]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Plugins/ABI/SysV-ppc/ABISysV_ppc.cpp
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Plugins / ABI / SysV-ppc / ABISysV_ppc.cpp
1 //===-- ABISysV_ppc.cpp -----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ABISysV_ppc.h"
10
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Triple.h"
13
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/ValueObjectConstResult.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectRegister.h"
20 #include "lldb/Symbol/UnwindPlan.h"
21 #include "lldb/Target/Process.h"
22 #include "lldb/Target/RegisterContext.h"
23 #include "lldb/Target/StackFrame.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/DataExtractor.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/RegisterValue.h"
30 #include "lldb/Utility/Status.h"
31
32 using namespace lldb;
33 using namespace lldb_private;
34
35 enum dwarf_regnums {
36   dwarf_r0 = 0,
37   dwarf_r1,
38   dwarf_r2,
39   dwarf_r3,
40   dwarf_r4,
41   dwarf_r5,
42   dwarf_r6,
43   dwarf_r7,
44   dwarf_r8,
45   dwarf_r9,
46   dwarf_r10,
47   dwarf_r11,
48   dwarf_r12,
49   dwarf_r13,
50   dwarf_r14,
51   dwarf_r15,
52   dwarf_r16,
53   dwarf_r17,
54   dwarf_r18,
55   dwarf_r19,
56   dwarf_r20,
57   dwarf_r21,
58   dwarf_r22,
59   dwarf_r23,
60   dwarf_r24,
61   dwarf_r25,
62   dwarf_r26,
63   dwarf_r27,
64   dwarf_r28,
65   dwarf_r29,
66   dwarf_r30,
67   dwarf_r31,
68   dwarf_f0,
69   dwarf_f1,
70   dwarf_f2,
71   dwarf_f3,
72   dwarf_f4,
73   dwarf_f5,
74   dwarf_f6,
75   dwarf_f7,
76   dwarf_f8,
77   dwarf_f9,
78   dwarf_f10,
79   dwarf_f11,
80   dwarf_f12,
81   dwarf_f13,
82   dwarf_f14,
83   dwarf_f15,
84   dwarf_f16,
85   dwarf_f17,
86   dwarf_f18,
87   dwarf_f19,
88   dwarf_f20,
89   dwarf_f21,
90   dwarf_f22,
91   dwarf_f23,
92   dwarf_f24,
93   dwarf_f25,
94   dwarf_f26,
95   dwarf_f27,
96   dwarf_f28,
97   dwarf_f29,
98   dwarf_f30,
99   dwarf_f31,
100   dwarf_cr,
101   dwarf_fpscr,
102   dwarf_xer = 101,
103   dwarf_lr = 108,
104   dwarf_ctr,
105   dwarf_pc,
106   dwarf_cfa,
107 };
108
109 // Note that the size and offset will be updated by platform-specific classes.
110 #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4)                       \
111   {                                                                            \
112     #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
113                                                  nullptr, nullptr, nullptr, 0  \
114   }
115
116 static const RegisterInfo g_register_infos[] = {
117     // General purpose registers.             eh_frame,                 DWARF,
118     // Generic,    Process Plugin
119     DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
120                LLDB_INVALID_REGNUM),
121     DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
122                LLDB_INVALID_REGNUM),
123     DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
124                LLDB_INVALID_REGNUM),
125     DEFINE_GPR(r3, "arg1", dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
126                LLDB_INVALID_REGNUM),
127     DEFINE_GPR(r4, "arg2", dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
128                LLDB_INVALID_REGNUM),
129     DEFINE_GPR(r5, "arg3", dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
130                LLDB_INVALID_REGNUM),
131     DEFINE_GPR(r6, "arg4", dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
132                LLDB_INVALID_REGNUM),
133     DEFINE_GPR(r7, "arg5", dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
134                LLDB_INVALID_REGNUM),
135     DEFINE_GPR(r8, "arg6", dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
136                LLDB_INVALID_REGNUM),
137     DEFINE_GPR(r9, "arg7", dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
138                LLDB_INVALID_REGNUM),
139     DEFINE_GPR(r10, "arg8", dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
140                LLDB_INVALID_REGNUM),
141     DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
142                LLDB_INVALID_REGNUM),
143     DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
144                LLDB_INVALID_REGNUM),
145     DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
146                LLDB_INVALID_REGNUM),
147     DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
148                LLDB_INVALID_REGNUM),
149     DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
150                LLDB_INVALID_REGNUM),
151     DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
152                LLDB_INVALID_REGNUM),
153     DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
154                LLDB_INVALID_REGNUM),
155     DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
156                LLDB_INVALID_REGNUM),
157     DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
158                LLDB_INVALID_REGNUM),
159     DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
160                LLDB_INVALID_REGNUM),
161     DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
162                LLDB_INVALID_REGNUM),
163     DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
164                LLDB_INVALID_REGNUM),
165     DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
166                LLDB_INVALID_REGNUM),
167     DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
168                LLDB_INVALID_REGNUM),
169     DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
170                LLDB_INVALID_REGNUM),
171     DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
172                LLDB_INVALID_REGNUM),
173     DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
174                LLDB_INVALID_REGNUM),
175     DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
176                LLDB_INVALID_REGNUM),
177     DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
178                LLDB_INVALID_REGNUM),
179     DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
180                LLDB_INVALID_REGNUM),
181     DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
182                LLDB_INVALID_REGNUM),
183     DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
184                LLDB_INVALID_REGNUM),
185     DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
186                LLDB_INVALID_REGNUM),
187     DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
188                LLDB_INVALID_REGNUM),
189     DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
190                LLDB_INVALID_REGNUM),
191     DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
192                LLDB_INVALID_REGNUM),
193     {nullptr,
194      nullptr,
195      8,
196      0,
197      eEncodingUint,
198      eFormatHex,
199      {dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
200      nullptr,
201      nullptr,
202      nullptr,
203      0}};
204
205 static const uint32_t k_num_register_infos =
206     llvm::array_lengthof(g_register_infos);
207
208 const lldb_private::RegisterInfo *
209 ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
210   count = k_num_register_infos;
211   return g_register_infos;
212 }
213
214 size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
215
216 // Static Functions
217
218 ABISP
219 ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
220   if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
221      return ABISP(new ABISysV_ppc(process_sp));
222   }
223   return ABISP();
224 }
225
226 bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
227                                      addr_t func_addr, addr_t return_addr,
228                                      llvm::ArrayRef<addr_t> args) const {
229   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
230
231   if (log) {
232     StreamString s;
233     s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
234              ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
235              ", return_addr = 0x%" PRIx64,
236              thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
237              (uint64_t)return_addr);
238
239     for (size_t i = 0; i < args.size(); ++i)
240       s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
241                args[i]);
242     s.PutCString(")");
243     log->PutString(s.GetString());
244   }
245
246   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
247   if (!reg_ctx)
248     return false;
249
250   const RegisterInfo *reg_info = nullptr;
251
252   if (args.size() > 8) // TODO handle more than 8 arguments
253     return false;
254
255   for (size_t i = 0; i < args.size(); ++i) {
256     reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
257                                         LLDB_REGNUM_GENERIC_ARG1 + i);
258     if (log)
259       log->Printf("About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
260                   static_cast<uint64_t>(i + 1), args[i], reg_info->name);
261     if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
262       return false;
263   }
264
265   // First, align the SP
266
267   if (log)
268     log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
269                 (uint64_t)sp, (uint64_t)(sp & ~0xfull));
270
271   sp &= ~(0xfull); // 16-byte alignment
272
273   sp -= 8;
274
275   Status error;
276   const RegisterInfo *pc_reg_info =
277       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
278   const RegisterInfo *sp_reg_info =
279       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
280   ProcessSP process_sp(thread.GetProcess());
281
282   RegisterValue reg_value;
283
284   if (log)
285     log->Printf("Pushing the return address onto the stack: 0x%" PRIx64
286                 ": 0x%" PRIx64,
287                 (uint64_t)sp, (uint64_t)return_addr);
288
289   // Save return address onto the stack
290   if (!process_sp->WritePointerToMemory(sp, return_addr, error))
291     return false;
292
293   // %r1 is set to the actual stack value.
294
295   if (log)
296     log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp);
297
298   if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
299     return false;
300
301   // %pc is set to the address of the called function.
302
303   if (log)
304     log->Printf("Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
305
306   if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
307     return false;
308
309   return true;
310 }
311
312 static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
313                                 bool is_signed, Thread &thread,
314                                 uint32_t *argument_register_ids,
315                                 unsigned int &current_argument_register,
316                                 addr_t &current_stack_argument) {
317   if (bit_width > 64)
318     return false; // Scalar can't hold large integer arguments
319
320   if (current_argument_register < 6) {
321     scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
322         argument_register_ids[current_argument_register], 0);
323     current_argument_register++;
324     if (is_signed)
325       scalar.SignExtend(bit_width);
326   } else {
327     uint32_t byte_size = (bit_width + (8 - 1)) / 8;
328     Status error;
329     if (thread.GetProcess()->ReadScalarIntegerFromMemory(
330             current_stack_argument, byte_size, is_signed, scalar, error)) {
331       current_stack_argument += byte_size;
332       return true;
333     }
334     return false;
335   }
336   return true;
337 }
338
339 bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
340   unsigned int num_values = values.GetSize();
341   unsigned int value_index;
342
343   // Extract the register context so we can read arguments from registers
344
345   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
346
347   if (!reg_ctx)
348     return false;
349
350   // Get the pointer to the first stack argument so we have a place to start
351   // when reading data
352
353   addr_t sp = reg_ctx->GetSP(0);
354
355   if (!sp)
356     return false;
357
358   addr_t current_stack_argument = sp + 48; // jump over return address
359
360   uint32_t argument_register_ids[8];
361
362   argument_register_ids[0] =
363       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
364           ->kinds[eRegisterKindLLDB];
365   argument_register_ids[1] =
366       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
367           ->kinds[eRegisterKindLLDB];
368   argument_register_ids[2] =
369       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
370           ->kinds[eRegisterKindLLDB];
371   argument_register_ids[3] =
372       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
373           ->kinds[eRegisterKindLLDB];
374   argument_register_ids[4] =
375       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
376           ->kinds[eRegisterKindLLDB];
377   argument_register_ids[5] =
378       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
379           ->kinds[eRegisterKindLLDB];
380   argument_register_ids[6] =
381       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
382           ->kinds[eRegisterKindLLDB];
383   argument_register_ids[7] =
384       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
385           ->kinds[eRegisterKindLLDB];
386
387   unsigned int current_argument_register = 0;
388
389   for (value_index = 0; value_index < num_values; ++value_index) {
390     Value *value = values.GetValueAtIndex(value_index);
391
392     if (!value)
393       return false;
394
395     // We currently only support extracting values with Clang QualTypes. Do we
396     // care about others?
397     CompilerType compiler_type = value->GetCompilerType();
398     llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
399     if (!bit_size)
400       return false;
401     bool is_signed;
402     if (compiler_type.IsIntegerOrEnumerationType(is_signed))
403       ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
404                           argument_register_ids, current_argument_register,
405                           current_stack_argument);
406     else if (compiler_type.IsPointerType())
407       ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
408                           argument_register_ids, current_argument_register,
409                           current_stack_argument);
410   }
411
412   return true;
413 }
414
415 Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
416                                          lldb::ValueObjectSP &new_value_sp) {
417   Status error;
418   if (!new_value_sp) {
419     error.SetErrorString("Empty value object for return value.");
420     return error;
421   }
422
423   CompilerType compiler_type = new_value_sp->GetCompilerType();
424   if (!compiler_type) {
425     error.SetErrorString("Null clang type for return value.");
426     return error;
427   }
428
429   Thread *thread = frame_sp->GetThread().get();
430
431   bool is_signed;
432   uint32_t count;
433   bool is_complex;
434
435   RegisterContext *reg_ctx = thread->GetRegisterContext().get();
436
437   bool set_it_simple = false;
438   if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
439       compiler_type.IsPointerType()) {
440     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
441
442     DataExtractor data;
443     Status data_error;
444     size_t num_bytes = new_value_sp->GetData(data, data_error);
445     if (data_error.Fail()) {
446       error.SetErrorStringWithFormat(
447           "Couldn't convert return value to raw data: %s",
448           data_error.AsCString());
449       return error;
450     }
451     lldb::offset_t offset = 0;
452     if (num_bytes <= 8) {
453       uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
454
455       if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
456         set_it_simple = true;
457     } else {
458       error.SetErrorString("We don't support returning longer than 64 bit "
459                            "integer values at present.");
460     }
461   } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
462     if (is_complex)
463       error.SetErrorString(
464           "We don't support returning complex values at present");
465     else {
466       llvm::Optional<uint64_t> bit_width =
467           compiler_type.GetBitSize(frame_sp.get());
468       if (!bit_width) {
469         error.SetErrorString("can't get type size");
470         return error;
471       }
472       if (*bit_width <= 64) {
473         DataExtractor data;
474         Status data_error;
475         size_t num_bytes = new_value_sp->GetData(data, data_error);
476         if (data_error.Fail()) {
477           error.SetErrorStringWithFormat(
478               "Couldn't convert return value to raw data: %s",
479               data_error.AsCString());
480           return error;
481         }
482
483         unsigned char buffer[16];
484         ByteOrder byte_order = data.GetByteOrder();
485
486         data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
487         set_it_simple = true;
488       } else {
489         // FIXME - don't know how to do 80 bit long doubles yet.
490         error.SetErrorString(
491             "We don't support returning float values > 64 bits at present");
492       }
493     }
494   }
495
496   if (!set_it_simple) {
497     // Okay we've got a structure or something that doesn't fit in a simple
498     // register. We should figure out where it really goes, but we don't
499     // support this yet.
500     error.SetErrorString("We only support setting simple integer and float "
501                          "return types at present.");
502   }
503
504   return error;
505 }
506
507 ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
508     Thread &thread, CompilerType &return_compiler_type) const {
509   ValueObjectSP return_valobj_sp;
510   Value value;
511
512   if (!return_compiler_type)
513     return return_valobj_sp;
514
515   // value.SetContext (Value::eContextTypeClangType, return_value_type);
516   value.SetCompilerType(return_compiler_type);
517
518   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
519   if (!reg_ctx)
520     return return_valobj_sp;
521
522   const uint32_t type_flags = return_compiler_type.GetTypeInfo();
523   if (type_flags & eTypeIsScalar) {
524     value.SetValueType(Value::eValueTypeScalar);
525
526     bool success = false;
527     if (type_flags & eTypeIsInteger) {
528       // Extract the register context so we can read arguments from registers
529
530       llvm::Optional<uint64_t> byte_size =
531           return_compiler_type.GetByteSize(nullptr);
532       if (!byte_size)
533         return return_valobj_sp;
534       uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
535           reg_ctx->GetRegisterInfoByName("r3", 0), 0);
536       const bool is_signed = (type_flags & eTypeIsSigned) != 0;
537       switch (*byte_size) {
538       default:
539         break;
540
541       case sizeof(uint64_t):
542         if (is_signed)
543           value.GetScalar() = (int64_t)(raw_value);
544         else
545           value.GetScalar() = (uint64_t)(raw_value);
546         success = true;
547         break;
548
549       case sizeof(uint32_t):
550         if (is_signed)
551           value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
552         else
553           value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
554         success = true;
555         break;
556
557       case sizeof(uint16_t):
558         if (is_signed)
559           value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
560         else
561           value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
562         success = true;
563         break;
564
565       case sizeof(uint8_t):
566         if (is_signed)
567           value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
568         else
569           value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
570         success = true;
571         break;
572       }
573     } else if (type_flags & eTypeIsFloat) {
574       if (type_flags & eTypeIsComplex) {
575         // Don't handle complex yet.
576       } else {
577         llvm::Optional<uint64_t> byte_size =
578             return_compiler_type.GetByteSize(nullptr);
579         if (byte_size && *byte_size <= sizeof(long double)) {
580           const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
581           RegisterValue f1_value;
582           if (reg_ctx->ReadRegister(f1_info, f1_value)) {
583             DataExtractor data;
584             if (f1_value.GetData(data)) {
585               lldb::offset_t offset = 0;
586               if (*byte_size == sizeof(float)) {
587                 value.GetScalar() = (float)data.GetFloat(&offset);
588                 success = true;
589               } else if (*byte_size == sizeof(double)) {
590                 value.GetScalar() = (double)data.GetDouble(&offset);
591                 success = true;
592               }
593             }
594           }
595         }
596       }
597     }
598
599     if (success)
600       return_valobj_sp = ValueObjectConstResult::Create(
601           thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
602   } else if (type_flags & eTypeIsPointer) {
603     unsigned r3_id =
604         reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
605     value.GetScalar() =
606         (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
607     value.SetValueType(Value::eValueTypeScalar);
608     return_valobj_sp = ValueObjectConstResult::Create(
609         thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
610   } else if (type_flags & eTypeIsVector) {
611     llvm::Optional<uint64_t> byte_size =
612         return_compiler_type.GetByteSize(nullptr);
613     if (byte_size && *byte_size > 0) {
614       const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
615       if (altivec_reg) {
616         if (*byte_size <= altivec_reg->byte_size) {
617           ProcessSP process_sp(thread.GetProcess());
618           if (process_sp) {
619             std::unique_ptr<DataBufferHeap> heap_data_up(
620                 new DataBufferHeap(*byte_size, 0));
621             const ByteOrder byte_order = process_sp->GetByteOrder();
622             RegisterValue reg_value;
623             if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
624               Status error;
625               if (reg_value.GetAsMemoryData(
626                       altivec_reg, heap_data_up->GetBytes(),
627                       heap_data_up->GetByteSize(), byte_order, error)) {
628                 DataExtractor data(DataBufferSP(heap_data_up.release()),
629                                    byte_order,
630                                    process_sp->GetTarget()
631                                        .GetArchitecture()
632                                        .GetAddressByteSize());
633                 return_valobj_sp = ValueObjectConstResult::Create(
634                     &thread, return_compiler_type, ConstString(""), data);
635               }
636             }
637           }
638         }
639       }
640     }
641   }
642
643   return return_valobj_sp;
644 }
645
646 ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
647     Thread &thread, CompilerType &return_compiler_type) const {
648   ValueObjectSP return_valobj_sp;
649
650   if (!return_compiler_type)
651     return return_valobj_sp;
652
653   ExecutionContext exe_ctx(thread.shared_from_this());
654   return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
655   if (return_valobj_sp)
656     return return_valobj_sp;
657
658   RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
659   if (!reg_ctx_sp)
660     return return_valobj_sp;
661
662   llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
663   if (!bit_width)
664     return return_valobj_sp;
665   if (return_compiler_type.IsAggregateType()) {
666     Target *target = exe_ctx.GetTargetPtr();
667     bool is_memory = true;
668     if (*bit_width <= 128) {
669       ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
670       DataBufferSP data_sp(new DataBufferHeap(16, 0));
671       DataExtractor return_ext(data_sp, target_byte_order,
672                                target->GetArchitecture().GetAddressByteSize());
673
674       const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
675       const RegisterInfo *rdx_info =
676           reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
677
678       RegisterValue r3_value, rdx_value;
679       reg_ctx_sp->ReadRegister(r3_info, r3_value);
680       reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
681
682       DataExtractor r3_data, rdx_data;
683
684       r3_value.GetData(r3_data);
685       rdx_value.GetData(rdx_data);
686
687       uint32_t fp_bytes =
688           0; // Tracks how much of the xmm registers we've consumed so far
689       uint32_t integer_bytes =
690           0; // Tracks how much of the r3/rds registers we've consumed so far
691
692       const uint32_t num_children = return_compiler_type.GetNumFields();
693
694       // Since we are in the small struct regime, assume we are not in memory.
695       is_memory = false;
696
697       for (uint32_t idx = 0; idx < num_children; idx++) {
698         std::string name;
699         uint64_t field_bit_offset = 0;
700         bool is_signed;
701         bool is_complex;
702         uint32_t count;
703
704         CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
705             idx, name, &field_bit_offset, nullptr, nullptr);
706         llvm::Optional<uint64_t> field_bit_width =
707             field_compiler_type.GetBitSize(&thread);
708         if (!field_bit_width)
709           return return_valobj_sp;
710
711         // If there are any unaligned fields, this is stored in memory.
712         if (field_bit_offset % *field_bit_width != 0) {
713           is_memory = true;
714           break;
715         }
716
717         uint32_t field_byte_width = *field_bit_width / 8;
718         uint32_t field_byte_offset = field_bit_offset / 8;
719
720         DataExtractor *copy_from_extractor = nullptr;
721         uint32_t copy_from_offset = 0;
722
723         if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
724             field_compiler_type.IsPointerType()) {
725           if (integer_bytes < 8) {
726             if (integer_bytes + field_byte_width <= 8) {
727               // This is in RAX, copy from register to our result structure:
728               copy_from_extractor = &r3_data;
729               copy_from_offset = integer_bytes;
730               integer_bytes += field_byte_width;
731             } else {
732               // The next field wouldn't fit in the remaining space, so we
733               // pushed it to rdx.
734               copy_from_extractor = &rdx_data;
735               copy_from_offset = 0;
736               integer_bytes = 8 + field_byte_width;
737             }
738           } else if (integer_bytes + field_byte_width <= 16) {
739             copy_from_extractor = &rdx_data;
740             copy_from_offset = integer_bytes - 8;
741             integer_bytes += field_byte_width;
742           } else {
743             // The last field didn't fit.  I can't see how that would happen
744             // w/o the overall size being greater than 16 bytes.  For now,
745             // return a nullptr return value object.
746             return return_valobj_sp;
747           }
748         } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
749           // Structs with long doubles are always passed in memory.
750           if (*field_bit_width == 128) {
751             is_memory = true;
752             break;
753           } else if (*field_bit_width == 64) {
754             copy_from_offset = 0;
755             fp_bytes += field_byte_width;
756           } else if (*field_bit_width == 32) {
757             // This one is kind of complicated.  If we are in an "eightbyte"
758             // with another float, we'll be stuffed into an xmm register with
759             // it.  If we are in an "eightbyte" with one or more ints, then we
760             // will be stuffed into the appropriate GPR with them.
761             bool in_gpr;
762             if (field_byte_offset % 8 == 0) {
763               // We are at the beginning of one of the eightbytes, so check the
764               // next element (if any)
765               if (idx == num_children - 1)
766                 in_gpr = false;
767               else {
768                 uint64_t next_field_bit_offset = 0;
769                 CompilerType next_field_compiler_type =
770                     return_compiler_type.GetFieldAtIndex(idx + 1, name,
771                                                          &next_field_bit_offset,
772                                                          nullptr, nullptr);
773                 if (next_field_compiler_type.IsIntegerOrEnumerationType(
774                         is_signed))
775                   in_gpr = true;
776                 else {
777                   copy_from_offset = 0;
778                   in_gpr = false;
779                 }
780               }
781             } else if (field_byte_offset % 4 == 0) {
782               // We are inside of an eightbyte, so see if the field before us
783               // is floating point: This could happen if somebody put padding
784               // in the structure.
785               if (idx == 0)
786                 in_gpr = false;
787               else {
788                 uint64_t prev_field_bit_offset = 0;
789                 CompilerType prev_field_compiler_type =
790                     return_compiler_type.GetFieldAtIndex(idx - 1, name,
791                                                          &prev_field_bit_offset,
792                                                          nullptr, nullptr);
793                 if (prev_field_compiler_type.IsIntegerOrEnumerationType(
794                         is_signed))
795                   in_gpr = true;
796                 else {
797                   copy_from_offset = 4;
798                   in_gpr = false;
799                 }
800               }
801             } else {
802               is_memory = true;
803               continue;
804             }
805
806             // Okay, we've figured out whether we are in GPR or XMM, now figure
807             // out which one.
808             if (in_gpr) {
809               if (integer_bytes < 8) {
810                 // This is in RAX, copy from register to our result structure:
811                 copy_from_extractor = &r3_data;
812                 copy_from_offset = integer_bytes;
813                 integer_bytes += field_byte_width;
814               } else {
815                 copy_from_extractor = &rdx_data;
816                 copy_from_offset = integer_bytes - 8;
817                 integer_bytes += field_byte_width;
818               }
819             } else {
820               fp_bytes += field_byte_width;
821             }
822           }
823         }
824
825         // These two tests are just sanity checks.  If I somehow get the type
826         // calculation wrong above it is better to just return nothing than to
827         // assert or crash.
828         if (!copy_from_extractor)
829           return return_valobj_sp;
830         if (copy_from_offset + field_byte_width >
831             copy_from_extractor->GetByteSize())
832           return return_valobj_sp;
833
834         copy_from_extractor->CopyByteOrderedData(
835             copy_from_offset, field_byte_width,
836             data_sp->GetBytes() + field_byte_offset, field_byte_width,
837             target_byte_order);
838       }
839
840       if (!is_memory) {
841         // The result is in our data buffer.  Let's make a variable object out
842         // of it:
843         return_valobj_sp = ValueObjectConstResult::Create(
844             &thread, return_compiler_type, ConstString(""), return_ext);
845       }
846     }
847
848     // FIXME: This is just taking a guess, r3 may very well no longer hold the
849     // return storage location.
850     // If we are going to do this right, when we make a new frame we should
851     // check to see if it uses a memory return, and if we are at the first
852     // instruction and if so stash away the return location.  Then we would
853     // only return the memory return value if we know it is valid.
854
855     if (is_memory) {
856       unsigned r3_id =
857           reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
858       lldb::addr_t storage_addr =
859           (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
860                                                                         0);
861       return_valobj_sp = ValueObjectMemory::Create(
862           &thread, "", Address(storage_addr, nullptr), return_compiler_type);
863     }
864   }
865
866   return return_valobj_sp;
867 }
868
869 bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
870   unwind_plan.Clear();
871   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
872
873   uint32_t lr_reg_num = dwarf_lr;
874   uint32_t sp_reg_num = dwarf_r1;
875   uint32_t pc_reg_num = dwarf_pc;
876
877   UnwindPlan::RowSP row(new UnwindPlan::Row);
878
879   // Our Call Frame Address is the stack pointer value
880   row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
881
882   // The previous PC is in the LR
883   row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
884   unwind_plan.AppendRow(row);
885
886   // All other registers are the same.
887
888   unwind_plan.SetSourceName("ppc at-func-entry default");
889   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
890
891   return true;
892 }
893
894 bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
895   unwind_plan.Clear();
896   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
897
898   uint32_t sp_reg_num = dwarf_r1;
899   uint32_t pc_reg_num = dwarf_lr;
900
901   UnwindPlan::RowSP row(new UnwindPlan::Row);
902
903   const int32_t ptr_size = 4;
904   row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
905
906   row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
907   row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
908
909   unwind_plan.AppendRow(row);
910   unwind_plan.SetSourceName("ppc default unwind plan");
911   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
912   unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
913   unwind_plan.SetReturnAddressRegister(dwarf_lr);
914   return true;
915 }
916
917 bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
918   return !RegisterIsCalleeSaved(reg_info);
919 }
920
921 // See "Register Usage" in the
922 // "System V Application Binary Interface"
923 // "64-bit PowerPC ELF Application Binary Interface Supplement" current version
924 // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
925 // elf64abi-1.9.pdf
926
927 bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
928   if (reg_info) {
929     // Preserved registers are :
930     //    r1,r2,r13-r31
931     //    f14-f31 (not yet)
932     //    v20-v31 (not yet)
933     //    vrsave (not yet)
934
935     const char *name = reg_info->name;
936     if (name[0] == 'r') {
937       if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
938         return true;
939       if (name[1] == '1' && name[2] > '2')
940         return true;
941       if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
942         return true;
943     }
944
945     if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
946       if (name[3] == '1' && name[4] >= '4')
947         return true;
948       if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
949         return true;
950     }
951
952     if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
953       return true;
954     if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
955       return true;
956     if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
957       return true;
958   }
959   return false;
960 }
961
962 void ABISysV_ppc::Initialize() {
963   PluginManager::RegisterPlugin(GetPluginNameStatic(),
964                                 "System V ABI for ppc targets", CreateInstance);
965 }
966
967 void ABISysV_ppc::Terminate() {
968   PluginManager::UnregisterPlugin(CreateInstance);
969 }
970
971 lldb_private::ConstString ABISysV_ppc::GetPluginNameStatic() {
972   static ConstString g_name("sysv-ppc");
973   return g_name;
974 }
975
976 // PluginInterface protocol
977
978 lldb_private::ConstString ABISysV_ppc::GetPluginName() {
979   return GetPluginNameStatic();
980 }
981
982 uint32_t ABISysV_ppc::GetPluginVersion() { return 1; }