dist.find(MI);
783     if (F != Dist.end())
784       return F->second;
785     MachineBasicBlock::const_iterator I = MI->getParent()->begin();
786     MachineBasicBlock::const_iterator E = MI->getIterator();
787     unsigned D = std::distance(I, E);
788     Dist.insert(std::make_pair(MI, D));
789     return D;
790   };
791
792   return getDist(InstA) > getDist(InstB);
793 }
794
795 // Main W-Z implementation.
796
797 void BT::visitPHI(const MachineInstr &PI) {
798   int ThisN = PI.getParent()->getNumber();
799   if (Trace)
800     dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;
801
802   const MachineOperand &MD = PI.getOperand(0);
803   assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
804   RegisterRef DefRR(MD);
805   uint16_t DefBW = ME.getRegBitWidth(DefRR);
806
807   RegisterCell DefC = ME.getCell(DefRR, Map);
808   if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow
809     return;
810
811   bool Changed = false;
812
813   for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
814     const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
815     int PredN = PB->getNumber();
816     if (Trace)
817       dbgs() << "  edge " << printMBBReference(*PB) << "->"
818              << printMBBReference(*PI.getParent());
819     if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
820       if (Trace)
821         dbgs() << " not executable\n";
822       continue;
823     }
824
825     RegisterRef RU = PI.getOperand(i);
826     RegisterCell ResC = ME.getCell(RU, Map);
827     if (Trace)
828       dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
829              << " cell: " << ResC << "\n";
830     Changed |= DefC.meet(ResC, DefRR.Reg);
831   }
832
833   if (Changed) {
834     if (Trace)
835       dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
836              << " cell: " << DefC << "\n";
837     ME.putCell(DefRR, DefC, Map);
838     visitUsesOf(DefRR.Reg);
839   }
840 }
841
842 void BT::visitNonBranch(const MachineInstr &MI) {
843   if (Trace)
844     dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
845   if (MI.isDebugInstr())
846     return;
847   assert(!MI.isBranch() && "Unexpected branch instruction");
848
849   CellMapType ResMap;
850   bool Eval = ME.evaluate(MI, Map, ResMap);
851
852   if (Trace && Eval) {
853     for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
854       const MachineOperand &MO = MI.getOperand(i);
855       if (!MO.isReg() || !MO.isUse())
856         continue;
857       RegisterRef RU(MO);
858       dbgs() << "  input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
859              << " cell: " << ME.getCell(RU, Map) << "\n";
860     }
861     dbgs() << "Outputs:\n";
862     for (const std::pair<unsigned, RegisterCell> &P : ResMap) {
863       RegisterRef RD(P.first);
864       dbgs() << "  " << printReg(P.first, &ME.TRI) << " cell: "
865              << ME.getCell(RD, ResMap) << "\n";
866     }
867   }
868
869   // Iterate over all definitions of the instruction, and update the
870   // cells accordingly.
871   for (const MachineOperand &MO : MI.operands()) {
872     // Visit register defs only.
873     if (!MO.isReg() || !MO.isDef())
874       continue;
875     RegisterRef RD(MO);
876     assert(RD.Sub == 0 && "Unexpected sub-register in definition");
877     if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
878       continue;
879
880     bool Changed = false;
881     if (!Eval || ResMap.count(RD.Reg) == 0) {
882       // Set to "ref" (aka "bottom").
883       uint16_t DefBW = ME.getRegBitWidth(RD);
884       RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
885       if (RefC != ME.getCell(RD, Map)) {
886         ME.putCell(RD, RefC, Map);
887         Changed = true;
888       }
889     } else {
890       RegisterCell DefC = ME.getCell(RD, Map);
891       RegisterCell ResC = ME.getCell(RD, ResMap);
892       // This is a non-phi instruction, so the values of the inputs come
893       // from the same registers each time this instruction is evaluated.
894       // During the propagation, the values of the inputs can become lowered
895       // in the sense of the lattice operation, which may cause different
896       // results to be calculated in subsequent evaluations. This should
897       // not cause the bottoming of the result in the map, since the new
898       // result is already reflecting the lowered inputs.
899       for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
900         BitValue &V = DefC[i];
901         // Bits that are already "bottom" should not be updated.
902         if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
903           continue;
904         // Same for those that are identical in DefC and ResC.
905         if (V == ResC[i])
906           continue;
907         V = ResC[i];
908         Changed = true;
909       }
910       if (Changed)
911         ME.putCell(RD, DefC, Map);
912     }
913     if (Changed)
914       visitUsesOf(RD.Reg);
915   }
916 }
917
918 void BT::visitBranchesFrom(const MachineInstr &BI) {
919   const MachineBasicBlock &B = *BI.getParent();
920   MachineBasicBlock::const_iterator It = BI, End = B.end();
921   BranchTargetList Targets, BTs;
922   bool FallsThrough = true, DefaultToAll = false;
923   int ThisN = B.getNumber();
924
925   do {
926     BTs.clear();
927     const MachineInstr &MI = *It;
928     if (Trace)
929       dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
930     assert(MI.isBranch() && "Expecting branch instruction");
931     InstrExec.insert(&MI);
932     bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
933     if (!Eval) {
934       // If the evaluation failed, we will add all targets. Keep going in
935       // the loop to mark all executable branches as such.
936       DefaultToAll = true;
937       FallsThrough = true;
938       if (Trace)
939         dbgs() << "  failed to evaluate: will add all CFG successors\n";
940     } else if (!DefaultToAll) {
941       // If evaluated successfully add the targets to the cumulative list.
942       if (Trace) {
943         dbgs() << "  adding targets:";
944         for (unsigned i = 0, n = BTs.size(); i < n; ++i)
945           dbgs() << " " << printMBBReference(*BTs[i]);
946         if (FallsThrough)
947           dbgs() << "\n  falls through\n";
948         else
949           dbgs() << "\n  does not fall through\n";
950       }
951       Targets.insert(BTs.begin(), BTs.end());
952     }
953     ++It;
954   } while (FallsThrough && It != End);
955
956   if (!DefaultToAll) {
957     // Need to add all CFG successors that lead to EH landing pads.
958     // There won't be explicit branches to these blocks, but they must
959     // be processed.
960     for (const MachineBasicBlock *SB : B.successors()) {
961       if (SB->isEHPad())
962         Targets.insert(SB);
963     }
964     if (FallsThrough) {
965       MachineFunction::const_iterator BIt = B.getIterator();
966       MachineFunction::const_iterator Next = std::next(BIt);
967       if (Next != MF.end())
968         Targets.insert(&*Next);
969     }
970   } else {
971     for (const MachineBasicBlock *SB : B.successors())
972       Targets.insert(SB);
973   }
974
975   for (const MachineBasicBlock *TB : Targets)
976     FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
977 }
978
979 void BT::visitUsesOf(unsigned Reg) {
980   if (Trace)
981     dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
982            << " cell: " << ME.getCell(Reg, Map) << '\n';
983
984   for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
985     UseQ.push(&UseI);
986 }
987
988 BT::RegisterCell BT::get(RegisterRef RR) const {
989   return ME.getCell(RR, Map);
990 }
991
992 void BT::put(RegisterRef RR, const RegisterCell &RC) {
993   ME.putCell(RR, RC, Map);
994 }
995
996 // Replace all references to bits from OldRR with the corresponding bits
997 // in NewRR.
998 void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
999   assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
1000   BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
1001   BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
1002   uint16_t OMB = OM.first(), OME = OM.last();
1003   uint16_t NMB = NM.first(), NME = NM.last();
1004   (void)NME;
1005   assert((OME-OMB == NME-NMB) &&
1006          "Substituting registers of different lengths");
1007   for (std::pair<const unsigned, RegisterCell> &P : Map) {
1008     RegisterCell &RC = P.second;
1009     for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
1010       BitValue &V = RC[i];
1011       if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
1012         continue;
1013       if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
1014         continue;
1015       V.RefI.Reg = NewRR.Reg;
1016       V.RefI.Pos += NMB-OMB;
1017     }
1018   }
1019 }
1020
1021 // Check if the block has been "executed" during propagation. (If not, the
1022 // block is dead, but it may still appear to be reachable.)
1023 bool BT::reached(const MachineBasicBlock *B) const {
1024   int BN = B->getNumber();
1025   assert(BN >= 0);
1026   return ReachedBB.count(BN);
1027 }
1028
1029 // Visit an individual instruction. This could be a newly added instruction,
1030 // or one that has been modified by an optimization.
1031 void BT::visit(const MachineInstr &MI) {
1032   assert(!MI.isBranch() && "Only non-branches are allowed");
1033   InstrExec.insert(&MI);
1034   visitNonBranch(MI);
1035   // Make sure to flush all the pending use updates.
1036   runUseQueue();
1037   // The call to visitNonBranch could propagate the changes until a branch
1038   // is actually visited. This could result in adding CFG edges to the flow
1039   // queue. Since the queue won't be processed, clear it.
1040   while (!FlowQ.empty())
1041     FlowQ.pop();
1042 }
1043
1044 void BT::reset() {
1045   EdgeExec.clear();
1046   InstrExec.clear();
1047   Map.clear();
1048   ReachedBB.clear();
1049   ReachedBB.reserve(MF.size());
1050 }
1051
1052 void BT::runEdgeQueue(BitVector &BlockScanned) {
1053   while (!FlowQ.empty()) {
1054     CFGEdge Edge = FlowQ.front();
1055     FlowQ.pop();
1056
1057     if (EdgeExec.count(Edge))
1058       return;
1059     EdgeExec.insert(Edge);
1060     ReachedBB.insert(Edge.second);
1061
1062     const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
1063     MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
1064     // Visit PHI nodes first.
1065     while (It != End && It->isPHI()) {
1066       const MachineInstr &PI = *It++;
1067       InstrExec.insert(&PI);
1068       visitPHI(PI);
1069     }
1070
1071     // If this block has already been visited through a flow graph edge,
1072     // then the instructions have already been processed. Any updates to
1073     // the cells would now only happen through visitUsesOf...
1074     if (BlockScanned[Edge.second])
1075       return;
1076     BlockScanned[Edge.second] = true;
1077
1078     // Visit non-branch instructions.
1079     while (It != End && !It->isBranch()) {
1080       const MachineInstr &MI = *It++;
1081       InstrExec.insert(&MI);
1082       visitNonBranch(MI);
1083     }
1084     // If block end has been reached, add the fall-through edge to the queue.
1085     if (It == End) {
1086       MachineFunction::const_iterator BIt = B.getIterator();
1087       MachineFunction::const_iterator Next = std::next(BIt);
1088       if (Next != MF.end() && B.isSuccessor(&*Next)) {
1089         int ThisN = B.getNumber();
1090         int NextN = Next->getNumber();
1091         FlowQ.push(CFGEdge(ThisN, NextN));
1092       }
1093     } else {
1094       // Handle the remaining sequence of branches. This function will update
1095       // the work queue.
1096       visitBranchesFrom(*It);
1097     }
1098   } // while (!FlowQ->empty())
1099 }
1100
1101 void BT::runUseQueue() {
1102   while (!UseQ.empty()) {
1103     MachineInstr &UseI = *UseQ.front();
1104     UseQ.pop();
1105
1106     if (!InstrExec.count(&UseI))
1107       continue;
1108     if (UseI.isPHI())
1109       visitPHI(UseI);
1110     else if (!UseI.isBranch())
1111       visitNonBranch(UseI);
1112     else
1113       visitBranchesFrom(UseI);
1114   }
1115 }
1116
1117 void BT::run() {
1118   reset();
1119   assert(FlowQ.empty());
1120
1121   using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
1122   const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
1123
1124   unsigned MaxBN = 0;
1125   for (const MachineBasicBlock &B : MF) {
1126     assert(B.getNumber() >= 0 && "Disconnected block");
1127     unsigned BN = B.getNumber();
1128     if (BN > MaxBN)
1129       MaxBN = BN;
1130   }
1131
1132   // Keep track of visited blocks.
1133   BitVector BlockScanned(MaxBN+1);
1134
1135   int EntryN = Entry->getNumber();
1136   // Generate a fake edge to get something to start with.
1137   FlowQ.push(CFGEdge(-1, EntryN));
1138
1139   while (!FlowQ.empty() || !UseQ.empty()) {
1140     runEdgeQueue(BlockScanned);
1141     runUseQueue();
1142   }
1143   UseQ.reset();
1144
1145   if (Trace)
1146     print_cells(dbgs() << "Cells after propagation:\n");
1147 }