]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp
Merge clang trunk r338150 (just before the 7.0.0 branch point), and
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / RecordLayoutBuilder.cpp
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/AST/RecordLayout.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61   ExternalLayout() : Size(0), Align(0) {}
62
63   /// Overall record size in bits.
64   uint64_t Size;
65
66   /// Overall record alignment in bits.
67   uint64_t Align;
68
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85
86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93
94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class,
132                                   CharUnits Offset);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
134
135   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
136   /// subobjects beyond the given offset.
137   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
138     return Offset <= MaxEmptyClassOffset;
139   }
140
141   CharUnits
142   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
143     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
144     assert(FieldOffset % CharWidth == 0 &&
145            "Field offset not at char boundary!");
146
147     return Context.toCharUnitsFromBits(FieldOffset);
148   }
149
150 protected:
151   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
152                                  CharUnits Offset) const;
153
154   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
155                                      CharUnits Offset);
156
157   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
158                                       const CXXRecordDecl *Class,
159                                       CharUnits Offset) const;
160   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
161                                       CharUnits Offset) const;
162
163 public:
164   /// This holds the size of the largest empty subobject (either a base
165   /// or a member). Will be zero if the record being built doesn't contain
166   /// any empty classes.
167   CharUnits SizeOfLargestEmptySubobject;
168
169   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
170   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
171       ComputeEmptySubobjectSizes();
172   }
173
174   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
175   /// at the given offset.
176   /// Returns false if placing the record will result in two components
177   /// (direct or indirect) of the same type having the same offset.
178   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
179                             CharUnits Offset);
180
181   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
182   /// offset.
183   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
184 };
185
186 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
187   // Check the bases.
188   for (const CXXBaseSpecifier &Base : Class->bases()) {
189     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
190
191     CharUnits EmptySize;
192     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
193     if (BaseDecl->isEmpty()) {
194       // If the class decl is empty, get its size.
195       EmptySize = Layout.getSize();
196     } else {
197       // Otherwise, we get the largest empty subobject for the decl.
198       EmptySize = Layout.getSizeOfLargestEmptySubobject();
199     }
200
201     if (EmptySize > SizeOfLargestEmptySubobject)
202       SizeOfLargestEmptySubobject = EmptySize;
203   }
204
205   // Check the fields.
206   for (const FieldDecl *FD : Class->fields()) {
207     const RecordType *RT =
208         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
209
210     // We only care about record types.
211     if (!RT)
212       continue;
213
214     CharUnits EmptySize;
215     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
216     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
217     if (MemberDecl->isEmpty()) {
218       // If the class decl is empty, get its size.
219       EmptySize = Layout.getSize();
220     } else {
221       // Otherwise, we get the largest empty subobject for the decl.
222       EmptySize = Layout.getSizeOfLargestEmptySubobject();
223     }
224
225     if (EmptySize > SizeOfLargestEmptySubobject)
226       SizeOfLargestEmptySubobject = EmptySize;
227   }
228 }
229
230 bool
231 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
232                                              CharUnits Offset) const {
233   // We only need to check empty bases.
234   if (!RD->isEmpty())
235     return true;
236
237   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
238   if (I == EmptyClassOffsets.end())
239     return true;
240
241   const ClassVectorTy &Classes = I->second;
242   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
243     return true;
244
245   // There is already an empty class of the same type at this offset.
246   return false;
247 }
248
249 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
250                                              CharUnits Offset) {
251   // We only care about empty bases.
252   if (!RD->isEmpty())
253     return;
254
255   // If we have empty structures inside a union, we can assign both
256   // the same offset. Just avoid pushing them twice in the list.
257   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
258   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
259     return;
260
261   Classes.push_back(RD);
262
263   // Update the empty class offset.
264   if (Offset > MaxEmptyClassOffset)
265     MaxEmptyClassOffset = Offset;
266 }
267
268 bool
269 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
270                                                  CharUnits Offset) {
271   // We don't have to keep looking past the maximum offset that's known to
272   // contain an empty class.
273   if (!AnyEmptySubobjectsBeyondOffset(Offset))
274     return true;
275
276   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
277     return false;
278
279   // Traverse all non-virtual bases.
280   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
281   for (const BaseSubobjectInfo *Base : Info->Bases) {
282     if (Base->IsVirtual)
283       continue;
284
285     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
286
287     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
288       return false;
289   }
290
291   if (Info->PrimaryVirtualBaseInfo) {
292     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
293
294     if (Info == PrimaryVirtualBaseInfo->Derived) {
295       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
296         return false;
297     }
298   }
299
300   // Traverse all member variables.
301   unsigned FieldNo = 0;
302   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
303        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
304     if (I->isBitField())
305       continue;
306
307     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
308     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
309       return false;
310   }
311
312   return true;
313 }
314
315 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
316                                                   CharUnits Offset,
317                                                   bool PlacingEmptyBase) {
318   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
319     // We know that the only empty subobjects that can conflict with empty
320     // subobject of non-empty bases, are empty bases that can be placed at
321     // offset zero. Because of this, we only need to keep track of empty base
322     // subobjects with offsets less than the size of the largest empty
323     // subobject for our class.
324     return;
325   }
326
327   AddSubobjectAtOffset(Info->Class, Offset);
328
329   // Traverse all non-virtual bases.
330   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
331   for (const BaseSubobjectInfo *Base : Info->Bases) {
332     if (Base->IsVirtual)
333       continue;
334
335     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
336     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
337   }
338
339   if (Info->PrimaryVirtualBaseInfo) {
340     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
341
342     if (Info == PrimaryVirtualBaseInfo->Derived)
343       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
344                                 PlacingEmptyBase);
345   }
346
347   // Traverse all member variables.
348   unsigned FieldNo = 0;
349   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
350        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
351     if (I->isBitField())
352       continue;
353
354     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
355     UpdateEmptyFieldSubobjects(*I, FieldOffset);
356   }
357 }
358
359 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
360                                              CharUnits Offset) {
361   // If we know this class doesn't have any empty subobjects we don't need to
362   // bother checking.
363   if (SizeOfLargestEmptySubobject.isZero())
364     return true;
365
366   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
367     return false;
368
369   // We are able to place the base at this offset. Make sure to update the
370   // empty base subobject map.
371   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
372   return true;
373 }
374
375 bool
376 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
377                                                   const CXXRecordDecl *Class,
378                                                   CharUnits Offset) const {
379   // We don't have to keep looking past the maximum offset that's known to
380   // contain an empty class.
381   if (!AnyEmptySubobjectsBeyondOffset(Offset))
382     return true;
383
384   if (!CanPlaceSubobjectAtOffset(RD, Offset))
385     return false;
386
387   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
388
389   // Traverse all non-virtual bases.
390   for (const CXXBaseSpecifier &Base : RD->bases()) {
391     if (Base.isVirtual())
392       continue;
393
394     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
395
396     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
397     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
398       return false;
399   }
400
401   if (RD == Class) {
402     // This is the most derived class, traverse virtual bases as well.
403     for (const CXXBaseSpecifier &Base : RD->vbases()) {
404       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
405
406       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
407       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
408         return false;
409     }
410   }
411
412   // Traverse all member variables.
413   unsigned FieldNo = 0;
414   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
415        I != E; ++I, ++FieldNo) {
416     if (I->isBitField())
417       continue;
418
419     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
420
421     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
422       return false;
423   }
424
425   return true;
426 }
427
428 bool
429 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
430                                                   CharUnits Offset) const {
431   // We don't have to keep looking past the maximum offset that's known to
432   // contain an empty class.
433   if (!AnyEmptySubobjectsBeyondOffset(Offset))
434     return true;
435
436   QualType T = FD->getType();
437   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
438     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
439
440   // If we have an array type we need to look at every element.
441   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
442     QualType ElemTy = Context.getBaseElementType(AT);
443     const RecordType *RT = ElemTy->getAs<RecordType>();
444     if (!RT)
445       return true;
446
447     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
448     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
449
450     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
451     CharUnits ElementOffset = Offset;
452     for (uint64_t I = 0; I != NumElements; ++I) {
453       // We don't have to keep looking past the maximum offset that's known to
454       // contain an empty class.
455       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
456         return true;
457
458       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
459         return false;
460
461       ElementOffset += Layout.getSize();
462     }
463   }
464
465   return true;
466 }
467
468 bool
469 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
470                                          CharUnits Offset) {
471   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
472     return false;
473
474   // We are able to place the member variable at this offset.
475   // Make sure to update the empty base subobject map.
476   UpdateEmptyFieldSubobjects(FD, Offset);
477   return true;
478 }
479
480 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
481                                                    const CXXRecordDecl *Class,
482                                                    CharUnits Offset) {
483   // We know that the only empty subobjects that can conflict with empty
484   // field subobjects are subobjects of empty bases that can be placed at offset
485   // zero. Because of this, we only need to keep track of empty field
486   // subobjects with offsets less than the size of the largest empty
487   // subobject for our class.
488   if (Offset >= SizeOfLargestEmptySubobject)
489     return;
490
491   AddSubobjectAtOffset(RD, Offset);
492
493   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
494
495   // Traverse all non-virtual bases.
496   for (const CXXBaseSpecifier &Base : RD->bases()) {
497     if (Base.isVirtual())
498       continue;
499
500     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
501
502     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
503     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
504   }
505
506   if (RD == Class) {
507     // This is the most derived class, traverse virtual bases as well.
508     for (const CXXBaseSpecifier &Base : RD->vbases()) {
509       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
510
511       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
512       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
513     }
514   }
515
516   // Traverse all member variables.
517   unsigned FieldNo = 0;
518   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
519        I != E; ++I, ++FieldNo) {
520     if (I->isBitField())
521       continue;
522
523     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
524
525     UpdateEmptyFieldSubobjects(*I, FieldOffset);
526   }
527 }
528
529 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
530                                                    CharUnits Offset) {
531   QualType T = FD->getType();
532   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
533     UpdateEmptyFieldSubobjects(RD, RD, Offset);
534     return;
535   }
536
537   // If we have an array type we need to update every element.
538   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
539     QualType ElemTy = Context.getBaseElementType(AT);
540     const RecordType *RT = ElemTy->getAs<RecordType>();
541     if (!RT)
542       return;
543
544     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
545     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
546
547     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
548     CharUnits ElementOffset = Offset;
549
550     for (uint64_t I = 0; I != NumElements; ++I) {
551       // We know that the only empty subobjects that can conflict with empty
552       // field subobjects are subobjects of empty bases that can be placed at
553       // offset zero. Because of this, we only need to keep track of empty field
554       // subobjects with offsets less than the size of the largest empty
555       // subobject for our class.
556       if (ElementOffset >= SizeOfLargestEmptySubobject)
557         return;
558
559       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
560       ElementOffset += Layout.getSize();
561     }
562   }
563 }
564
565 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
566
567 class ItaniumRecordLayoutBuilder {
568 protected:
569   // FIXME: Remove this and make the appropriate fields public.
570   friend class clang::ASTContext;
571
572   const ASTContext &Context;
573
574   EmptySubobjectMap *EmptySubobjects;
575
576   /// Size - The current size of the record layout.
577   uint64_t Size;
578
579   /// Alignment - The current alignment of the record layout.
580   CharUnits Alignment;
581
582   /// The alignment if attribute packed is not used.
583   CharUnits UnpackedAlignment;
584
585   /// \brief The maximum of the alignments of top-level members.
586   CharUnits UnadjustedAlignment;
587
588   SmallVector<uint64_t, 16> FieldOffsets;
589
590   /// Whether the external AST source has provided a layout for this
591   /// record.
592   unsigned UseExternalLayout : 1;
593
594   /// Whether we need to infer alignment, even when we have an
595   /// externally-provided layout.
596   unsigned InferAlignment : 1;
597
598   /// Packed - Whether the record is packed or not.
599   unsigned Packed : 1;
600
601   unsigned IsUnion : 1;
602
603   unsigned IsMac68kAlign : 1;
604
605   unsigned IsMsStruct : 1;
606
607   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
608   /// this contains the number of bits in the last unit that can be used for
609   /// an adjacent bitfield if necessary.  The unit in question is usually
610   /// a byte, but larger units are used if IsMsStruct.
611   unsigned char UnfilledBitsInLastUnit;
612   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
613   /// of the previous field if it was a bitfield.
614   unsigned char LastBitfieldTypeSize;
615
616   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
617   /// #pragma pack.
618   CharUnits MaxFieldAlignment;
619
620   /// DataSize - The data size of the record being laid out.
621   uint64_t DataSize;
622
623   CharUnits NonVirtualSize;
624   CharUnits NonVirtualAlignment;
625
626   /// PrimaryBase - the primary base class (if one exists) of the class
627   /// we're laying out.
628   const CXXRecordDecl *PrimaryBase;
629
630   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
631   /// out is virtual.
632   bool PrimaryBaseIsVirtual;
633
634   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
635   /// pointer, as opposed to inheriting one from a primary base class.
636   bool HasOwnVFPtr;
637
638   /// the flag of field offset changing due to packed attribute.
639   bool HasPackedField;
640
641   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
642
643   /// Bases - base classes and their offsets in the record.
644   BaseOffsetsMapTy Bases;
645
646   // VBases - virtual base classes and their offsets in the record.
647   ASTRecordLayout::VBaseOffsetsMapTy VBases;
648
649   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
650   /// primary base classes for some other direct or indirect base class.
651   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
652
653   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
654   /// inheritance graph order. Used for determining the primary base class.
655   const CXXRecordDecl *FirstNearlyEmptyVBase;
656
657   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
658   /// avoid visiting virtual bases more than once.
659   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
660
661   /// Valid if UseExternalLayout is true.
662   ExternalLayout External;
663
664   ItaniumRecordLayoutBuilder(const ASTContext &Context,
665                              EmptySubobjectMap *EmptySubobjects)
666       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
667         Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
668         UnadjustedAlignment(CharUnits::One()),
669         UseExternalLayout(false), InferAlignment(false), Packed(false),
670         IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
671         UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
672         MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
673         NonVirtualSize(CharUnits::Zero()),
674         NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr),
675         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
676         HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {}
677
678   void Layout(const RecordDecl *D);
679   void Layout(const CXXRecordDecl *D);
680   void Layout(const ObjCInterfaceDecl *D);
681
682   void LayoutFields(const RecordDecl *D);
683   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
684   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
685                           bool FieldPacked, const FieldDecl *D);
686   void LayoutBitField(const FieldDecl *D);
687
688   TargetCXXABI getCXXABI() const {
689     return Context.getTargetInfo().getCXXABI();
690   }
691
692   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
693   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
694
695   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
696     BaseSubobjectInfoMapTy;
697
698   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
699   /// of the class we're laying out to their base subobject info.
700   BaseSubobjectInfoMapTy VirtualBaseInfo;
701
702   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
703   /// class we're laying out to their base subobject info.
704   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
705
706   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
707   /// bases of the given class.
708   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
709
710   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
711   /// single class and all of its base classes.
712   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
713                                               bool IsVirtual,
714                                               BaseSubobjectInfo *Derived);
715
716   /// DeterminePrimaryBase - Determine the primary base of the given class.
717   void DeterminePrimaryBase(const CXXRecordDecl *RD);
718
719   void SelectPrimaryVBase(const CXXRecordDecl *RD);
720
721   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
722
723   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
724   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
725   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
726
727   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
728   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
729
730   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
731                                     CharUnits Offset);
732
733   /// LayoutVirtualBases - Lays out all the virtual bases.
734   void LayoutVirtualBases(const CXXRecordDecl *RD,
735                           const CXXRecordDecl *MostDerivedClass);
736
737   /// LayoutVirtualBase - Lays out a single virtual base.
738   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
739
740   /// LayoutBase - Will lay out a base and return the offset where it was
741   /// placed, in chars.
742   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
743
744   /// InitializeLayout - Initialize record layout for the given record decl.
745   void InitializeLayout(const Decl *D);
746
747   /// FinishLayout - Finalize record layout. Adjust record size based on the
748   /// alignment.
749   void FinishLayout(const NamedDecl *D);
750
751   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
752   void UpdateAlignment(CharUnits NewAlignment) {
753     UpdateAlignment(NewAlignment, NewAlignment);
754   }
755
756   /// Retrieve the externally-supplied field offset for the given
757   /// field.
758   ///
759   /// \param Field The field whose offset is being queried.
760   /// \param ComputedOffset The offset that we've computed for this field.
761   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
762                                      uint64_t ComputedOffset);
763
764   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
765                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
766                           bool isPacked, const FieldDecl *D);
767
768   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
769
770   CharUnits getSize() const {
771     assert(Size % Context.getCharWidth() == 0);
772     return Context.toCharUnitsFromBits(Size);
773   }
774   uint64_t getSizeInBits() const { return Size; }
775
776   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
777   void setSize(uint64_t NewSize) { Size = NewSize; }
778
779   CharUnits getAligment() const { return Alignment; }
780
781   CharUnits getDataSize() const {
782     assert(DataSize % Context.getCharWidth() == 0);
783     return Context.toCharUnitsFromBits(DataSize);
784   }
785   uint64_t getDataSizeInBits() const { return DataSize; }
786
787   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
788   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
789
790   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
791   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
792 };
793 } // end anonymous namespace
794
795 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
796   for (const auto &I : RD->bases()) {
797     assert(!I.getType()->isDependentType() &&
798            "Cannot layout class with dependent bases.");
799
800     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
801
802     // Check if this is a nearly empty virtual base.
803     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
804       // If it's not an indirect primary base, then we've found our primary
805       // base.
806       if (!IndirectPrimaryBases.count(Base)) {
807         PrimaryBase = Base;
808         PrimaryBaseIsVirtual = true;
809         return;
810       }
811
812       // Is this the first nearly empty virtual base?
813       if (!FirstNearlyEmptyVBase)
814         FirstNearlyEmptyVBase = Base;
815     }
816
817     SelectPrimaryVBase(Base);
818     if (PrimaryBase)
819       return;
820   }
821 }
822
823 /// DeterminePrimaryBase - Determine the primary base of the given class.
824 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
825   // If the class isn't dynamic, it won't have a primary base.
826   if (!RD->isDynamicClass())
827     return;
828
829   // Compute all the primary virtual bases for all of our direct and
830   // indirect bases, and record all their primary virtual base classes.
831   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
832
833   // If the record has a dynamic base class, attempt to choose a primary base
834   // class. It is the first (in direct base class order) non-virtual dynamic
835   // base class, if one exists.
836   for (const auto &I : RD->bases()) {
837     // Ignore virtual bases.
838     if (I.isVirtual())
839       continue;
840
841     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
842
843     if (Base->isDynamicClass()) {
844       // We found it.
845       PrimaryBase = Base;
846       PrimaryBaseIsVirtual = false;
847       return;
848     }
849   }
850
851   // Under the Itanium ABI, if there is no non-virtual primary base class,
852   // try to compute the primary virtual base.  The primary virtual base is
853   // the first nearly empty virtual base that is not an indirect primary
854   // virtual base class, if one exists.
855   if (RD->getNumVBases() != 0) {
856     SelectPrimaryVBase(RD);
857     if (PrimaryBase)
858       return;
859   }
860
861   // Otherwise, it is the first indirect primary base class, if one exists.
862   if (FirstNearlyEmptyVBase) {
863     PrimaryBase = FirstNearlyEmptyVBase;
864     PrimaryBaseIsVirtual = true;
865     return;
866   }
867
868   assert(!PrimaryBase && "Should not get here with a primary base!");
869 }
870
871 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
872     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
873   BaseSubobjectInfo *Info;
874
875   if (IsVirtual) {
876     // Check if we already have info about this virtual base.
877     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
878     if (InfoSlot) {
879       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
880       return InfoSlot;
881     }
882
883     // We don't, create it.
884     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
885     Info = InfoSlot;
886   } else {
887     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
888   }
889
890   Info->Class = RD;
891   Info->IsVirtual = IsVirtual;
892   Info->Derived = nullptr;
893   Info->PrimaryVirtualBaseInfo = nullptr;
894
895   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
896   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
897
898   // Check if this base has a primary virtual base.
899   if (RD->getNumVBases()) {
900     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
901     if (Layout.isPrimaryBaseVirtual()) {
902       // This base does have a primary virtual base.
903       PrimaryVirtualBase = Layout.getPrimaryBase();
904       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
905
906       // Now check if we have base subobject info about this primary base.
907       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
908
909       if (PrimaryVirtualBaseInfo) {
910         if (PrimaryVirtualBaseInfo->Derived) {
911           // We did have info about this primary base, and it turns out that it
912           // has already been claimed as a primary virtual base for another
913           // base.
914           PrimaryVirtualBase = nullptr;
915         } else {
916           // We can claim this base as our primary base.
917           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
918           PrimaryVirtualBaseInfo->Derived = Info;
919         }
920       }
921     }
922   }
923
924   // Now go through all direct bases.
925   for (const auto &I : RD->bases()) {
926     bool IsVirtual = I.isVirtual();
927
928     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
929
930     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
931   }
932
933   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
934     // Traversing the bases must have created the base info for our primary
935     // virtual base.
936     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
937     assert(PrimaryVirtualBaseInfo &&
938            "Did not create a primary virtual base!");
939
940     // Claim the primary virtual base as our primary virtual base.
941     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
942     PrimaryVirtualBaseInfo->Derived = Info;
943   }
944
945   return Info;
946 }
947
948 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
949     const CXXRecordDecl *RD) {
950   for (const auto &I : RD->bases()) {
951     bool IsVirtual = I.isVirtual();
952
953     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
954
955     // Compute the base subobject info for this base.
956     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
957                                                        nullptr);
958
959     if (IsVirtual) {
960       // ComputeBaseInfo has already added this base for us.
961       assert(VirtualBaseInfo.count(BaseDecl) &&
962              "Did not add virtual base!");
963     } else {
964       // Add the base info to the map of non-virtual bases.
965       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
966              "Non-virtual base already exists!");
967       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
968     }
969   }
970 }
971
972 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
973     CharUnits UnpackedBaseAlign) {
974   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
975
976   // The maximum field alignment overrides base align.
977   if (!MaxFieldAlignment.isZero()) {
978     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
979     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
980   }
981
982   // Round up the current record size to pointer alignment.
983   setSize(getSize().alignTo(BaseAlign));
984   setDataSize(getSize());
985
986   // Update the alignment.
987   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
988 }
989
990 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
991     const CXXRecordDecl *RD) {
992   // Then, determine the primary base class.
993   DeterminePrimaryBase(RD);
994
995   // Compute base subobject info.
996   ComputeBaseSubobjectInfo(RD);
997
998   // If we have a primary base class, lay it out.
999   if (PrimaryBase) {
1000     if (PrimaryBaseIsVirtual) {
1001       // If the primary virtual base was a primary virtual base of some other
1002       // base class we'll have to steal it.
1003       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1004       PrimaryBaseInfo->Derived = nullptr;
1005
1006       // We have a virtual primary base, insert it as an indirect primary base.
1007       IndirectPrimaryBases.insert(PrimaryBase);
1008
1009       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1010              "vbase already visited!");
1011       VisitedVirtualBases.insert(PrimaryBase);
1012
1013       LayoutVirtualBase(PrimaryBaseInfo);
1014     } else {
1015       BaseSubobjectInfo *PrimaryBaseInfo =
1016         NonVirtualBaseInfo.lookup(PrimaryBase);
1017       assert(PrimaryBaseInfo &&
1018              "Did not find base info for non-virtual primary base!");
1019
1020       LayoutNonVirtualBase(PrimaryBaseInfo);
1021     }
1022
1023   // If this class needs a vtable/vf-table and didn't get one from a
1024   // primary base, add it in now.
1025   } else if (RD->isDynamicClass()) {
1026     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1027     CharUnits PtrWidth =
1028       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1029     CharUnits PtrAlign =
1030       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1031     EnsureVTablePointerAlignment(PtrAlign);
1032     HasOwnVFPtr = true;
1033     setSize(getSize() + PtrWidth);
1034     setDataSize(getSize());
1035   }
1036
1037   // Now lay out the non-virtual bases.
1038   for (const auto &I : RD->bases()) {
1039
1040     // Ignore virtual bases.
1041     if (I.isVirtual())
1042       continue;
1043
1044     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1045
1046     // Skip the primary base, because we've already laid it out.  The
1047     // !PrimaryBaseIsVirtual check is required because we might have a
1048     // non-virtual base of the same type as a primary virtual base.
1049     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1050       continue;
1051
1052     // Lay out the base.
1053     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1054     assert(BaseInfo && "Did not find base info for non-virtual base!");
1055
1056     LayoutNonVirtualBase(BaseInfo);
1057   }
1058 }
1059
1060 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1061     const BaseSubobjectInfo *Base) {
1062   // Layout the base.
1063   CharUnits Offset = LayoutBase(Base);
1064
1065   // Add its base class offset.
1066   assert(!Bases.count(Base->Class) && "base offset already exists!");
1067   Bases.insert(std::make_pair(Base->Class, Offset));
1068
1069   AddPrimaryVirtualBaseOffsets(Base, Offset);
1070 }
1071
1072 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1073     const BaseSubobjectInfo *Info, CharUnits Offset) {
1074   // This base isn't interesting, it has no virtual bases.
1075   if (!Info->Class->getNumVBases())
1076     return;
1077
1078   // First, check if we have a virtual primary base to add offsets for.
1079   if (Info->PrimaryVirtualBaseInfo) {
1080     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1081            "Primary virtual base is not virtual!");
1082     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1083       // Add the offset.
1084       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1085              "primary vbase offset already exists!");
1086       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1087                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1088
1089       // Traverse the primary virtual base.
1090       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1091     }
1092   }
1093
1094   // Now go through all direct non-virtual bases.
1095   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1096   for (const BaseSubobjectInfo *Base : Info->Bases) {
1097     if (Base->IsVirtual)
1098       continue;
1099
1100     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1101     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1102   }
1103 }
1104
1105 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1106     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1107   const CXXRecordDecl *PrimaryBase;
1108   bool PrimaryBaseIsVirtual;
1109
1110   if (MostDerivedClass == RD) {
1111     PrimaryBase = this->PrimaryBase;
1112     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1113   } else {
1114     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1115     PrimaryBase = Layout.getPrimaryBase();
1116     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1117   }
1118
1119   for (const CXXBaseSpecifier &Base : RD->bases()) {
1120     assert(!Base.getType()->isDependentType() &&
1121            "Cannot layout class with dependent bases.");
1122
1123     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1124
1125     if (Base.isVirtual()) {
1126       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1127         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1128
1129         // Only lay out the virtual base if it's not an indirect primary base.
1130         if (!IndirectPrimaryBase) {
1131           // Only visit virtual bases once.
1132           if (!VisitedVirtualBases.insert(BaseDecl).second)
1133             continue;
1134
1135           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1136           assert(BaseInfo && "Did not find virtual base info!");
1137           LayoutVirtualBase(BaseInfo);
1138         }
1139       }
1140     }
1141
1142     if (!BaseDecl->getNumVBases()) {
1143       // This base isn't interesting since it doesn't have any virtual bases.
1144       continue;
1145     }
1146
1147     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1148   }
1149 }
1150
1151 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1152     const BaseSubobjectInfo *Base) {
1153   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1154
1155   // Layout the base.
1156   CharUnits Offset = LayoutBase(Base);
1157
1158   // Add its base class offset.
1159   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1160   VBases.insert(std::make_pair(Base->Class,
1161                        ASTRecordLayout::VBaseInfo(Offset, false)));
1162
1163   AddPrimaryVirtualBaseOffsets(Base, Offset);
1164 }
1165
1166 CharUnits
1167 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1168   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1169
1170
1171   CharUnits Offset;
1172
1173   // Query the external layout to see if it provides an offset.
1174   bool HasExternalLayout = false;
1175   if (UseExternalLayout) {
1176     if (Base->IsVirtual)
1177       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1178     else
1179       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1180   }
1181
1182   // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1183   // Per GCC's documentation, it only applies to non-static data members.
1184   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1185   CharUnits BaseAlign =
1186       (Packed && ((Context.getLangOpts().getClangABICompat() <=
1187                    LangOptions::ClangABI::Ver6) ||
1188                   Context.getTargetInfo().getTriple().isPS4()))
1189           ? CharUnits::One()
1190           : UnpackedBaseAlign;
1191
1192   // If we have an empty base class, try to place it at offset 0.
1193   if (Base->Class->isEmpty() &&
1194       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1195       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1196     setSize(std::max(getSize(), Layout.getSize()));
1197     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1198
1199     return CharUnits::Zero();
1200   }
1201
1202   // The maximum field alignment overrides base align.
1203   if (!MaxFieldAlignment.isZero()) {
1204     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1205     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1206   }
1207
1208   if (!HasExternalLayout) {
1209     // Round up the current record size to the base's alignment boundary.
1210     Offset = getDataSize().alignTo(BaseAlign);
1211
1212     // Try to place the base.
1213     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1214       Offset += BaseAlign;
1215   } else {
1216     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1217     (void)Allowed;
1218     assert(Allowed && "Base subobject externally placed at overlapping offset");
1219
1220     if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
1221       // The externally-supplied base offset is before the base offset we
1222       // computed. Assume that the structure is packed.
1223       Alignment = CharUnits::One();
1224       InferAlignment = false;
1225     }
1226   }
1227
1228   if (!Base->Class->isEmpty()) {
1229     // Update the data size.
1230     setDataSize(Offset + Layout.getNonVirtualSize());
1231
1232     setSize(std::max(getSize(), getDataSize()));
1233   } else
1234     setSize(std::max(getSize(), Offset + Layout.getSize()));
1235
1236   // Remember max struct/class alignment.
1237   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1238
1239   return Offset;
1240 }
1241
1242 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1243   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1244     IsUnion = RD->isUnion();
1245     IsMsStruct = RD->isMsStruct(Context);
1246   }
1247
1248   Packed = D->hasAttr<PackedAttr>();
1249
1250   // Honor the default struct packing maximum alignment flag.
1251   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1252     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1253   }
1254
1255   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1256   // and forces all structures to have 2-byte alignment. The IBM docs on it
1257   // allude to additional (more complicated) semantics, especially with regard
1258   // to bit-fields, but gcc appears not to follow that.
1259   if (D->hasAttr<AlignMac68kAttr>()) {
1260     IsMac68kAlign = true;
1261     MaxFieldAlignment = CharUnits::fromQuantity(2);
1262     Alignment = CharUnits::fromQuantity(2);
1263   } else {
1264     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1265       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1266
1267     if (unsigned MaxAlign = D->getMaxAlignment())
1268       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1269   }
1270
1271   // If there is an external AST source, ask it for the various offsets.
1272   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1273     if (ExternalASTSource *Source = Context.getExternalSource()) {
1274       UseExternalLayout = Source->layoutRecordType(
1275           RD, External.Size, External.Align, External.FieldOffsets,
1276           External.BaseOffsets, External.VirtualBaseOffsets);
1277
1278       // Update based on external alignment.
1279       if (UseExternalLayout) {
1280         if (External.Align > 0) {
1281           Alignment = Context.toCharUnitsFromBits(External.Align);
1282         } else {
1283           // The external source didn't have alignment information; infer it.
1284           InferAlignment = true;
1285         }
1286       }
1287     }
1288 }
1289
1290 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1291   InitializeLayout(D);
1292   LayoutFields(D);
1293
1294   // Finally, round the size of the total struct up to the alignment of the
1295   // struct itself.
1296   FinishLayout(D);
1297 }
1298
1299 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1300   InitializeLayout(RD);
1301
1302   // Lay out the vtable and the non-virtual bases.
1303   LayoutNonVirtualBases(RD);
1304
1305   LayoutFields(RD);
1306
1307   NonVirtualSize = Context.toCharUnitsFromBits(
1308       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1309   NonVirtualAlignment = Alignment;
1310
1311   // Lay out the virtual bases and add the primary virtual base offsets.
1312   LayoutVirtualBases(RD, RD);
1313
1314   // Finally, round the size of the total struct up to the alignment
1315   // of the struct itself.
1316   FinishLayout(RD);
1317
1318 #ifndef NDEBUG
1319   // Check that we have base offsets for all bases.
1320   for (const CXXBaseSpecifier &Base : RD->bases()) {
1321     if (Base.isVirtual())
1322       continue;
1323
1324     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1325
1326     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1327   }
1328
1329   // And all virtual bases.
1330   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1331     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1332
1333     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1334   }
1335 #endif
1336 }
1337
1338 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1339   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1340     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1341
1342     UpdateAlignment(SL.getAlignment());
1343
1344     // We start laying out ivars not at the end of the superclass
1345     // structure, but at the next byte following the last field.
1346     setSize(SL.getDataSize());
1347     setDataSize(getSize());
1348   }
1349
1350   InitializeLayout(D);
1351   // Layout each ivar sequentially.
1352   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1353        IVD = IVD->getNextIvar())
1354     LayoutField(IVD, false);
1355
1356   // Finally, round the size of the total struct up to the alignment of the
1357   // struct itself.
1358   FinishLayout(D);
1359 }
1360
1361 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1362   // Layout each field, for now, just sequentially, respecting alignment.  In
1363   // the future, this will need to be tweakable by targets.
1364   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1365   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1366   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1367     auto Next(I);
1368     ++Next;
1369     LayoutField(*I,
1370                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1371   }
1372 }
1373
1374 // Rounds the specified size to have it a multiple of the char size.
1375 static uint64_t
1376 roundUpSizeToCharAlignment(uint64_t Size,
1377                            const ASTContext &Context) {
1378   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1379   return llvm::alignTo(Size, CharAlignment);
1380 }
1381
1382 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1383                                                     uint64_t TypeSize,
1384                                                     bool FieldPacked,
1385                                                     const FieldDecl *D) {
1386   assert(Context.getLangOpts().CPlusPlus &&
1387          "Can only have wide bit-fields in C++!");
1388
1389   // Itanium C++ ABI 2.4:
1390   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1391   //   sizeof(T')*8 <= n.
1392
1393   QualType IntegralPODTypes[] = {
1394     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1395     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1396   };
1397
1398   QualType Type;
1399   for (const QualType &QT : IntegralPODTypes) {
1400     uint64_t Size = Context.getTypeSize(QT);
1401
1402     if (Size > FieldSize)
1403       break;
1404
1405     Type = QT;
1406   }
1407   assert(!Type.isNull() && "Did not find a type!");
1408
1409   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1410
1411   // We're not going to use any of the unfilled bits in the last byte.
1412   UnfilledBitsInLastUnit = 0;
1413   LastBitfieldTypeSize = 0;
1414
1415   uint64_t FieldOffset;
1416   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1417
1418   if (IsUnion) {
1419     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1420                                                            Context);
1421     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1422     FieldOffset = 0;
1423   } else {
1424     // The bitfield is allocated starting at the next offset aligned
1425     // appropriately for T', with length n bits.
1426     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1427
1428     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1429
1430     setDataSize(
1431         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1432     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1433   }
1434
1435   // Place this field at the current location.
1436   FieldOffsets.push_back(FieldOffset);
1437
1438   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1439                     Context.toBits(TypeAlign), FieldPacked, D);
1440
1441   // Update the size.
1442   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1443
1444   // Remember max struct/class alignment.
1445   UpdateAlignment(TypeAlign);
1446 }
1447
1448 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1449   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1450   uint64_t FieldSize = D->getBitWidthValue(Context);
1451   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1452   uint64_t TypeSize = FieldInfo.Width;
1453   unsigned FieldAlign = FieldInfo.Align;
1454
1455   // UnfilledBitsInLastUnit is the difference between the end of the
1456   // last allocated bitfield (i.e. the first bit offset available for
1457   // bitfields) and the end of the current data size in bits (i.e. the
1458   // first bit offset available for non-bitfields).  The current data
1459   // size in bits is always a multiple of the char size; additionally,
1460   // for ms_struct records it's also a multiple of the
1461   // LastBitfieldTypeSize (if set).
1462
1463   // The struct-layout algorithm is dictated by the platform ABI,
1464   // which in principle could use almost any rules it likes.  In
1465   // practice, UNIXy targets tend to inherit the algorithm described
1466   // in the System V generic ABI.  The basic bitfield layout rule in
1467   // System V is to place bitfields at the next available bit offset
1468   // where the entire bitfield would fit in an aligned storage unit of
1469   // the declared type; it's okay if an earlier or later non-bitfield
1470   // is allocated in the same storage unit.  However, some targets
1471   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1472   // require this storage unit to be aligned, and therefore always put
1473   // the bitfield at the next available bit offset.
1474
1475   // ms_struct basically requests a complete replacement of the
1476   // platform ABI's struct-layout algorithm, with the high-level goal
1477   // of duplicating MSVC's layout.  For non-bitfields, this follows
1478   // the standard algorithm.  The basic bitfield layout rule is to
1479   // allocate an entire unit of the bitfield's declared type
1480   // (e.g. 'unsigned long'), then parcel it up among successive
1481   // bitfields whose declared types have the same size, making a new
1482   // unit as soon as the last can no longer store the whole value.
1483   // Since it completely replaces the platform ABI's algorithm,
1484   // settings like !useBitFieldTypeAlignment() do not apply.
1485
1486   // A zero-width bitfield forces the use of a new storage unit for
1487   // later bitfields.  In general, this occurs by rounding up the
1488   // current size of the struct as if the algorithm were about to
1489   // place a non-bitfield of the field's formal type.  Usually this
1490   // does not change the alignment of the struct itself, but it does
1491   // on some targets (those that useZeroLengthBitfieldAlignment(),
1492   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1493   // ignored unless they follow a non-zero-width bitfield.
1494
1495   // A field alignment restriction (e.g. from #pragma pack) or
1496   // specification (e.g. from __attribute__((aligned))) changes the
1497   // formal alignment of the field.  For System V, this alters the
1498   // required alignment of the notional storage unit that must contain
1499   // the bitfield.  For ms_struct, this only affects the placement of
1500   // new storage units.  In both cases, the effect of #pragma pack is
1501   // ignored on zero-width bitfields.
1502
1503   // On System V, a packed field (e.g. from #pragma pack or
1504   // __attribute__((packed))) always uses the next available bit
1505   // offset.
1506
1507   // In an ms_struct struct, the alignment of a fundamental type is
1508   // always equal to its size.  This is necessary in order to mimic
1509   // the i386 alignment rules on targets which might not fully align
1510   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1511
1512   // First, some simple bookkeeping to perform for ms_struct structs.
1513   if (IsMsStruct) {
1514     // The field alignment for integer types is always the size.
1515     FieldAlign = TypeSize;
1516
1517     // If the previous field was not a bitfield, or was a bitfield
1518     // with a different storage unit size, or if this field doesn't fit into
1519     // the current storage unit, we're done with that storage unit.
1520     if (LastBitfieldTypeSize != TypeSize ||
1521         UnfilledBitsInLastUnit < FieldSize) {
1522       // Also, ignore zero-length bitfields after non-bitfields.
1523       if (!LastBitfieldTypeSize && !FieldSize)
1524         FieldAlign = 1;
1525
1526       UnfilledBitsInLastUnit = 0;
1527       LastBitfieldTypeSize = 0;
1528     }
1529   }
1530
1531   // If the field is wider than its declared type, it follows
1532   // different rules in all cases.
1533   if (FieldSize > TypeSize) {
1534     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1535     return;
1536   }
1537
1538   // Compute the next available bit offset.
1539   uint64_t FieldOffset =
1540     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1541
1542   // Handle targets that don't honor bitfield type alignment.
1543   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1544     // Some such targets do honor it on zero-width bitfields.
1545     if (FieldSize == 0 &&
1546         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1547       // The alignment to round up to is the max of the field's natural
1548       // alignment and a target-specific fixed value (sometimes zero).
1549       unsigned ZeroLengthBitfieldBoundary =
1550         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1551       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1552
1553     // If that doesn't apply, just ignore the field alignment.
1554     } else {
1555       FieldAlign = 1;
1556     }
1557   }
1558
1559   // Remember the alignment we would have used if the field were not packed.
1560   unsigned UnpackedFieldAlign = FieldAlign;
1561
1562   // Ignore the field alignment if the field is packed unless it has zero-size.
1563   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1564     FieldAlign = 1;
1565
1566   // But, if there's an 'aligned' attribute on the field, honor that.
1567   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1568   if (ExplicitFieldAlign) {
1569     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1570     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1571   }
1572
1573   // But, if there's a #pragma pack in play, that takes precedent over
1574   // even the 'aligned' attribute, for non-zero-width bitfields.
1575   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1576   if (!MaxFieldAlignment.isZero() && FieldSize) {
1577     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1578     if (FieldPacked)
1579       FieldAlign = UnpackedFieldAlign;
1580     else
1581       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1582   }
1583
1584   // But, ms_struct just ignores all of that in unions, even explicit
1585   // alignment attributes.
1586   if (IsMsStruct && IsUnion) {
1587     FieldAlign = UnpackedFieldAlign = 1;
1588   }
1589
1590   // For purposes of diagnostics, we're going to simultaneously
1591   // compute the field offsets that we would have used if we weren't
1592   // adding any alignment padding or if the field weren't packed.
1593   uint64_t UnpaddedFieldOffset = FieldOffset;
1594   uint64_t UnpackedFieldOffset = FieldOffset;
1595
1596   // Check if we need to add padding to fit the bitfield within an
1597   // allocation unit with the right size and alignment.  The rules are
1598   // somewhat different here for ms_struct structs.
1599   if (IsMsStruct) {
1600     // If it's not a zero-width bitfield, and we can fit the bitfield
1601     // into the active storage unit (and we haven't already decided to
1602     // start a new storage unit), just do so, regardless of any other
1603     // other consideration.  Otherwise, round up to the right alignment.
1604     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1605       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1606       UnpackedFieldOffset =
1607           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1608       UnfilledBitsInLastUnit = 0;
1609     }
1610
1611   } else {
1612     // #pragma pack, with any value, suppresses the insertion of padding.
1613     bool AllowPadding = MaxFieldAlignment.isZero();
1614
1615     // Compute the real offset.
1616     if (FieldSize == 0 ||
1617         (AllowPadding &&
1618          (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1619       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1620     } else if (ExplicitFieldAlign &&
1621                (MaxFieldAlignmentInBits == 0 ||
1622                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1623                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1624       // TODO: figure it out what needs to be done on targets that don't honor
1625       // bit-field type alignment like ARM APCS ABI.
1626       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1627     }
1628
1629     // Repeat the computation for diagnostic purposes.
1630     if (FieldSize == 0 ||
1631         (AllowPadding &&
1632          (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1633       UnpackedFieldOffset =
1634           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1635     else if (ExplicitFieldAlign &&
1636              (MaxFieldAlignmentInBits == 0 ||
1637               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1638              Context.getTargetInfo().useExplicitBitFieldAlignment())
1639       UnpackedFieldOffset =
1640           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1641   }
1642
1643   // If we're using external layout, give the external layout a chance
1644   // to override this information.
1645   if (UseExternalLayout)
1646     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1647
1648   // Okay, place the bitfield at the calculated offset.
1649   FieldOffsets.push_back(FieldOffset);
1650
1651   // Bookkeeping:
1652
1653   // Anonymous members don't affect the overall record alignment,
1654   // except on targets where they do.
1655   if (!IsMsStruct &&
1656       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1657       !D->getIdentifier())
1658     FieldAlign = UnpackedFieldAlign = 1;
1659
1660   // Diagnose differences in layout due to padding or packing.
1661   if (!UseExternalLayout)
1662     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1663                       UnpackedFieldAlign, FieldPacked, D);
1664
1665   // Update DataSize to include the last byte containing (part of) the bitfield.
1666
1667   // For unions, this is just a max operation, as usual.
1668   if (IsUnion) {
1669     // For ms_struct, allocate the entire storage unit --- unless this
1670     // is a zero-width bitfield, in which case just use a size of 1.
1671     uint64_t RoundedFieldSize;
1672     if (IsMsStruct) {
1673       RoundedFieldSize =
1674         (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
1675
1676     // Otherwise, allocate just the number of bytes required to store
1677     // the bitfield.
1678     } else {
1679       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1680     }
1681     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1682
1683   // For non-zero-width bitfields in ms_struct structs, allocate a new
1684   // storage unit if necessary.
1685   } else if (IsMsStruct && FieldSize) {
1686     // We should have cleared UnfilledBitsInLastUnit in every case
1687     // where we changed storage units.
1688     if (!UnfilledBitsInLastUnit) {
1689       setDataSize(FieldOffset + TypeSize);
1690       UnfilledBitsInLastUnit = TypeSize;
1691     }
1692     UnfilledBitsInLastUnit -= FieldSize;
1693     LastBitfieldTypeSize = TypeSize;
1694
1695   // Otherwise, bump the data size up to include the bitfield,
1696   // including padding up to char alignment, and then remember how
1697   // bits we didn't use.
1698   } else {
1699     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1700     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1701     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1702     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1703
1704     // The only time we can get here for an ms_struct is if this is a
1705     // zero-width bitfield, which doesn't count as anything for the
1706     // purposes of unfilled bits.
1707     LastBitfieldTypeSize = 0;
1708   }
1709
1710   // Update the size.
1711   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1712
1713   // Remember max struct/class alignment.
1714   UnadjustedAlignment =
1715       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1716   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1717                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1718 }
1719
1720 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1721                                              bool InsertExtraPadding) {
1722   if (D->isBitField()) {
1723     LayoutBitField(D);
1724     return;
1725   }
1726
1727   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1728
1729   // Reset the unfilled bits.
1730   UnfilledBitsInLastUnit = 0;
1731   LastBitfieldTypeSize = 0;
1732
1733   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1734   CharUnits FieldOffset =
1735     IsUnion ? CharUnits::Zero() : getDataSize();
1736   CharUnits FieldSize;
1737   CharUnits FieldAlign;
1738
1739   if (D->getType()->isIncompleteArrayType()) {
1740     // This is a flexible array member; we can't directly
1741     // query getTypeInfo about these, so we figure it out here.
1742     // Flexible array members don't have any size, but they
1743     // have to be aligned appropriately for their element type.
1744     FieldSize = CharUnits::Zero();
1745     const ArrayType* ATy = Context.getAsArrayType(D->getType());
1746     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1747   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1748     unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1749     FieldSize =
1750       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1751     FieldAlign =
1752       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1753   } else {
1754     std::pair<CharUnits, CharUnits> FieldInfo =
1755       Context.getTypeInfoInChars(D->getType());
1756     FieldSize = FieldInfo.first;
1757     FieldAlign = FieldInfo.second;
1758
1759     if (IsMsStruct) {
1760       // If MS bitfield layout is required, figure out what type is being
1761       // laid out and align the field to the width of that type.
1762
1763       // Resolve all typedefs down to their base type and round up the field
1764       // alignment if necessary.
1765       QualType T = Context.getBaseElementType(D->getType());
1766       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1767         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1768
1769         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1770           assert(
1771               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1772               "Non PowerOf2 size in MSVC mode");
1773           // Base types with sizes that aren't a power of two don't work
1774           // with the layout rules for MS structs. This isn't an issue in
1775           // MSVC itself since there are no such base data types there.
1776           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1777           // Any structs involving that data type obviously can't be ABI
1778           // compatible with MSVC regardless of how it is laid out.
1779
1780           // Since ms_struct can be mass enabled (via a pragma or via the
1781           // -mms-bitfields command line parameter), this can trigger for
1782           // structs that don't actually need MSVC compatibility, so we
1783           // need to be able to sidestep the ms_struct layout for these types.
1784
1785           // Since the combination of -mms-bitfields together with structs
1786           // like max_align_t (which contains a long double) for mingw is
1787           // quite comon (and GCC handles it silently), just handle it
1788           // silently there. For other targets that have ms_struct enabled
1789           // (most probably via a pragma or attribute), trigger a diagnostic
1790           // that defaults to an error.
1791           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1792             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1793         }
1794         if (TypeSize > FieldAlign &&
1795             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1796           FieldAlign = TypeSize;
1797       }
1798     }
1799   }
1800
1801   // The align if the field is not packed. This is to check if the attribute
1802   // was unnecessary (-Wpacked).
1803   CharUnits UnpackedFieldAlign = FieldAlign;
1804   CharUnits UnpackedFieldOffset = FieldOffset;
1805
1806   if (FieldPacked)
1807     FieldAlign = CharUnits::One();
1808   CharUnits MaxAlignmentInChars =
1809     Context.toCharUnitsFromBits(D->getMaxAlignment());
1810   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1811   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1812
1813   // The maximum field alignment overrides the aligned attribute.
1814   if (!MaxFieldAlignment.isZero()) {
1815     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1816     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1817   }
1818
1819   // Round up the current record size to the field's alignment boundary.
1820   FieldOffset = FieldOffset.alignTo(FieldAlign);
1821   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1822
1823   if (UseExternalLayout) {
1824     FieldOffset = Context.toCharUnitsFromBits(
1825                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1826
1827     if (!IsUnion && EmptySubobjects) {
1828       // Record the fact that we're placing a field at this offset.
1829       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1830       (void)Allowed;
1831       assert(Allowed && "Externally-placed field cannot be placed here");
1832     }
1833   } else {
1834     if (!IsUnion && EmptySubobjects) {
1835       // Check if we can place the field at this offset.
1836       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1837         // We couldn't place the field at the offset. Try again at a new offset.
1838         FieldOffset += FieldAlign;
1839       }
1840     }
1841   }
1842
1843   // Place this field at the current location.
1844   FieldOffsets.push_back(Context.toBits(FieldOffset));
1845
1846   if (!UseExternalLayout)
1847     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1848                       Context.toBits(UnpackedFieldOffset),
1849                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1850
1851   if (InsertExtraPadding) {
1852     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1853     CharUnits ExtraSizeForAsan = ASanAlignment;
1854     if (FieldSize % ASanAlignment)
1855       ExtraSizeForAsan +=
1856           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1857     FieldSize += ExtraSizeForAsan;
1858   }
1859
1860   // Reserve space for this field.
1861   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1862   if (IsUnion)
1863     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1864   else
1865     setDataSize(FieldOffset + FieldSize);
1866
1867   // Update the size.
1868   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1869
1870   // Remember max struct/class alignment.
1871   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
1872   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1873 }
1874
1875 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1876   // In C++, records cannot be of size 0.
1877   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1878     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1879       // Compatibility with gcc requires a class (pod or non-pod)
1880       // which is not empty but of size 0; such as having fields of
1881       // array of zero-length, remains of Size 0
1882       if (RD->isEmpty())
1883         setSize(CharUnits::One());
1884     }
1885     else
1886       setSize(CharUnits::One());
1887   }
1888
1889   // Finally, round the size of the record up to the alignment of the
1890   // record itself.
1891   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1892   uint64_t UnpackedSizeInBits =
1893       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
1894   uint64_t RoundedSize =
1895       llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
1896
1897   if (UseExternalLayout) {
1898     // If we're inferring alignment, and the external size is smaller than
1899     // our size after we've rounded up to alignment, conservatively set the
1900     // alignment to 1.
1901     if (InferAlignment && External.Size < RoundedSize) {
1902       Alignment = CharUnits::One();
1903       InferAlignment = false;
1904     }
1905     setSize(External.Size);
1906     return;
1907   }
1908
1909   // Set the size to the final size.
1910   setSize(RoundedSize);
1911
1912   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1913   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1914     // Warn if padding was introduced to the struct/class/union.
1915     if (getSizeInBits() > UnpaddedSize) {
1916       unsigned PadSize = getSizeInBits() - UnpaddedSize;
1917       bool InBits = true;
1918       if (PadSize % CharBitNum == 0) {
1919         PadSize = PadSize / CharBitNum;
1920         InBits = false;
1921       }
1922       Diag(RD->getLocation(), diag::warn_padded_struct_size)
1923           << Context.getTypeDeclType(RD)
1924           << PadSize
1925           << (InBits ? 1 : 0); // (byte|bit)
1926     }
1927
1928     // Warn if we packed it unnecessarily, when the unpacked alignment is not
1929     // greater than the one after packing, the size in bits doesn't change and
1930     // the offset of each field is identical.
1931     if (Packed && UnpackedAlignment <= Alignment &&
1932         UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
1933       Diag(D->getLocation(), diag::warn_unnecessary_packed)
1934           << Context.getTypeDeclType(RD);
1935   }
1936 }
1937
1938 void ItaniumRecordLayoutBuilder::UpdateAlignment(
1939     CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
1940   // The alignment is not modified when using 'mac68k' alignment or when
1941   // we have an externally-supplied layout that also provides overall alignment.
1942   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1943     return;
1944
1945   if (NewAlignment > Alignment) {
1946     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1947            "Alignment not a power of 2");
1948     Alignment = NewAlignment;
1949   }
1950
1951   if (UnpackedNewAlignment > UnpackedAlignment) {
1952     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
1953            "Alignment not a power of 2");
1954     UnpackedAlignment = UnpackedNewAlignment;
1955   }
1956 }
1957
1958 uint64_t
1959 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1960                                                       uint64_t ComputedOffset) {
1961   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
1962
1963   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1964     // The externally-supplied field offset is before the field offset we
1965     // computed. Assume that the structure is packed.
1966     Alignment = CharUnits::One();
1967     InferAlignment = false;
1968   }
1969
1970   // Use the externally-supplied field offset.
1971   return ExternalFieldOffset;
1972 }
1973
1974 /// Get diagnostic %select index for tag kind for
1975 /// field padding diagnostic message.
1976 /// WARNING: Indexes apply to particular diagnostics only!
1977 ///
1978 /// \returns diagnostic %select index.
1979 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1980   switch (Tag) {
1981   case TTK_Struct: return 0;
1982   case TTK_Interface: return 1;
1983   case TTK_Class: return 2;
1984   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1985   }
1986 }
1987
1988 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
1989     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
1990     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
1991   // We let objc ivars without warning, objc interfaces generally are not used
1992   // for padding tricks.
1993   if (isa<ObjCIvarDecl>(D))
1994     return;
1995
1996   // Don't warn about structs created without a SourceLocation.  This can
1997   // be done by clients of the AST, such as codegen.
1998   if (D->getLocation().isInvalid())
1999     return;
2000
2001   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2002
2003   // Warn if padding was introduced to the struct/class.
2004   if (!IsUnion && Offset > UnpaddedOffset) {
2005     unsigned PadSize = Offset - UnpaddedOffset;
2006     bool InBits = true;
2007     if (PadSize % CharBitNum == 0) {
2008       PadSize = PadSize / CharBitNum;
2009       InBits = false;
2010     }
2011     if (D->getIdentifier())
2012       Diag(D->getLocation(), diag::warn_padded_struct_field)
2013           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2014           << Context.getTypeDeclType(D->getParent())
2015           << PadSize
2016           << (InBits ? 1 : 0) // (byte|bit)
2017           << D->getIdentifier();
2018     else
2019       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2020           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2021           << Context.getTypeDeclType(D->getParent())
2022           << PadSize
2023           << (InBits ? 1 : 0); // (byte|bit)
2024  }
2025  if (isPacked && Offset != UnpackedOffset) {
2026    HasPackedField = true;
2027  }
2028 }
2029
2030 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2031                                                const CXXRecordDecl *RD) {
2032   // If a class isn't polymorphic it doesn't have a key function.
2033   if (!RD->isPolymorphic())
2034     return nullptr;
2035
2036   // A class that is not externally visible doesn't have a key function. (Or
2037   // at least, there's no point to assigning a key function to such a class;
2038   // this doesn't affect the ABI.)
2039   if (!RD->isExternallyVisible())
2040     return nullptr;
2041
2042   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2043   // Same behavior as GCC.
2044   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2045   if (TSK == TSK_ImplicitInstantiation ||
2046       TSK == TSK_ExplicitInstantiationDeclaration ||
2047       TSK == TSK_ExplicitInstantiationDefinition)
2048     return nullptr;
2049
2050   bool allowInlineFunctions =
2051     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2052
2053   for (const CXXMethodDecl *MD : RD->methods()) {
2054     if (!MD->isVirtual())
2055       continue;
2056
2057     if (MD->isPure())
2058       continue;
2059
2060     // Ignore implicit member functions, they are always marked as inline, but
2061     // they don't have a body until they're defined.
2062     if (MD->isImplicit())
2063       continue;
2064
2065     if (MD->isInlineSpecified())
2066       continue;
2067
2068     if (MD->hasInlineBody())
2069       continue;
2070
2071     // Ignore inline deleted or defaulted functions.
2072     if (!MD->isUserProvided())
2073       continue;
2074
2075     // In certain ABIs, ignore functions with out-of-line inline definitions.
2076     if (!allowInlineFunctions) {
2077       const FunctionDecl *Def;
2078       if (MD->hasBody(Def) && Def->isInlineSpecified())
2079         continue;
2080     }
2081
2082     if (Context.getLangOpts().CUDA) {
2083       // While compiler may see key method in this TU, during CUDA
2084       // compilation we should ignore methods that are not accessible
2085       // on this side of compilation.
2086       if (Context.getLangOpts().CUDAIsDevice) {
2087         // In device mode ignore methods without __device__ attribute.
2088         if (!MD->hasAttr<CUDADeviceAttr>())
2089           continue;
2090       } else {
2091         // In host mode ignore __device__-only methods.
2092         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2093           continue;
2094       }
2095     }
2096
2097     // If the key function is dllimport but the class isn't, then the class has
2098     // no key function. The DLL that exports the key function won't export the
2099     // vtable in this case.
2100     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2101       return nullptr;
2102
2103     // We found it.
2104     return MD;
2105   }
2106
2107   return nullptr;
2108 }
2109
2110 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2111                                                    unsigned DiagID) {
2112   return Context.getDiagnostics().Report(Loc, DiagID);
2113 }
2114
2115 /// Does the target C++ ABI require us to skip over the tail-padding
2116 /// of the given class (considering it as a base class) when allocating
2117 /// objects?
2118 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2119   switch (ABI.getTailPaddingUseRules()) {
2120   case TargetCXXABI::AlwaysUseTailPadding:
2121     return false;
2122
2123   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2124     // FIXME: To the extent that this is meant to cover the Itanium ABI
2125     // rules, we should implement the restrictions about over-sized
2126     // bitfields:
2127     //
2128     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2129     //   In general, a type is considered a POD for the purposes of
2130     //   layout if it is a POD type (in the sense of ISO C++
2131     //   [basic.types]). However, a POD-struct or POD-union (in the
2132     //   sense of ISO C++ [class]) with a bitfield member whose
2133     //   declared width is wider than the declared type of the
2134     //   bitfield is not a POD for the purpose of layout.  Similarly,
2135     //   an array type is not a POD for the purpose of layout if the
2136     //   element type of the array is not a POD for the purpose of
2137     //   layout.
2138     //
2139     //   Where references to the ISO C++ are made in this paragraph,
2140     //   the Technical Corrigendum 1 version of the standard is
2141     //   intended.
2142     return RD->isPOD();
2143
2144   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2145     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2146     // but with a lot of abstraction penalty stripped off.  This does
2147     // assume that these properties are set correctly even in C++98
2148     // mode; fortunately, that is true because we want to assign
2149     // consistently semantics to the type-traits intrinsics (or at
2150     // least as many of them as possible).
2151     return RD->isTrivial() && RD->isCXX11StandardLayout();
2152   }
2153
2154   llvm_unreachable("bad tail-padding use kind");
2155 }
2156
2157 static bool isMsLayout(const ASTContext &Context) {
2158   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2159 }
2160
2161 // This section contains an implementation of struct layout that is, up to the
2162 // included tests, compatible with cl.exe (2013).  The layout produced is
2163 // significantly different than those produced by the Itanium ABI.  Here we note
2164 // the most important differences.
2165 //
2166 // * The alignment of bitfields in unions is ignored when computing the
2167 //   alignment of the union.
2168 // * The existence of zero-width bitfield that occurs after anything other than
2169 //   a non-zero length bitfield is ignored.
2170 // * There is no explicit primary base for the purposes of layout.  All bases
2171 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2172 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2173 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2174 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2175 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2176 //   placed after the lexicographically last non-virtual base.  This placement
2177 //   is always before fields but can be in the middle of the non-virtual bases
2178 //   due to the two-pass layout scheme for non-virtual-bases.
2179 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2180 //   the virtual base and is used in conjunction with virtual overrides during
2181 //   construction and destruction.  This is always a 4 byte value and is used as
2182 //   an alternative to constructor vtables.
2183 // * vtordisps are allocated in a block of memory with size and alignment equal
2184 //   to the alignment of the completed structure (before applying __declspec(
2185 //   align())).  The vtordisp always occur at the end of the allocation block,
2186 //   immediately prior to the virtual base.
2187 // * vfptrs are injected after all bases and fields have been laid out.  In
2188 //   order to guarantee proper alignment of all fields, the vfptr injection
2189 //   pushes all bases and fields back by the alignment imposed by those bases
2190 //   and fields.  This can potentially add a significant amount of padding.
2191 //   vfptrs are always injected at offset 0.
2192 // * vbptrs are injected after all bases and fields have been laid out.  In
2193 //   order to guarantee proper alignment of all fields, the vfptr injection
2194 //   pushes all bases and fields back by the alignment imposed by those bases
2195 //   and fields.  This can potentially add a significant amount of padding.
2196 //   vbptrs are injected immediately after the last non-virtual base as
2197 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2198 //   the vbptr is placed at the next properly aligned location.  Enough padding
2199 //   is added to guarantee a fit.
2200 // * The last zero sized non-virtual base can be placed at the end of the
2201 //   struct (potentially aliasing another object), or may alias with the first
2202 //   field, even if they are of the same type.
2203 // * The last zero size virtual base may be placed at the end of the struct
2204 //   potentially aliasing another object.
2205 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2206 //   between bases or vbases with specific properties.  The criteria for
2207 //   additional padding between two bases is that the first base is zero sized
2208 //   or ends with a zero sized subobject and the second base is zero sized or
2209 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2210 //   layout of the so the leading base is not always the first one declared).
2211 //   This rule does take into account fields that are not records, so padding
2212 //   will occur even if the last field is, e.g. an int. The padding added for
2213 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2214 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2215 // * There is no concept of non-virtual alignment, non-virtual alignment and
2216 //   alignment are always identical.
2217 // * There is a distinction between alignment and required alignment.
2218 //   __declspec(align) changes the required alignment of a struct.  This
2219 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2220 //   record inherits required alignment from all of its fields and bases.
2221 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2222 //   alignment instead of its required alignment.  This is the only known way
2223 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2224 //   this alignment is also immune to the effects of #pragma pack and can be
2225 //   used to create structures with large alignment under #pragma pack.
2226 //   However, because it does not impact required alignment, such a structure,
2227 //   when used as a field or base, will not be aligned if #pragma pack is
2228 //   still active at the time of use.
2229 //
2230 // Known incompatibilities:
2231 // * all: #pragma pack between fields in a record
2232 // * 2010 and back: If the last field in a record is a bitfield, every object
2233 //   laid out after the record will have extra padding inserted before it.  The
2234 //   extra padding will have size equal to the size of the storage class of the
2235 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2236 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2237 //   sized bitfield.
2238 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2239 //   greater due to __declspec(align()) then a second layout phase occurs after
2240 //   The locations of the vf and vb pointers are known.  This layout phase
2241 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2242 //   _every_ field getting padding put in front of it, potentially including the
2243 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2244 //   anything tries to read the vftbl.  The second layout phase also treats
2245 //   bitfields as separate entities and gives them each storage rather than
2246 //   packing them.  Additionally, because this phase appears to perform a
2247 //   (an unstable) sort on the members before laying them out and because merged
2248 //   bitfields have the same address, the bitfields end up in whatever order
2249 //   the sort left them in, a behavior we could never hope to replicate.
2250
2251 namespace {
2252 struct MicrosoftRecordLayoutBuilder {
2253   struct ElementInfo {
2254     CharUnits Size;
2255     CharUnits Alignment;
2256   };
2257   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2258   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2259 private:
2260   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2261   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2262 public:
2263   void layout(const RecordDecl *RD);
2264   void cxxLayout(const CXXRecordDecl *RD);
2265   /// Initializes size and alignment and honors some flags.
2266   void initializeLayout(const RecordDecl *RD);
2267   /// Initialized C++ layout, compute alignment and virtual alignment and
2268   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2269   /// laid out.
2270   void initializeCXXLayout(const CXXRecordDecl *RD);
2271   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2272   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2273                             const CXXRecordDecl *BaseDecl,
2274                             const ASTRecordLayout &BaseLayout,
2275                             const ASTRecordLayout *&PreviousBaseLayout);
2276   void injectVFPtr(const CXXRecordDecl *RD);
2277   void injectVBPtr(const CXXRecordDecl *RD);
2278   /// Lays out the fields of the record.  Also rounds size up to
2279   /// alignment.
2280   void layoutFields(const RecordDecl *RD);
2281   void layoutField(const FieldDecl *FD);
2282   void layoutBitField(const FieldDecl *FD);
2283   /// Lays out a single zero-width bit-field in the record and handles
2284   /// special cases associated with zero-width bit-fields.
2285   void layoutZeroWidthBitField(const FieldDecl *FD);
2286   void layoutVirtualBases(const CXXRecordDecl *RD);
2287   void finalizeLayout(const RecordDecl *RD);
2288   /// Gets the size and alignment of a base taking pragma pack and
2289   /// __declspec(align) into account.
2290   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2291   /// Gets the size and alignment of a field taking pragma  pack and
2292   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2293   /// side effect because it is most convenient to do so here.
2294   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2295   /// Places a field at an offset in CharUnits.
2296   void placeFieldAtOffset(CharUnits FieldOffset) {
2297     FieldOffsets.push_back(Context.toBits(FieldOffset));
2298   }
2299   /// Places a bitfield at a bit offset.
2300   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2301     FieldOffsets.push_back(FieldOffset);
2302   }
2303   /// Compute the set of virtual bases for which vtordisps are required.
2304   void computeVtorDispSet(
2305       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2306       const CXXRecordDecl *RD) const;
2307   const ASTContext &Context;
2308   /// The size of the record being laid out.
2309   CharUnits Size;
2310   /// The non-virtual size of the record layout.
2311   CharUnits NonVirtualSize;
2312   /// The data size of the record layout.
2313   CharUnits DataSize;
2314   /// The current alignment of the record layout.
2315   CharUnits Alignment;
2316   /// The maximum allowed field alignment. This is set by #pragma pack.
2317   CharUnits MaxFieldAlignment;
2318   /// The alignment that this record must obey.  This is imposed by
2319   /// __declspec(align()) on the record itself or one of its fields or bases.
2320   CharUnits RequiredAlignment;
2321   /// The size of the allocation of the currently active bitfield.
2322   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2323   /// is true.
2324   CharUnits CurrentBitfieldSize;
2325   /// Offset to the virtual base table pointer (if one exists).
2326   CharUnits VBPtrOffset;
2327   /// Minimum record size possible.
2328   CharUnits MinEmptyStructSize;
2329   /// The size and alignment info of a pointer.
2330   ElementInfo PointerInfo;
2331   /// The primary base class (if one exists).
2332   const CXXRecordDecl *PrimaryBase;
2333   /// The class we share our vb-pointer with.
2334   const CXXRecordDecl *SharedVBPtrBase;
2335   /// The collection of field offsets.
2336   SmallVector<uint64_t, 16> FieldOffsets;
2337   /// Base classes and their offsets in the record.
2338   BaseOffsetsMapTy Bases;
2339   /// virtual base classes and their offsets in the record.
2340   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2341   /// The number of remaining bits in our last bitfield allocation.
2342   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2343   /// true.
2344   unsigned RemainingBitsInField;
2345   bool IsUnion : 1;
2346   /// True if the last field laid out was a bitfield and was not 0
2347   /// width.
2348   bool LastFieldIsNonZeroWidthBitfield : 1;
2349   /// True if the class has its own vftable pointer.
2350   bool HasOwnVFPtr : 1;
2351   /// True if the class has a vbtable pointer.
2352   bool HasVBPtr : 1;
2353   /// True if the last sub-object within the type is zero sized or the
2354   /// object itself is zero sized.  This *does not* count members that are not
2355   /// records.  Only used for MS-ABI.
2356   bool EndsWithZeroSizedObject : 1;
2357   /// True if this class is zero sized or first base is zero sized or
2358   /// has this property.  Only used for MS-ABI.
2359   bool LeadsWithZeroSizedBase : 1;
2360
2361   /// True if the external AST source provided a layout for this record.
2362   bool UseExternalLayout : 1;
2363
2364   /// The layout provided by the external AST source. Only active if
2365   /// UseExternalLayout is true.
2366   ExternalLayout External;
2367 };
2368 } // namespace
2369
2370 MicrosoftRecordLayoutBuilder::ElementInfo
2371 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2372     const ASTRecordLayout &Layout) {
2373   ElementInfo Info;
2374   Info.Alignment = Layout.getAlignment();
2375   // Respect pragma pack.
2376   if (!MaxFieldAlignment.isZero())
2377     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2378   // Track zero-sized subobjects here where it's already available.
2379   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2380   // Respect required alignment, this is necessary because we may have adjusted
2381   // the alignment in the case of pragam pack.  Note that the required alignment
2382   // doesn't actually apply to the struct alignment at this point.
2383   Alignment = std::max(Alignment, Info.Alignment);
2384   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2385   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2386   Info.Size = Layout.getNonVirtualSize();
2387   return Info;
2388 }
2389
2390 MicrosoftRecordLayoutBuilder::ElementInfo
2391 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2392     const FieldDecl *FD) {
2393   // Get the alignment of the field type's natural alignment, ignore any
2394   // alignment attributes.
2395   ElementInfo Info;
2396   std::tie(Info.Size, Info.Alignment) =
2397       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2398   // Respect align attributes on the field.
2399   CharUnits FieldRequiredAlignment =
2400       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2401   // Respect align attributes on the type.
2402   if (Context.isAlignmentRequired(FD->getType()))
2403     FieldRequiredAlignment = std::max(
2404         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2405   // Respect attributes applied to subobjects of the field.
2406   if (FD->isBitField())
2407     // For some reason __declspec align impacts alignment rather than required
2408     // alignment when it is applied to bitfields.
2409     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2410   else {
2411     if (auto RT =
2412             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2413       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2414       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2415       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2416                                         Layout.getRequiredAlignment());
2417     }
2418     // Capture required alignment as a side-effect.
2419     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2420   }
2421   // Respect pragma pack, attribute pack and declspec align
2422   if (!MaxFieldAlignment.isZero())
2423     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2424   if (FD->hasAttr<PackedAttr>())
2425     Info.Alignment = CharUnits::One();
2426   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2427   return Info;
2428 }
2429
2430 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2431   // For C record layout, zero-sized records always have size 4.
2432   MinEmptyStructSize = CharUnits::fromQuantity(4);
2433   initializeLayout(RD);
2434   layoutFields(RD);
2435   DataSize = Size = Size.alignTo(Alignment);
2436   RequiredAlignment = std::max(
2437       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2438   finalizeLayout(RD);
2439 }
2440
2441 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2442   // The C++ standard says that empty structs have size 1.
2443   MinEmptyStructSize = CharUnits::One();
2444   initializeLayout(RD);
2445   initializeCXXLayout(RD);
2446   layoutNonVirtualBases(RD);
2447   layoutFields(RD);
2448   injectVBPtr(RD);
2449   injectVFPtr(RD);
2450   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2451     Alignment = std::max(Alignment, PointerInfo.Alignment);
2452   auto RoundingAlignment = Alignment;
2453   if (!MaxFieldAlignment.isZero())
2454     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2455   if (!UseExternalLayout)
2456     Size = Size.alignTo(RoundingAlignment);
2457   NonVirtualSize = Size;
2458   RequiredAlignment = std::max(
2459       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2460   layoutVirtualBases(RD);
2461   finalizeLayout(RD);
2462 }
2463
2464 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2465   IsUnion = RD->isUnion();
2466   Size = CharUnits::Zero();
2467   Alignment = CharUnits::One();
2468   // In 64-bit mode we always perform an alignment step after laying out vbases.
2469   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2470   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2471   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2472                           ? CharUnits::One()
2473                           : CharUnits::Zero();
2474   // Compute the maximum field alignment.
2475   MaxFieldAlignment = CharUnits::Zero();
2476   // Honor the default struct packing maximum alignment flag.
2477   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2478       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2479   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2480   // than the pointer size.
2481   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2482     unsigned PackedAlignment = MFAA->getAlignment();
2483     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2484       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2485   }
2486   // Packed attribute forces max field alignment to be 1.
2487   if (RD->hasAttr<PackedAttr>())
2488     MaxFieldAlignment = CharUnits::One();
2489
2490   // Try to respect the external layout if present.
2491   UseExternalLayout = false;
2492   if (ExternalASTSource *Source = Context.getExternalSource())
2493     UseExternalLayout = Source->layoutRecordType(
2494         RD, External.Size, External.Align, External.FieldOffsets,
2495         External.BaseOffsets, External.VirtualBaseOffsets);
2496 }
2497
2498 void
2499 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2500   EndsWithZeroSizedObject = false;
2501   LeadsWithZeroSizedBase = false;
2502   HasOwnVFPtr = false;
2503   HasVBPtr = false;
2504   PrimaryBase = nullptr;
2505   SharedVBPtrBase = nullptr;
2506   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2507   // injection.
2508   PointerInfo.Size =
2509       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2510   PointerInfo.Alignment =
2511       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2512   // Respect pragma pack.
2513   if (!MaxFieldAlignment.isZero())
2514     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2515 }
2516
2517 void
2518 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2519   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2520   // out any bases that do not contain vfptrs.  We implement this as two passes
2521   // over the bases.  This approach guarantees that the primary base is laid out
2522   // first.  We use these passes to calculate some additional aggregated
2523   // information about the bases, such as required alignment and the presence of
2524   // zero sized members.
2525   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2526   // Iterate through the bases and lay out the non-virtual ones.
2527   for (const CXXBaseSpecifier &Base : RD->bases()) {
2528     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2529     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2530     // Mark and skip virtual bases.
2531     if (Base.isVirtual()) {
2532       HasVBPtr = true;
2533       continue;
2534     }
2535     // Check for a base to share a VBPtr with.
2536     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2537       SharedVBPtrBase = BaseDecl;
2538       HasVBPtr = true;
2539     }
2540     // Only lay out bases with extendable VFPtrs on the first pass.
2541     if (!BaseLayout.hasExtendableVFPtr())
2542       continue;
2543     // If we don't have a primary base, this one qualifies.
2544     if (!PrimaryBase) {
2545       PrimaryBase = BaseDecl;
2546       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2547     }
2548     // Lay out the base.
2549     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2550   }
2551   // Figure out if we need a fresh VFPtr for this class.
2552   if (!PrimaryBase && RD->isDynamicClass())
2553     for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2554                                         e = RD->method_end();
2555          !HasOwnVFPtr && i != e; ++i)
2556       HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2557   // If we don't have a primary base then we have a leading object that could
2558   // itself lead with a zero-sized object, something we track.
2559   bool CheckLeadingLayout = !PrimaryBase;
2560   // Iterate through the bases and lay out the non-virtual ones.
2561   for (const CXXBaseSpecifier &Base : RD->bases()) {
2562     if (Base.isVirtual())
2563       continue;
2564     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2565     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2566     // Only lay out bases without extendable VFPtrs on the second pass.
2567     if (BaseLayout.hasExtendableVFPtr()) {
2568       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2569       continue;
2570     }
2571     // If this is the first layout, check to see if it leads with a zero sized
2572     // object.  If it does, so do we.
2573     if (CheckLeadingLayout) {
2574       CheckLeadingLayout = false;
2575       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2576     }
2577     // Lay out the base.
2578     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2579     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2580   }
2581   // Set our VBPtroffset if we know it at this point.
2582   if (!HasVBPtr)
2583     VBPtrOffset = CharUnits::fromQuantity(-1);
2584   else if (SharedVBPtrBase) {
2585     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2586     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2587   }
2588 }
2589
2590 static bool recordUsesEBO(const RecordDecl *RD) {
2591   if (!isa<CXXRecordDecl>(RD))
2592     return false;
2593   if (RD->hasAttr<EmptyBasesAttr>())
2594     return true;
2595   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2596     // TODO: Double check with the next version of MSVC.
2597     if (LVA->getVersion() <= LangOptions::MSVC2015)
2598       return false;
2599   // TODO: Some later version of MSVC will change the default behavior of the
2600   // compiler to enable EBO by default.  When this happens, we will need an
2601   // additional isCompatibleWithMSVC check.
2602   return false;
2603 }
2604
2605 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2606     const CXXRecordDecl *RD,
2607     const CXXRecordDecl *BaseDecl,
2608     const ASTRecordLayout &BaseLayout,
2609     const ASTRecordLayout *&PreviousBaseLayout) {
2610   // Insert padding between two bases if the left first one is zero sized or
2611   // contains a zero sized subobject and the right is zero sized or one leads
2612   // with a zero sized base.
2613   bool MDCUsesEBO = recordUsesEBO(RD);
2614   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2615       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2616     Size++;
2617   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2618   CharUnits BaseOffset;
2619
2620   // Respect the external AST source base offset, if present.
2621   bool FoundBase = false;
2622   if (UseExternalLayout) {
2623     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2624     if (FoundBase) {
2625       assert(BaseOffset >= Size && "base offset already allocated");
2626       Size = BaseOffset;
2627     }
2628   }
2629
2630   if (!FoundBase) {
2631     if (MDCUsesEBO && BaseDecl->isEmpty()) {
2632       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2633       BaseOffset = CharUnits::Zero();
2634     } else {
2635       // Otherwise, lay the base out at the end of the MDC.
2636       BaseOffset = Size = Size.alignTo(Info.Alignment);
2637     }
2638   }
2639   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2640   Size += BaseLayout.getNonVirtualSize();
2641   PreviousBaseLayout = &BaseLayout;
2642 }
2643
2644 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2645   LastFieldIsNonZeroWidthBitfield = false;
2646   for (const FieldDecl *Field : RD->fields())
2647     layoutField(Field);
2648 }
2649
2650 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2651   if (FD->isBitField()) {
2652     layoutBitField(FD);
2653     return;
2654   }
2655   LastFieldIsNonZeroWidthBitfield = false;
2656   ElementInfo Info = getAdjustedElementInfo(FD);
2657   Alignment = std::max(Alignment, Info.Alignment);
2658   CharUnits FieldOffset;
2659   if (UseExternalLayout)
2660     FieldOffset =
2661         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2662   else if (IsUnion)
2663     FieldOffset = CharUnits::Zero();
2664   else
2665     FieldOffset = Size.alignTo(Info.Alignment);
2666   placeFieldAtOffset(FieldOffset);
2667   Size = std::max(Size, FieldOffset + Info.Size);
2668 }
2669
2670 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2671   unsigned Width = FD->getBitWidthValue(Context);
2672   if (Width == 0) {
2673     layoutZeroWidthBitField(FD);
2674     return;
2675   }
2676   ElementInfo Info = getAdjustedElementInfo(FD);
2677   // Clamp the bitfield to a containable size for the sake of being able
2678   // to lay them out.  Sema will throw an error.
2679   if (Width > Context.toBits(Info.Size))
2680     Width = Context.toBits(Info.Size);
2681   // Check to see if this bitfield fits into an existing allocation.  Note:
2682   // MSVC refuses to pack bitfields of formal types with different sizes
2683   // into the same allocation.
2684   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2685       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2686     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2687     RemainingBitsInField -= Width;
2688     return;
2689   }
2690   LastFieldIsNonZeroWidthBitfield = true;
2691   CurrentBitfieldSize = Info.Size;
2692   if (UseExternalLayout) {
2693     auto FieldBitOffset = External.getExternalFieldOffset(FD);
2694     placeFieldAtBitOffset(FieldBitOffset);
2695     auto NewSize = Context.toCharUnitsFromBits(
2696         llvm::alignTo(FieldBitOffset + Width, Context.getCharWidth()));
2697     Size = std::max(Size, NewSize);
2698     Alignment = std::max(Alignment, Info.Alignment);
2699   } else if (IsUnion) {
2700     placeFieldAtOffset(CharUnits::Zero());
2701     Size = std::max(Size, Info.Size);
2702     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2703   } else {
2704     // Allocate a new block of memory and place the bitfield in it.
2705     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2706     placeFieldAtOffset(FieldOffset);
2707     Size = FieldOffset + Info.Size;
2708     Alignment = std::max(Alignment, Info.Alignment);
2709     RemainingBitsInField = Context.toBits(Info.Size) - Width;
2710   }
2711 }
2712
2713 void
2714 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2715   // Zero-width bitfields are ignored unless they follow a non-zero-width
2716   // bitfield.
2717   if (!LastFieldIsNonZeroWidthBitfield) {
2718     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2719     // TODO: Add a Sema warning that MS ignores alignment for zero
2720     // sized bitfields that occur after zero-size bitfields or non-bitfields.
2721     return;
2722   }
2723   LastFieldIsNonZeroWidthBitfield = false;
2724   ElementInfo Info = getAdjustedElementInfo(FD);
2725   if (IsUnion) {
2726     placeFieldAtOffset(CharUnits::Zero());
2727     Size = std::max(Size, Info.Size);
2728     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2729   } else {
2730     // Round up the current record size to the field's alignment boundary.
2731     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2732     placeFieldAtOffset(FieldOffset);
2733     Size = FieldOffset;
2734     Alignment = std::max(Alignment, Info.Alignment);
2735   }
2736 }
2737
2738 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2739   if (!HasVBPtr || SharedVBPtrBase)
2740     return;
2741   // Inject the VBPointer at the injection site.
2742   CharUnits InjectionSite = VBPtrOffset;
2743   // But before we do, make sure it's properly aligned.
2744   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2745   // Shift everything after the vbptr down, unless we're using an external
2746   // layout.
2747   if (UseExternalLayout)
2748     return;
2749   // Determine where the first field should be laid out after the vbptr.
2750   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2751   // Make sure that the amount we push the fields back by is a multiple of the
2752   // alignment.
2753   CharUnits Offset = (FieldStart - InjectionSite)
2754                          .alignTo(std::max(RequiredAlignment, Alignment));
2755   Size += Offset;
2756   for (uint64_t &FieldOffset : FieldOffsets)
2757     FieldOffset += Context.toBits(Offset);
2758   for (BaseOffsetsMapTy::value_type &Base : Bases)
2759     if (Base.second >= InjectionSite)
2760       Base.second += Offset;
2761 }
2762
2763 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2764   if (!HasOwnVFPtr)
2765     return;
2766   // Make sure that the amount we push the struct back by is a multiple of the
2767   // alignment.
2768   CharUnits Offset =
2769       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2770   // Push back the vbptr, but increase the size of the object and push back
2771   // regular fields by the offset only if not using external record layout.
2772   if (HasVBPtr)
2773     VBPtrOffset += Offset;
2774
2775   if (UseExternalLayout)
2776     return;
2777
2778   Size += Offset;
2779
2780   // If we're using an external layout, the fields offsets have already
2781   // accounted for this adjustment.
2782   for (uint64_t &FieldOffset : FieldOffsets)
2783     FieldOffset += Context.toBits(Offset);
2784   for (BaseOffsetsMapTy::value_type &Base : Bases)
2785     Base.second += Offset;
2786 }
2787
2788 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2789   if (!HasVBPtr)
2790     return;
2791   // Vtordisps are always 4 bytes (even in 64-bit mode)
2792   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2793   CharUnits VtorDispAlignment = VtorDispSize;
2794   // vtordisps respect pragma pack.
2795   if (!MaxFieldAlignment.isZero())
2796     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2797   // The alignment of the vtordisp is at least the required alignment of the
2798   // entire record.  This requirement may be present to support vtordisp
2799   // injection.
2800   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2801     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2802     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2803     RequiredAlignment =
2804         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2805   }
2806   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2807   // Compute the vtordisp set.
2808   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2809   computeVtorDispSet(HasVtorDispSet, RD);
2810   // Iterate through the virtual bases and lay them out.
2811   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2812   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2813     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2814     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2815     bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2816     // Insert padding between two bases if the left first one is zero sized or
2817     // contains a zero sized subobject and the right is zero sized or one leads
2818     // with a zero sized base.  The padding between virtual bases is 4
2819     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2820     // the required alignment, we don't know why.
2821     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2822          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
2823         HasVtordisp) {
2824       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
2825       Alignment = std::max(VtorDispAlignment, Alignment);
2826     }
2827     // Insert the virtual base.
2828     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2829     CharUnits BaseOffset;
2830
2831     // Respect the external AST source base offset, if present.
2832     bool FoundBase = false;
2833     if (UseExternalLayout) {
2834       FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
2835       if (FoundBase)
2836         assert(BaseOffset >= Size && "base offset already allocated");
2837     }
2838     if (!FoundBase)
2839       BaseOffset = Size.alignTo(Info.Alignment);
2840
2841     VBases.insert(std::make_pair(BaseDecl,
2842         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2843     Size = BaseOffset + BaseLayout.getNonVirtualSize();
2844     PreviousBaseLayout = &BaseLayout;
2845   }
2846 }
2847
2848 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2849   // Respect required alignment.  Note that in 32-bit mode Required alignment
2850   // may be 0 and cause size not to be updated.
2851   DataSize = Size;
2852   if (!RequiredAlignment.isZero()) {
2853     Alignment = std::max(Alignment, RequiredAlignment);
2854     auto RoundingAlignment = Alignment;
2855     if (!MaxFieldAlignment.isZero())
2856       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2857     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2858     Size = Size.alignTo(RoundingAlignment);
2859   }
2860   if (Size.isZero()) {
2861     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
2862       EndsWithZeroSizedObject = true;
2863       LeadsWithZeroSizedBase = true;
2864     }
2865     // Zero-sized structures have size equal to their alignment if a
2866     // __declspec(align) came into play.
2867     if (RequiredAlignment >= MinEmptyStructSize)
2868       Size = Alignment;
2869     else
2870       Size = MinEmptyStructSize;
2871   }
2872
2873   if (UseExternalLayout) {
2874     Size = Context.toCharUnitsFromBits(External.Size);
2875     if (External.Align)
2876       Alignment = Context.toCharUnitsFromBits(External.Align);
2877   }
2878 }
2879
2880 // Recursively walks the non-virtual bases of a class and determines if any of
2881 // them are in the bases with overridden methods set.
2882 static bool
2883 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2884                      BasesWithOverriddenMethods,
2885                  const CXXRecordDecl *RD) {
2886   if (BasesWithOverriddenMethods.count(RD))
2887     return true;
2888   // If any of a virtual bases non-virtual bases (recursively) requires a
2889   // vtordisp than so does this virtual base.
2890   for (const CXXBaseSpecifier &Base : RD->bases())
2891     if (!Base.isVirtual() &&
2892         RequiresVtordisp(BasesWithOverriddenMethods,
2893                          Base.getType()->getAsCXXRecordDecl()))
2894       return true;
2895   return false;
2896 }
2897
2898 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2899     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2900     const CXXRecordDecl *RD) const {
2901   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2902   // vftables.
2903   if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2904     for (const CXXBaseSpecifier &Base : RD->vbases()) {
2905       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2906       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2907       if (Layout.hasExtendableVFPtr())
2908         HasVtordispSet.insert(BaseDecl);
2909     }
2910     return;
2911   }
2912
2913   // If any of our bases need a vtordisp for this type, so do we.  Check our
2914   // direct bases for vtordisp requirements.
2915   for (const CXXBaseSpecifier &Base : RD->bases()) {
2916     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2917     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2918     for (const auto &bi : Layout.getVBaseOffsetsMap())
2919       if (bi.second.hasVtorDisp())
2920         HasVtordispSet.insert(bi.first);
2921   }
2922   // We don't introduce any additional vtordisps if either:
2923   // * A user declared constructor or destructor aren't declared.
2924   // * #pragma vtordisp(0) or the /vd0 flag are in use.
2925   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2926       RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2927     return;
2928   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2929   // possible for a partially constructed object with virtual base overrides to
2930   // escape a non-trivial constructor.
2931   assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2932   // Compute a set of base classes which define methods we override.  A virtual
2933   // base in this set will require a vtordisp.  A virtual base that transitively
2934   // contains one of these bases as a non-virtual base will also require a
2935   // vtordisp.
2936   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2937   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2938   // Seed the working set with our non-destructor, non-pure virtual methods.
2939   for (const CXXMethodDecl *MD : RD->methods())
2940     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2941       Work.insert(MD);
2942   while (!Work.empty()) {
2943     const CXXMethodDecl *MD = *Work.begin();
2944     auto MethodRange = MD->overridden_methods();
2945     // If a virtual method has no-overrides it lives in its parent's vtable.
2946     if (MethodRange.begin() == MethodRange.end())
2947       BasesWithOverriddenMethods.insert(MD->getParent());
2948     else
2949       Work.insert(MethodRange.begin(), MethodRange.end());
2950     // We've finished processing this element, remove it from the working set.
2951     Work.erase(MD);
2952   }
2953   // For each of our virtual bases, check if it is in the set of overridden
2954   // bases or if it transitively contains a non-virtual base that is.
2955   for (const CXXBaseSpecifier &Base : RD->vbases()) {
2956     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2957     if (!HasVtordispSet.count(BaseDecl) &&
2958         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2959       HasVtordispSet.insert(BaseDecl);
2960   }
2961 }
2962
2963 /// getASTRecordLayout - Get or compute information about the layout of the
2964 /// specified record (struct/union/class), which indicates its size and field
2965 /// position information.
2966 const ASTRecordLayout &
2967 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2968   // These asserts test different things.  A record has a definition
2969   // as soon as we begin to parse the definition.  That definition is
2970   // not a complete definition (which is what isDefinition() tests)
2971   // until we *finish* parsing the definition.
2972
2973   if (D->hasExternalLexicalStorage() && !D->getDefinition())
2974     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2975
2976   D = D->getDefinition();
2977   assert(D && "Cannot get layout of forward declarations!");
2978   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2979   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2980
2981   // Look up this layout, if already laid out, return what we have.
2982   // Note that we can't save a reference to the entry because this function
2983   // is recursive.
2984   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2985   if (Entry) return *Entry;
2986
2987   const ASTRecordLayout *NewEntry = nullptr;
2988
2989   if (isMsLayout(*this)) {
2990     MicrosoftRecordLayoutBuilder Builder(*this);
2991     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2992       Builder.cxxLayout(RD);
2993       NewEntry = new (*this) ASTRecordLayout(
2994           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
2995           Builder.RequiredAlignment,
2996           Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
2997           Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
2998           Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
2999           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3000           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3001           Builder.Bases, Builder.VBases);
3002     } else {
3003       Builder.layout(D);
3004       NewEntry = new (*this) ASTRecordLayout(
3005           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3006           Builder.RequiredAlignment,
3007           Builder.Size, Builder.FieldOffsets);
3008     }
3009   } else {
3010     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3011       EmptySubobjectMap EmptySubobjects(*this, RD);
3012       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3013       Builder.Layout(RD);
3014
3015       // In certain situations, we are allowed to lay out objects in the
3016       // tail-padding of base classes.  This is ABI-dependent.
3017       // FIXME: this should be stored in the record layout.
3018       bool skipTailPadding =
3019           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3020
3021       // FIXME: This should be done in FinalizeLayout.
3022       CharUnits DataSize =
3023           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3024       CharUnits NonVirtualSize =
3025           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3026       NewEntry = new (*this) ASTRecordLayout(
3027           *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
3028           /*RequiredAlignment : used by MS-ABI)*/
3029           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3030           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3031           NonVirtualSize, Builder.NonVirtualAlignment,
3032           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3033           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3034           Builder.VBases);
3035     } else {
3036       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3037       Builder.Layout(D);
3038
3039       NewEntry = new (*this) ASTRecordLayout(
3040           *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
3041           /*RequiredAlignment : used by MS-ABI)*/
3042           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3043     }
3044   }
3045
3046   ASTRecordLayouts[D] = NewEntry;
3047
3048   if (getLangOpts().DumpRecordLayouts) {
3049     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3050     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3051   }
3052
3053   return *NewEntry;
3054 }
3055
3056 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3057   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3058     return nullptr;
3059
3060   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3061   RD = RD->getDefinition();
3062
3063   // Beware:
3064   //  1) computing the key function might trigger deserialization, which might
3065   //     invalidate iterators into KeyFunctions
3066   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3067   //     invalidate the LazyDeclPtr within the map itself
3068   LazyDeclPtr Entry = KeyFunctions[RD];
3069   const Decl *Result =
3070       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3071
3072   // Store it back if it changed.
3073   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3074     KeyFunctions[RD] = const_cast<Decl*>(Result);
3075
3076   return cast_or_null<CXXMethodDecl>(Result);
3077 }
3078
3079 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3080   assert(Method == Method->getFirstDecl() &&
3081          "not working with method declaration from class definition");
3082
3083   // Look up the cache entry.  Since we're working with the first
3084   // declaration, its parent must be the class definition, which is
3085   // the correct key for the KeyFunctions hash.
3086   const auto &Map = KeyFunctions;
3087   auto I = Map.find(Method->getParent());
3088
3089   // If it's not cached, there's nothing to do.
3090   if (I == Map.end()) return;
3091
3092   // If it is cached, check whether it's the target method, and if so,
3093   // remove it from the cache. Note, the call to 'get' might invalidate
3094   // the iterator and the LazyDeclPtr object within the map.
3095   LazyDeclPtr Ptr = I->second;
3096   if (Ptr.get(getExternalSource()) == Method) {
3097     // FIXME: remember that we did this for module / chained PCH state?
3098     KeyFunctions.erase(Method->getParent());
3099   }
3100 }
3101
3102 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3103   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3104   return Layout.getFieldOffset(FD->getFieldIndex());
3105 }
3106
3107 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3108   uint64_t OffsetInBits;
3109   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3110     OffsetInBits = ::getFieldOffset(*this, FD);
3111   } else {
3112     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3113
3114     OffsetInBits = 0;
3115     for (const NamedDecl *ND : IFD->chain())
3116       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3117   }
3118
3119   return OffsetInBits;
3120 }
3121
3122 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3123                                           const ObjCImplementationDecl *ID,
3124                                           const ObjCIvarDecl *Ivar) const {
3125   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3126
3127   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3128   // in here; it should never be necessary because that should be the lexical
3129   // decl context for the ivar.
3130
3131   // If we know have an implementation (and the ivar is in it) then
3132   // look up in the implementation layout.
3133   const ASTRecordLayout *RL;
3134   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3135     RL = &getASTObjCImplementationLayout(ID);
3136   else
3137     RL = &getASTObjCInterfaceLayout(Container);
3138
3139   // Compute field index.
3140   //
3141   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3142   // implemented. This should be fixed to get the information from the layout
3143   // directly.
3144   unsigned Index = 0;
3145
3146   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3147        IVD; IVD = IVD->getNextIvar()) {
3148     if (Ivar == IVD)
3149       break;
3150     ++Index;
3151   }
3152   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3153
3154   return RL->getFieldOffset(Index);
3155 }
3156
3157 /// getObjCLayout - Get or compute information about the layout of the
3158 /// given interface.
3159 ///
3160 /// \param Impl - If given, also include the layout of the interface's
3161 /// implementation. This may differ by including synthesized ivars.
3162 const ASTRecordLayout &
3163 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3164                           const ObjCImplementationDecl *Impl) const {
3165   // Retrieve the definition
3166   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3167     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3168   D = D->getDefinition();
3169   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
3170
3171   // Look up this layout, if already laid out, return what we have.
3172   const ObjCContainerDecl *Key =
3173     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3174   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3175     return *Entry;
3176
3177   // Add in synthesized ivar count if laying out an implementation.
3178   if (Impl) {
3179     unsigned SynthCount = CountNonClassIvars(D);
3180     // If there aren't any synthesized ivars then reuse the interface
3181     // entry. Note we can't cache this because we simply free all
3182     // entries later; however we shouldn't look up implementations
3183     // frequently.
3184     if (SynthCount == 0)
3185       return getObjCLayout(D, nullptr);
3186   }
3187
3188   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3189   Builder.Layout(D);
3190
3191   const ASTRecordLayout *NewEntry =
3192     new (*this) ASTRecordLayout(*this, Builder.getSize(),
3193                                 Builder.Alignment,
3194                                 Builder.UnadjustedAlignment,
3195                                 /*RequiredAlignment : used by MS-ABI)*/
3196                                 Builder.Alignment,
3197                                 Builder.getDataSize(),
3198                                 Builder.FieldOffsets);
3199
3200   ObjCLayouts[Key] = NewEntry;
3201
3202   return *NewEntry;
3203 }
3204
3205 static void PrintOffset(raw_ostream &OS,
3206                         CharUnits Offset, unsigned IndentLevel) {
3207   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3208   OS.indent(IndentLevel * 2);
3209 }
3210
3211 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3212                                 unsigned Begin, unsigned Width,
3213                                 unsigned IndentLevel) {
3214   llvm::SmallString<10> Buffer;
3215   {
3216     llvm::raw_svector_ostream BufferOS(Buffer);
3217     BufferOS << Offset.getQuantity() << ':';
3218     if (Width == 0) {
3219       BufferOS << '-';
3220     } else {
3221       BufferOS << Begin << '-' << (Begin + Width - 1);
3222     }
3223   }
3224
3225   OS << llvm::right_justify(Buffer, 10) << " | ";
3226   OS.indent(IndentLevel * 2);
3227 }
3228
3229 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3230   OS << "           | ";
3231   OS.indent(IndentLevel * 2);
3232 }
3233
3234 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3235                              const ASTContext &C,
3236                              CharUnits Offset,
3237                              unsigned IndentLevel,
3238                              const char* Description,
3239                              bool PrintSizeInfo,
3240                              bool IncludeVirtualBases) {
3241   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3242   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3243
3244   PrintOffset(OS, Offset, IndentLevel);
3245   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3246   if (Description)
3247     OS << ' ' << Description;
3248   if (CXXRD && CXXRD->isEmpty())
3249     OS << " (empty)";
3250   OS << '\n';
3251
3252   IndentLevel++;
3253
3254   // Dump bases.
3255   if (CXXRD) {
3256     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3257     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3258     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3259
3260     // Vtable pointer.
3261     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3262       PrintOffset(OS, Offset, IndentLevel);
3263       OS << '(' << *RD << " vtable pointer)\n";
3264     } else if (HasOwnVFPtr) {
3265       PrintOffset(OS, Offset, IndentLevel);
3266       // vfptr (for Microsoft C++ ABI)
3267       OS << '(' << *RD << " vftable pointer)\n";
3268     }
3269
3270     // Collect nvbases.
3271     SmallVector<const CXXRecordDecl *, 4> Bases;
3272     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3273       assert(!Base.getType()->isDependentType() &&
3274              "Cannot layout class with dependent bases.");
3275       if (!Base.isVirtual())
3276         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3277     }
3278
3279     // Sort nvbases by offset.
3280     std::stable_sort(Bases.begin(), Bases.end(),
3281                      [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3282       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3283     });
3284
3285     // Dump (non-virtual) bases
3286     for (const CXXRecordDecl *Base : Bases) {
3287       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3288       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3289                        Base == PrimaryBase ? "(primary base)" : "(base)",
3290                        /*PrintSizeInfo=*/false,
3291                        /*IncludeVirtualBases=*/false);
3292     }
3293
3294     // vbptr (for Microsoft C++ ABI)
3295     if (HasOwnVBPtr) {
3296       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3297       OS << '(' << *RD << " vbtable pointer)\n";
3298     }
3299   }
3300
3301   // Dump fields.
3302   uint64_t FieldNo = 0;
3303   for (RecordDecl::field_iterator I = RD->field_begin(),
3304          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3305     const FieldDecl &Field = **I;
3306     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3307     CharUnits FieldOffset =
3308       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3309
3310     // Recursively dump fields of record type.
3311     if (auto RT = Field.getType()->getAs<RecordType>()) {
3312       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3313                        Field.getName().data(),
3314                        /*PrintSizeInfo=*/false,
3315                        /*IncludeVirtualBases=*/true);
3316       continue;
3317     }
3318
3319     if (Field.isBitField()) {
3320       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3321       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3322       unsigned Width = Field.getBitWidthValue(C);
3323       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3324     } else {
3325       PrintOffset(OS, FieldOffset, IndentLevel);
3326     }
3327     OS << Field.getType().getAsString() << ' ' << Field << '\n';
3328   }
3329
3330   // Dump virtual bases.
3331   if (CXXRD && IncludeVirtualBases) {
3332     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3333       Layout.getVBaseOffsetsMap();
3334
3335     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3336       assert(Base.isVirtual() && "Found non-virtual class!");
3337       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3338
3339       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3340
3341       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3342         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3343         OS << "(vtordisp for vbase " << *VBase << ")\n";
3344       }
3345
3346       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3347                        VBase == Layout.getPrimaryBase() ?
3348                          "(primary virtual base)" : "(virtual base)",
3349                        /*PrintSizeInfo=*/false,
3350                        /*IncludeVirtualBases=*/false);
3351     }
3352   }
3353
3354   if (!PrintSizeInfo) return;
3355
3356   PrintIndentNoOffset(OS, IndentLevel - 1);
3357   OS << "[sizeof=" << Layout.getSize().getQuantity();
3358   if (CXXRD && !isMsLayout(C))
3359     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3360   OS << ", align=" << Layout.getAlignment().getQuantity();
3361
3362   if (CXXRD) {
3363     OS << ",\n";
3364     PrintIndentNoOffset(OS, IndentLevel - 1);
3365     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3366     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3367   }
3368   OS << "]\n";
3369 }
3370
3371 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3372                                   raw_ostream &OS,
3373                                   bool Simple) const {
3374   if (!Simple) {
3375     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3376                        /*PrintSizeInfo*/true,
3377                        /*IncludeVirtualBases=*/true);
3378     return;
3379   }
3380
3381   // The "simple" format is designed to be parsed by the
3382   // layout-override testing code.  There shouldn't be any external
3383   // uses of this format --- when LLDB overrides a layout, it sets up
3384   // the data structures directly --- so feel free to adjust this as
3385   // you like as long as you also update the rudimentary parser for it
3386   // in libFrontend.
3387
3388   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3389   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3390   OS << "\nLayout: ";
3391   OS << "<ASTRecordLayout\n";
3392   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3393   if (!isMsLayout(*this))
3394     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3395   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3396   OS << "  FieldOffsets: [";
3397   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3398     if (i) OS << ", ";
3399     OS << Info.getFieldOffset(i);
3400   }
3401   OS << "]>\n";
3402 }