]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonStoreWidening.cpp
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / Hexagon / HexagonStoreWidening.cpp
1 //===- HexagonStoreWidening.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // Replace sequences of "narrow" stores to adjacent memory locations with
9 // a fewer "wide" stores that have the same effect.
10 // For example, replace:
11 //   S4_storeirb_io  %100, 0, 0   ; store-immediate-byte
12 //   S4_storeirb_io  %100, 1, 0   ; store-immediate-byte
13 // with
14 //   S4_storeirh_io  %100, 0, 0   ; store-immediate-halfword
15 // The above is the general idea.  The actual cases handled by the code
16 // may be a bit more complex.
17 // The purpose of this pass is to reduce the number of outstanding stores,
18 // or as one could say, "reduce store queue pressure".  Also, wide stores
19 // mean fewer stores, and since there are only two memory instructions allowed
20 // per packet, it also means fewer packets, and ultimately fewer cycles.
21 //===---------------------------------------------------------------------===//
22
23 #define DEBUG_TYPE "hexagon-widen-stores"
24
25 #include "HexagonInstrInfo.h"
26 #include "HexagonRegisterInfo.h"
27 #include "HexagonSubtarget.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <iterator>
50 #include <vector>
51
52 using namespace llvm;
53
54 namespace llvm {
55
56 FunctionPass *createHexagonStoreWidening();
57 void initializeHexagonStoreWideningPass(PassRegistry&);
58
59 } // end namespace llvm
60
61 namespace {
62
63   struct HexagonStoreWidening : public MachineFunctionPass {
64     const HexagonInstrInfo      *TII;
65     const HexagonRegisterInfo   *TRI;
66     const MachineRegisterInfo   *MRI;
67     AliasAnalysis               *AA;
68     MachineFunction             *MF;
69
70   public:
71     static char ID;
72
73     HexagonStoreWidening() : MachineFunctionPass(ID) {
74       initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
75     }
76
77     bool runOnMachineFunction(MachineFunction &MF) override;
78
79     StringRef getPassName() const override { return "Hexagon Store Widening"; }
80
81     void getAnalysisUsage(AnalysisUsage &AU) const override {
82       AU.addRequired<AAResultsWrapperPass>();
83       AU.addPreserved<AAResultsWrapperPass>();
84       MachineFunctionPass::getAnalysisUsage(AU);
85     }
86
87     static bool handledStoreType(const MachineInstr *MI);
88
89   private:
90     static const int MaxWideSize = 4;
91
92     using InstrGroup = std::vector<MachineInstr *>;
93     using InstrGroupList = std::vector<InstrGroup>;
94
95     bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
96     bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
97     void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
98         InstrGroup::iterator End, InstrGroup &Group);
99     void createStoreGroups(MachineBasicBlock &MBB,
100         InstrGroupList &StoreGroups);
101     bool processBasicBlock(MachineBasicBlock &MBB);
102     bool processStoreGroup(InstrGroup &Group);
103     bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
104         InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
105     bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
106     bool replaceStores(InstrGroup &OG, InstrGroup &NG);
107     bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
108   };
109
110 } // end anonymous namespace
111
112 char HexagonStoreWidening::ID = 0;
113
114 INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
115                 "Hexason Store Widening", false, false)
116 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
117 INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
118                 "Hexagon Store Widening", false, false)
119
120 // Some local helper functions...
121 static unsigned getBaseAddressRegister(const MachineInstr *MI) {
122   const MachineOperand &MO = MI->getOperand(0);
123   assert(MO.isReg() && "Expecting register operand");
124   return MO.getReg();
125 }
126
127 static int64_t getStoreOffset(const MachineInstr *MI) {
128   unsigned OpC = MI->getOpcode();
129   assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
130
131   switch (OpC) {
132     case Hexagon::S4_storeirb_io:
133     case Hexagon::S4_storeirh_io:
134     case Hexagon::S4_storeiri_io: {
135       const MachineOperand &MO = MI->getOperand(1);
136       assert(MO.isImm() && "Expecting immediate offset");
137       return MO.getImm();
138     }
139   }
140   dbgs() << *MI;
141   llvm_unreachable("Store offset calculation missing for a handled opcode");
142   return 0;
143 }
144
145 static const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
146   assert(!MI->memoperands_empty() && "Expecting memory operands");
147   return **MI->memoperands_begin();
148 }
149
150 // Filtering function: any stores whose opcodes are not "approved" of by
151 // this function will not be subjected to widening.
152 inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
153   // For now, only handle stores of immediate values.
154   // Also, reject stores to stack slots.
155   unsigned Opc = MI->getOpcode();
156   switch (Opc) {
157     case Hexagon::S4_storeirb_io:
158     case Hexagon::S4_storeirh_io:
159     case Hexagon::S4_storeiri_io:
160       // Base address must be a register. (Implement FI later.)
161       return MI->getOperand(0).isReg();
162     default:
163       return false;
164   }
165 }
166
167 // Check if the machine memory operand MMO is aliased with any of the
168 // stores in the store group Stores.
169 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
170       const MachineMemOperand &MMO) {
171   if (!MMO.getValue())
172     return true;
173
174   MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
175
176   for (auto SI : Stores) {
177     const MachineMemOperand &SMO = getStoreTarget(SI);
178     if (!SMO.getValue())
179       return true;
180
181     MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
182     if (AA->alias(L, SL))
183       return true;
184   }
185
186   return false;
187 }
188
189 // Check if the machine instruction MI accesses any storage aliased with
190 // any store in the group Stores.
191 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
192       const MachineInstr *MI) {
193   for (auto &I : MI->memoperands())
194     if (instrAliased(Stores, *I))
195       return true;
196   return false;
197 }
198
199 // Inspect a machine basic block, and generate store groups out of stores
200 // encountered in the block.
201 //
202 // A store group is a group of stores that use the same base register,
203 // and which can be reordered within that group without altering the
204 // semantics of the program.  A single store group could be widened as
205 // a whole, if there existed a single store instruction with the same
206 // semantics as the entire group.  In many cases, a single store group
207 // may need more than one wide store.
208 void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
209       InstrGroupList &StoreGroups) {
210   InstrGroup AllInsns;
211
212   // Copy all instruction pointers from the basic block to a temporary
213   // list.  This will allow operating on the list, and modifying its
214   // elements without affecting the basic block.
215   for (auto &I : MBB)
216     AllInsns.push_back(&I);
217
218   // Traverse all instructions in the AllInsns list, and if we encounter
219   // a store, then try to create a store group starting at that instruction
220   // i.e. a sequence of independent stores that can be widened.
221   for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
222     MachineInstr *MI = *I;
223     // Skip null pointers (processed instructions).
224     if (!MI || !handledStoreType(MI))
225       continue;
226
227     // Found a store.  Try to create a store group.
228     InstrGroup G;
229     createStoreGroup(MI, I+1, E, G);
230     if (G.size() > 1)
231       StoreGroups.push_back(G);
232   }
233 }
234
235 // Create a single store group.  The stores need to be independent between
236 // themselves, and also there cannot be other instructions between them
237 // that could read or modify storage being stored into.
238 void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
239       InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
240   assert(handledStoreType(BaseStore) && "Unexpected instruction");
241   unsigned BaseReg = getBaseAddressRegister(BaseStore);
242   InstrGroup Other;
243
244   Group.push_back(BaseStore);
245
246   for (auto I = Begin; I != End; ++I) {
247     MachineInstr *MI = *I;
248     if (!MI)
249       continue;
250
251     if (handledStoreType(MI)) {
252       // If this store instruction is aliased with anything already in the
253       // group, terminate the group now.
254       if (instrAliased(Group, getStoreTarget(MI)))
255         return;
256       // If this store is aliased to any of the memory instructions we have
257       // seen so far (that are not a part of this group), terminate the group.
258       if (instrAliased(Other, getStoreTarget(MI)))
259         return;
260
261       unsigned BR = getBaseAddressRegister(MI);
262       if (BR == BaseReg) {
263         Group.push_back(MI);
264         *I = nullptr;
265         continue;
266       }
267     }
268
269     // Assume calls are aliased to everything.
270     if (MI->isCall() || MI->hasUnmodeledSideEffects())
271       return;
272
273     if (MI->mayLoad() || MI->mayStore()) {
274       if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
275         return;
276       Other.push_back(MI);
277     }
278   } // for
279 }
280
281 // Check if store instructions S1 and S2 are adjacent.  More precisely,
282 // S2 has to access memory immediately following that accessed by S1.
283 bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
284       const MachineInstr *S2) {
285   if (!handledStoreType(S1) || !handledStoreType(S2))
286     return false;
287
288   const MachineMemOperand &S1MO = getStoreTarget(S1);
289
290   // Currently only handling immediate stores.
291   int Off1 = S1->getOperand(1).getImm();
292   int Off2 = S2->getOperand(1).getImm();
293
294   return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
295                      : int(Off1+S1MO.getSize()) == Off2;
296 }
297
298 /// Given a sequence of adjacent stores, and a maximum size of a single wide
299 /// store, pick a group of stores that  can be replaced by a single store
300 /// of size not exceeding MaxSize.  The selected sequence will be recorded
301 /// in OG ("old group" of instructions).
302 /// OG should be empty on entry, and should be left empty if the function
303 /// fails.
304 bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
305       InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
306       unsigned MaxSize) {
307   assert(Begin != End && "No instructions to analyze");
308   assert(OG.empty() && "Old group not empty on entry");
309
310   if (std::distance(Begin, End) <= 1)
311     return false;
312
313   MachineInstr *FirstMI = *Begin;
314   assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
315   const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
316   unsigned Alignment = FirstMMO.getAlignment();
317   unsigned SizeAccum = FirstMMO.getSize();
318   unsigned FirstOffset = getStoreOffset(FirstMI);
319
320   // The initial value of SizeAccum should always be a power of 2.
321   assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
322
323   // If the size of the first store equals to or exceeds the limit, do nothing.
324   if (SizeAccum >= MaxSize)
325     return false;
326
327   // If the size of the first store is greater than or equal to the address
328   // stored to, then the store cannot be made any wider.
329   if (SizeAccum >= Alignment)
330     return false;
331
332   // The offset of a store will put restrictions on how wide the store can be.
333   // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
334   // If the first store already exhausts the offset limits, quit.  Test this
335   // by checking if the next wider size would exceed the limit.
336   if ((2*SizeAccum-1) & FirstOffset)
337     return false;
338
339   OG.push_back(FirstMI);
340   MachineInstr *S1 = FirstMI;
341
342   // Pow2Num will be the largest number of elements in OG such that the sum
343   // of sizes of stores 0...Pow2Num-1 will be a power of 2.
344   unsigned Pow2Num = 1;
345   unsigned Pow2Size = SizeAccum;
346
347   // Be greedy: keep accumulating stores as long as they are to adjacent
348   // memory locations, and as long as the total number of bytes stored
349   // does not exceed the limit (MaxSize).
350   // Keep track of when the total size covered is a power of 2, since
351   // this is a size a single store can cover.
352   for (InstrGroup::iterator I = Begin + 1; I != End; ++I) {
353     MachineInstr *S2 = *I;
354     // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
355     // any other store to fill the "hole".
356     if (!storesAreAdjacent(S1, S2))
357       break;
358
359     unsigned S2Size = getStoreTarget(S2).getSize();
360     if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
361       break;
362
363     OG.push_back(S2);
364     SizeAccum += S2Size;
365     if (isPowerOf2_32(SizeAccum)) {
366       Pow2Num = OG.size();
367       Pow2Size = SizeAccum;
368     }
369     if ((2*Pow2Size-1) & FirstOffset)
370       break;
371
372     S1 = S2;
373   }
374
375   // The stores don't add up to anything that can be widened.  Clean up.
376   if (Pow2Num <= 1) {
377     OG.clear();
378     return false;
379   }
380
381   // Only leave the stored being widened.
382   OG.resize(Pow2Num);
383   TotalSize = Pow2Size;
384   return true;
385 }
386
387 /// Given an "old group" OG of stores, create a "new group" NG of instructions
388 /// to replace them.  Ideally, NG would only have a single instruction in it,
389 /// but that may only be possible for store-immediate.
390 bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
391       unsigned TotalSize) {
392   // XXX Current limitations:
393   // - only expect stores of immediate values in OG,
394   // - only handle a TotalSize of up to 4.
395
396   if (TotalSize > 4)
397     return false;
398
399   unsigned Acc = 0;  // Value accumulator.
400   unsigned Shift = 0;
401
402   for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
403     MachineInstr *MI = *I;
404     const MachineMemOperand &MMO = getStoreTarget(MI);
405     MachineOperand &SO = MI->getOperand(2);  // Source.
406     assert(SO.isImm() && "Expecting an immediate operand");
407
408     unsigned NBits = MMO.getSize()*8;
409     unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
410     unsigned Val = (SO.getImm() & Mask) << Shift;
411     Acc |= Val;
412     Shift += NBits;
413   }
414
415   MachineInstr *FirstSt = OG.front();
416   DebugLoc DL = OG.back()->getDebugLoc();
417   const MachineMemOperand &OldM = getStoreTarget(FirstSt);
418   MachineMemOperand *NewM =
419     MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
420                              TotalSize, OldM.getAlignment(),
421                              OldM.getAAInfo());
422
423   if (Acc < 0x10000) {
424     // Create mem[hw] = #Acc
425     unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
426                     (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
427     assert(WOpc && "Unexpected size");
428
429     int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
430     const MCInstrDesc &StD = TII->get(WOpc);
431     MachineOperand &MR = FirstSt->getOperand(0);
432     int64_t Off = FirstSt->getOperand(1).getImm();
433     MachineInstr *StI =
434         BuildMI(*MF, DL, StD)
435             .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
436             .addImm(Off)
437             .addImm(Val);
438     StI->addMemOperand(*MF, NewM);
439     NG.push_back(StI);
440   } else {
441     // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
442     const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
443     const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
444     unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
445     MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
446                            .addImm(int(Acc));
447     NG.push_back(TfrI);
448
449     unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
450                     (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
451     assert(WOpc && "Unexpected size");
452
453     const MCInstrDesc &StD = TII->get(WOpc);
454     MachineOperand &MR = FirstSt->getOperand(0);
455     int64_t Off = FirstSt->getOperand(1).getImm();
456     MachineInstr *StI =
457         BuildMI(*MF, DL, StD)
458             .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
459             .addImm(Off)
460             .addReg(VReg, RegState::Kill);
461     StI->addMemOperand(*MF, NewM);
462     NG.push_back(StI);
463   }
464
465   return true;
466 }
467
468 // Replace instructions from the old group OG with instructions from the
469 // new group NG.  Conceptually, remove all instructions in OG, and then
470 // insert all instructions in NG, starting at where the first instruction
471 // from OG was (in the order in which they appeared in the basic block).
472 // (The ordering in OG does not have to match the order in the basic block.)
473 bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
474   LLVM_DEBUG({
475     dbgs() << "Replacing:\n";
476     for (auto I : OG)
477       dbgs() << "  " << *I;
478     dbgs() << "with\n";
479     for (auto I : NG)
480       dbgs() << "  " << *I;
481   });
482
483   MachineBasicBlock *MBB = OG.back()->getParent();
484   MachineBasicBlock::iterator InsertAt = MBB->end();
485
486   // Need to establish the insertion point.  The best one is right before
487   // the first store in the OG, but in the order in which the stores occur
488   // in the program list.  Since the ordering in OG does not correspond
489   // to the order in the program list, we need to do some work to find
490   // the insertion point.
491
492   // Create a set of all instructions in OG (for quick lookup).
493   SmallPtrSet<MachineInstr*, 4> InstrSet;
494   for (auto I : OG)
495     InstrSet.insert(I);
496
497   // Traverse the block, until we hit an instruction from OG.
498   for (auto &I : *MBB) {
499     if (InstrSet.count(&I)) {
500       InsertAt = I;
501       break;
502     }
503   }
504
505   assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
506
507   bool AtBBStart = false;
508
509   // InsertAt points at the first instruction that will be removed.  We need
510   // to move it out of the way, so it remains valid after removing all the
511   // old stores, and so we are able to recover it back to the proper insertion
512   // position.
513   if (InsertAt != MBB->begin())
514     --InsertAt;
515   else
516     AtBBStart = true;
517
518   for (auto I : OG)
519     I->eraseFromParent();
520
521   if (!AtBBStart)
522     ++InsertAt;
523   else
524     InsertAt = MBB->begin();
525
526   for (auto I : NG)
527     MBB->insert(InsertAt, I);
528
529   return true;
530 }
531
532 // Break up the group into smaller groups, each of which can be replaced by
533 // a single wide store.  Widen each such smaller group and replace the old
534 // instructions with the widened ones.
535 bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
536   bool Changed = false;
537   InstrGroup::iterator I = Group.begin(), E = Group.end();
538   InstrGroup OG, NG;   // Old and new groups.
539   unsigned CollectedSize;
540
541   while (I != E) {
542     OG.clear();
543     NG.clear();
544
545     bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
546                 createWideStores(OG, NG, CollectedSize)              &&
547                 replaceStores(OG, NG);
548     if (!Succ)
549       continue;
550
551     assert(OG.size() > 1 && "Created invalid group");
552     assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
553     I += OG.size()-1;
554
555     Changed = true;
556   }
557
558   return Changed;
559 }
560
561 // Process a single basic block: create the store groups, and replace them
562 // with the widened stores, if possible.  Processing of each basic block
563 // is independent from processing of any other basic block.  This transfor-
564 // mation could be stopped after having processed any basic block without
565 // any ill effects (other than not having performed widening in the unpro-
566 // cessed blocks).  Also, the basic blocks can be processed in any order.
567 bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
568   InstrGroupList SGs;
569   bool Changed = false;
570
571   createStoreGroups(MBB, SGs);
572
573   auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
574     return getStoreOffset(A) < getStoreOffset(B);
575   };
576   for (auto &G : SGs) {
577     assert(G.size() > 1 && "Store group with fewer than 2 elements");
578     llvm::sort(G, Less);
579
580     Changed |= processStoreGroup(G);
581   }
582
583   return Changed;
584 }
585
586 bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
587   if (skipFunction(MFn.getFunction()))
588     return false;
589
590   MF = &MFn;
591   auto &ST = MFn.getSubtarget<HexagonSubtarget>();
592   TII = ST.getInstrInfo();
593   TRI = ST.getRegisterInfo();
594   MRI = &MFn.getRegInfo();
595   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
596
597   bool Changed = false;
598
599   for (auto &B : MFn)
600     Changed |= processBasicBlock(B);
601
602   return Changed;
603 }
604
605 FunctionPass *llvm::createHexagonStoreWidening() {
606   return new HexagonStoreWidening();
607 }