]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/IPO/Inliner.cpp
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / IPO / Inliner.cpp
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LazyCallGraph.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
62 #include "llvm/Transforms/Utils/ModuleUtils.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <functional>
66 #include <sstream>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70
71 using namespace llvm;
72
73 #define DEBUG_TYPE "inline"
74
75 STATISTIC(NumInlined, "Number of functions inlined");
76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
78 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
79
80 // This weirdly named statistic tracks the number of times that, when attempting
81 // to inline a function A into B, we analyze the callers of B in order to see
82 // if those would be more profitable and blocked inline steps.
83 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
84
85 /// Flag to disable manual alloca merging.
86 ///
87 /// Merging of allocas was originally done as a stack-size saving technique
88 /// prior to LLVM's code generator having support for stack coloring based on
89 /// lifetime markers. It is now in the process of being removed. To experiment
90 /// with disabling it and relying fully on lifetime marker based stack
91 /// coloring, you can pass this flag to LLVM.
92 static cl::opt<bool>
93     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
94                                 cl::init(false), cl::Hidden);
95
96 namespace {
97
98 enum class InlinerFunctionImportStatsOpts {
99   No = 0,
100   Basic = 1,
101   Verbose = 2,
102 };
103
104 } // end anonymous namespace
105
106 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
107     "inliner-function-import-stats",
108     cl::init(InlinerFunctionImportStatsOpts::No),
109     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
110                           "basic statistics"),
111                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
112                           "printing of statistics for each inlined function")),
113     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
114
115 /// Flag to add inline messages as callsite attributes 'inline-remark'.
116 static cl::opt<bool>
117     InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
118                           cl::Hidden,
119                           cl::desc("Enable adding inline-remark attribute to"
120                                    " callsites processed by inliner but decided"
121                                    " to be not inlined"));
122
123 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
124
125 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
126     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
127
128 /// For this class, we declare that we require and preserve the call graph.
129 /// If the derived class implements this method, it should
130 /// always explicitly call the implementation here.
131 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
132   AU.addRequired<AssumptionCacheTracker>();
133   AU.addRequired<ProfileSummaryInfoWrapperPass>();
134   AU.addRequired<TargetLibraryInfoWrapperPass>();
135   getAAResultsAnalysisUsage(AU);
136   CallGraphSCCPass::getAnalysisUsage(AU);
137 }
138
139 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
140
141 /// Look at all of the allocas that we inlined through this call site.  If we
142 /// have already inlined other allocas through other calls into this function,
143 /// then we know that they have disjoint lifetimes and that we can merge them.
144 ///
145 /// There are many heuristics possible for merging these allocas, and the
146 /// different options have different tradeoffs.  One thing that we *really*
147 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
148 /// longer address taken and so they can be promoted.
149 ///
150 /// Our "solution" for that is to only merge allocas whose outermost type is an
151 /// array type.  These are usually not promoted because someone is using a
152 /// variable index into them.  These are also often the most important ones to
153 /// merge.
154 ///
155 /// A better solution would be to have real memory lifetime markers in the IR
156 /// and not have the inliner do any merging of allocas at all.  This would
157 /// allow the backend to do proper stack slot coloring of all allocas that
158 /// *actually make it to the backend*, which is really what we want.
159 ///
160 /// Because we don't have this information, we do this simple and useful hack.
161 static void mergeInlinedArrayAllocas(
162     Function *Caller, InlineFunctionInfo &IFI,
163     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
164   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
165
166   // When processing our SCC, check to see if CS was inlined from some other
167   // call site.  For example, if we're processing "A" in this code:
168   //   A() { B() }
169   //   B() { x = alloca ... C() }
170   //   C() { y = alloca ... }
171   // Assume that C was not inlined into B initially, and so we're processing A
172   // and decide to inline B into A.  Doing this makes an alloca available for
173   // reuse and makes a callsite (C) available for inlining.  When we process
174   // the C call site we don't want to do any alloca merging between X and Y
175   // because their scopes are not disjoint.  We could make this smarter by
176   // keeping track of the inline history for each alloca in the
177   // InlinedArrayAllocas but this isn't likely to be a significant win.
178   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
179     return;
180
181   // Loop over all the allocas we have so far and see if they can be merged with
182   // a previously inlined alloca.  If not, remember that we had it.
183   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
184        ++AllocaNo) {
185     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
186
187     // Don't bother trying to merge array allocations (they will usually be
188     // canonicalized to be an allocation *of* an array), or allocations whose
189     // type is not itself an array (because we're afraid of pessimizing SRoA).
190     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
191     if (!ATy || AI->isArrayAllocation())
192       continue;
193
194     // Get the list of all available allocas for this array type.
195     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
196
197     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
198     // that we have to be careful not to reuse the same "available" alloca for
199     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
200     // set to keep track of which "available" allocas are being used by this
201     // function.  Also, AllocasForType can be empty of course!
202     bool MergedAwayAlloca = false;
203     for (AllocaInst *AvailableAlloca : AllocasForType) {
204       unsigned Align1 = AI->getAlignment(),
205                Align2 = AvailableAlloca->getAlignment();
206
207       // The available alloca has to be in the right function, not in some other
208       // function in this SCC.
209       if (AvailableAlloca->getParent() != AI->getParent())
210         continue;
211
212       // If the inlined function already uses this alloca then we can't reuse
213       // it.
214       if (!UsedAllocas.insert(AvailableAlloca).second)
215         continue;
216
217       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
218       // success!
219       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
220                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
221
222       // Move affected dbg.declare calls immediately after the new alloca to
223       // avoid the situation when a dbg.declare precedes its alloca.
224       if (auto *L = LocalAsMetadata::getIfExists(AI))
225         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
226           for (User *U : MDV->users())
227             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
228               DDI->moveBefore(AvailableAlloca->getNextNode());
229
230       AI->replaceAllUsesWith(AvailableAlloca);
231
232       if (Align1 != Align2) {
233         if (!Align1 || !Align2) {
234           const DataLayout &DL = Caller->getParent()->getDataLayout();
235           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
236
237           Align1 = Align1 ? Align1 : TypeAlign;
238           Align2 = Align2 ? Align2 : TypeAlign;
239         }
240
241         if (Align1 > Align2)
242           AvailableAlloca->setAlignment(AI->getAlignment());
243       }
244
245       AI->eraseFromParent();
246       MergedAwayAlloca = true;
247       ++NumMergedAllocas;
248       IFI.StaticAllocas[AllocaNo] = nullptr;
249       break;
250     }
251
252     // If we already nuked the alloca, we're done with it.
253     if (MergedAwayAlloca)
254       continue;
255
256     // If we were unable to merge away the alloca either because there are no
257     // allocas of the right type available or because we reused them all
258     // already, remember that this alloca came from an inlined function and mark
259     // it used so we don't reuse it for other allocas from this inline
260     // operation.
261     AllocasForType.push_back(AI);
262     UsedAllocas.insert(AI);
263   }
264 }
265
266 /// If it is possible to inline the specified call site,
267 /// do so and update the CallGraph for this operation.
268 ///
269 /// This function also does some basic book-keeping to update the IR.  The
270 /// InlinedArrayAllocas map keeps track of any allocas that are already
271 /// available from other functions inlined into the caller.  If we are able to
272 /// inline this call site we attempt to reuse already available allocas or add
273 /// any new allocas to the set if not possible.
274 static InlineResult InlineCallIfPossible(
275     CallSite CS, InlineFunctionInfo &IFI,
276     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
277     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
278     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
279   Function *Callee = CS.getCalledFunction();
280   Function *Caller = CS.getCaller();
281
282   AAResults &AAR = AARGetter(*Callee);
283
284   // Try to inline the function.  Get the list of static allocas that were
285   // inlined.
286   InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
287   if (!IR)
288     return IR;
289
290   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
291     ImportedFunctionsStats.recordInline(*Caller, *Callee);
292
293   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
294
295   if (!DisableInlinedAllocaMerging)
296     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
297
298   return IR; // success
299 }
300
301 /// Return true if inlining of CS can block the caller from being
302 /// inlined which is proved to be more beneficial. \p IC is the
303 /// estimated inline cost associated with callsite \p CS.
304 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
305 /// caller if \p CS is suppressed for inlining.
306 static bool
307 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
308                  int &TotalSecondaryCost,
309                  function_ref<InlineCost(CallSite CS)> GetInlineCost) {
310   // For now we only handle local or inline functions.
311   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
312     return false;
313   // If the cost of inlining CS is non-positive, it is not going to prevent the
314   // caller from being inlined into its callers and hence we don't need to
315   // defer.
316   if (IC.getCost() <= 0)
317     return false;
318   // Try to detect the case where the current inlining candidate caller (call
319   // it B) is a static or linkonce-ODR function and is an inlining candidate
320   // elsewhere, and the current candidate callee (call it C) is large enough
321   // that inlining it into B would make B too big to inline later. In these
322   // circumstances it may be best not to inline C into B, but to inline B into
323   // its callers.
324   //
325   // This only applies to static and linkonce-ODR functions because those are
326   // expected to be available for inlining in the translation units where they
327   // are used. Thus we will always have the opportunity to make local inlining
328   // decisions. Importantly the linkonce-ODR linkage covers inline functions
329   // and templates in C++.
330   //
331   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
332   // the internal implementation of the inline cost metrics rather than
333   // treating them as truly abstract units etc.
334   TotalSecondaryCost = 0;
335   // The candidate cost to be imposed upon the current function.
336   int CandidateCost = IC.getCost() - 1;
337   // If the caller has local linkage and can be inlined to all its callers, we
338   // can apply a huge negative bonus to TotalSecondaryCost.
339   bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
340   // This bool tracks what happens if we DO inline C into B.
341   bool inliningPreventsSomeOuterInline = false;
342   for (User *U : Caller->users()) {
343     // If the caller will not be removed (either because it does not have a
344     // local linkage or because the LastCallToStaticBonus has been already
345     // applied), then we can exit the loop early.
346     if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
347       return false;
348     CallSite CS2(U);
349
350     // If this isn't a call to Caller (it could be some other sort
351     // of reference) skip it.  Such references will prevent the caller
352     // from being removed.
353     if (!CS2 || CS2.getCalledFunction() != Caller) {
354       ApplyLastCallBonus = false;
355       continue;
356     }
357
358     InlineCost IC2 = GetInlineCost(CS2);
359     ++NumCallerCallersAnalyzed;
360     if (!IC2) {
361       ApplyLastCallBonus = false;
362       continue;
363     }
364     if (IC2.isAlways())
365       continue;
366
367     // See if inlining of the original callsite would erase the cost delta of
368     // this callsite. We subtract off the penalty for the call instruction,
369     // which we would be deleting.
370     if (IC2.getCostDelta() <= CandidateCost) {
371       inliningPreventsSomeOuterInline = true;
372       TotalSecondaryCost += IC2.getCost();
373     }
374   }
375   // If all outer calls to Caller would get inlined, the cost for the last
376   // one is set very low by getInlineCost, in anticipation that Caller will
377   // be removed entirely.  We did not account for this above unless there
378   // is only one caller of Caller.
379   if (ApplyLastCallBonus)
380     TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
381
382   if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
383     return true;
384
385   return false;
386 }
387
388 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
389                                             const ore::NV &Arg) {
390   return R << Arg.Val;
391 }
392
393 template <class RemarkT>
394 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
395   using namespace ore;
396   if (IC.isAlways()) {
397     R << "(cost=always)";
398   } else if (IC.isNever()) {
399     R << "(cost=never)";
400   } else {
401     R << "(cost=" << ore::NV("Cost", IC.getCost())
402       << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
403   }
404   if (const char *Reason = IC.getReason())
405     R << ": " << ore::NV("Reason", Reason);
406   return R;
407 }
408
409 static std::string inlineCostStr(const InlineCost &IC) {
410   std::stringstream Remark;
411   Remark << IC;
412   return Remark.str();
413 }
414
415 /// Return the cost only if the inliner should attempt to inline at the given
416 /// CallSite. If we return the cost, we will emit an optimisation remark later
417 /// using that cost, so we won't do so from this function.
418 static Optional<InlineCost>
419 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
420              OptimizationRemarkEmitter &ORE) {
421   using namespace ore;
422
423   InlineCost IC = GetInlineCost(CS);
424   Instruction *Call = CS.getInstruction();
425   Function *Callee = CS.getCalledFunction();
426   Function *Caller = CS.getCaller();
427
428   if (IC.isAlways()) {
429     LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
430                       << ", Call: " << *CS.getInstruction() << "\n");
431     return IC;
432   }
433
434   if (IC.isNever()) {
435     LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
436                       << ", Call: " << *CS.getInstruction() << "\n");
437     ORE.emit([&]() {
438       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
439              << NV("Callee", Callee) << " not inlined into "
440              << NV("Caller", Caller) << " because it should never be inlined "
441              << IC;
442     });
443     return IC;
444   }
445
446   if (!IC) {
447     LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
448                       << ", Call: " << *CS.getInstruction() << "\n");
449     ORE.emit([&]() {
450       return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
451              << NV("Callee", Callee) << " not inlined into "
452              << NV("Caller", Caller) << " because too costly to inline " << IC;
453     });
454     return IC;
455   }
456
457   int TotalSecondaryCost = 0;
458   if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
459     LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
460                       << " Cost = " << IC.getCost()
461                       << ", outer Cost = " << TotalSecondaryCost << '\n');
462     ORE.emit([&]() {
463       return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
464                                       Call)
465              << "Not inlining. Cost of inlining " << NV("Callee", Callee)
466              << " increases the cost of inlining " << NV("Caller", Caller)
467              << " in other contexts";
468     });
469
470     // IC does not bool() to false, so get an InlineCost that will.
471     // This will not be inspected to make an error message.
472     return None;
473   }
474
475   LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
476                     << ", Call: " << *CS.getInstruction() << '\n');
477   return IC;
478 }
479
480 /// Return true if the specified inline history ID
481 /// indicates an inline history that includes the specified function.
482 static bool InlineHistoryIncludes(
483     Function *F, int InlineHistoryID,
484     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
485   while (InlineHistoryID != -1) {
486     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
487            "Invalid inline history ID");
488     if (InlineHistory[InlineHistoryID].first == F)
489       return true;
490     InlineHistoryID = InlineHistory[InlineHistoryID].second;
491   }
492   return false;
493 }
494
495 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
496   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
497     ImportedFunctionsStats.setModuleInfo(CG.getModule());
498   return false; // No changes to CallGraph.
499 }
500
501 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
502   if (skipSCC(SCC))
503     return false;
504   return inlineCalls(SCC);
505 }
506
507 static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
508                               const BasicBlock *Block, const Function &Callee,
509                               const Function &Caller, const InlineCost &IC) {
510   ORE.emit([&]() {
511     bool AlwaysInline = IC.isAlways();
512     StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
513     return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
514            << ore::NV("Callee", &Callee) << " inlined into "
515            << ore::NV("Caller", &Caller) << " with " << IC;
516   });
517 }
518
519 static void setInlineRemark(CallSite &CS, StringRef message) {
520   if (!InlineRemarkAttribute)
521     return;
522
523   Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
524   CS.addAttribute(AttributeList::FunctionIndex, attr);
525 }
526
527 static bool
528 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
529                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
530                 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
531                 bool InsertLifetime,
532                 function_ref<InlineCost(CallSite CS)> GetInlineCost,
533                 function_ref<AAResults &(Function &)> AARGetter,
534                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
535   SmallPtrSet<Function *, 8> SCCFunctions;
536   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
537   for (CallGraphNode *Node : SCC) {
538     Function *F = Node->getFunction();
539     if (F)
540       SCCFunctions.insert(F);
541     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
542   }
543
544   // Scan through and identify all call sites ahead of time so that we only
545   // inline call sites in the original functions, not call sites that result
546   // from inlining other functions.
547   SmallVector<std::pair<CallSite, int>, 16> CallSites;
548
549   // When inlining a callee produces new call sites, we want to keep track of
550   // the fact that they were inlined from the callee.  This allows us to avoid
551   // infinite inlining in some obscure cases.  To represent this, we use an
552   // index into the InlineHistory vector.
553   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
554
555   for (CallGraphNode *Node : SCC) {
556     Function *F = Node->getFunction();
557     if (!F || F->isDeclaration())
558       continue;
559
560     OptimizationRemarkEmitter ORE(F);
561     for (BasicBlock &BB : *F)
562       for (Instruction &I : BB) {
563         CallSite CS(cast<Value>(&I));
564         // If this isn't a call, or it is a call to an intrinsic, it can
565         // never be inlined.
566         if (!CS || isa<IntrinsicInst>(I))
567           continue;
568
569         // If this is a direct call to an external function, we can never inline
570         // it.  If it is an indirect call, inlining may resolve it to be a
571         // direct call, so we keep it.
572         if (Function *Callee = CS.getCalledFunction())
573           if (Callee->isDeclaration()) {
574             using namespace ore;
575
576             setInlineRemark(CS, "unavailable definition");
577             ORE.emit([&]() {
578               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
579                      << NV("Callee", Callee) << " will not be inlined into "
580                      << NV("Caller", CS.getCaller())
581                      << " because its definition is unavailable"
582                      << setIsVerbose();
583             });
584             continue;
585           }
586
587         CallSites.push_back(std::make_pair(CS, -1));
588       }
589   }
590
591   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
592
593   // If there are no calls in this function, exit early.
594   if (CallSites.empty())
595     return false;
596
597   // Now that we have all of the call sites, move the ones to functions in the
598   // current SCC to the end of the list.
599   unsigned FirstCallInSCC = CallSites.size();
600   for (unsigned i = 0; i < FirstCallInSCC; ++i)
601     if (Function *F = CallSites[i].first.getCalledFunction())
602       if (SCCFunctions.count(F))
603         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
604
605   InlinedArrayAllocasTy InlinedArrayAllocas;
606   InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
607
608   // Now that we have all of the call sites, loop over them and inline them if
609   // it looks profitable to do so.
610   bool Changed = false;
611   bool LocalChange;
612   do {
613     LocalChange = false;
614     // Iterate over the outer loop because inlining functions can cause indirect
615     // calls to become direct calls.
616     // CallSites may be modified inside so ranged for loop can not be used.
617     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
618       CallSite CS = CallSites[CSi].first;
619
620       Function *Caller = CS.getCaller();
621       Function *Callee = CS.getCalledFunction();
622
623       // We can only inline direct calls to non-declarations.
624       if (!Callee || Callee->isDeclaration())
625         continue;
626
627       Instruction *Instr = CS.getInstruction();
628
629       bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI);
630
631       int InlineHistoryID;
632       if (!IsTriviallyDead) {
633         // If this call site was obtained by inlining another function, verify
634         // that the include path for the function did not include the callee
635         // itself.  If so, we'd be recursively inlining the same function,
636         // which would provide the same callsites, which would cause us to
637         // infinitely inline.
638         InlineHistoryID = CallSites[CSi].second;
639         if (InlineHistoryID != -1 &&
640             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
641           setInlineRemark(CS, "recursive");
642           continue;
643         }
644       }
645
646       // FIXME for new PM: because of the old PM we currently generate ORE and
647       // in turn BFI on demand.  With the new PM, the ORE dependency should
648       // just become a regular analysis dependency.
649       OptimizationRemarkEmitter ORE(Caller);
650
651       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
652       // If the policy determines that we should inline this function,
653       // delete the call instead.
654       if (!OIC.hasValue()) {
655         setInlineRemark(CS, "deferred");
656         continue;
657       }
658
659       if (!OIC.getValue()) {
660         // shouldInline() call returned a negative inline cost that explains
661         // why this callsite should not be inlined.
662         setInlineRemark(CS, inlineCostStr(*OIC));
663         continue;
664       }
665
666       // If this call site is dead and it is to a readonly function, we should
667       // just delete the call instead of trying to inline it, regardless of
668       // size.  This happens because IPSCCP propagates the result out of the
669       // call and then we're left with the dead call.
670       if (IsTriviallyDead) {
671         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
672         // Update the call graph by deleting the edge from Callee to Caller.
673         setInlineRemark(CS, "trivially dead");
674         CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
675         Instr->eraseFromParent();
676         ++NumCallsDeleted;
677       } else {
678         // Get DebugLoc to report. CS will be invalid after Inliner.
679         DebugLoc DLoc = CS->getDebugLoc();
680         BasicBlock *Block = CS.getParent();
681
682         // Attempt to inline the function.
683         using namespace ore;
684
685         InlineResult IR = InlineCallIfPossible(
686             CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
687             InsertLifetime, AARGetter, ImportedFunctionsStats);
688         if (!IR) {
689           setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
690           ORE.emit([&]() {
691             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
692                                             Block)
693                    << NV("Callee", Callee) << " will not be inlined into "
694                    << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
695           });
696           continue;
697         }
698         ++NumInlined;
699
700         emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);
701
702         // If inlining this function gave us any new call sites, throw them
703         // onto our worklist to process.  They are useful inline candidates.
704         if (!InlineInfo.InlinedCalls.empty()) {
705           // Create a new inline history entry for this, so that we remember
706           // that these new callsites came about due to inlining Callee.
707           int NewHistoryID = InlineHistory.size();
708           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
709
710           for (Value *Ptr : InlineInfo.InlinedCalls)
711             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
712         }
713       }
714
715       // If we inlined or deleted the last possible call site to the function,
716       // delete the function body now.
717       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
718           // TODO: Can remove if in SCC now.
719           !SCCFunctions.count(Callee) &&
720           // The function may be apparently dead, but if there are indirect
721           // callgraph references to the node, we cannot delete it yet, this
722           // could invalidate the CGSCC iterator.
723           CG[Callee]->getNumReferences() == 0) {
724         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
725                           << Callee->getName() << "\n");
726         CallGraphNode *CalleeNode = CG[Callee];
727
728         // Remove any call graph edges from the callee to its callees.
729         CalleeNode->removeAllCalledFunctions();
730
731         // Removing the node for callee from the call graph and delete it.
732         delete CG.removeFunctionFromModule(CalleeNode);
733         ++NumDeleted;
734       }
735
736       // Remove this call site from the list.  If possible, use
737       // swap/pop_back for efficiency, but do not use it if doing so would
738       // move a call site to a function in this SCC before the
739       // 'FirstCallInSCC' barrier.
740       if (SCC.isSingular()) {
741         CallSites[CSi] = CallSites.back();
742         CallSites.pop_back();
743       } else {
744         CallSites.erase(CallSites.begin() + CSi);
745       }
746       --CSi;
747
748       Changed = true;
749       LocalChange = true;
750     }
751   } while (LocalChange);
752
753   return Changed;
754 }
755
756 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
757   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
758   ACT = &getAnalysis<AssumptionCacheTracker>();
759   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
760   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
761   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
762     return ACT->getAssumptionCache(F);
763   };
764   return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
765                          [this](CallSite CS) { return getInlineCost(CS); },
766                          LegacyAARGetter(*this), ImportedFunctionsStats);
767 }
768
769 /// Remove now-dead linkonce functions at the end of
770 /// processing to avoid breaking the SCC traversal.
771 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
772   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
773     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
774                                 InlinerFunctionImportStatsOpts::Verbose);
775   return removeDeadFunctions(CG);
776 }
777
778 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
779 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
780                                             bool AlwaysInlineOnly) {
781   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
782   SmallVector<Function *, 16> DeadFunctionsInComdats;
783
784   auto RemoveCGN = [&](CallGraphNode *CGN) {
785     // Remove any call graph edges from the function to its callees.
786     CGN->removeAllCalledFunctions();
787
788     // Remove any edges from the external node to the function's call graph
789     // node.  These edges might have been made irrelegant due to
790     // optimization of the program.
791     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
792
793     // Removing the node for callee from the call graph and delete it.
794     FunctionsToRemove.push_back(CGN);
795   };
796
797   // Scan for all of the functions, looking for ones that should now be removed
798   // from the program.  Insert the dead ones in the FunctionsToRemove set.
799   for (const auto &I : CG) {
800     CallGraphNode *CGN = I.second.get();
801     Function *F = CGN->getFunction();
802     if (!F || F->isDeclaration())
803       continue;
804
805     // Handle the case when this function is called and we only want to care
806     // about always-inline functions. This is a bit of a hack to share code
807     // between here and the InlineAlways pass.
808     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
809       continue;
810
811     // If the only remaining users of the function are dead constants, remove
812     // them.
813     F->removeDeadConstantUsers();
814
815     if (!F->isDefTriviallyDead())
816       continue;
817
818     // It is unsafe to drop a function with discardable linkage from a COMDAT
819     // without also dropping the other members of the COMDAT.
820     // The inliner doesn't visit non-function entities which are in COMDAT
821     // groups so it is unsafe to do so *unless* the linkage is local.
822     if (!F->hasLocalLinkage()) {
823       if (F->hasComdat()) {
824         DeadFunctionsInComdats.push_back(F);
825         continue;
826       }
827     }
828
829     RemoveCGN(CGN);
830   }
831   if (!DeadFunctionsInComdats.empty()) {
832     // Filter out the functions whose comdats remain alive.
833     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
834     // Remove the rest.
835     for (Function *F : DeadFunctionsInComdats)
836       RemoveCGN(CG[F]);
837   }
838
839   if (FunctionsToRemove.empty())
840     return false;
841
842   // Now that we know which functions to delete, do so.  We didn't want to do
843   // this inline, because that would invalidate our CallGraph::iterator
844   // objects. :(
845   //
846   // Note that it doesn't matter that we are iterating over a non-stable order
847   // here to do this, it doesn't matter which order the functions are deleted
848   // in.
849   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
850   FunctionsToRemove.erase(
851       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
852       FunctionsToRemove.end());
853   for (CallGraphNode *CGN : FunctionsToRemove) {
854     delete CG.removeFunctionFromModule(CGN);
855     ++NumDeleted;
856   }
857   return true;
858 }
859
860 InlinerPass::~InlinerPass() {
861   if (ImportedFunctionsStats) {
862     assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
863     ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
864                                  InlinerFunctionImportStatsOpts::Verbose);
865   }
866 }
867
868 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
869                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
870                                    CGSCCUpdateResult &UR) {
871   const ModuleAnalysisManager &MAM =
872       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
873   bool Changed = false;
874
875   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
876   Module &M = *InitialC.begin()->getFunction().getParent();
877   ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
878
879   if (!ImportedFunctionsStats &&
880       InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
881     ImportedFunctionsStats =
882         llvm::make_unique<ImportedFunctionsInliningStatistics>();
883     ImportedFunctionsStats->setModuleInfo(M);
884   }
885
886   // We use a single common worklist for calls across the entire SCC. We
887   // process these in-order and append new calls introduced during inlining to
888   // the end.
889   //
890   // Note that this particular order of processing is actually critical to
891   // avoid very bad behaviors. Consider *highly connected* call graphs where
892   // each function contains a small amonut of code and a couple of calls to
893   // other functions. Because the LLVM inliner is fundamentally a bottom-up
894   // inliner, it can handle gracefully the fact that these all appear to be
895   // reasonable inlining candidates as it will flatten things until they become
896   // too big to inline, and then move on and flatten another batch.
897   //
898   // However, when processing call edges *within* an SCC we cannot rely on this
899   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
900   // functions we can end up incrementally inlining N calls into each of
901   // N functions because each incremental inlining decision looks good and we
902   // don't have a topological ordering to prevent explosions.
903   //
904   // To compensate for this, we don't process transitive edges made immediate
905   // by inlining until we've done one pass of inlining across the entire SCC.
906   // Large, highly connected SCCs still lead to some amount of code bloat in
907   // this model, but it is uniformly spread across all the functions in the SCC
908   // and eventually they all become too large to inline, rather than
909   // incrementally maknig a single function grow in a super linear fashion.
910   SmallVector<std::pair<CallSite, int>, 16> Calls;
911
912   FunctionAnalysisManager &FAM =
913       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
914           .getManager();
915
916   // Populate the initial list of calls in this SCC.
917   for (auto &N : InitialC) {
918     auto &ORE =
919         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
920     // We want to generally process call sites top-down in order for
921     // simplifications stemming from replacing the call with the returned value
922     // after inlining to be visible to subsequent inlining decisions.
923     // FIXME: Using instructions sequence is a really bad way to do this.
924     // Instead we should do an actual RPO walk of the function body.
925     for (Instruction &I : instructions(N.getFunction()))
926       if (auto CS = CallSite(&I))
927         if (Function *Callee = CS.getCalledFunction()) {
928           if (!Callee->isDeclaration())
929             Calls.push_back({CS, -1});
930           else if (!isa<IntrinsicInst>(I)) {
931             using namespace ore;
932             setInlineRemark(CS, "unavailable definition");
933             ORE.emit([&]() {
934               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
935                      << NV("Callee", Callee) << " will not be inlined into "
936                      << NV("Caller", CS.getCaller())
937                      << " because its definition is unavailable"
938                      << setIsVerbose();
939             });
940           }
941         }
942   }
943   if (Calls.empty())
944     return PreservedAnalyses::all();
945
946   // Capture updatable variables for the current SCC and RefSCC.
947   auto *C = &InitialC;
948   auto *RC = &C->getOuterRefSCC();
949
950   // When inlining a callee produces new call sites, we want to keep track of
951   // the fact that they were inlined from the callee.  This allows us to avoid
952   // infinite inlining in some obscure cases.  To represent this, we use an
953   // index into the InlineHistory vector.
954   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
955
956   // Track a set vector of inlined callees so that we can augment the caller
957   // with all of their edges in the call graph before pruning out the ones that
958   // got simplified away.
959   SmallSetVector<Function *, 4> InlinedCallees;
960
961   // Track the dead functions to delete once finished with inlining calls. We
962   // defer deleting these to make it easier to handle the call graph updates.
963   SmallVector<Function *, 4> DeadFunctions;
964
965   // Loop forward over all of the calls. Note that we cannot cache the size as
966   // inlining can introduce new calls that need to be processed.
967   for (int i = 0; i < (int)Calls.size(); ++i) {
968     // We expect the calls to typically be batched with sequences of calls that
969     // have the same caller, so we first set up some shared infrastructure for
970     // this caller. We also do any pruning we can at this layer on the caller
971     // alone.
972     Function &F = *Calls[i].first.getCaller();
973     LazyCallGraph::Node &N = *CG.lookup(F);
974     if (CG.lookupSCC(N) != C)
975       continue;
976     if (F.hasOptNone()) {
977       setInlineRemark(Calls[i].first, "optnone attribute");
978       continue;
979     }
980
981     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
982
983     // Get a FunctionAnalysisManager via a proxy for this particular node. We
984     // do this each time we visit a node as the SCC may have changed and as
985     // we're going to mutate this particular function we want to make sure the
986     // proxy is in place to forward any invalidation events. We can use the
987     // manager we get here for looking up results for functions other than this
988     // node however because those functions aren't going to be mutated by this
989     // pass.
990     FunctionAnalysisManager &FAM =
991         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
992             .getManager();
993
994     // Get the remarks emission analysis for the caller.
995     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
996
997     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
998         [&](Function &F) -> AssumptionCache & {
999       return FAM.getResult<AssumptionAnalysis>(F);
1000     };
1001     auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
1002       return FAM.getResult<BlockFrequencyAnalysis>(F);
1003     };
1004
1005     auto GetInlineCost = [&](CallSite CS) {
1006       Function &Callee = *CS.getCalledFunction();
1007       auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
1008       bool RemarksEnabled =
1009           Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
1010               DEBUG_TYPE);
1011       return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params,
1012                            CalleeTTI, GetAssumptionCache, {GetBFI}, PSI,
1013                            RemarksEnabled ? &ORE : nullptr);
1014     };
1015
1016     // Now process as many calls as we have within this caller in the sequnece.
1017     // We bail out as soon as the caller has to change so we can update the
1018     // call graph and prepare the context of that new caller.
1019     bool DidInline = false;
1020     for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
1021       int InlineHistoryID;
1022       CallSite CS;
1023       std::tie(CS, InlineHistoryID) = Calls[i];
1024       Function &Callee = *CS.getCalledFunction();
1025
1026       if (InlineHistoryID != -1 &&
1027           InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
1028         setInlineRemark(CS, "recursive");
1029         continue;
1030       }
1031
1032       // Check if this inlining may repeat breaking an SCC apart that has
1033       // already been split once before. In that case, inlining here may
1034       // trigger infinite inlining, much like is prevented within the inliner
1035       // itself by the InlineHistory above, but spread across CGSCC iterations
1036       // and thus hidden from the full inline history.
1037       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
1038           UR.InlinedInternalEdges.count({&N, C})) {
1039         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
1040                              "previously split out of this SCC by inlining: "
1041                           << F.getName() << " -> " << Callee.getName() << "\n");
1042         setInlineRemark(CS, "recursive SCC split");
1043         continue;
1044       }
1045
1046       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
1047       // Check whether we want to inline this callsite.
1048       if (!OIC.hasValue()) {
1049         setInlineRemark(CS, "deferred");
1050         continue;
1051       }
1052
1053       if (!OIC.getValue()) {
1054         // shouldInline() call returned a negative inline cost that explains
1055         // why this callsite should not be inlined.
1056         setInlineRemark(CS, inlineCostStr(*OIC));
1057         continue;
1058       }
1059
1060       // Setup the data structure used to plumb customization into the
1061       // `InlineFunction` routine.
1062       InlineFunctionInfo IFI(
1063           /*cg=*/nullptr, &GetAssumptionCache, PSI,
1064           &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
1065           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
1066
1067       // Get DebugLoc to report. CS will be invalid after Inliner.
1068       DebugLoc DLoc = CS->getDebugLoc();
1069       BasicBlock *Block = CS.getParent();
1070
1071       using namespace ore;
1072
1073       InlineResult IR = InlineFunction(CS, IFI);
1074       if (!IR) {
1075         setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
1076         ORE.emit([&]() {
1077           return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
1078                  << NV("Callee", &Callee) << " will not be inlined into "
1079                  << NV("Caller", &F) << ": " << NV("Reason", IR.message);
1080         });
1081         continue;
1082       }
1083       DidInline = true;
1084       InlinedCallees.insert(&Callee);
1085
1086       ++NumInlined;
1087
1088       emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);
1089
1090       // Add any new callsites to defined functions to the worklist.
1091       if (!IFI.InlinedCallSites.empty()) {
1092         int NewHistoryID = InlineHistory.size();
1093         InlineHistory.push_back({&Callee, InlineHistoryID});
1094         for (CallSite &CS : reverse(IFI.InlinedCallSites))
1095           if (Function *NewCallee = CS.getCalledFunction())
1096             if (!NewCallee->isDeclaration())
1097               Calls.push_back({CS, NewHistoryID});
1098       }
1099
1100       if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
1101         ImportedFunctionsStats->recordInline(F, Callee);
1102
1103       // Merge the attributes based on the inlining.
1104       AttributeFuncs::mergeAttributesForInlining(F, Callee);
1105
1106       // For local functions, check whether this makes the callee trivially
1107       // dead. In that case, we can drop the body of the function eagerly
1108       // which may reduce the number of callers of other functions to one,
1109       // changing inline cost thresholds.
1110       if (Callee.hasLocalLinkage()) {
1111         // To check this we also need to nuke any dead constant uses (perhaps
1112         // made dead by this operation on other functions).
1113         Callee.removeDeadConstantUsers();
1114         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1115           Calls.erase(
1116               std::remove_if(Calls.begin() + i + 1, Calls.end(),
1117                              [&Callee](const std::pair<CallSite, int> &Call) {
1118                                return Call.first.getCaller() == &Callee;
1119                              }),
1120               Calls.end());
1121           // Clear the body and queue the function itself for deletion when we
1122           // finish inlining and call graph updates.
1123           // Note that after this point, it is an error to do anything other
1124           // than use the callee's address or delete it.
1125           Callee.dropAllReferences();
1126           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
1127                  "Cannot put cause a function to become dead twice!");
1128           DeadFunctions.push_back(&Callee);
1129         }
1130       }
1131     }
1132
1133     // Back the call index up by one to put us in a good position to go around
1134     // the outer loop.
1135     --i;
1136
1137     if (!DidInline)
1138       continue;
1139     Changed = true;
1140
1141     // Add all the inlined callees' edges as ref edges to the caller. These are
1142     // by definition trivial edges as we always have *some* transitive ref edge
1143     // chain. While in some cases these edges are direct calls inside the
1144     // callee, they have to be modeled in the inliner as reference edges as
1145     // there may be a reference edge anywhere along the chain from the current
1146     // caller to the callee that causes the whole thing to appear like
1147     // a (transitive) reference edge that will require promotion to a call edge
1148     // below.
1149     for (Function *InlinedCallee : InlinedCallees) {
1150       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
1151       for (LazyCallGraph::Edge &E : *CalleeN)
1152         RC->insertTrivialRefEdge(N, E.getNode());
1153     }
1154
1155     // At this point, since we have made changes we have at least removed
1156     // a call instruction. However, in the process we do some incremental
1157     // simplification of the surrounding code. This simplification can
1158     // essentially do all of the same things as a function pass and we can
1159     // re-use the exact same logic for updating the call graph to reflect the
1160     // change.
1161     LazyCallGraph::SCC *OldC = C;
1162     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
1163     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1164     RC = &C->getOuterRefSCC();
1165
1166     // If this causes an SCC to split apart into multiple smaller SCCs, there
1167     // is a subtle risk we need to prepare for. Other transformations may
1168     // expose an "infinite inlining" opportunity later, and because of the SCC
1169     // mutation, we will revisit this function and potentially re-inline. If we
1170     // do, and that re-inlining also has the potentially to mutate the SCC
1171     // structure, the infinite inlining problem can manifest through infinite
1172     // SCC splits and merges. To avoid this, we capture the originating caller
1173     // node and the SCC containing the call edge. This is a slight over
1174     // approximation of the possible inlining decisions that must be avoided,
1175     // but is relatively efficient to store. We use C != OldC to know when
1176     // a new SCC is generated and the original SCC may be generated via merge
1177     // in later iterations.
1178     //
1179     // It is also possible that even if no new SCC is generated
1180     // (i.e., C == OldC), the original SCC could be split and then merged
1181     // into the same one as itself. and the original SCC will be added into
1182     // UR.CWorklist again, we want to catch such cases too.
1183     //
1184     // FIXME: This seems like a very heavyweight way of retaining the inline
1185     // history, we should look for a more efficient way of tracking it.
1186     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1187         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1188           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1189         })) {
1190       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1191                            "retaining this to avoid infinite inlining.\n");
1192       UR.InlinedInternalEdges.insert({&N, OldC});
1193     }
1194     InlinedCallees.clear();
1195   }
1196
1197   // Now that we've finished inlining all of the calls across this SCC, delete
1198   // all of the trivially dead functions, updating the call graph and the CGSCC
1199   // pass manager in the process.
1200   //
1201   // Note that this walks a pointer set which has non-deterministic order but
1202   // that is OK as all we do is delete things and add pointers to unordered
1203   // sets.
1204   for (Function *DeadF : DeadFunctions) {
1205     // Get the necessary information out of the call graph and nuke the
1206     // function there. Also, cclear out any cached analyses.
1207     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1208     FunctionAnalysisManager &FAM =
1209         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
1210             .getManager();
1211     FAM.clear(*DeadF, DeadF->getName());
1212     AM.clear(DeadC, DeadC.getName());
1213     auto &DeadRC = DeadC.getOuterRefSCC();
1214     CG.removeDeadFunction(*DeadF);
1215
1216     // Mark the relevant parts of the call graph as invalid so we don't visit
1217     // them.
1218     UR.InvalidatedSCCs.insert(&DeadC);
1219     UR.InvalidatedRefSCCs.insert(&DeadRC);
1220
1221     // And delete the actual function from the module.
1222     M.getFunctionList().erase(DeadF);
1223     ++NumDeleted;
1224   }
1225
1226   if (!Changed)
1227     return PreservedAnalyses::all();
1228
1229   // Even if we change the IR, we update the core CGSCC data structures and so
1230   // can preserve the proxy to the function analysis manager.
1231   PreservedAnalyses PA;
1232   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1233   return PA;
1234 }