]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/IVDescriptors.cpp
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / IVDescriptors.cpp
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
37
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40
41 #define DEBUG_TYPE "iv-descriptors"
42
43 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
44                                         SmallPtrSetImpl<Instruction *> &Set) {
45   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
46     if (!Set.count(dyn_cast<Instruction>(*Use)))
47       return false;
48   return true;
49 }
50
51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
52   switch (Kind) {
53   default:
54     break;
55   case RK_IntegerAdd:
56   case RK_IntegerMult:
57   case RK_IntegerOr:
58   case RK_IntegerAnd:
59   case RK_IntegerXor:
60   case RK_IntegerMinMax:
61     return true;
62   }
63   return false;
64 }
65
66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
67   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
68 }
69
70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
71   switch (Kind) {
72   default:
73     break;
74   case RK_IntegerAdd:
75   case RK_IntegerMult:
76   case RK_FloatAdd:
77   case RK_FloatMult:
78     return true;
79   }
80   return false;
81 }
82
83 /// Determines if Phi may have been type-promoted. If Phi has a single user
84 /// that ANDs the Phi with a type mask, return the user. RT is updated to
85 /// account for the narrower bit width represented by the mask, and the AND
86 /// instruction is added to CI.
87 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
88                                    SmallPtrSetImpl<Instruction *> &Visited,
89                                    SmallPtrSetImpl<Instruction *> &CI) {
90   if (!Phi->hasOneUse())
91     return Phi;
92
93   const APInt *M = nullptr;
94   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
95
96   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97   // with a new integer type of the corresponding bit width.
98   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
99     int32_t Bits = (*M + 1).exactLogBase2();
100     if (Bits > 0) {
101       RT = IntegerType::get(Phi->getContext(), Bits);
102       Visited.insert(Phi);
103       CI.insert(J);
104       return J;
105     }
106   }
107   return Phi;
108 }
109
110 /// Compute the minimal bit width needed to represent a reduction whose exit
111 /// instruction is given by Exit.
112 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
113                                                      DemandedBits *DB,
114                                                      AssumptionCache *AC,
115                                                      DominatorTree *DT) {
116   bool IsSigned = false;
117   const DataLayout &DL = Exit->getModule()->getDataLayout();
118   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
119
120   if (DB) {
121     // Use the demanded bits analysis to determine the bits that are live out
122     // of the exit instruction, rounding up to the nearest power of two. If the
123     // use of demanded bits results in a smaller bit width, we know the value
124     // must be positive (i.e., IsSigned = false), because if this were not the
125     // case, the sign bit would have been demanded.
126     auto Mask = DB->getDemandedBits(Exit);
127     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
128   }
129
130   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
131     // If demanded bits wasn't able to limit the bit width, we can try to use
132     // value tracking instead. This can be the case, for example, if the value
133     // may be negative.
134     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
135     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
136     MaxBitWidth = NumTypeBits - NumSignBits;
137     KnownBits Bits = computeKnownBits(Exit, DL);
138     if (!Bits.isNonNegative()) {
139       // If the value is not known to be non-negative, we set IsSigned to true,
140       // meaning that we will use sext instructions instead of zext
141       // instructions to restore the original type.
142       IsSigned = true;
143       if (!Bits.isNegative())
144         // If the value is not known to be negative, we don't known what the
145         // upper bit is, and therefore, we don't know what kind of extend we
146         // will need. In this case, just increase the bit width by one bit and
147         // use sext.
148         ++MaxBitWidth;
149     }
150   }
151   if (!isPowerOf2_64(MaxBitWidth))
152     MaxBitWidth = NextPowerOf2(MaxBitWidth);
153
154   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
155                         IsSigned);
156 }
157
158 /// Collect cast instructions that can be ignored in the vectorizer's cost
159 /// model, given a reduction exit value and the minimal type in which the
160 /// reduction can be represented.
161 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
162                                  Type *RecurrenceType,
163                                  SmallPtrSetImpl<Instruction *> &Casts) {
164
165   SmallVector<Instruction *, 8> Worklist;
166   SmallPtrSet<Instruction *, 8> Visited;
167   Worklist.push_back(Exit);
168
169   while (!Worklist.empty()) {
170     Instruction *Val = Worklist.pop_back_val();
171     Visited.insert(Val);
172     if (auto *Cast = dyn_cast<CastInst>(Val))
173       if (Cast->getSrcTy() == RecurrenceType) {
174         // If the source type of a cast instruction is equal to the recurrence
175         // type, it will be eliminated, and should be ignored in the vectorizer
176         // cost model.
177         Casts.insert(Cast);
178         continue;
179       }
180
181     // Add all operands to the work list if they are loop-varying values that
182     // we haven't yet visited.
183     for (Value *O : cast<User>(Val)->operands())
184       if (auto *I = dyn_cast<Instruction>(O))
185         if (TheLoop->contains(I) && !Visited.count(I))
186           Worklist.push_back(I);
187   }
188 }
189
190 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
191                                            Loop *TheLoop, bool HasFunNoNaNAttr,
192                                            RecurrenceDescriptor &RedDes,
193                                            DemandedBits *DB,
194                                            AssumptionCache *AC,
195                                            DominatorTree *DT) {
196   if (Phi->getNumIncomingValues() != 2)
197     return false;
198
199   // Reduction variables are only found in the loop header block.
200   if (Phi->getParent() != TheLoop->getHeader())
201     return false;
202
203   // Obtain the reduction start value from the value that comes from the loop
204   // preheader.
205   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
206
207   // ExitInstruction is the single value which is used outside the loop.
208   // We only allow for a single reduction value to be used outside the loop.
209   // This includes users of the reduction, variables (which form a cycle
210   // which ends in the phi node).
211   Instruction *ExitInstruction = nullptr;
212   // Indicates that we found a reduction operation in our scan.
213   bool FoundReduxOp = false;
214
215   // We start with the PHI node and scan for all of the users of this
216   // instruction. All users must be instructions that can be used as reduction
217   // variables (such as ADD). We must have a single out-of-block user. The cycle
218   // must include the original PHI.
219   bool FoundStartPHI = false;
220
221   // To recognize min/max patterns formed by a icmp select sequence, we store
222   // the number of instruction we saw from the recognized min/max pattern,
223   //  to make sure we only see exactly the two instructions.
224   unsigned NumCmpSelectPatternInst = 0;
225   InstDesc ReduxDesc(false, nullptr);
226
227   // Data used for determining if the recurrence has been type-promoted.
228   Type *RecurrenceType = Phi->getType();
229   SmallPtrSet<Instruction *, 4> CastInsts;
230   Instruction *Start = Phi;
231   bool IsSigned = false;
232
233   SmallPtrSet<Instruction *, 8> VisitedInsts;
234   SmallVector<Instruction *, 8> Worklist;
235
236   // Return early if the recurrence kind does not match the type of Phi. If the
237   // recurrence kind is arithmetic, we attempt to look through AND operations
238   // resulting from the type promotion performed by InstCombine.  Vector
239   // operations are not limited to the legal integer widths, so we may be able
240   // to evaluate the reduction in the narrower width.
241   if (RecurrenceType->isFloatingPointTy()) {
242     if (!isFloatingPointRecurrenceKind(Kind))
243       return false;
244   } else {
245     if (!isIntegerRecurrenceKind(Kind))
246       return false;
247     if (isArithmeticRecurrenceKind(Kind))
248       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
249   }
250
251   Worklist.push_back(Start);
252   VisitedInsts.insert(Start);
253
254   // Start with all flags set because we will intersect this with the reduction
255   // flags from all the reduction operations.
256   FastMathFlags FMF = FastMathFlags::getFast();
257
258   // A value in the reduction can be used:
259   //  - By the reduction:
260   //      - Reduction operation:
261   //        - One use of reduction value (safe).
262   //        - Multiple use of reduction value (not safe).
263   //      - PHI:
264   //        - All uses of the PHI must be the reduction (safe).
265   //        - Otherwise, not safe.
266   //  - By instructions outside of the loop (safe).
267   //      * One value may have several outside users, but all outside
268   //        uses must be of the same value.
269   //  - By an instruction that is not part of the reduction (not safe).
270   //    This is either:
271   //      * An instruction type other than PHI or the reduction operation.
272   //      * A PHI in the header other than the initial PHI.
273   while (!Worklist.empty()) {
274     Instruction *Cur = Worklist.back();
275     Worklist.pop_back();
276
277     // No Users.
278     // If the instruction has no users then this is a broken chain and can't be
279     // a reduction variable.
280     if (Cur->use_empty())
281       return false;
282
283     bool IsAPhi = isa<PHINode>(Cur);
284
285     // A header PHI use other than the original PHI.
286     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
287       return false;
288
289     // Reductions of instructions such as Div, and Sub is only possible if the
290     // LHS is the reduction variable.
291     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
292         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
293         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
294       return false;
295
296     // Any reduction instruction must be of one of the allowed kinds. We ignore
297     // the starting value (the Phi or an AND instruction if the Phi has been
298     // type-promoted).
299     if (Cur != Start) {
300       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
301       if (!ReduxDesc.isRecurrence())
302         return false;
303       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()))
304         FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
305     }
306
307     bool IsASelect = isa<SelectInst>(Cur);
308
309     // A conditional reduction operation must only have 2 or less uses in
310     // VisitedInsts.
311     if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
312         hasMultipleUsesOf(Cur, VisitedInsts, 2))
313       return false;
314
315     // A reduction operation must only have one use of the reduction value.
316     if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
317         Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
318       return false;
319
320     // All inputs to a PHI node must be a reduction value.
321     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
322       return false;
323
324     if (Kind == RK_IntegerMinMax &&
325         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
326       ++NumCmpSelectPatternInst;
327     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
328       ++NumCmpSelectPatternInst;
329
330     // Check  whether we found a reduction operator.
331     FoundReduxOp |= !IsAPhi && Cur != Start;
332
333     // Process users of current instruction. Push non-PHI nodes after PHI nodes
334     // onto the stack. This way we are going to have seen all inputs to PHI
335     // nodes once we get to them.
336     SmallVector<Instruction *, 8> NonPHIs;
337     SmallVector<Instruction *, 8> PHIs;
338     for (User *U : Cur->users()) {
339       Instruction *UI = cast<Instruction>(U);
340
341       // Check if we found the exit user.
342       BasicBlock *Parent = UI->getParent();
343       if (!TheLoop->contains(Parent)) {
344         // If we already know this instruction is used externally, move on to
345         // the next user.
346         if (ExitInstruction == Cur)
347           continue;
348
349         // Exit if you find multiple values used outside or if the header phi
350         // node is being used. In this case the user uses the value of the
351         // previous iteration, in which case we would loose "VF-1" iterations of
352         // the reduction operation if we vectorize.
353         if (ExitInstruction != nullptr || Cur == Phi)
354           return false;
355
356         // The instruction used by an outside user must be the last instruction
357         // before we feed back to the reduction phi. Otherwise, we loose VF-1
358         // operations on the value.
359         if (!is_contained(Phi->operands(), Cur))
360           return false;
361
362         ExitInstruction = Cur;
363         continue;
364       }
365
366       // Process instructions only once (termination). Each reduction cycle
367       // value must only be used once, except by phi nodes and min/max
368       // reductions which are represented as a cmp followed by a select.
369       InstDesc IgnoredVal(false, nullptr);
370       if (VisitedInsts.insert(UI).second) {
371         if (isa<PHINode>(UI))
372           PHIs.push_back(UI);
373         else
374           NonPHIs.push_back(UI);
375       } else if (!isa<PHINode>(UI) &&
376                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
377                    !isa<SelectInst>(UI)) ||
378                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
379                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
380         return false;
381
382       // Remember that we completed the cycle.
383       if (UI == Phi)
384         FoundStartPHI = true;
385     }
386     Worklist.append(PHIs.begin(), PHIs.end());
387     Worklist.append(NonPHIs.begin(), NonPHIs.end());
388   }
389
390   // This means we have seen one but not the other instruction of the
391   // pattern or more than just a select and cmp.
392   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
393       NumCmpSelectPatternInst != 2)
394     return false;
395
396   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
397     return false;
398
399   if (Start != Phi) {
400     // If the starting value is not the same as the phi node, we speculatively
401     // looked through an 'and' instruction when evaluating a potential
402     // arithmetic reduction to determine if it may have been type-promoted.
403     //
404     // We now compute the minimal bit width that is required to represent the
405     // reduction. If this is the same width that was indicated by the 'and', we
406     // can represent the reduction in the smaller type. The 'and' instruction
407     // will be eliminated since it will essentially be a cast instruction that
408     // can be ignore in the cost model. If we compute a different type than we
409     // did when evaluating the 'and', the 'and' will not be eliminated, and we
410     // will end up with different kinds of operations in the recurrence
411     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
412     // the case.
413     //
414     // The vectorizer relies on InstCombine to perform the actual
415     // type-shrinking. It does this by inserting instructions to truncate the
416     // exit value of the reduction to the width indicated by RecurrenceType and
417     // then extend this value back to the original width. If IsSigned is false,
418     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
419     // used.
420     //
421     // TODO: We should not rely on InstCombine to rewrite the reduction in the
422     //       smaller type. We should just generate a correctly typed expression
423     //       to begin with.
424     Type *ComputedType;
425     std::tie(ComputedType, IsSigned) =
426         computeRecurrenceType(ExitInstruction, DB, AC, DT);
427     if (ComputedType != RecurrenceType)
428       return false;
429
430     // The recurrence expression will be represented in a narrower type. If
431     // there are any cast instructions that will be unnecessary, collect them
432     // in CastInsts. Note that the 'and' instruction was already included in
433     // this list.
434     //
435     // TODO: A better way to represent this may be to tag in some way all the
436     //       instructions that are a part of the reduction. The vectorizer cost
437     //       model could then apply the recurrence type to these instructions,
438     //       without needing a white list of instructions to ignore.
439     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
440   }
441
442   // We found a reduction var if we have reached the original phi node and we
443   // only have a single instruction with out-of-loop users.
444
445   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
446   // is saved as part of the RecurrenceDescriptor.
447
448   // Save the description of this reduction variable.
449   RecurrenceDescriptor RD(
450       RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
451       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
452   RedDes = RD;
453
454   return true;
455 }
456
457 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
458 /// pattern corresponding to a min(X, Y) or max(X, Y).
459 RecurrenceDescriptor::InstDesc
460 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
461
462   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
463          "Expect a select instruction");
464   Instruction *Cmp = nullptr;
465   SelectInst *Select = nullptr;
466
467   // We must handle the select(cmp()) as a single instruction. Advance to the
468   // select.
469   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
470     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
471       return InstDesc(false, I);
472     return InstDesc(Select, Prev.getMinMaxKind());
473   }
474
475   // Only handle single use cases for now.
476   if (!(Select = dyn_cast<SelectInst>(I)))
477     return InstDesc(false, I);
478   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
479       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
480     return InstDesc(false, I);
481   if (!Cmp->hasOneUse())
482     return InstDesc(false, I);
483
484   Value *CmpLeft;
485   Value *CmpRight;
486
487   // Look for a min/max pattern.
488   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489     return InstDesc(Select, MRK_UIntMin);
490   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
491     return InstDesc(Select, MRK_UIntMax);
492   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
493     return InstDesc(Select, MRK_SIntMax);
494   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
495     return InstDesc(Select, MRK_SIntMin);
496   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
497     return InstDesc(Select, MRK_FloatMin);
498   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
499     return InstDesc(Select, MRK_FloatMax);
500   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
501     return InstDesc(Select, MRK_FloatMin);
502   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
503     return InstDesc(Select, MRK_FloatMax);
504
505   return InstDesc(false, I);
506 }
507
508 /// Returns true if the select instruction has users in the compare-and-add
509 /// reduction pattern below. The select instruction argument is the last one
510 /// in the sequence.
511 ///
512 /// %sum.1 = phi ...
513 /// ...
514 /// %cmp = fcmp pred %0, %CFP
515 /// %add = fadd %0, %sum.1
516 /// %sum.2 = select %cmp, %add, %sum.1
517 RecurrenceDescriptor::InstDesc
518 RecurrenceDescriptor::isConditionalRdxPattern(
519     RecurrenceKind Kind, Instruction *I) {
520   SelectInst *SI = dyn_cast<SelectInst>(I);
521   if (!SI)
522     return InstDesc(false, I);
523
524   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
525   // Only handle single use cases for now.
526   if (!CI || !CI->hasOneUse())
527     return InstDesc(false, I);
528
529   Value *TrueVal = SI->getTrueValue();
530   Value *FalseVal = SI->getFalseValue();
531   // Handle only when either of operands of select instruction is a PHI
532   // node for now.
533   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
534       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
535     return InstDesc(false, I);
536
537   Instruction *I1 =
538       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
539                              : dyn_cast<Instruction>(TrueVal);
540   if (!I1 || !I1->isBinaryOp())
541     return InstDesc(false, I);
542
543   Value *Op1, *Op2;
544   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
545        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
546       I1->isFast())
547     return InstDesc(Kind == RK_FloatAdd, SI);
548
549   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
550     return InstDesc(Kind == RK_FloatMult, SI);
551
552   return InstDesc(false, I);
553 }
554
555 RecurrenceDescriptor::InstDesc
556 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
557                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
558   Instruction *UAI = Prev.getUnsafeAlgebraInst();
559   if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
560     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
561
562   switch (I->getOpcode()) {
563   default:
564     return InstDesc(false, I);
565   case Instruction::PHI:
566     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
567   case Instruction::Sub:
568   case Instruction::Add:
569     return InstDesc(Kind == RK_IntegerAdd, I);
570   case Instruction::Mul:
571     return InstDesc(Kind == RK_IntegerMult, I);
572   case Instruction::And:
573     return InstDesc(Kind == RK_IntegerAnd, I);
574   case Instruction::Or:
575     return InstDesc(Kind == RK_IntegerOr, I);
576   case Instruction::Xor:
577     return InstDesc(Kind == RK_IntegerXor, I);
578   case Instruction::FMul:
579     return InstDesc(Kind == RK_FloatMult, I, UAI);
580   case Instruction::FSub:
581   case Instruction::FAdd:
582     return InstDesc(Kind == RK_FloatAdd, I, UAI);
583   case Instruction::Select:
584     if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
585       return isConditionalRdxPattern(Kind, I);
586     LLVM_FALLTHROUGH;
587   case Instruction::FCmp:
588   case Instruction::ICmp:
589     if (Kind != RK_IntegerMinMax &&
590         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
591       return InstDesc(false, I);
592     return isMinMaxSelectCmpPattern(I, Prev);
593   }
594 }
595
596 bool RecurrenceDescriptor::hasMultipleUsesOf(
597     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
598     unsigned MaxNumUses) {
599   unsigned NumUses = 0;
600   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
601        ++Use) {
602     if (Insts.count(dyn_cast<Instruction>(*Use)))
603       ++NumUses;
604     if (NumUses > MaxNumUses)
605       return true;
606   }
607
608   return false;
609 }
610 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
611                                           RecurrenceDescriptor &RedDes,
612                                           DemandedBits *DB, AssumptionCache *AC,
613                                           DominatorTree *DT) {
614
615   BasicBlock *Header = TheLoop->getHeader();
616   Function &F = *Header->getParent();
617   bool HasFunNoNaNAttr =
618       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
619
620   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
621                       AC, DT)) {
622     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
623     return true;
624   }
625   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
626                       AC, DT)) {
627     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
628     return true;
629   }
630   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
631                       AC, DT)) {
632     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
633     return true;
634   }
635   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
636                       AC, DT)) {
637     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
638     return true;
639   }
640   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
641                       AC, DT)) {
642     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
643     return true;
644   }
645   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
646                       DB, AC, DT)) {
647     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
648     return true;
649   }
650   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
651                       AC, DT)) {
652     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
653     return true;
654   }
655   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
656                       AC, DT)) {
657     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
658     return true;
659   }
660   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
661                       AC, DT)) {
662     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
663                       << "\n");
664     return true;
665   }
666   // Not a reduction of known type.
667   return false;
668 }
669
670 bool RecurrenceDescriptor::isFirstOrderRecurrence(
671     PHINode *Phi, Loop *TheLoop,
672     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
673
674   // Ensure the phi node is in the loop header and has two incoming values.
675   if (Phi->getParent() != TheLoop->getHeader() ||
676       Phi->getNumIncomingValues() != 2)
677     return false;
678
679   // Ensure the loop has a preheader and a single latch block. The loop
680   // vectorizer will need the latch to set up the next iteration of the loop.
681   auto *Preheader = TheLoop->getLoopPreheader();
682   auto *Latch = TheLoop->getLoopLatch();
683   if (!Preheader || !Latch)
684     return false;
685
686   // Ensure the phi node's incoming blocks are the loop preheader and latch.
687   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
688       Phi->getBasicBlockIndex(Latch) < 0)
689     return false;
690
691   // Get the previous value. The previous value comes from the latch edge while
692   // the initial value comes form the preheader edge.
693   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
694   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
695       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
696     return false;
697
698   // Ensure every user of the phi node is dominated by the previous value.
699   // The dominance requirement ensures the loop vectorizer will not need to
700   // vectorize the initial value prior to the first iteration of the loop.
701   // TODO: Consider extending this sinking to handle other kinds of instructions
702   // and expressions, beyond sinking a single cast past Previous.
703   if (Phi->hasOneUse()) {
704     auto *I = Phi->user_back();
705     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
706         DT->dominates(Previous, I->user_back())) {
707       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
708         SinkAfter[I] = Previous;
709       return true;
710     }
711   }
712
713   for (User *U : Phi->users())
714     if (auto *I = dyn_cast<Instruction>(U)) {
715       if (!DT->dominates(Previous, I))
716         return false;
717     }
718
719   return true;
720 }
721
722 /// This function returns the identity element (or neutral element) for
723 /// the operation K.
724 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
725                                                       Type *Tp) {
726   switch (K) {
727   case RK_IntegerXor:
728   case RK_IntegerAdd:
729   case RK_IntegerOr:
730     // Adding, Xoring, Oring zero to a number does not change it.
731     return ConstantInt::get(Tp, 0);
732   case RK_IntegerMult:
733     // Multiplying a number by 1 does not change it.
734     return ConstantInt::get(Tp, 1);
735   case RK_IntegerAnd:
736     // AND-ing a number with an all-1 value does not change it.
737     return ConstantInt::get(Tp, -1, true);
738   case RK_FloatMult:
739     // Multiplying a number by 1 does not change it.
740     return ConstantFP::get(Tp, 1.0L);
741   case RK_FloatAdd:
742     // Adding zero to a number does not change it.
743     return ConstantFP::get(Tp, 0.0L);
744   default:
745     llvm_unreachable("Unknown recurrence kind");
746   }
747 }
748
749 /// This function translates the recurrence kind to an LLVM binary operator.
750 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
751   switch (Kind) {
752   case RK_IntegerAdd:
753     return Instruction::Add;
754   case RK_IntegerMult:
755     return Instruction::Mul;
756   case RK_IntegerOr:
757     return Instruction::Or;
758   case RK_IntegerAnd:
759     return Instruction::And;
760   case RK_IntegerXor:
761     return Instruction::Xor;
762   case RK_FloatMult:
763     return Instruction::FMul;
764   case RK_FloatAdd:
765     return Instruction::FAdd;
766   case RK_IntegerMinMax:
767     return Instruction::ICmp;
768   case RK_FloatMinMax:
769     return Instruction::FCmp;
770   default:
771     llvm_unreachable("Unknown recurrence operation");
772   }
773 }
774
775 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
776                                          const SCEV *Step, BinaryOperator *BOp,
777                                          SmallVectorImpl<Instruction *> *Casts)
778     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
779   assert(IK != IK_NoInduction && "Not an induction");
780
781   // Start value type should match the induction kind and the value
782   // itself should not be null.
783   assert(StartValue && "StartValue is null");
784   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
785          "StartValue is not a pointer for pointer induction");
786   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
787          "StartValue is not an integer for integer induction");
788
789   // Check the Step Value. It should be non-zero integer value.
790   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
791          "Step value is zero");
792
793   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
794          "Step value should be constant for pointer induction");
795   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
796          "StepValue is not an integer");
797
798   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
799          "StepValue is not FP for FpInduction");
800   assert((IK != IK_FpInduction ||
801           (InductionBinOp &&
802            (InductionBinOp->getOpcode() == Instruction::FAdd ||
803             InductionBinOp->getOpcode() == Instruction::FSub))) &&
804          "Binary opcode should be specified for FP induction");
805
806   if (Casts) {
807     for (auto &Inst : *Casts) {
808       RedundantCasts.push_back(Inst);
809     }
810   }
811 }
812
813 int InductionDescriptor::getConsecutiveDirection() const {
814   ConstantInt *ConstStep = getConstIntStepValue();
815   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
816     return ConstStep->getSExtValue();
817   return 0;
818 }
819
820 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
821   if (isa<SCEVConstant>(Step))
822     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
823   return nullptr;
824 }
825
826 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
827                                            ScalarEvolution *SE,
828                                            InductionDescriptor &D) {
829
830   // Here we only handle FP induction variables.
831   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
832
833   if (TheLoop->getHeader() != Phi->getParent())
834     return false;
835
836   // The loop may have multiple entrances or multiple exits; we can analyze
837   // this phi if it has a unique entry value and a unique backedge value.
838   if (Phi->getNumIncomingValues() != 2)
839     return false;
840   Value *BEValue = nullptr, *StartValue = nullptr;
841   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
842     BEValue = Phi->getIncomingValue(0);
843     StartValue = Phi->getIncomingValue(1);
844   } else {
845     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
846            "Unexpected Phi node in the loop");
847     BEValue = Phi->getIncomingValue(1);
848     StartValue = Phi->getIncomingValue(0);
849   }
850
851   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
852   if (!BOp)
853     return false;
854
855   Value *Addend = nullptr;
856   if (BOp->getOpcode() == Instruction::FAdd) {
857     if (BOp->getOperand(0) == Phi)
858       Addend = BOp->getOperand(1);
859     else if (BOp->getOperand(1) == Phi)
860       Addend = BOp->getOperand(0);
861   } else if (BOp->getOpcode() == Instruction::FSub)
862     if (BOp->getOperand(0) == Phi)
863       Addend = BOp->getOperand(1);
864
865   if (!Addend)
866     return false;
867
868   // The addend should be loop invariant
869   if (auto *I = dyn_cast<Instruction>(Addend))
870     if (TheLoop->contains(I))
871       return false;
872
873   // FP Step has unknown SCEV
874   const SCEV *Step = SE->getUnknown(Addend);
875   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
876   return true;
877 }
878
879 /// This function is called when we suspect that the update-chain of a phi node
880 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
881 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
882 /// predicate P under which the SCEV expression for the phi can be the
883 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
884 /// cast instructions that are involved in the update-chain of this induction.
885 /// A caller that adds the required runtime predicate can be free to drop these
886 /// cast instructions, and compute the phi using \p AR (instead of some scev
887 /// expression with casts).
888 ///
889 /// For example, without a predicate the scev expression can take the following
890 /// form:
891 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
892 ///
893 /// It corresponds to the following IR sequence:
894 /// %for.body:
895 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
896 ///   %casted_phi = "ExtTrunc i64 %x"
897 ///   %add = add i64 %casted_phi, %step
898 ///
899 /// where %x is given in \p PN,
900 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
901 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
902 /// several forms, for example, such as:
903 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
904 /// or:
905 ///   ExtTrunc2:    %t = shl %x, m
906 ///                 %casted_phi = ashr %t, m
907 ///
908 /// If we are able to find such sequence, we return the instructions
909 /// we found, namely %casted_phi and the instructions on its use-def chain up
910 /// to the phi (not including the phi).
911 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
912                                     const SCEVUnknown *PhiScev,
913                                     const SCEVAddRecExpr *AR,
914                                     SmallVectorImpl<Instruction *> &CastInsts) {
915
916   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
917   auto *PN = cast<PHINode>(PhiScev->getValue());
918   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
919   const Loop *L = AR->getLoop();
920
921   // Find any cast instructions that participate in the def-use chain of
922   // PhiScev in the loop.
923   // FORNOW/TODO: We currently expect the def-use chain to include only
924   // two-operand instructions, where one of the operands is an invariant.
925   // createAddRecFromPHIWithCasts() currently does not support anything more
926   // involved than that, so we keep the search simple. This can be
927   // extended/generalized as needed.
928
929   auto getDef = [&](const Value *Val) -> Value * {
930     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
931     if (!BinOp)
932       return nullptr;
933     Value *Op0 = BinOp->getOperand(0);
934     Value *Op1 = BinOp->getOperand(1);
935     Value *Def = nullptr;
936     if (L->isLoopInvariant(Op0))
937       Def = Op1;
938     else if (L->isLoopInvariant(Op1))
939       Def = Op0;
940     return Def;
941   };
942
943   // Look for the instruction that defines the induction via the
944   // loop backedge.
945   BasicBlock *Latch = L->getLoopLatch();
946   if (!Latch)
947     return false;
948   Value *Val = PN->getIncomingValueForBlock(Latch);
949   if (!Val)
950     return false;
951
952   // Follow the def-use chain until the induction phi is reached.
953   // If on the way we encounter a Value that has the same SCEV Expr as the
954   // phi node, we can consider the instructions we visit from that point
955   // as part of the cast-sequence that can be ignored.
956   bool InCastSequence = false;
957   auto *Inst = dyn_cast<Instruction>(Val);
958   while (Val != PN) {
959     // If we encountered a phi node other than PN, or if we left the loop,
960     // we bail out.
961     if (!Inst || !L->contains(Inst)) {
962       return false;
963     }
964     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
965     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
966       InCastSequence = true;
967     if (InCastSequence) {
968       // Only the last instruction in the cast sequence is expected to have
969       // uses outside the induction def-use chain.
970       if (!CastInsts.empty())
971         if (!Inst->hasOneUse())
972           return false;
973       CastInsts.push_back(Inst);
974     }
975     Val = getDef(Val);
976     if (!Val)
977       return false;
978     Inst = dyn_cast<Instruction>(Val);
979   }
980
981   return InCastSequence;
982 }
983
984 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
985                                          PredicatedScalarEvolution &PSE,
986                                          InductionDescriptor &D, bool Assume) {
987   Type *PhiTy = Phi->getType();
988
989   // Handle integer and pointer inductions variables.
990   // Now we handle also FP induction but not trying to make a
991   // recurrent expression from the PHI node in-place.
992
993   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
994       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
995     return false;
996
997   if (PhiTy->isFloatingPointTy())
998     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
999
1000   const SCEV *PhiScev = PSE.getSCEV(Phi);
1001   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1002
1003   // We need this expression to be an AddRecExpr.
1004   if (Assume && !AR)
1005     AR = PSE.getAsAddRec(Phi);
1006
1007   if (!AR) {
1008     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1009     return false;
1010   }
1011
1012   // Record any Cast instructions that participate in the induction update
1013   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1014   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1015   // only after enabling Assume with PSCEV, this means we may have encountered
1016   // cast instructions that required adding a runtime check in order to
1017   // guarantee the correctness of the AddRecurrence respresentation of the
1018   // induction.
1019   if (PhiScev != AR && SymbolicPhi) {
1020     SmallVector<Instruction *, 2> Casts;
1021     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1022       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1023   }
1024
1025   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1026 }
1027
1028 bool InductionDescriptor::isInductionPHI(
1029     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1030     InductionDescriptor &D, const SCEV *Expr,
1031     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1032   Type *PhiTy = Phi->getType();
1033   // We only handle integer and pointer inductions variables.
1034   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1035     return false;
1036
1037   // Check that the PHI is consecutive.
1038   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1039   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1040
1041   if (!AR) {
1042     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1043     return false;
1044   }
1045
1046   if (AR->getLoop() != TheLoop) {
1047     // FIXME: We should treat this as a uniform. Unfortunately, we
1048     // don't currently know how to handled uniform PHIs.
1049     LLVM_DEBUG(
1050         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1051     return false;
1052   }
1053
1054   Value *StartValue =
1055       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1056
1057   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1058   if (!Latch)
1059     return false;
1060   BinaryOperator *BOp =
1061       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1062
1063   const SCEV *Step = AR->getStepRecurrence(*SE);
1064   // Calculate the pointer stride and check if it is consecutive.
1065   // The stride may be a constant or a loop invariant integer value.
1066   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1067   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1068     return false;
1069
1070   if (PhiTy->isIntegerTy()) {
1071     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1072                             CastsToIgnore);
1073     return true;
1074   }
1075
1076   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1077   // Pointer induction should be a constant.
1078   if (!ConstStep)
1079     return false;
1080
1081   ConstantInt *CV = ConstStep->getValue();
1082   Type *PointerElementType = PhiTy->getPointerElementType();
1083   // The pointer stride cannot be determined if the pointer element type is not
1084   // sized.
1085   if (!PointerElementType->isSized())
1086     return false;
1087
1088   const DataLayout &DL = Phi->getModule()->getDataLayout();
1089   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1090   if (!Size)
1091     return false;
1092
1093   int64_t CVSize = CV->getSExtValue();
1094   if (CVSize % Size)
1095     return false;
1096   auto *StepValue =
1097       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1098   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1099   return true;
1100 }