]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / InstCombine / InstCombineInternal.h
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 #include <cstdint>
47
48 #define DEBUG_TYPE "instcombine"
49
50 using namespace llvm::PatternMatch;
51
52 namespace llvm {
53
54 class AAResults;
55 class APInt;
56 class AssumptionCache;
57 class BlockFrequencyInfo;
58 class DataLayout;
59 class DominatorTree;
60 class GEPOperator;
61 class GlobalVariable;
62 class LoopInfo;
63 class OptimizationRemarkEmitter;
64 class ProfileSummaryInfo;
65 class TargetLibraryInfo;
66 class User;
67
68 /// Assign a complexity or rank value to LLVM Values. This is used to reduce
69 /// the amount of pattern matching needed for compares and commutative
70 /// instructions. For example, if we have:
71 ///   icmp ugt X, Constant
72 /// or
73 ///   xor (add X, Constant), cast Z
74 ///
75 /// We do not have to consider the commuted variants of these patterns because
76 /// canonicalization based on complexity guarantees the above ordering.
77 ///
78 /// This routine maps IR values to various complexity ranks:
79 ///   0 -> undef
80 ///   1 -> Constants
81 ///   2 -> Other non-instructions
82 ///   3 -> Arguments
83 ///   4 -> Cast and (f)neg/not instructions
84 ///   5 -> Other instructions
85 static inline unsigned getComplexity(Value *V) {
86   if (isa<Instruction>(V)) {
87     if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
88         match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
89       return 4;
90     return 5;
91   }
92   if (isa<Argument>(V))
93     return 3;
94   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
95 }
96
97 /// Predicate canonicalization reduces the number of patterns that need to be
98 /// matched by other transforms. For example, we may swap the operands of a
99 /// conditional branch or select to create a compare with a canonical (inverted)
100 /// predicate which is then more likely to be matched with other values.
101 static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
102   switch (Pred) {
103   case CmpInst::ICMP_NE:
104   case CmpInst::ICMP_ULE:
105   case CmpInst::ICMP_SLE:
106   case CmpInst::ICMP_UGE:
107   case CmpInst::ICMP_SGE:
108   // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
109   case CmpInst::FCMP_ONE:
110   case CmpInst::FCMP_OLE:
111   case CmpInst::FCMP_OGE:
112     return false;
113   default:
114     return true;
115   }
116 }
117
118 /// Given an exploded icmp instruction, return true if the comparison only
119 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
120 /// result of the comparison is true when the input value is signed.
121 inline bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
122                            bool &TrueIfSigned) {
123   switch (Pred) {
124   case ICmpInst::ICMP_SLT: // True if LHS s< 0
125     TrueIfSigned = true;
126     return RHS.isNullValue();
127   case ICmpInst::ICMP_SLE: // True if LHS s<= -1
128     TrueIfSigned = true;
129     return RHS.isAllOnesValue();
130   case ICmpInst::ICMP_SGT: // True if LHS s> -1
131     TrueIfSigned = false;
132     return RHS.isAllOnesValue();
133   case ICmpInst::ICMP_SGE: // True if LHS s>= 0
134     TrueIfSigned = false;
135     return RHS.isNullValue();
136   case ICmpInst::ICMP_UGT:
137     // True if LHS u> RHS and RHS == sign-bit-mask - 1
138     TrueIfSigned = true;
139     return RHS.isMaxSignedValue();
140   case ICmpInst::ICMP_UGE:
141     // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
142     TrueIfSigned = true;
143     return RHS.isMinSignedValue();
144   case ICmpInst::ICMP_ULT:
145     // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
146     TrueIfSigned = false;
147     return RHS.isMinSignedValue();
148   case ICmpInst::ICMP_ULE:
149     // True if LHS u<= RHS and RHS == sign-bit-mask - 1
150     TrueIfSigned = false;
151     return RHS.isMaxSignedValue();
152   default:
153     return false;
154   }
155 }
156
157 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
158 getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C);
159
160 /// Return the source operand of a potentially bitcasted value while optionally
161 /// checking if it has one use. If there is no bitcast or the one use check is
162 /// not met, return the input value itself.
163 static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
164   if (auto *BitCast = dyn_cast<BitCastInst>(V))
165     if (!OneUseOnly || BitCast->hasOneUse())
166       return BitCast->getOperand(0);
167
168   // V is not a bitcast or V has more than one use and OneUseOnly is true.
169   return V;
170 }
171
172 /// Add one to a Constant
173 static inline Constant *AddOne(Constant *C) {
174   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
175 }
176
177 /// Subtract one from a Constant
178 static inline Constant *SubOne(Constant *C) {
179   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
180 }
181
182 /// Return true if the specified value is free to invert (apply ~ to).
183 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
184 /// is true, work under the assumption that the caller intends to remove all
185 /// uses of V and only keep uses of ~V.
186 ///
187 /// See also: canFreelyInvertAllUsersOf()
188 static inline bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
189   // ~(~(X)) -> X.
190   if (match(V, m_Not(m_Value())))
191     return true;
192
193   // Constants can be considered to be not'ed values.
194   if (match(V, m_AnyIntegralConstant()))
195     return true;
196
197   // Compares can be inverted if all of their uses are being modified to use the
198   // ~V.
199   if (isa<CmpInst>(V))
200     return WillInvertAllUses;
201
202   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
203   // - Constant) - A` if we are willing to invert all of the uses.
204   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
205     if (BO->getOpcode() == Instruction::Add ||
206         BO->getOpcode() == Instruction::Sub)
207       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
208         return WillInvertAllUses;
209
210   // Selects with invertible operands are freely invertible
211   if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
212     return WillInvertAllUses;
213
214   return false;
215 }
216
217 /// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
218 /// InstCombine's canonicalizeICmpPredicate() must be kept in sync with this fn.
219 ///
220 /// See also: isFreeToInvert()
221 static inline bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
222   // Look at every user of V.
223   for (Use &U : V->uses()) {
224     if (U.getUser() == IgnoredUser)
225       continue; // Don't consider this user.
226
227     auto *I = cast<Instruction>(U.getUser());
228     switch (I->getOpcode()) {
229     case Instruction::Select:
230       if (U.getOperandNo() != 0) // Only if the value is used as select cond.
231         return false;
232       break;
233     case Instruction::Br:
234       assert(U.getOperandNo() == 0 && "Must be branching on that value.");
235       break; // Free to invert by swapping true/false values/destinations.
236     case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring it.
237       if (!match(I, m_Not(m_Value())))
238         return false; // Not a 'not'.
239       break;
240     default:
241       return false; // Don't know, likely not freely invertible.
242     }
243     // So far all users were free to invert...
244   }
245   return true; // Can freely invert all users!
246 }
247
248 /// Some binary operators require special handling to avoid poison and undefined
249 /// behavior. If a constant vector has undef elements, replace those undefs with
250 /// identity constants if possible because those are always safe to execute.
251 /// If no identity constant exists, replace undef with some other safe constant.
252 static inline Constant *getSafeVectorConstantForBinop(
253       BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
254   auto *InVTy = dyn_cast<VectorType>(In->getType());
255   assert(InVTy && "Not expecting scalars here");
256
257   Type *EltTy = InVTy->getElementType();
258   auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
259   if (!SafeC) {
260     // TODO: Should this be available as a constant utility function? It is
261     // similar to getBinOpAbsorber().
262     if (IsRHSConstant) {
263       switch (Opcode) {
264       case Instruction::SRem: // X % 1 = 0
265       case Instruction::URem: // X %u 1 = 0
266         SafeC = ConstantInt::get(EltTy, 1);
267         break;
268       case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
269         SafeC = ConstantFP::get(EltTy, 1.0);
270         break;
271       default:
272         llvm_unreachable("Only rem opcodes have no identity constant for RHS");
273       }
274     } else {
275       switch (Opcode) {
276       case Instruction::Shl:  // 0 << X = 0
277       case Instruction::LShr: // 0 >>u X = 0
278       case Instruction::AShr: // 0 >> X = 0
279       case Instruction::SDiv: // 0 / X = 0
280       case Instruction::UDiv: // 0 /u X = 0
281       case Instruction::SRem: // 0 % X = 0
282       case Instruction::URem: // 0 %u X = 0
283       case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
284       case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
285       case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
286       case Instruction::FRem: // 0.0 % X = 0
287         SafeC = Constant::getNullValue(EltTy);
288         break;
289       default:
290         llvm_unreachable("Expected to find identity constant for opcode");
291       }
292     }
293   }
294   assert(SafeC && "Must have safe constant for binop");
295   unsigned NumElts = InVTy->getNumElements();
296   SmallVector<Constant *, 16> Out(NumElts);
297   for (unsigned i = 0; i != NumElts; ++i) {
298     Constant *C = In->getAggregateElement(i);
299     Out[i] = isa<UndefValue>(C) ? SafeC : C;
300   }
301   return ConstantVector::get(Out);
302 }
303
304 /// The core instruction combiner logic.
305 ///
306 /// This class provides both the logic to recursively visit instructions and
307 /// combine them.
308 class LLVM_LIBRARY_VISIBILITY InstCombiner
309     : public InstVisitor<InstCombiner, Instruction *> {
310   // FIXME: These members shouldn't be public.
311 public:
312   /// A worklist of the instructions that need to be simplified.
313   InstCombineWorklist &Worklist;
314
315   /// An IRBuilder that automatically inserts new instructions into the
316   /// worklist.
317   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
318   BuilderTy &Builder;
319
320 private:
321   // Mode in which we are running the combiner.
322   const bool MinimizeSize;
323
324   AAResults *AA;
325
326   // Required analyses.
327   AssumptionCache &AC;
328   TargetLibraryInfo &TLI;
329   DominatorTree &DT;
330   const DataLayout &DL;
331   const SimplifyQuery SQ;
332   OptimizationRemarkEmitter &ORE;
333   BlockFrequencyInfo *BFI;
334   ProfileSummaryInfo *PSI;
335
336   // Optional analyses. When non-null, these can both be used to do better
337   // combining and will be updated to reflect any changes.
338   LoopInfo *LI;
339
340   bool MadeIRChange = false;
341
342 public:
343   InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
344                bool MinimizeSize, AAResults *AA,
345                AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
346                OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
347                ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
348       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
349         AA(AA), AC(AC), TLI(TLI), DT(DT),
350         DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
351
352   /// Run the combiner over the entire worklist until it is empty.
353   ///
354   /// \returns true if the IR is changed.
355   bool run();
356
357   AssumptionCache &getAssumptionCache() const { return AC; }
358
359   const DataLayout &getDataLayout() const { return DL; }
360
361   DominatorTree &getDominatorTree() const { return DT; }
362
363   LoopInfo *getLoopInfo() const { return LI; }
364
365   TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
366
367   // Visitation implementation - Implement instruction combining for different
368   // instruction types.  The semantics are as follows:
369   // Return Value:
370   //    null        - No change was made
371   //     I          - Change was made, I is still valid, I may be dead though
372   //   otherwise    - Change was made, replace I with returned instruction
373   //
374   Instruction *visitFNeg(UnaryOperator &I);
375   Instruction *visitAdd(BinaryOperator &I);
376   Instruction *visitFAdd(BinaryOperator &I);
377   Value *OptimizePointerDifference(
378       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
379   Instruction *visitSub(BinaryOperator &I);
380   Instruction *visitFSub(BinaryOperator &I);
381   Instruction *visitMul(BinaryOperator &I);
382   Instruction *visitFMul(BinaryOperator &I);
383   Instruction *visitURem(BinaryOperator &I);
384   Instruction *visitSRem(BinaryOperator &I);
385   Instruction *visitFRem(BinaryOperator &I);
386   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
387   Instruction *commonRemTransforms(BinaryOperator &I);
388   Instruction *commonIRemTransforms(BinaryOperator &I);
389   Instruction *commonDivTransforms(BinaryOperator &I);
390   Instruction *commonIDivTransforms(BinaryOperator &I);
391   Instruction *visitUDiv(BinaryOperator &I);
392   Instruction *visitSDiv(BinaryOperator &I);
393   Instruction *visitFDiv(BinaryOperator &I);
394   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
395   Instruction *visitAnd(BinaryOperator &I);
396   Instruction *visitOr(BinaryOperator &I);
397   Instruction *visitXor(BinaryOperator &I);
398   Instruction *visitShl(BinaryOperator &I);
399   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
400       BinaryOperator *Sh0, const SimplifyQuery &SQ,
401       bool AnalyzeForSignBitExtraction = false);
402   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
403       BinaryOperator &I);
404   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
405       BinaryOperator &OldAShr);
406   Instruction *visitAShr(BinaryOperator &I);
407   Instruction *visitLShr(BinaryOperator &I);
408   Instruction *commonShiftTransforms(BinaryOperator &I);
409   Instruction *visitFCmpInst(FCmpInst &I);
410   Instruction *visitICmpInst(ICmpInst &I);
411   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
412                                    BinaryOperator &I);
413   Instruction *commonCastTransforms(CastInst &CI);
414   Instruction *commonPointerCastTransforms(CastInst &CI);
415   Instruction *visitTrunc(TruncInst &CI);
416   Instruction *visitZExt(ZExtInst &CI);
417   Instruction *visitSExt(SExtInst &CI);
418   Instruction *visitFPTrunc(FPTruncInst &CI);
419   Instruction *visitFPExt(CastInst &CI);
420   Instruction *visitFPToUI(FPToUIInst &FI);
421   Instruction *visitFPToSI(FPToSIInst &FI);
422   Instruction *visitUIToFP(CastInst &CI);
423   Instruction *visitSIToFP(CastInst &CI);
424   Instruction *visitPtrToInt(PtrToIntInst &CI);
425   Instruction *visitIntToPtr(IntToPtrInst &CI);
426   Instruction *visitBitCast(BitCastInst &CI);
427   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
428   Instruction *foldItoFPtoI(CastInst &FI);
429   Instruction *visitSelectInst(SelectInst &SI);
430   Instruction *visitCallInst(CallInst &CI);
431   Instruction *visitInvokeInst(InvokeInst &II);
432   Instruction *visitCallBrInst(CallBrInst &CBI);
433
434   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
435   Instruction *visitPHINode(PHINode &PN);
436   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
437   Instruction *visitAllocaInst(AllocaInst &AI);
438   Instruction *visitAllocSite(Instruction &FI);
439   Instruction *visitFree(CallInst &FI);
440   Instruction *visitLoadInst(LoadInst &LI);
441   Instruction *visitStoreInst(StoreInst &SI);
442   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
443   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
444   Instruction *visitBranchInst(BranchInst &BI);
445   Instruction *visitFenceInst(FenceInst &FI);
446   Instruction *visitSwitchInst(SwitchInst &SI);
447   Instruction *visitReturnInst(ReturnInst &RI);
448   Instruction *visitInsertValueInst(InsertValueInst &IV);
449   Instruction *visitInsertElementInst(InsertElementInst &IE);
450   Instruction *visitExtractElementInst(ExtractElementInst &EI);
451   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
452   Instruction *visitExtractValueInst(ExtractValueInst &EV);
453   Instruction *visitLandingPadInst(LandingPadInst &LI);
454   Instruction *visitVAEndInst(VAEndInst &I);
455   Instruction *visitFreeze(FreezeInst &I);
456
457   /// Specify what to return for unhandled instructions.
458   Instruction *visitInstruction(Instruction &I) { return nullptr; }
459
460   /// True when DB dominates all uses of DI except UI.
461   /// UI must be in the same block as DI.
462   /// The routine checks that the DI parent and DB are different.
463   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
464                         const BasicBlock *DB) const;
465
466   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
467   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
468                                  const unsigned SIOpd);
469
470   /// Try to replace instruction \p I with value \p V which are pointers
471   /// in different address space.
472   /// \return true if successful.
473   bool replacePointer(Instruction &I, Value *V);
474
475   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
476                                  const Twine &Suffix = "");
477
478 private:
479   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
480   bool shouldChangeType(Type *From, Type *To) const;
481   Value *dyn_castNegVal(Value *V) const;
482   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
483                             SmallVectorImpl<Value *> &NewIndices);
484
485   /// Classify whether a cast is worth optimizing.
486   ///
487   /// This is a helper to decide whether the simplification of
488   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
489   ///
490   /// \param CI The cast we are interested in.
491   ///
492   /// \return true if this cast actually results in any code being generated and
493   /// if it cannot already be eliminated by some other transformation.
494   bool shouldOptimizeCast(CastInst *CI);
495
496   /// Try to optimize a sequence of instructions checking if an operation
497   /// on LHS and RHS overflows.
498   ///
499   /// If this overflow check is done via one of the overflow check intrinsics,
500   /// then CtxI has to be the call instruction calling that intrinsic.  If this
501   /// overflow check is done by arithmetic followed by a compare, then CtxI has
502   /// to be the arithmetic instruction.
503   ///
504   /// If a simplification is possible, stores the simplified result of the
505   /// operation in OperationResult and result of the overflow check in
506   /// OverflowResult, and return true.  If no simplification is possible,
507   /// returns false.
508   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
509                              Value *LHS, Value *RHS,
510                              Instruction &CtxI, Value *&OperationResult,
511                              Constant *&OverflowResult);
512
513   Instruction *visitCallBase(CallBase &Call);
514   Instruction *tryOptimizeCall(CallInst *CI);
515   bool transformConstExprCastCall(CallBase &Call);
516   Instruction *transformCallThroughTrampoline(CallBase &Call,
517                                               IntrinsicInst &Tramp);
518
519   Value *simplifyMaskedLoad(IntrinsicInst &II);
520   Instruction *simplifyMaskedStore(IntrinsicInst &II);
521   Instruction *simplifyMaskedGather(IntrinsicInst &II);
522   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
523
524   /// Transform (zext icmp) to bitwise / integer operations in order to
525   /// eliminate it.
526   ///
527   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
528   /// \parem CI The zext of the (zext icmp) pair we are interested in.
529   /// \param DoTransform Pass false to just test whether the given (zext icmp)
530   /// would be transformed. Pass true to actually perform the transformation.
531   ///
532   /// \return null if the transformation cannot be performed. If the
533   /// transformation can be performed the new instruction that replaces the
534   /// (zext icmp) pair will be returned (if \p DoTransform is false the
535   /// unmodified \p ICI will be returned in this case).
536   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
537                                  bool DoTransform = true);
538
539   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
540
541   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
542                                 const Instruction &CxtI) const {
543     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
544            OverflowResult::NeverOverflows;
545   }
546
547   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
548                                   const Instruction &CxtI) const {
549     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
550            OverflowResult::NeverOverflows;
551   }
552
553   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
554                           const Instruction &CxtI, bool IsSigned) const {
555     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
556                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
557   }
558
559   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
560                                 const Instruction &CxtI) const {
561     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
562            OverflowResult::NeverOverflows;
563   }
564
565   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
566                                   const Instruction &CxtI) const {
567     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
568            OverflowResult::NeverOverflows;
569   }
570
571   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
572                           const Instruction &CxtI, bool IsSigned) const {
573     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
574                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
575   }
576
577   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
578                                 const Instruction &CxtI) const {
579     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
580            OverflowResult::NeverOverflows;
581   }
582
583   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
584                                   const Instruction &CxtI) const {
585     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
586            OverflowResult::NeverOverflows;
587   }
588
589   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
590                           const Instruction &CxtI, bool IsSigned) const {
591     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
592                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
593   }
594
595   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
596                        const Value *RHS, const Instruction &CxtI,
597                        bool IsSigned) const {
598     switch (Opcode) {
599     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
600     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
601     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
602     default: llvm_unreachable("Unexpected opcode for overflow query");
603     }
604   }
605
606   Value *EmitGEPOffset(User *GEP);
607   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
608   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
609   Instruction *narrowBinOp(TruncInst &Trunc);
610   Instruction *narrowMaskedBinOp(BinaryOperator &And);
611   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
612   Instruction *narrowRotate(TruncInst &Trunc);
613   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
614   Instruction *matchSAddSubSat(SelectInst &MinMax1);
615
616   /// Determine if a pair of casts can be replaced by a single cast.
617   ///
618   /// \param CI1 The first of a pair of casts.
619   /// \param CI2 The second of a pair of casts.
620   ///
621   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
622   /// Instruction::CastOps value for a cast that can replace the pair, casting
623   /// CI1->getSrcTy() to CI2->getDstTy().
624   ///
625   /// \see CastInst::isEliminableCastPair
626   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
627                                             const CastInst *CI2);
628
629   Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
630   Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
631   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
632
633   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
634   /// NOTE: Unlike most of instcombine, this returns a Value which should
635   /// already be inserted into the function.
636   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
637
638   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
639                                        BinaryOperator &Logic);
640   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
641   Value *getSelectCondition(Value *A, Value *B);
642
643   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
644   Instruction *foldFPSignBitOps(BinaryOperator &I);
645
646 public:
647   /// Inserts an instruction \p New before instruction \p Old
648   ///
649   /// Also adds the new instruction to the worklist and returns \p New so that
650   /// it is suitable for use as the return from the visitation patterns.
651   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
652     assert(New && !New->getParent() &&
653            "New instruction already inserted into a basic block!");
654     BasicBlock *BB = Old.getParent();
655     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
656     Worklist.add(New);
657     return New;
658   }
659
660   /// Same as InsertNewInstBefore, but also sets the debug loc.
661   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
662     New->setDebugLoc(Old.getDebugLoc());
663     return InsertNewInstBefore(New, Old);
664   }
665
666   /// A combiner-aware RAUW-like routine.
667   ///
668   /// This method is to be used when an instruction is found to be dead,
669   /// replaceable with another preexisting expression. Here we add all uses of
670   /// I to the worklist, replace all uses of I with the new value, then return
671   /// I, so that the inst combiner will know that I was modified.
672   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
673     // If there are no uses to replace, then we return nullptr to indicate that
674     // no changes were made to the program.
675     if (I.use_empty()) return nullptr;
676
677     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
678
679     // If we are replacing the instruction with itself, this must be in a
680     // segment of unreachable code, so just clobber the instruction.
681     if (&I == V)
682       V = UndefValue::get(I.getType());
683
684     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
685                       << "    with " << *V << '\n');
686
687     I.replaceAllUsesWith(V);
688     return &I;
689   }
690
691   /// Replace operand of instruction and add old operand to the worklist.
692   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
693     Worklist.addValue(I.getOperand(OpNum));
694     I.setOperand(OpNum, V);
695     return &I;
696   }
697
698   /// Replace use and add the previously used value to the worklist.
699   void replaceUse(Use &U, Value *NewValue) {
700     Worklist.addValue(U);
701     U = NewValue;
702   }
703
704   /// Creates a result tuple for an overflow intrinsic \p II with a given
705   /// \p Result and a constant \p Overflow value.
706   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
707                                    Constant *Overflow) {
708     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
709     StructType *ST = cast<StructType>(II->getType());
710     Constant *Struct = ConstantStruct::get(ST, V);
711     return InsertValueInst::Create(Struct, Result, 0);
712   }
713
714   /// Create and insert the idiom we use to indicate a block is unreachable
715   /// without having to rewrite the CFG from within InstCombine.
716   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
717     auto &Ctx = InsertAt->getContext();
718     new StoreInst(ConstantInt::getTrue(Ctx),
719                   UndefValue::get(Type::getInt1PtrTy(Ctx)),
720                   InsertAt);
721   }
722
723
724   /// Combiner aware instruction erasure.
725   ///
726   /// When dealing with an instruction that has side effects or produces a void
727   /// value, we can't rely on DCE to delete the instruction. Instead, visit
728   /// methods should return the value returned by this function.
729   Instruction *eraseInstFromFunction(Instruction &I) {
730     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
731     assert(I.use_empty() && "Cannot erase instruction that is used!");
732     salvageDebugInfo(I);
733
734     // Make sure that we reprocess all operands now that we reduced their
735     // use counts.
736     for (Use &Operand : I.operands())
737       if (auto *Inst = dyn_cast<Instruction>(Operand))
738         Worklist.add(Inst);
739
740     Worklist.remove(&I);
741     I.eraseFromParent();
742     MadeIRChange = true;
743     return nullptr; // Don't do anything with FI
744   }
745
746   void computeKnownBits(const Value *V, KnownBits &Known,
747                         unsigned Depth, const Instruction *CxtI) const {
748     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
749   }
750
751   KnownBits computeKnownBits(const Value *V, unsigned Depth,
752                              const Instruction *CxtI) const {
753     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
754   }
755
756   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
757                               unsigned Depth = 0,
758                               const Instruction *CxtI = nullptr) {
759     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
760   }
761
762   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
763                          const Instruction *CxtI = nullptr) const {
764     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
765   }
766
767   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
768                               const Instruction *CxtI = nullptr) const {
769     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
770   }
771
772   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
773                                                const Value *RHS,
774                                                const Instruction *CxtI) const {
775     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
776   }
777
778   OverflowResult computeOverflowForSignedMul(const Value *LHS,
779                                              const Value *RHS,
780                                              const Instruction *CxtI) const {
781     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
782   }
783
784   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
785                                                const Value *RHS,
786                                                const Instruction *CxtI) const {
787     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
788   }
789
790   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
791                                              const Value *RHS,
792                                              const Instruction *CxtI) const {
793     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
794   }
795
796   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
797                                                const Value *RHS,
798                                                const Instruction *CxtI) const {
799     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
800   }
801
802   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
803                                              const Instruction *CxtI) const {
804     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
805   }
806
807   OverflowResult computeOverflow(
808       Instruction::BinaryOps BinaryOp, bool IsSigned,
809       Value *LHS, Value *RHS, Instruction *CxtI) const;
810
811   /// Maximum size of array considered when transforming.
812   uint64_t MaxArraySizeForCombine = 0;
813
814 private:
815   /// Performs a few simplifications for operators which are associative
816   /// or commutative.
817   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
818
819   /// Tries to simplify binary operations which some other binary
820   /// operation distributes over.
821   ///
822   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
823   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
824   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
825   /// value, or null if it didn't simplify.
826   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
827
828   /// Tries to simplify add operations using the definition of remainder.
829   ///
830   /// The definition of remainder is X % C = X - (X / C ) * C. The add
831   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
832   /// X % (C0 * C1)
833   Value *SimplifyAddWithRemainder(BinaryOperator &I);
834
835   // Binary Op helper for select operations where the expression can be
836   // efficiently reorganized.
837   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
838                                         Value *RHS);
839
840   /// This tries to simplify binary operations by factorizing out common terms
841   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
842   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
843                           Value *, Value *, Value *);
844
845   /// Match a select chain which produces one of three values based on whether
846   /// the LHS is less than, equal to, or greater than RHS respectively.
847   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
848   /// Equal and Greater values are saved in the matching process and returned to
849   /// the caller.
850   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
851                                ConstantInt *&Less, ConstantInt *&Equal,
852                                ConstantInt *&Greater);
853
854   /// Attempts to replace V with a simpler value based on the demanded
855   /// bits.
856   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
857                                  unsigned Depth, Instruction *CxtI);
858   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
859                             const APInt &DemandedMask, KnownBits &Known,
860                             unsigned Depth = 0);
861
862   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
863   /// bits. It also tries to handle simplifications that can be done based on
864   /// DemandedMask, but without modifying the Instruction.
865   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
866                                          const APInt &DemandedMask,
867                                          KnownBits &Known,
868                                          unsigned Depth, Instruction *CxtI);
869
870   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
871   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
872   Value *simplifyShrShlDemandedBits(
873       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
874       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
875
876   /// Tries to simplify operands to an integer instruction based on its
877   /// demanded bits.
878   bool SimplifyDemandedInstructionBits(Instruction &Inst);
879
880   Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
881                                                APInt DemandedElts,
882                                                int DmaskIdx = -1);
883
884   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
885                                     APInt &UndefElts, unsigned Depth = 0,
886                                     bool AllowMultipleUsers = false);
887
888   /// Canonicalize the position of binops relative to shufflevector.
889   Instruction *foldVectorBinop(BinaryOperator &Inst);
890   Instruction *foldVectorSelect(SelectInst &Sel);
891
892   /// Given a binary operator, cast instruction, or select which has a PHI node
893   /// as operand #0, see if we can fold the instruction into the PHI (which is
894   /// only possible if all operands to the PHI are constants).
895   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
896
897   /// Given an instruction with a select as one operand and a constant as the
898   /// other operand, try to fold the binary operator into the select arguments.
899   /// This also works for Cast instructions, which obviously do not have a
900   /// second operand.
901   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
902
903   /// This is a convenience wrapper function for the above two functions.
904   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
905
906   Instruction *foldAddWithConstant(BinaryOperator &Add);
907
908   /// Try to rotate an operation below a PHI node, using PHI nodes for
909   /// its operands.
910   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
911   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
912   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
913   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
914   Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
915
916   /// If an integer typed PHI has only one use which is an IntToPtr operation,
917   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
918   /// insert a new pointer typed PHI and replace the original one.
919   Instruction *FoldIntegerTypedPHI(PHINode &PN);
920
921   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
922   /// folded operation.
923   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
924
925   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
926                            ICmpInst::Predicate Cond, Instruction &I);
927   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
928                              const Value *Other);
929   Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
930                                             GlobalVariable *GV, CmpInst &ICI,
931                                             ConstantInt *AndCst = nullptr);
932   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
933                                     Constant *RHSC);
934   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
935                                   ICmpInst::Predicate Pred);
936   Instruction *foldICmpWithCastOp(ICmpInst &ICI);
937
938   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
939   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
940   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
941   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
942   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
943   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
944   Instruction *foldICmpEquality(ICmpInst &Cmp);
945   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
946   Instruction *foldSignBitTest(ICmpInst &I);
947   Instruction *foldICmpWithZero(ICmpInst &Cmp);
948
949   Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
950
951   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
952                                       ConstantInt *C);
953   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
954                                      const APInt &C);
955   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
956                                    const APInt &C);
957   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
958                                    const APInt &C);
959   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
960                                   const APInt &C);
961   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
962                                    const APInt &C);
963   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
964                                    const APInt &C);
965   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
966                                    const APInt &C);
967   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
968                                     const APInt &C);
969   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
970                                     const APInt &C);
971   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
972                                    const APInt &C);
973   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
974                                    const APInt &C);
975   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
976                                    const APInt &C);
977   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
978                                      const APInt &C1);
979   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
980                                 const APInt &C1, const APInt &C2);
981   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
982                                      const APInt &C2);
983   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
984                                      const APInt &C2);
985
986   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
987                                                  BinaryOperator *BO,
988                                                  const APInt &C);
989   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
990                                              const APInt &C);
991   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
992                                                const APInt &C);
993
994   // Helpers of visitSelectInst().
995   Instruction *foldSelectExtConst(SelectInst &Sel);
996   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
997   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
998   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
999                             Value *A, Value *B, Instruction &Outer,
1000                             SelectPatternFlavor SPF2, Value *C);
1001   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
1002
1003   Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
1004                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
1005
1006   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
1007                          bool isSigned, bool Inside);
1008   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
1009   bool mergeStoreIntoSuccessor(StoreInst &SI);
1010
1011   /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
1012   /// If so, return the equivalent bswap intrinsic.
1013   Instruction *matchBSwap(BinaryOperator &Or);
1014
1015   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
1016   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
1017
1018   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
1019
1020   /// Returns a value X such that Val = X * Scale, or null if none.
1021   ///
1022   /// If the multiplication is known not to overflow then NoSignedWrap is set.
1023   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
1024 };
1025
1026 namespace {
1027
1028 // As a default, let's assume that we want to be aggressive,
1029 // and attempt to traverse with no limits in attempt to sink negation.
1030 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
1031
1032 // Let's guesstimate that most often we will end up visiting/producing
1033 // fairly small number of new instructions.
1034 static constexpr unsigned NegatorMaxNodesSSO = 16;
1035
1036 } // namespace
1037
1038 class Negator final {
1039   /// Top-to-bottom, def-to-use negated instruction tree we produced.
1040   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
1041
1042   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
1043   BuilderTy Builder;
1044
1045   const DataLayout &DL;
1046   AssumptionCache &AC;
1047   const DominatorTree &DT;
1048
1049   const bool IsTrulyNegation;
1050
1051   SmallDenseMap<Value *, Value *> NegationsCache;
1052
1053   Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
1054           const DominatorTree &DT, bool IsTrulyNegation);
1055
1056 #if LLVM_ENABLE_STATS
1057   unsigned NumValuesVisitedInThisNegator = 0;
1058   ~Negator();
1059 #endif
1060
1061   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
1062                            Value * /*NegatedRoot*/>;
1063
1064   LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
1065
1066   LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
1067
1068   /// Recurse depth-first and attempt to sink the negation.
1069   /// FIXME: use worklist?
1070   LLVM_NODISCARD Optional<Result> run(Value *Root);
1071
1072   Negator(const Negator &) = delete;
1073   Negator(Negator &&) = delete;
1074   Negator &operator=(const Negator &) = delete;
1075   Negator &operator=(Negator &&) = delete;
1076
1077 public:
1078   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
1079   /// otherwise returns negated value.
1080   LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
1081                                       InstCombiner &IC);
1082 };
1083
1084 } // end namespace llvm
1085
1086 #undef DEBUG_TYPE
1087
1088 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H