]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/Transforms/Utils/Cloning.h
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / Transforms / Utils / Cloning.h
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various functions that are used to clone chunks of LLVM
10 // code for various purposes.  This varies from copying whole modules into new
11 // modules, to cloning functions with different arguments, to inlining
12 // functions, to copying basic blocks to support loop unrolling or superblock
13 // formation, etc.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18 #define LLVM_TRANSFORMS_UTILS_CLONING_H
19
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/ValueHandle.h"
27 #include "llvm/Transforms/Utils/ValueMapper.h"
28 #include <functional>
29 #include <memory>
30 #include <vector>
31
32 namespace llvm {
33
34 class AllocaInst;
35 class BasicBlock;
36 class BlockFrequencyInfo;
37 class CallInst;
38 class CallGraph;
39 class DebugInfoFinder;
40 class DominatorTree;
41 class Function;
42 class Instruction;
43 class InvokeInst;
44 class Loop;
45 class LoopInfo;
46 class Module;
47 class ProfileSummaryInfo;
48 class ReturnInst;
49 class DomTreeUpdater;
50
51 /// Return an exact copy of the specified module
52 std::unique_ptr<Module> CloneModule(const Module &M);
53 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
54
55 /// Return a copy of the specified module. The ShouldCloneDefinition function
56 /// controls whether a specific GlobalValue's definition is cloned. If the
57 /// function returns false, the module copy will contain an external reference
58 /// in place of the global definition.
59 std::unique_ptr<Module>
60 CloneModule(const Module &M, ValueToValueMapTy &VMap,
61             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
62
63 /// This struct can be used to capture information about code
64 /// being cloned, while it is being cloned.
65 struct ClonedCodeInfo {
66   /// This is set to true if the cloned code contains a normal call instruction.
67   bool ContainsCalls = false;
68
69   /// This is set to true if the cloned code contains a 'dynamic' alloca.
70   /// Dynamic allocas are allocas that are either not in the entry block or they
71   /// are in the entry block but are not a constant size.
72   bool ContainsDynamicAllocas = false;
73
74   /// All cloned call sites that have operand bundles attached are appended to
75   /// this vector.  This vector may contain nulls or undefs if some of the
76   /// originally inserted callsites were DCE'ed after they were cloned.
77   std::vector<WeakTrackingVH> OperandBundleCallSites;
78
79   ClonedCodeInfo() = default;
80 };
81
82 /// Return a copy of the specified basic block, but without
83 /// embedding the block into a particular function.  The block returned is an
84 /// exact copy of the specified basic block, without any remapping having been
85 /// performed.  Because of this, this is only suitable for applications where
86 /// the basic block will be inserted into the same function that it was cloned
87 /// from (loop unrolling would use this, for example).
88 ///
89 /// Also, note that this function makes a direct copy of the basic block, and
90 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
91 /// nodes from the original block, even though there are no predecessors for the
92 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
93 /// block will branch to the old successors of the original block: these
94 /// successors will have to have any PHI nodes updated to account for the new
95 /// incoming edges.
96 ///
97 /// The correlation between instructions in the source and result basic blocks
98 /// is recorded in the VMap map.
99 ///
100 /// If you have a particular suffix you'd like to use to add to any cloned
101 /// names, specify it as the optional third parameter.
102 ///
103 /// If you would like the basic block to be auto-inserted into the end of a
104 /// function, you can specify it as the optional fourth parameter.
105 ///
106 /// If you would like to collect additional information about the cloned
107 /// function, you can specify a ClonedCodeInfo object with the optional fifth
108 /// parameter.
109 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
110                             const Twine &NameSuffix = "", Function *F = nullptr,
111                             ClonedCodeInfo *CodeInfo = nullptr,
112                             DebugInfoFinder *DIFinder = nullptr);
113
114 /// Return a copy of the specified function and add it to that
115 /// function's module.  Also, any references specified in the VMap are changed
116 /// to refer to their mapped value instead of the original one.  If any of the
117 /// arguments to the function are in the VMap, the arguments are deleted from
118 /// the resultant function.  The VMap is updated to include mappings from all of
119 /// the instructions and basicblocks in the function from their old to new
120 /// values.  The final argument captures information about the cloned code if
121 /// non-null.
122 ///
123 /// VMap contains no non-identity GlobalValue mappings and debug info metadata
124 /// will not be cloned.
125 ///
126 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
127                         ClonedCodeInfo *CodeInfo = nullptr);
128
129 /// Clone OldFunc into NewFunc, transforming the old arguments into references
130 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
131 /// cloned into it will be added to the end of the function.  This function
132 /// fills in a list of return instructions, and can optionally remap types
133 /// and/or append the specified suffix to all values cloned.
134 ///
135 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
136 /// mappings.
137 ///
138 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
139                        ValueToValueMapTy &VMap, bool ModuleLevelChanges,
140                        SmallVectorImpl<ReturnInst*> &Returns,
141                        const char *NameSuffix = "",
142                        ClonedCodeInfo *CodeInfo = nullptr,
143                        ValueMapTypeRemapper *TypeMapper = nullptr,
144                        ValueMaterializer *Materializer = nullptr);
145
146 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
147                                const Instruction *StartingInst,
148                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
149                                SmallVectorImpl<ReturnInst *> &Returns,
150                                const char *NameSuffix = "",
151                                ClonedCodeInfo *CodeInfo = nullptr);
152
153 /// This works exactly like CloneFunctionInto,
154 /// except that it does some simple constant prop and DCE on the fly.  The
155 /// effect of this is to copy significantly less code in cases where (for
156 /// example) a function call with constant arguments is inlined, and those
157 /// constant arguments cause a significant amount of code in the callee to be
158 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
159 /// used for things like CloneFunction or CloneModule.
160 ///
161 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
162 /// mappings.
163 ///
164 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
165                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
166                                SmallVectorImpl<ReturnInst*> &Returns,
167                                const char *NameSuffix = "",
168                                ClonedCodeInfo *CodeInfo = nullptr,
169                                Instruction *TheCall = nullptr);
170
171 /// This class captures the data input to the InlineFunction call, and records
172 /// the auxiliary results produced by it.
173 class InlineFunctionInfo {
174 public:
175   explicit InlineFunctionInfo(CallGraph *cg = nullptr,
176                               std::function<AssumptionCache &(Function &)>
177                                   *GetAssumptionCache = nullptr,
178                               ProfileSummaryInfo *PSI = nullptr,
179                               BlockFrequencyInfo *CallerBFI = nullptr,
180                               BlockFrequencyInfo *CalleeBFI = nullptr)
181       : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
182         CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}
183
184   /// If non-null, InlineFunction will update the callgraph to reflect the
185   /// changes it makes.
186   CallGraph *CG;
187   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
188   ProfileSummaryInfo *PSI;
189   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
190
191   /// InlineFunction fills this in with all static allocas that get copied into
192   /// the caller.
193   SmallVector<AllocaInst *, 4> StaticAllocas;
194
195   /// InlineFunction fills this in with callsites that were inlined from the
196   /// callee. This is only filled in if CG is non-null.
197   SmallVector<WeakTrackingVH, 8> InlinedCalls;
198
199   /// All of the new call sites inlined into the caller.
200   ///
201   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
202   /// only if CG is null. If CG is non-null, instead the value handle
203   /// `InlinedCalls` above is used.
204   SmallVector<CallSite, 8> InlinedCallSites;
205
206   void reset() {
207     StaticAllocas.clear();
208     InlinedCalls.clear();
209     InlinedCallSites.clear();
210   }
211 };
212
213 /// This function inlines the called function into the basic
214 /// block of the caller.  This returns false if it is not possible to inline
215 /// this call.  The program is still in a well defined state if this occurs
216 /// though.
217 ///
218 /// Note that this only does one level of inlining.  For example, if the
219 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
220 /// exists in the instruction stream.  Similarly this will inline a recursive
221 /// function by one level.
222 ///
223 /// Note that while this routine is allowed to cleanup and optimize the
224 /// *inlined* code to minimize the actual inserted code, it must not delete
225 /// code in the caller as users of this routine may have pointers to
226 /// instructions in the caller that need to remain stable.
227 ///
228 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
229 /// and all varargs at the callsite will be passed to any calls to
230 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
231 /// are only used by ForwardVarArgsTo.
232 InlineResult InlineFunction(CallBase *CB, InlineFunctionInfo &IFI,
233                             AAResults *CalleeAAR = nullptr,
234                             bool InsertLifetime = true);
235 InlineResult InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
236                             AAResults *CalleeAAR = nullptr,
237                             bool InsertLifetime = true,
238                             Function *ForwardVarArgsTo = nullptr);
239
240 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
241 /// Blocks.
242 ///
243 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
244 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
245 /// Note: Only innermost loops are supported.
246 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
247                              Loop *OrigLoop, ValueToValueMapTy &VMap,
248                              const Twine &NameSuffix, LoopInfo *LI,
249                              DominatorTree *DT,
250                              SmallVectorImpl<BasicBlock *> &Blocks);
251
252 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
253 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
254                                ValueToValueMapTy &VMap);
255
256 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
257 /// from BB between its beginning and the StopAt instruction into the split
258 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
259 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
260 /// is used to map the original instructions from BB to their newly-created
261 /// copies. Returns the split block.
262 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
263                                                 BasicBlock *PredBB,
264                                                 Instruction *StopAt,
265                                                 ValueToValueMapTy &ValueMapping,
266                                                 DomTreeUpdater &DTU);
267
268 /// Updates profile information by adjusting the entry count by adding
269 /// entryDelta then scaling callsite information by the new count divided by the
270 /// old count. VMap is used during inlinng to also update the new clone
271 void updateProfileCallee(
272     Function *Callee, int64_t entryDelta,
273     const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
274
275 } // end namespace llvm
276
277 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H