]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/wpa/src/common/sae.c
Update hostapd/wpa_supplicant to 2.8 to fix multiple vulnerabilities.
[FreeBSD/FreeBSD.git] / contrib / wpa / src / common / sae.c
1 /*
2  * Simultaneous authentication of equals
3  * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "utils/const_time.h"
13 #include "crypto/crypto.h"
14 #include "crypto/sha256.h"
15 #include "crypto/random.h"
16 #include "crypto/dh_groups.h"
17 #include "ieee802_11_defs.h"
18 #include "sae.h"
19
20
21 static int sae_suitable_group(int group)
22 {
23 #ifdef CONFIG_TESTING_OPTIONS
24         /* Allow all groups for testing purposes in non-production builds. */
25         return 1;
26 #else /* CONFIG_TESTING_OPTIONS */
27         /* Enforce REVmd rules on which SAE groups are suitable for production
28          * purposes: FFC groups whose prime is >= 3072 bits and ECC groups
29          * defined over a prime field whose prime is >= 256 bits. Furthermore,
30          * ECC groups defined over a characteristic 2 finite field and ECC
31          * groups with a co-factor greater than 1 are not suitable. */
32         return group == 19 || group == 20 || group == 21 ||
33                 group == 28 || group == 29 || group == 30 ||
34                 group == 15 || group == 16 || group == 17 || group == 18;
35 #endif /* CONFIG_TESTING_OPTIONS */
36 }
37
38
39 int sae_set_group(struct sae_data *sae, int group)
40 {
41         struct sae_temporary_data *tmp;
42
43         if (!sae_suitable_group(group)) {
44                 wpa_printf(MSG_DEBUG, "SAE: Reject unsuitable group %d", group);
45                 return -1;
46         }
47
48         sae_clear_data(sae);
49         tmp = sae->tmp = os_zalloc(sizeof(*tmp));
50         if (tmp == NULL)
51                 return -1;
52
53         /* First, check if this is an ECC group */
54         tmp->ec = crypto_ec_init(group);
55         if (tmp->ec) {
56                 wpa_printf(MSG_DEBUG, "SAE: Selecting supported ECC group %d",
57                            group);
58                 sae->group = group;
59                 tmp->prime_len = crypto_ec_prime_len(tmp->ec);
60                 tmp->prime = crypto_ec_get_prime(tmp->ec);
61                 tmp->order = crypto_ec_get_order(tmp->ec);
62                 return 0;
63         }
64
65         /* Not an ECC group, check FFC */
66         tmp->dh = dh_groups_get(group);
67         if (tmp->dh) {
68                 wpa_printf(MSG_DEBUG, "SAE: Selecting supported FFC group %d",
69                            group);
70                 sae->group = group;
71                 tmp->prime_len = tmp->dh->prime_len;
72                 if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
73                         sae_clear_data(sae);
74                         return -1;
75                 }
76
77                 tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
78                                                         tmp->prime_len);
79                 if (tmp->prime_buf == NULL) {
80                         sae_clear_data(sae);
81                         return -1;
82                 }
83                 tmp->prime = tmp->prime_buf;
84
85                 tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
86                                                         tmp->dh->order_len);
87                 if (tmp->order_buf == NULL) {
88                         sae_clear_data(sae);
89                         return -1;
90                 }
91                 tmp->order = tmp->order_buf;
92
93                 return 0;
94         }
95
96         /* Unsupported group */
97         wpa_printf(MSG_DEBUG,
98                    "SAE: Group %d not supported by the crypto library", group);
99         return -1;
100 }
101
102
103 void sae_clear_temp_data(struct sae_data *sae)
104 {
105         struct sae_temporary_data *tmp;
106         if (sae == NULL || sae->tmp == NULL)
107                 return;
108         tmp = sae->tmp;
109         crypto_ec_deinit(tmp->ec);
110         crypto_bignum_deinit(tmp->prime_buf, 0);
111         crypto_bignum_deinit(tmp->order_buf, 0);
112         crypto_bignum_deinit(tmp->sae_rand, 1);
113         crypto_bignum_deinit(tmp->pwe_ffc, 1);
114         crypto_bignum_deinit(tmp->own_commit_scalar, 0);
115         crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
116         crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
117         crypto_ec_point_deinit(tmp->pwe_ecc, 1);
118         crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
119         crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
120         wpabuf_free(tmp->anti_clogging_token);
121         os_free(tmp->pw_id);
122         bin_clear_free(tmp, sizeof(*tmp));
123         sae->tmp = NULL;
124 }
125
126
127 void sae_clear_data(struct sae_data *sae)
128 {
129         if (sae == NULL)
130                 return;
131         sae_clear_temp_data(sae);
132         crypto_bignum_deinit(sae->peer_commit_scalar, 0);
133         os_memset(sae, 0, sizeof(*sae));
134 }
135
136
137 static void buf_shift_right(u8 *buf, size_t len, size_t bits)
138 {
139         size_t i;
140         for (i = len - 1; i > 0; i--)
141                 buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
142         buf[0] >>= bits;
143 }
144
145
146 static struct crypto_bignum * sae_get_rand(struct sae_data *sae)
147 {
148         u8 val[SAE_MAX_PRIME_LEN];
149         int iter = 0;
150         struct crypto_bignum *bn = NULL;
151         int order_len_bits = crypto_bignum_bits(sae->tmp->order);
152         size_t order_len = (order_len_bits + 7) / 8;
153
154         if (order_len > sizeof(val))
155                 return NULL;
156
157         for (;;) {
158                 if (iter++ > 100 || random_get_bytes(val, order_len) < 0)
159                         return NULL;
160                 if (order_len_bits % 8)
161                         buf_shift_right(val, order_len, 8 - order_len_bits % 8);
162                 bn = crypto_bignum_init_set(val, order_len);
163                 if (bn == NULL)
164                         return NULL;
165                 if (crypto_bignum_is_zero(bn) ||
166                     crypto_bignum_is_one(bn) ||
167                     crypto_bignum_cmp(bn, sae->tmp->order) >= 0) {
168                         crypto_bignum_deinit(bn, 0);
169                         continue;
170                 }
171                 break;
172         }
173
174         os_memset(val, 0, order_len);
175         return bn;
176 }
177
178
179 static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae)
180 {
181         crypto_bignum_deinit(sae->tmp->sae_rand, 1);
182         sae->tmp->sae_rand = sae_get_rand(sae);
183         if (sae->tmp->sae_rand == NULL)
184                 return NULL;
185         return sae_get_rand(sae);
186 }
187
188
189 static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
190 {
191         wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
192                    " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
193         if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
194                 os_memcpy(key, addr1, ETH_ALEN);
195                 os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
196         } else {
197                 os_memcpy(key, addr2, ETH_ALEN);
198                 os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
199         }
200 }
201
202
203 static struct crypto_bignum *
204 get_rand_1_to_p_1(const u8 *prime, size_t prime_len, size_t prime_bits,
205                   int *r_odd)
206 {
207         for (;;) {
208                 struct crypto_bignum *r;
209                 u8 tmp[SAE_MAX_ECC_PRIME_LEN];
210
211                 if (random_get_bytes(tmp, prime_len) < 0)
212                         break;
213                 if (prime_bits % 8)
214                         buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
215                 if (os_memcmp(tmp, prime, prime_len) >= 0)
216                         continue;
217                 r = crypto_bignum_init_set(tmp, prime_len);
218                 if (!r)
219                         break;
220                 if (crypto_bignum_is_zero(r)) {
221                         crypto_bignum_deinit(r, 0);
222                         continue;
223                 }
224
225                 *r_odd = tmp[prime_len - 1] & 0x01;
226                 return r;
227         }
228
229         return NULL;
230 }
231
232
233 static int is_quadratic_residue_blind(struct sae_data *sae,
234                                       const u8 *prime, size_t bits,
235                                       const u8 *qr, const u8 *qnr,
236                                       const struct crypto_bignum *y_sqr)
237 {
238         struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
239         int r_odd, check, res = -1;
240         u8 qr_or_qnr_bin[SAE_MAX_ECC_PRIME_LEN];
241         size_t prime_len = sae->tmp->prime_len;
242         unsigned int mask;
243
244         /*
245          * Use the blinding technique to mask y_sqr while determining
246          * whether it is a quadratic residue modulo p to avoid leaking
247          * timing information while determining the Legendre symbol.
248          *
249          * v = y_sqr
250          * r = a random number between 1 and p-1, inclusive
251          * num = (v * r * r) modulo p
252          */
253         r = get_rand_1_to_p_1(prime, prime_len, bits, &r_odd);
254         if (!r)
255                 return -1;
256
257         num = crypto_bignum_init();
258         if (!num ||
259             crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
260             crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
261                 goto fail;
262
263         /*
264          * Need to minimize differences in handling different cases, so try to
265          * avoid branches and timing differences.
266          *
267          * If r_odd:
268          * num = (num * qr) module p
269          * LGR(num, p) = 1 ==> quadratic residue
270          * else:
271          * num = (num * qnr) module p
272          * LGR(num, p) = -1 ==> quadratic residue
273          */
274         mask = const_time_is_zero(r_odd);
275         const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
276         qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
277         if (!qr_or_qnr ||
278             crypto_bignum_mulmod(num, qr_or_qnr, sae->tmp->prime, num) < 0)
279                 goto fail;
280         /* r_odd is 0 or 1; branchless version of check = r_odd ? 1 : -1, */
281         check = const_time_select_int(mask, -1, 1);
282
283         res = crypto_bignum_legendre(num, sae->tmp->prime);
284         if (res == -2) {
285                 res = -1;
286                 goto fail;
287         }
288         /* branchless version of res = res == check
289          * (res is -1, 0, or 1; check is -1 or 1) */
290         mask = const_time_eq(res, check);
291         res = const_time_select_int(mask, 1, 0);
292 fail:
293         crypto_bignum_deinit(num, 1);
294         crypto_bignum_deinit(r, 1);
295         crypto_bignum_deinit(qr_or_qnr, 1);
296         return res;
297 }
298
299
300 static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
301                                  const u8 *prime, const u8 *qr, const u8 *qnr,
302                                  u8 *pwd_value)
303 {
304         struct crypto_bignum *y_sqr, *x_cand;
305         int res;
306         size_t bits;
307
308         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
309
310         /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
311         bits = crypto_ec_prime_len_bits(sae->tmp->ec);
312         if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
313                             prime, sae->tmp->prime_len, pwd_value, bits) < 0)
314                 return -1;
315         if (bits % 8)
316                 buf_shift_right(pwd_value, sae->tmp->prime_len, 8 - bits % 8);
317         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
318                         pwd_value, sae->tmp->prime_len);
319
320         if (os_memcmp(pwd_value, prime, sae->tmp->prime_len) >= 0)
321                 return 0;
322
323         x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
324         if (!x_cand)
325                 return -1;
326         y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
327         crypto_bignum_deinit(x_cand, 1);
328         if (!y_sqr)
329                 return -1;
330
331         res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr);
332         crypto_bignum_deinit(y_sqr, 1);
333         return res;
334 }
335
336
337 /* Returns -1 on fatal failure, 0 if PWE cannot be derived from the provided
338  * pwd-seed, or 1 if a valid PWE was derived from pwd-seed. */
339 static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
340                                  struct crypto_bignum *pwe)
341 {
342         u8 pwd_value[SAE_MAX_PRIME_LEN];
343         size_t bits = sae->tmp->prime_len * 8;
344         u8 exp[1];
345         struct crypto_bignum *a, *b = NULL;
346         int res, is_val;
347         u8 pwd_value_valid;
348
349         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
350
351         /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
352         if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
353                             sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
354                             bits) < 0)
355                 return -1;
356         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
357                         sae->tmp->prime_len);
358
359         /* Check whether pwd-value < p */
360         res = const_time_memcmp(pwd_value, sae->tmp->dh->prime,
361                                 sae->tmp->prime_len);
362         /* pwd-value >= p is invalid, so res is < 0 for the valid cases and
363          * the negative sign can be used to fill the mask for constant time
364          * selection */
365         pwd_value_valid = const_time_fill_msb(res);
366
367         /* If pwd-value >= p, force pwd-value to be < p and perform the
368          * calculations anyway to hide timing difference. The derived PWE will
369          * be ignored in that case. */
370         pwd_value[0] = const_time_select_u8(pwd_value_valid, pwd_value[0], 0);
371
372         /* PWE = pwd-value^((p-1)/r) modulo p */
373
374         res = -1;
375         a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
376         if (!a)
377                 goto fail;
378
379         /* This is an optimization based on the used group that does not depend
380          * on the password in any way, so it is fine to use separate branches
381          * for this step without constant time operations. */
382         if (sae->tmp->dh->safe_prime) {
383                 /*
384                  * r = (p-1)/2 for the group used here, so this becomes:
385                  * PWE = pwd-value^2 modulo p
386                  */
387                 exp[0] = 2;
388                 b = crypto_bignum_init_set(exp, sizeof(exp));
389         } else {
390                 /* Calculate exponent: (p-1)/r */
391                 exp[0] = 1;
392                 b = crypto_bignum_init_set(exp, sizeof(exp));
393                 if (b == NULL ||
394                     crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
395                     crypto_bignum_div(b, sae->tmp->order, b) < 0)
396                         goto fail;
397         }
398
399         if (!b)
400                 goto fail;
401
402         res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
403         if (res < 0)
404                 goto fail;
405
406         /* There were no fatal errors in calculations, so determine the return
407          * value using constant time operations. We get here for number of
408          * invalid cases which are cleared here after having performed all the
409          * computation. PWE is valid if pwd-value was less than prime and
410          * PWE > 1. Start with pwd-value check first and then use constant time
411          * operations to clear res to 0 if PWE is 0 or 1.
412          */
413         res = const_time_select_u8(pwd_value_valid, 1, 0);
414         is_val = crypto_bignum_is_zero(pwe);
415         res = const_time_select_u8(const_time_is_zero(is_val), res, 0);
416         is_val = crypto_bignum_is_one(pwe);
417         res = const_time_select_u8(const_time_is_zero(is_val), res, 0);
418
419 fail:
420         crypto_bignum_deinit(a, 1);
421         crypto_bignum_deinit(b, 1);
422         return res;
423 }
424
425
426 static int get_random_qr_qnr(const u8 *prime, size_t prime_len,
427                              const struct crypto_bignum *prime_bn,
428                              size_t prime_bits, struct crypto_bignum **qr,
429                              struct crypto_bignum **qnr)
430 {
431         *qr = NULL;
432         *qnr = NULL;
433
434         while (!(*qr) || !(*qnr)) {
435                 u8 tmp[SAE_MAX_ECC_PRIME_LEN];
436                 struct crypto_bignum *q;
437                 int res;
438
439                 if (random_get_bytes(tmp, prime_len) < 0)
440                         break;
441                 if (prime_bits % 8)
442                         buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
443                 if (os_memcmp(tmp, prime, prime_len) >= 0)
444                         continue;
445                 q = crypto_bignum_init_set(tmp, prime_len);
446                 if (!q)
447                         break;
448                 res = crypto_bignum_legendre(q, prime_bn);
449
450                 if (res == 1 && !(*qr))
451                         *qr = q;
452                 else if (res == -1 && !(*qnr))
453                         *qnr = q;
454                 else
455                         crypto_bignum_deinit(q, 0);
456         }
457
458         return (*qr && *qnr) ? 0 : -1;
459 }
460
461
462 static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
463                               const u8 *addr2, const u8 *password,
464                               size_t password_len, const char *identifier)
465 {
466         u8 counter, k = 40;
467         u8 addrs[2 * ETH_ALEN];
468         const u8 *addr[3];
469         size_t len[3];
470         size_t num_elem;
471         u8 *dummy_password, *tmp_password;
472         int pwd_seed_odd = 0;
473         u8 prime[SAE_MAX_ECC_PRIME_LEN];
474         size_t prime_len;
475         struct crypto_bignum *x = NULL, *qr = NULL, *qnr = NULL;
476         u8 x_bin[SAE_MAX_ECC_PRIME_LEN];
477         u8 x_cand_bin[SAE_MAX_ECC_PRIME_LEN];
478         u8 qr_bin[SAE_MAX_ECC_PRIME_LEN];
479         u8 qnr_bin[SAE_MAX_ECC_PRIME_LEN];
480         size_t bits;
481         int res = -1;
482         u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
483                        * mask */
484
485         os_memset(x_bin, 0, sizeof(x_bin));
486
487         dummy_password = os_malloc(password_len);
488         tmp_password = os_malloc(password_len);
489         if (!dummy_password || !tmp_password ||
490             random_get_bytes(dummy_password, password_len) < 0)
491                 goto fail;
492
493         prime_len = sae->tmp->prime_len;
494         if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
495                                  prime_len) < 0)
496                 goto fail;
497         bits = crypto_ec_prime_len_bits(sae->tmp->ec);
498
499         /*
500          * Create a random quadratic residue (qr) and quadratic non-residue
501          * (qnr) modulo p for blinding purposes during the loop.
502          */
503         if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
504                               &qr, &qnr) < 0 ||
505             crypto_bignum_to_bin(qr, qr_bin, sizeof(qr_bin), prime_len) < 0 ||
506             crypto_bignum_to_bin(qnr, qnr_bin, sizeof(qnr_bin), prime_len) < 0)
507                 goto fail;
508
509         wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
510                               password, password_len);
511         if (identifier)
512                 wpa_printf(MSG_DEBUG, "SAE: password identifier: %s",
513                            identifier);
514
515         /*
516          * H(salt, ikm) = HMAC-SHA256(salt, ikm)
517          * base = password [|| identifier]
518          * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
519          *              base || counter)
520          */
521         sae_pwd_seed_key(addr1, addr2, addrs);
522
523         addr[0] = tmp_password;
524         len[0] = password_len;
525         num_elem = 1;
526         if (identifier) {
527                 addr[num_elem] = (const u8 *) identifier;
528                 len[num_elem] = os_strlen(identifier);
529                 num_elem++;
530         }
531         addr[num_elem] = &counter;
532         len[num_elem] = sizeof(counter);
533         num_elem++;
534
535         /*
536          * Continue for at least k iterations to protect against side-channel
537          * attacks that attempt to determine the number of iterations required
538          * in the loop.
539          */
540         for (counter = 1; counter <= k || !found; counter++) {
541                 u8 pwd_seed[SHA256_MAC_LEN];
542
543                 if (counter > 200) {
544                         /* This should not happen in practice */
545                         wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
546                         break;
547                 }
548
549                 wpa_printf(MSG_DEBUG, "SAE: counter = %03u", counter);
550                 const_time_select_bin(found, dummy_password, password,
551                                       password_len, tmp_password);
552                 if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
553                                        addr, len, pwd_seed) < 0)
554                         break;
555
556                 res = sae_test_pwd_seed_ecc(sae, pwd_seed,
557                                             prime, qr_bin, qnr_bin, x_cand_bin);
558                 const_time_select_bin(found, x_bin, x_cand_bin, prime_len,
559                                       x_bin);
560                 pwd_seed_odd = const_time_select_u8(
561                         found, pwd_seed_odd,
562                         pwd_seed[SHA256_MAC_LEN - 1] & 0x01);
563                 os_memset(pwd_seed, 0, sizeof(pwd_seed));
564                 if (res < 0)
565                         goto fail;
566                 /* Need to minimize differences in handling res == 0 and 1 here
567                  * to avoid differences in timing and instruction cache access,
568                  * so use const_time_select_*() to make local copies of the
569                  * values based on whether this loop iteration was the one that
570                  * found the pwd-seed/x. */
571
572                 /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
573                  * (with res converted to 0/0xff) handles this in constant time.
574                  */
575                 found |= res * 0xff;
576                 wpa_printf(MSG_DEBUG, "SAE: pwd-seed result %d found=0x%02x",
577                            res, found);
578         }
579
580         if (!found) {
581                 wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
582                 res = -1;
583                 goto fail;
584         }
585
586         x = crypto_bignum_init_set(x_bin, prime_len);
587         if (!x) {
588                 res = -1;
589                 goto fail;
590         }
591
592         if (!sae->tmp->pwe_ecc)
593                 sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
594         if (!sae->tmp->pwe_ecc)
595                 res = -1;
596         else
597                 res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
598                                                     sae->tmp->pwe_ecc, x,
599                                                     pwd_seed_odd);
600         if (res < 0) {
601                 /*
602                  * This should not happen since we already checked that there
603                  * is a result.
604                  */
605                 wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
606         }
607
608 fail:
609         crypto_bignum_deinit(qr, 0);
610         crypto_bignum_deinit(qnr, 0);
611         os_free(dummy_password);
612         bin_clear_free(tmp_password, password_len);
613         crypto_bignum_deinit(x, 1);
614         os_memset(x_bin, 0, sizeof(x_bin));
615         os_memset(x_cand_bin, 0, sizeof(x_cand_bin));
616
617         return res;
618 }
619
620
621 static int sae_modp_group_require_masking(int group)
622 {
623         /* Groups for which pwd-value is likely to be >= p frequently */
624         return group == 22 || group == 23 || group == 24;
625 }
626
627
628 static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
629                               const u8 *addr2, const u8 *password,
630                               size_t password_len, const char *identifier)
631 {
632         u8 counter, k, sel_counter = 0;
633         u8 addrs[2 * ETH_ALEN];
634         const u8 *addr[3];
635         size_t len[3];
636         size_t num_elem;
637         u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
638                        * mask */
639         u8 mask;
640         struct crypto_bignum *pwe;
641         size_t prime_len = sae->tmp->prime_len * 8;
642         u8 *pwe_buf;
643
644         crypto_bignum_deinit(sae->tmp->pwe_ffc, 1);
645         sae->tmp->pwe_ffc = NULL;
646
647         /* Allocate a buffer to maintain selected and candidate PWE for constant
648          * time selection. */
649         pwe_buf = os_zalloc(prime_len * 2);
650         pwe = crypto_bignum_init();
651         if (!pwe_buf || !pwe)
652                 goto fail;
653
654         wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
655                               password, password_len);
656
657         /*
658          * H(salt, ikm) = HMAC-SHA256(salt, ikm)
659          * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
660          *              password [|| identifier] || counter)
661          */
662         sae_pwd_seed_key(addr1, addr2, addrs);
663
664         addr[0] = password;
665         len[0] = password_len;
666         num_elem = 1;
667         if (identifier) {
668                 addr[num_elem] = (const u8 *) identifier;
669                 len[num_elem] = os_strlen(identifier);
670                 num_elem++;
671         }
672         addr[num_elem] = &counter;
673         len[num_elem] = sizeof(counter);
674         num_elem++;
675
676         k = sae_modp_group_require_masking(sae->group) ? 40 : 1;
677
678         for (counter = 1; counter <= k || !found; counter++) {
679                 u8 pwd_seed[SHA256_MAC_LEN];
680                 int res;
681
682                 if (counter > 200) {
683                         /* This should not happen in practice */
684                         wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
685                         break;
686                 }
687
688                 wpa_printf(MSG_DEBUG, "SAE: counter = %02u", counter);
689                 if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
690                                        addr, len, pwd_seed) < 0)
691                         break;
692                 res = sae_test_pwd_seed_ffc(sae, pwd_seed, pwe);
693                 /* res is -1 for fatal failure, 0 if a valid PWE was not found,
694                  * or 1 if a valid PWE was found. */
695                 if (res < 0)
696                         break;
697                 /* Store the candidate PWE into the second half of pwe_buf and
698                  * the selected PWE in the beginning of pwe_buf using constant
699                  * time selection. */
700                 if (crypto_bignum_to_bin(pwe, pwe_buf + prime_len, prime_len,
701                                          prime_len) < 0)
702                         break;
703                 const_time_select_bin(found, pwe_buf, pwe_buf + prime_len,
704                                       prime_len, pwe_buf);
705                 sel_counter = const_time_select_u8(found, sel_counter, counter);
706                 mask = const_time_eq_u8(res, 1);
707                 found = const_time_select_u8(found, found, mask);
708         }
709
710         if (!found)
711                 goto fail;
712
713         wpa_printf(MSG_DEBUG, "SAE: Use PWE from counter = %02u", sel_counter);
714         sae->tmp->pwe_ffc = crypto_bignum_init_set(pwe_buf, prime_len);
715 fail:
716         crypto_bignum_deinit(pwe, 1);
717         bin_clear_free(pwe_buf, prime_len * 2);
718         return sae->tmp->pwe_ffc ? 0 : -1;
719 }
720
721
722 static int sae_derive_commit_element_ecc(struct sae_data *sae,
723                                          struct crypto_bignum *mask)
724 {
725         /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
726         if (!sae->tmp->own_commit_element_ecc) {
727                 sae->tmp->own_commit_element_ecc =
728                         crypto_ec_point_init(sae->tmp->ec);
729                 if (!sae->tmp->own_commit_element_ecc)
730                         return -1;
731         }
732
733         if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
734                                 sae->tmp->own_commit_element_ecc) < 0 ||
735             crypto_ec_point_invert(sae->tmp->ec,
736                                    sae->tmp->own_commit_element_ecc) < 0) {
737                 wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
738                 return -1;
739         }
740
741         return 0;
742 }
743
744
745 static int sae_derive_commit_element_ffc(struct sae_data *sae,
746                                          struct crypto_bignum *mask)
747 {
748         /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
749         if (!sae->tmp->own_commit_element_ffc) {
750                 sae->tmp->own_commit_element_ffc = crypto_bignum_init();
751                 if (!sae->tmp->own_commit_element_ffc)
752                         return -1;
753         }
754
755         if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
756                                   sae->tmp->own_commit_element_ffc) < 0 ||
757             crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
758                                   sae->tmp->prime,
759                                   sae->tmp->own_commit_element_ffc) < 0) {
760                 wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
761                 return -1;
762         }
763
764         return 0;
765 }
766
767
768 static int sae_derive_commit(struct sae_data *sae)
769 {
770         struct crypto_bignum *mask;
771         int ret = -1;
772         unsigned int counter = 0;
773
774         do {
775                 counter++;
776                 if (counter > 100) {
777                         /*
778                          * This cannot really happen in practice if the random
779                          * number generator is working. Anyway, to avoid even a
780                          * theoretical infinite loop, break out after 100
781                          * attemps.
782                          */
783                         return -1;
784                 }
785
786                 mask = sae_get_rand_and_mask(sae);
787                 if (mask == NULL) {
788                         wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
789                         return -1;
790                 }
791
792                 /* commit-scalar = (rand + mask) modulo r */
793                 if (!sae->tmp->own_commit_scalar) {
794                         sae->tmp->own_commit_scalar = crypto_bignum_init();
795                         if (!sae->tmp->own_commit_scalar)
796                                 goto fail;
797                 }
798                 crypto_bignum_add(sae->tmp->sae_rand, mask,
799                                   sae->tmp->own_commit_scalar);
800                 crypto_bignum_mod(sae->tmp->own_commit_scalar, sae->tmp->order,
801                                   sae->tmp->own_commit_scalar);
802         } while (crypto_bignum_is_zero(sae->tmp->own_commit_scalar) ||
803                  crypto_bignum_is_one(sae->tmp->own_commit_scalar));
804
805         if ((sae->tmp->ec && sae_derive_commit_element_ecc(sae, mask) < 0) ||
806             (sae->tmp->dh && sae_derive_commit_element_ffc(sae, mask) < 0))
807                 goto fail;
808
809         ret = 0;
810 fail:
811         crypto_bignum_deinit(mask, 1);
812         return ret;
813 }
814
815
816 int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
817                        const u8 *password, size_t password_len,
818                        const char *identifier, struct sae_data *sae)
819 {
820         if (sae->tmp == NULL ||
821             (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
822                                                 password_len,
823                                                 identifier) < 0) ||
824             (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
825                                                 password_len,
826                                                 identifier) < 0) ||
827             sae_derive_commit(sae) < 0)
828                 return -1;
829         return 0;
830 }
831
832
833 static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
834 {
835         struct crypto_ec_point *K;
836         int ret = -1;
837
838         K = crypto_ec_point_init(sae->tmp->ec);
839         if (K == NULL)
840                 goto fail;
841
842         /*
843          * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
844          *                                        PEER-COMMIT-ELEMENT)))
845          * If K is identity element (point-at-infinity), reject
846          * k = F(K) (= x coordinate)
847          */
848
849         if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
850                                 sae->peer_commit_scalar, K) < 0 ||
851             crypto_ec_point_add(sae->tmp->ec, K,
852                                 sae->tmp->peer_commit_element_ecc, K) < 0 ||
853             crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
854             crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
855             crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
856                 wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
857                 goto fail;
858         }
859
860         wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
861
862         ret = 0;
863 fail:
864         crypto_ec_point_deinit(K, 1);
865         return ret;
866 }
867
868
869 static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
870 {
871         struct crypto_bignum *K;
872         int ret = -1;
873
874         K = crypto_bignum_init();
875         if (K == NULL)
876                 goto fail;
877
878         /*
879          * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
880          *                                        PEER-COMMIT-ELEMENT)))
881          * If K is identity element (one), reject.
882          * k = F(K) (= x coordinate)
883          */
884
885         if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
886                                   sae->tmp->prime, K) < 0 ||
887             crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
888                                  sae->tmp->prime, K) < 0 ||
889             crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
890             ||
891             crypto_bignum_is_one(K) ||
892             crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
893             0) {
894                 wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
895                 goto fail;
896         }
897
898         wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
899
900         ret = 0;
901 fail:
902         crypto_bignum_deinit(K, 1);
903         return ret;
904 }
905
906
907 static int sae_derive_keys(struct sae_data *sae, const u8 *k)
908 {
909         u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
910         u8 keyseed[SHA256_MAC_LEN];
911         u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
912         struct crypto_bignum *tmp;
913         int ret = -1;
914
915         tmp = crypto_bignum_init();
916         if (tmp == NULL)
917                 goto fail;
918
919         /* keyseed = H(<0>32, k)
920          * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
921          *                      (commit-scalar + peer-commit-scalar) modulo r)
922          * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
923          */
924
925         os_memset(null_key, 0, sizeof(null_key));
926         hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
927                     keyseed);
928         wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
929
930         crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
931                           tmp);
932         crypto_bignum_mod(tmp, sae->tmp->order, tmp);
933         crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->prime_len);
934         wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
935         if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
936                        val, sae->tmp->prime_len, keys, sizeof(keys)) < 0)
937                 goto fail;
938         os_memset(keyseed, 0, sizeof(keyseed));
939         os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
940         os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
941         os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
942         os_memset(keys, 0, sizeof(keys));
943         wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
944         wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
945
946         ret = 0;
947 fail:
948         crypto_bignum_deinit(tmp, 0);
949         return ret;
950 }
951
952
953 int sae_process_commit(struct sae_data *sae)
954 {
955         u8 k[SAE_MAX_PRIME_LEN];
956         if (sae->tmp == NULL ||
957             (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
958             (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
959             sae_derive_keys(sae, k) < 0)
960                 return -1;
961         return 0;
962 }
963
964
965 void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
966                       const struct wpabuf *token, const char *identifier)
967 {
968         u8 *pos;
969
970         if (sae->tmp == NULL)
971                 return;
972
973         wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
974         if (token) {
975                 wpabuf_put_buf(buf, token);
976                 wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
977                             wpabuf_head(token), wpabuf_len(token));
978         }
979         pos = wpabuf_put(buf, sae->tmp->prime_len);
980         crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
981                              sae->tmp->prime_len, sae->tmp->prime_len);
982         wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
983                     pos, sae->tmp->prime_len);
984         if (sae->tmp->ec) {
985                 pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
986                 crypto_ec_point_to_bin(sae->tmp->ec,
987                                        sae->tmp->own_commit_element_ecc,
988                                        pos, pos + sae->tmp->prime_len);
989                 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
990                             pos, sae->tmp->prime_len);
991                 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
992                             pos + sae->tmp->prime_len, sae->tmp->prime_len);
993         } else {
994                 pos = wpabuf_put(buf, sae->tmp->prime_len);
995                 crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
996                                      sae->tmp->prime_len, sae->tmp->prime_len);
997                 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
998                             pos, sae->tmp->prime_len);
999         }
1000
1001         if (identifier) {
1002                 /* Password Identifier element */
1003                 wpabuf_put_u8(buf, WLAN_EID_EXTENSION);
1004                 wpabuf_put_u8(buf, 1 + os_strlen(identifier));
1005                 wpabuf_put_u8(buf, WLAN_EID_EXT_PASSWORD_IDENTIFIER);
1006                 wpabuf_put_str(buf, identifier);
1007                 wpa_printf(MSG_DEBUG, "SAE: own Password Identifier: %s",
1008                            identifier);
1009         }
1010 }
1011
1012
1013 u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
1014 {
1015         if (allowed_groups) {
1016                 int i;
1017                 for (i = 0; allowed_groups[i] > 0; i++) {
1018                         if (allowed_groups[i] == group)
1019                                 break;
1020                 }
1021                 if (allowed_groups[i] != group) {
1022                         wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
1023                                    "enabled in the current configuration",
1024                                    group);
1025                         return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
1026                 }
1027         }
1028
1029         if (sae->state == SAE_COMMITTED && group != sae->group) {
1030                 wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
1031                 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
1032         }
1033
1034         if (group != sae->group && sae_set_group(sae, group) < 0) {
1035                 wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
1036                            group);
1037                 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
1038         }
1039
1040         if (sae->tmp == NULL) {
1041                 wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
1042                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1043         }
1044
1045         if (sae->tmp->dh && !allowed_groups) {
1046                 wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
1047                            "explicit configuration enabling it", group);
1048                 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
1049         }
1050
1051         return WLAN_STATUS_SUCCESS;
1052 }
1053
1054
1055 static int sae_is_password_id_elem(const u8 *pos, const u8 *end)
1056 {
1057         return end - pos >= 3 &&
1058                 pos[0] == WLAN_EID_EXTENSION &&
1059                 pos[1] >= 1 &&
1060                 end - pos - 2 >= pos[1] &&
1061                 pos[2] == WLAN_EID_EXT_PASSWORD_IDENTIFIER;
1062 }
1063
1064
1065 static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
1066                                    const u8 *end, const u8 **token,
1067                                    size_t *token_len)
1068 {
1069         size_t scalar_elem_len, tlen;
1070         const u8 *elem;
1071
1072         if (token)
1073                 *token = NULL;
1074         if (token_len)
1075                 *token_len = 0;
1076
1077         scalar_elem_len = (sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len;
1078         if (scalar_elem_len >= (size_t) (end - *pos))
1079                 return; /* No extra data beyond peer scalar and element */
1080
1081         /* It is a bit difficult to parse this now that there is an
1082          * optional variable length Anti-Clogging Token field and
1083          * optional variable length Password Identifier element in the
1084          * frame. We are sending out fixed length Anti-Clogging Token
1085          * fields, so use that length as a requirement for the received
1086          * token and check for the presence of possible Password
1087          * Identifier element based on the element header information.
1088          */
1089         tlen = end - (*pos + scalar_elem_len);
1090
1091         if (tlen < SHA256_MAC_LEN) {
1092                 wpa_printf(MSG_DEBUG,
1093                            "SAE: Too short optional data (%u octets) to include our Anti-Clogging Token",
1094                            (unsigned int) tlen);
1095                 return;
1096         }
1097
1098         elem = *pos + scalar_elem_len;
1099         if (sae_is_password_id_elem(elem, end)) {
1100                  /* Password Identifier element takes out all available
1101                   * extra octets, so there can be no Anti-Clogging token in
1102                   * this frame. */
1103                 return;
1104         }
1105
1106         elem += SHA256_MAC_LEN;
1107         if (sae_is_password_id_elem(elem, end)) {
1108                  /* Password Identifier element is included in the end, so
1109                   * remove its length from the Anti-Clogging token field. */
1110                 tlen -= 2 + elem[1];
1111         }
1112
1113         wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
1114         if (token)
1115                 *token = *pos;
1116         if (token_len)
1117                 *token_len = tlen;
1118         *pos += tlen;
1119 }
1120
1121
1122 static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
1123                                    const u8 *end)
1124 {
1125         struct crypto_bignum *peer_scalar;
1126
1127         if (sae->tmp->prime_len > end - *pos) {
1128                 wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
1129                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1130         }
1131
1132         peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
1133         if (peer_scalar == NULL)
1134                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1135
1136         /*
1137          * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
1138          * the peer and it is in Authenticated state, the new Commit Message
1139          * shall be dropped if the peer-scalar is identical to the one used in
1140          * the existing protocol instance.
1141          */
1142         if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
1143             crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
1144                 wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
1145                            "peer-commit-scalar");
1146                 crypto_bignum_deinit(peer_scalar, 0);
1147                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1148         }
1149
1150         /* 1 < scalar < r */
1151         if (crypto_bignum_is_zero(peer_scalar) ||
1152             crypto_bignum_is_one(peer_scalar) ||
1153             crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
1154                 wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
1155                 crypto_bignum_deinit(peer_scalar, 0);
1156                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1157         }
1158
1159
1160         crypto_bignum_deinit(sae->peer_commit_scalar, 0);
1161         sae->peer_commit_scalar = peer_scalar;
1162         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
1163                     *pos, sae->tmp->prime_len);
1164         *pos += sae->tmp->prime_len;
1165
1166         return WLAN_STATUS_SUCCESS;
1167 }
1168
1169
1170 static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 **pos,
1171                                         const u8 *end)
1172 {
1173         u8 prime[SAE_MAX_ECC_PRIME_LEN];
1174
1175         if (2 * sae->tmp->prime_len > end - *pos) {
1176                 wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1177                            "commit-element");
1178                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1179         }
1180
1181         if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
1182                                  sae->tmp->prime_len) < 0)
1183                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1184
1185         /* element x and y coordinates < p */
1186         if (os_memcmp(*pos, prime, sae->tmp->prime_len) >= 0 ||
1187             os_memcmp(*pos + sae->tmp->prime_len, prime,
1188                       sae->tmp->prime_len) >= 0) {
1189                 wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
1190                            "element");
1191                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1192         }
1193
1194         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
1195                     *pos, sae->tmp->prime_len);
1196         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
1197                     *pos + sae->tmp->prime_len, sae->tmp->prime_len);
1198
1199         crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
1200         sae->tmp->peer_commit_element_ecc =
1201                 crypto_ec_point_from_bin(sae->tmp->ec, *pos);
1202         if (sae->tmp->peer_commit_element_ecc == NULL)
1203                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1204
1205         if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
1206                                          sae->tmp->peer_commit_element_ecc)) {
1207                 wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
1208                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1209         }
1210
1211         *pos += 2 * sae->tmp->prime_len;
1212
1213         return WLAN_STATUS_SUCCESS;
1214 }
1215
1216
1217 static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 **pos,
1218                                         const u8 *end)
1219 {
1220         struct crypto_bignum *res, *one;
1221         const u8 one_bin[1] = { 0x01 };
1222
1223         if (sae->tmp->prime_len > end - *pos) {
1224                 wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1225                            "commit-element");
1226                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1227         }
1228         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", *pos,
1229                     sae->tmp->prime_len);
1230
1231         crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
1232         sae->tmp->peer_commit_element_ffc =
1233                 crypto_bignum_init_set(*pos, sae->tmp->prime_len);
1234         if (sae->tmp->peer_commit_element_ffc == NULL)
1235                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1236         /* 1 < element < p - 1 */
1237         res = crypto_bignum_init();
1238         one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
1239         if (!res || !one ||
1240             crypto_bignum_sub(sae->tmp->prime, one, res) ||
1241             crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
1242             crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
1243             crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
1244                 crypto_bignum_deinit(res, 0);
1245                 crypto_bignum_deinit(one, 0);
1246                 wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
1247                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1248         }
1249         crypto_bignum_deinit(one, 0);
1250
1251         /* scalar-op(r, ELEMENT) = 1 modulo p */
1252         if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
1253                                   sae->tmp->order, sae->tmp->prime, res) < 0 ||
1254             !crypto_bignum_is_one(res)) {
1255                 wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
1256                 crypto_bignum_deinit(res, 0);
1257                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1258         }
1259         crypto_bignum_deinit(res, 0);
1260
1261         *pos += sae->tmp->prime_len;
1262
1263         return WLAN_STATUS_SUCCESS;
1264 }
1265
1266
1267 static u16 sae_parse_commit_element(struct sae_data *sae, const u8 **pos,
1268                                     const u8 *end)
1269 {
1270         if (sae->tmp->dh)
1271                 return sae_parse_commit_element_ffc(sae, pos, end);
1272         return sae_parse_commit_element_ecc(sae, pos, end);
1273 }
1274
1275
1276 static int sae_parse_password_identifier(struct sae_data *sae,
1277                                          const u8 *pos, const u8 *end)
1278 {
1279         wpa_hexdump(MSG_DEBUG, "SAE: Possible elements at the end of the frame",
1280                     pos, end - pos);
1281         if (!sae_is_password_id_elem(pos, end)) {
1282                 if (sae->tmp->pw_id) {
1283                         wpa_printf(MSG_DEBUG,
1284                                    "SAE: No Password Identifier included, but expected one (%s)",
1285                                    sae->tmp->pw_id);
1286                         return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1287                 }
1288                 os_free(sae->tmp->pw_id);
1289                 sae->tmp->pw_id = NULL;
1290                 return WLAN_STATUS_SUCCESS; /* No Password Identifier */
1291         }
1292
1293         if (sae->tmp->pw_id &&
1294             (pos[1] - 1 != (int) os_strlen(sae->tmp->pw_id) ||
1295              os_memcmp(sae->tmp->pw_id, pos + 3, pos[1] - 1) != 0)) {
1296                 wpa_printf(MSG_DEBUG,
1297                            "SAE: The included Password Identifier does not match the expected one (%s)",
1298                            sae->tmp->pw_id);
1299                 return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1300         }
1301
1302         os_free(sae->tmp->pw_id);
1303         sae->tmp->pw_id = os_malloc(pos[1]);
1304         if (!sae->tmp->pw_id)
1305                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1306         os_memcpy(sae->tmp->pw_id, pos + 3, pos[1] - 1);
1307         sae->tmp->pw_id[pos[1] - 1] = '\0';
1308         wpa_hexdump_ascii(MSG_DEBUG, "SAE: Received Password Identifier",
1309                           sae->tmp->pw_id, pos[1] -  1);
1310         return WLAN_STATUS_SUCCESS;
1311 }
1312
1313
1314 u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
1315                      const u8 **token, size_t *token_len, int *allowed_groups)
1316 {
1317         const u8 *pos = data, *end = data + len;
1318         u16 res;
1319
1320         /* Check Finite Cyclic Group */
1321         if (end - pos < 2)
1322                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1323         res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
1324         if (res != WLAN_STATUS_SUCCESS)
1325                 return res;
1326         pos += 2;
1327
1328         /* Optional Anti-Clogging Token */
1329         sae_parse_commit_token(sae, &pos, end, token, token_len);
1330
1331         /* commit-scalar */
1332         res = sae_parse_commit_scalar(sae, &pos, end);
1333         if (res != WLAN_STATUS_SUCCESS)
1334                 return res;
1335
1336         /* commit-element */
1337         res = sae_parse_commit_element(sae, &pos, end);
1338         if (res != WLAN_STATUS_SUCCESS)
1339                 return res;
1340
1341         /* Optional Password Identifier element */
1342         res = sae_parse_password_identifier(sae, pos, end);
1343         if (res != WLAN_STATUS_SUCCESS)
1344                 return res;
1345
1346         /*
1347          * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
1348          * the values we sent which would be evidence of a reflection attack.
1349          */
1350         if (!sae->tmp->own_commit_scalar ||
1351             crypto_bignum_cmp(sae->tmp->own_commit_scalar,
1352                               sae->peer_commit_scalar) != 0 ||
1353             (sae->tmp->dh &&
1354              (!sae->tmp->own_commit_element_ffc ||
1355               crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
1356                                 sae->tmp->peer_commit_element_ffc) != 0)) ||
1357             (sae->tmp->ec &&
1358              (!sae->tmp->own_commit_element_ecc ||
1359               crypto_ec_point_cmp(sae->tmp->ec,
1360                                   sae->tmp->own_commit_element_ecc,
1361                                   sae->tmp->peer_commit_element_ecc) != 0)))
1362                 return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
1363
1364         /*
1365          * This is a reflection attack - return special value to trigger caller
1366          * to silently discard the frame instead of replying with a specific
1367          * status code.
1368          */
1369         return SAE_SILENTLY_DISCARD;
1370 }
1371
1372
1373 static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
1374                            const struct crypto_bignum *scalar1,
1375                            const u8 *element1, size_t element1_len,
1376                            const struct crypto_bignum *scalar2,
1377                            const u8 *element2, size_t element2_len,
1378                            u8 *confirm)
1379 {
1380         const u8 *addr[5];
1381         size_t len[5];
1382         u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
1383
1384         /* Confirm
1385          * CN(key, X, Y, Z, ...) =
1386          *    HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
1387          * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
1388          *              peer-commit-scalar, PEER-COMMIT-ELEMENT)
1389          * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
1390          *               PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
1391          */
1392         addr[0] = sc;
1393         len[0] = 2;
1394         crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
1395                              sae->tmp->prime_len);
1396         addr[1] = scalar_b1;
1397         len[1] = sae->tmp->prime_len;
1398         addr[2] = element1;
1399         len[2] = element1_len;
1400         crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
1401                              sae->tmp->prime_len);
1402         addr[3] = scalar_b2;
1403         len[3] = sae->tmp->prime_len;
1404         addr[4] = element2;
1405         len[4] = element2_len;
1406         hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
1407                            confirm);
1408 }
1409
1410
1411 static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
1412                                const struct crypto_bignum *scalar1,
1413                                const struct crypto_ec_point *element1,
1414                                const struct crypto_bignum *scalar2,
1415                                const struct crypto_ec_point *element2,
1416                                u8 *confirm)
1417 {
1418         u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
1419         u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
1420
1421         crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
1422                                element_b1 + sae->tmp->prime_len);
1423         crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
1424                                element_b2 + sae->tmp->prime_len);
1425
1426         sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
1427                        scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
1428 }
1429
1430
1431 static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
1432                                const struct crypto_bignum *scalar1,
1433                                const struct crypto_bignum *element1,
1434                                const struct crypto_bignum *scalar2,
1435                                const struct crypto_bignum *element2,
1436                                u8 *confirm)
1437 {
1438         u8 element_b1[SAE_MAX_PRIME_LEN];
1439         u8 element_b2[SAE_MAX_PRIME_LEN];
1440
1441         crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
1442                              sae->tmp->prime_len);
1443         crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
1444                              sae->tmp->prime_len);
1445
1446         sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
1447                        scalar2, element_b2, sae->tmp->prime_len, confirm);
1448 }
1449
1450
1451 void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
1452 {
1453         const u8 *sc;
1454
1455         if (sae->tmp == NULL)
1456                 return;
1457
1458         /* Send-Confirm */
1459         sc = wpabuf_put(buf, 0);
1460         wpabuf_put_le16(buf, sae->send_confirm);
1461         if (sae->send_confirm < 0xffff)
1462                 sae->send_confirm++;
1463
1464         if (sae->tmp->ec)
1465                 sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
1466                                    sae->tmp->own_commit_element_ecc,
1467                                    sae->peer_commit_scalar,
1468                                    sae->tmp->peer_commit_element_ecc,
1469                                    wpabuf_put(buf, SHA256_MAC_LEN));
1470         else
1471                 sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
1472                                    sae->tmp->own_commit_element_ffc,
1473                                    sae->peer_commit_scalar,
1474                                    sae->tmp->peer_commit_element_ffc,
1475                                    wpabuf_put(buf, SHA256_MAC_LEN));
1476 }
1477
1478
1479 int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
1480 {
1481         u8 verifier[SHA256_MAC_LEN];
1482
1483         if (len < 2 + SHA256_MAC_LEN) {
1484                 wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
1485                 return -1;
1486         }
1487
1488         wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
1489
1490         if (!sae->tmp || !sae->peer_commit_scalar ||
1491             !sae->tmp->own_commit_scalar) {
1492                 wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
1493                 return -1;
1494         }
1495
1496         if (sae->tmp->ec) {
1497                 if (!sae->tmp->peer_commit_element_ecc ||
1498                     !sae->tmp->own_commit_element_ecc)
1499                         return -1;
1500                 sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
1501                                    sae->tmp->peer_commit_element_ecc,
1502                                    sae->tmp->own_commit_scalar,
1503                                    sae->tmp->own_commit_element_ecc,
1504                                    verifier);
1505         } else {
1506                 if (!sae->tmp->peer_commit_element_ffc ||
1507                     !sae->tmp->own_commit_element_ffc)
1508                         return -1;
1509                 sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
1510                                    sae->tmp->peer_commit_element_ffc,
1511                                    sae->tmp->own_commit_scalar,
1512                                    sae->tmp->own_commit_element_ffc,
1513                                    verifier);
1514         }
1515
1516         if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) {
1517                 wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
1518                 wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
1519                             data + 2, SHA256_MAC_LEN);
1520                 wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
1521                             verifier, SHA256_MAC_LEN);
1522                 return -1;
1523         }
1524
1525         return 0;
1526 }
1527
1528
1529 const char * sae_state_txt(enum sae_state state)
1530 {
1531         switch (state) {
1532         case SAE_NOTHING:
1533                 return "Nothing";
1534         case SAE_COMMITTED:
1535                 return "Committed";
1536         case SAE_CONFIRMED:
1537                 return "Confirmed";
1538         case SAE_ACCEPTED:
1539                 return "Accepted";
1540         }
1541         return "?";
1542 }