]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - crypto/bn/asm/ia64.S
Import OpenSSL 1.1.1.
[FreeBSD/FreeBSD.git] / crypto / bn / asm / ia64.S
1 .explicit
2 .text
3 .ident  "ia64.S, Version 2.1"
4 .ident  "IA-64 ISA artwork by Andy Polyakov <appro@openssl.org>"
5
6 // Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
7 //
8 // Licensed under the OpenSSL license (the "License").  You may not use
9 // this file except in compliance with the License.  You can obtain a copy
10 // in the file LICENSE in the source distribution or at
11 // https://www.openssl.org/source/license.html
12
13 //
14 // ====================================================================
15 // Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
16 // project.
17 //
18 // Rights for redistribution and usage in source and binary forms are
19 // granted according to the OpenSSL license. Warranty of any kind is
20 // disclaimed.
21 // ====================================================================
22 //
23 // Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is
24 // different from Itanium to this module viewpoint. Most notably, is it
25 // "wider" than Itanium? Can you experience loop scalability as
26 // discussed in commentary sections? Not really:-( Itanium2 has 6
27 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
28 // spin twice as fast, as I need 8 IALU ports. Amount of floating point
29 // ports is the same, i.e. 2, while I need 4. In other words, to this
30 // module Itanium2 remains effectively as "wide" as Itanium. Yet it's
31 // essentially different in respect to this module, and a re-tune was
32 // required. Well, because some instruction latencies has changed. Most
33 // noticeably those intensively used:
34 //
35 //                      Itanium Itanium2
36 //      ldf8            9       6               L2 hit
37 //      ld8             2       1               L1 hit
38 //      getf            2       5
39 //      xma[->getf]     7[+1]   4[+0]
40 //      add[->st8]      1[+1]   1[+0]
41 //
42 // What does it mean? You might ratiocinate that the original code
43 // should run just faster... Because sum of latencies is smaller...
44 // Wrong! Note that getf latency increased. This means that if a loop is
45 // scheduled for lower latency (as they were), then it will suffer from
46 // stall condition and the code will therefore turn anti-scalable, e.g.
47 // original bn_mul_words spun at 5*n or 2.5 times slower than expected
48 // on Itanium2! What to do? Reschedule loops for Itanium2? But then
49 // Itanium would exhibit anti-scalability. So I've chosen to reschedule
50 // for worst latency for every instruction aiming for best *all-round*
51 // performance.  
52
53 // Q.   How much faster does it get?
54 // A.   Here is the output from 'openssl speed rsa dsa' for vanilla
55 //      0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
56 //      Linux 7.1 2.96-81):
57 //
58 //                        sign    verify    sign/s verify/s
59 //      rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
60 //      rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
61 //      rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
62 //      rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
63 //                        sign    verify    sign/s verify/s
64 //      dsa  512 bits   0.0035s   0.0043s    288.3    234.8
65 //      dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
66 //
67 //      And here is similar output but for this assembler
68 //      implementation:-)
69 //
70 //                        sign    verify    sign/s verify/s
71 //      rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
72 //      rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
73 //      rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
74 //      rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
75 //                        sign    verify    sign/s verify/s
76 //      dsa  512 bits   0.0012s   0.0013s    891.9    756.6
77 //      dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
78 //      
79 //      Yes, you may argue that it's not fair comparison as it's
80 //      possible to craft the C implementation with BN_UMULT_HIGH
81 //      inline assembler macro. But of course! Here is the output
82 //      with the macro:
83 //
84 //                        sign    verify    sign/s verify/s
85 //      rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
86 //      rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
87 //      rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
88 //      rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
89 //                        sign    verify    sign/s verify/s
90 //      dsa  512 bits   0.0016s   0.0020s    613.1    510.5
91 //      dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
92 //
93 //      My code is still way faster, huh:-) And I believe that even
94 //      higher performance can be achieved. Note that as keys get
95 //      longer, performance gain is larger. Why? According to the
96 //      profiler there is another player in the field, namely
97 //      BN_from_montgomery consuming larger and larger portion of CPU
98 //      time as keysize decreases. I therefore consider putting effort
99 //      to assembler implementation of the following routine:
100 //
101 //      void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
102 //      {
103 //      int      i,j;
104 //      BN_ULONG v;
105 //
106 //      for (i=0; i<nl; i++)
107 //              {
108 //              v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
109 //              nrp++;
110 //              rp++;
111 //              if (((nrp[-1]+=v)&BN_MASK2) < v)
112 //                      for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
113 //              }
114 //      }
115 //
116 //      It might as well be beneficial to implement even combaX
117 //      variants, as it appears as it can literally unleash the
118 //      performance (see comment section to bn_mul_comba8 below).
119 //
120 //      And finally for your reference the output for 0.9.6a compiled
121 //      with SGIcc version 0.01.0-12 (keep in mind that for the moment
122 //      of this writing it's not possible to convince SGIcc to use
123 //      BN_UMULT_HIGH inline assembler macro, yet the code is fast,
124 //      i.e. for a compiler generated one:-):
125 //
126 //                        sign    verify    sign/s verify/s
127 //      rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
128 //      rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
129 //      rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
130 //      rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
131 //                        sign    verify    sign/s verify/s
132 //      dsa  512 bits   0.0018s   0.0022s    547.3    459.6
133 //      dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
134 //
135 //      Oh! Benchmarks were performed on 733MHz Lion-class Itanium
136 //      system running Redhat Linux 7.1 (very special thanks to Ray
137 //      McCaffity of Williams Communications for providing an account).
138 //
139 // Q.   What's the heck with 'rum 1<<5' at the end of every function?
140 // A.   Well, by clearing the "upper FP registers written" bit of the
141 //      User Mask I want to excuse the kernel from preserving upper
142 //      (f32-f128) FP register bank over process context switch, thus
143 //      minimizing bus bandwidth consumption during the switch (i.e.
144 //      after PKI operation completes and the program is off doing
145 //      something else like bulk symmetric encryption). Having said
146 //      this, I also want to point out that it might be good idea
147 //      to compile the whole toolkit (as well as majority of the
148 //      programs for that matter) with -mfixed-range=f32-f127 command
149 //      line option. No, it doesn't prevent the compiler from writing
150 //      to upper bank, but at least discourages to do so. If you don't
151 //      like the idea you have the option to compile the module with
152 //      -Drum=nop.m in command line.
153 //
154
155 #if defined(_HPUX_SOURCE) && !defined(_LP64)
156 #define ADDP    addp4
157 #else
158 #define ADDP    add
159 #endif
160 #ifdef __VMS
161 .alias abort, "decc$abort"
162 #endif
163
164 #if 1
165 //
166 // bn_[add|sub]_words routines.
167 //
168 // Loops are spinning in 2*(n+5) ticks on Itanium (provided that the
169 // data reside in L1 cache, i.e. 2 ticks away). It's possible to
170 // compress the epilogue and get down to 2*n+6, but at the cost of
171 // scalability (the neat feature of this implementation is that it
172 // shall automagically spin in n+5 on "wider" IA-64 implementations:-)
173 // I consider that the epilogue is short enough as it is to trade tiny
174 // performance loss on Itanium for scalability.
175 //
176 // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
177 //
178 .global bn_add_words#
179 .proc   bn_add_words#
180 .align  64
181 .skip   32      // makes the loop body aligned at 64-byte boundary
182 bn_add_words:
183         .prologue
184         .save   ar.pfs,r2
185 { .mii; alloc           r2=ar.pfs,4,12,0,16
186         cmp4.le         p6,p0=r35,r0    };;
187 { .mfb; mov             r8=r0                   // return value
188 (p6)    br.ret.spnt.many        b0      };;
189
190 { .mib; sub             r10=r35,r0,1
191         .save   ar.lc,r3
192         mov             r3=ar.lc
193         brp.loop.imp    .L_bn_add_words_ctop,.L_bn_add_words_cend-16
194                                         }
195 { .mib; ADDP            r14=0,r32               // rp
196         .save   pr,r9
197         mov             r9=pr           };;
198         .body
199 { .mii; ADDP            r15=0,r33               // ap
200         mov             ar.lc=r10
201         mov             ar.ec=6         }
202 { .mib; ADDP            r16=0,r34               // bp
203         mov             pr.rot=1<<16    };;
204
205 .L_bn_add_words_ctop:
206 { .mii; (p16)   ld8             r32=[r16],8       // b=*(bp++)
207         (p18)   add             r39=r37,r34
208         (p19)   cmp.ltu.unc     p56,p0=r40,r38  }
209 { .mfb; (p0)    nop.m           0x0
210         (p0)    nop.f           0x0
211         (p0)    nop.b           0x0             }
212 { .mii; (p16)   ld8             r35=[r15],8       // a=*(ap++)
213         (p58)   cmp.eq.or       p57,p0=-1,r41     // (p20)
214         (p58)   add             r41=1,r41       } // (p20)
215 { .mfb; (p21)   st8             [r14]=r42,8       // *(rp++)=r
216         (p0)    nop.f           0x0
217         br.ctop.sptk    .L_bn_add_words_ctop    };;
218 .L_bn_add_words_cend:
219
220 { .mii;
221 (p59)   add             r8=1,r8         // return value
222         mov             pr=r9,0x1ffff
223         mov             ar.lc=r3        }
224 { .mbb; nop.b           0x0
225         br.ret.sptk.many        b0      };;
226 .endp   bn_add_words#
227
228 //
229 // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
230 //
231 .global bn_sub_words#
232 .proc   bn_sub_words#
233 .align  64
234 .skip   32      // makes the loop body aligned at 64-byte boundary
235 bn_sub_words:
236         .prologue
237         .save   ar.pfs,r2
238 { .mii; alloc           r2=ar.pfs,4,12,0,16
239         cmp4.le         p6,p0=r35,r0    };;
240 { .mfb; mov             r8=r0                   // return value
241 (p6)    br.ret.spnt.many        b0      };;
242
243 { .mib; sub             r10=r35,r0,1
244         .save   ar.lc,r3
245         mov             r3=ar.lc
246         brp.loop.imp    .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
247                                         }
248 { .mib; ADDP            r14=0,r32               // rp
249         .save   pr,r9
250         mov             r9=pr           };;
251         .body
252 { .mii; ADDP            r15=0,r33               // ap
253         mov             ar.lc=r10
254         mov             ar.ec=6         }
255 { .mib; ADDP            r16=0,r34               // bp
256         mov             pr.rot=1<<16    };;
257
258 .L_bn_sub_words_ctop:
259 { .mii; (p16)   ld8             r32=[r16],8       // b=*(bp++)
260         (p18)   sub             r39=r37,r34
261         (p19)   cmp.gtu.unc     p56,p0=r40,r38  }
262 { .mfb; (p0)    nop.m           0x0
263         (p0)    nop.f           0x0
264         (p0)    nop.b           0x0             }
265 { .mii; (p16)   ld8             r35=[r15],8       // a=*(ap++)
266         (p58)   cmp.eq.or       p57,p0=0,r41      // (p20)
267         (p58)   add             r41=-1,r41      } // (p20)
268 { .mbb; (p21)   st8             [r14]=r42,8       // *(rp++)=r
269         (p0)    nop.b           0x0
270         br.ctop.sptk    .L_bn_sub_words_ctop    };;
271 .L_bn_sub_words_cend:
272
273 { .mii;
274 (p59)   add             r8=1,r8         // return value
275         mov             pr=r9,0x1ffff
276         mov             ar.lc=r3        }
277 { .mbb; nop.b           0x0
278         br.ret.sptk.many        b0      };;
279 .endp   bn_sub_words#
280 #endif
281
282 #if 0
283 #define XMA_TEMPTATION
284 #endif
285
286 #if 1
287 //
288 // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
289 //
290 .global bn_mul_words#
291 .proc   bn_mul_words#
292 .align  64
293 .skip   32      // makes the loop body aligned at 64-byte boundary
294 bn_mul_words:
295         .prologue
296         .save   ar.pfs,r2
297 #ifdef XMA_TEMPTATION
298 { .mfi; alloc           r2=ar.pfs,4,0,0,0       };;
299 #else
300 { .mfi; alloc           r2=ar.pfs,4,12,0,16     };;
301 #endif
302 { .mib; mov             r8=r0                   // return value
303         cmp4.le         p6,p0=r34,r0
304 (p6)    br.ret.spnt.many        b0              };;
305
306 { .mii; sub     r10=r34,r0,1
307         .save   ar.lc,r3
308         mov     r3=ar.lc
309         .save   pr,r9
310         mov     r9=pr                   };;
311
312         .body
313 { .mib; setf.sig        f8=r35  // w
314         mov             pr.rot=0x800001<<16
315                         // ------^----- serves as (p50) at first (p27)
316         brp.loop.imp    .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
317                                         }
318
319 #ifndef XMA_TEMPTATION
320
321 { .mmi; ADDP            r14=0,r32       // rp
322         ADDP            r15=0,r33       // ap
323         mov             ar.lc=r10       }
324 { .mmi; mov             r40=0           // serves as r35 at first (p27)
325         mov             ar.ec=13        };;
326
327 // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
328 // L2 cache (i.e. 9 ticks away) as floating point load/store instructions
329 // bypass L1 cache and L2 latency is actually best-case scenario for
330 // ldf8. The loop is not scalable and shall run in 2*(n+12) even on
331 // "wider" IA-64 implementations. It's a trade-off here. n+24 loop
332 // would give us ~5% in *overall* performance improvement on "wider"
333 // IA-64, but would hurt Itanium for about same because of longer
334 // epilogue. As it's a matter of few percents in either case I've
335 // chosen to trade the scalability for development time (you can see
336 // this very instruction sequence in bn_mul_add_words loop which in
337 // turn is scalable).
338 .L_bn_mul_words_ctop:
339 { .mfi; (p25)   getf.sig        r36=f52                 // low
340         (p21)   xmpy.lu         f48=f37,f8
341         (p28)   cmp.ltu         p54,p50=r41,r39 }
342 { .mfi; (p16)   ldf8            f32=[r15],8
343         (p21)   xmpy.hu         f40=f37,f8
344         (p0)    nop.i           0x0             };;
345 { .mii; (p25)   getf.sig        r32=f44                 // high
346         .pred.rel       "mutex",p50,p54
347         (p50)   add             r40=r38,r35             // (p27)
348         (p54)   add             r40=r38,r35,1   }       // (p27)
349 { .mfb; (p28)   st8             [r14]=r41,8
350         (p0)    nop.f           0x0
351         br.ctop.sptk    .L_bn_mul_words_ctop    };;
352 .L_bn_mul_words_cend:
353
354 { .mii; nop.m           0x0
355 .pred.rel       "mutex",p51,p55
356 (p51)   add             r8=r36,r0
357 (p55)   add             r8=r36,r0,1     }
358 { .mfb; nop.m   0x0
359         nop.f   0x0
360         nop.b   0x0                     }
361
362 #else   // XMA_TEMPTATION
363
364         setf.sig        f37=r0  // serves as carry at (p18) tick
365         mov             ar.lc=r10
366         mov             ar.ec=5;;
367
368 // Most of you examining this code very likely wonder why in the name
369 // of Intel the following loop is commented out? Indeed, it looks so
370 // neat that you find it hard to believe that it's something wrong
371 // with it, right? The catch is that every iteration depends on the
372 // result from previous one and the latter isn't available instantly.
373 // The loop therefore spins at the latency of xma minus 1, or in other
374 // words at 6*(n+4) ticks:-( Compare to the "production" loop above
375 // that runs in 2*(n+11) where the low latency problem is worked around
376 // by moving the dependency to one-tick latent integer ALU. Note that
377 // "distance" between ldf8 and xma is not latency of ldf8, but the
378 // *difference* between xma and ldf8 latencies.
379 .L_bn_mul_words_ctop:
380 { .mfi; (p16)   ldf8            f32=[r33],8
381         (p18)   xma.hu          f38=f34,f8,f39  }
382 { .mfb; (p20)   stf8            [r32]=f37,8
383         (p18)   xma.lu          f35=f34,f8,f39
384         br.ctop.sptk    .L_bn_mul_words_ctop    };;
385 .L_bn_mul_words_cend:
386
387         getf.sig        r8=f41          // the return value
388
389 #endif  // XMA_TEMPTATION
390
391 { .mii; nop.m           0x0
392         mov             pr=r9,0x1ffff
393         mov             ar.lc=r3        }
394 { .mfb; rum             1<<5            // clear um.mfh
395         nop.f           0x0
396         br.ret.sptk.many        b0      };;
397 .endp   bn_mul_words#
398 #endif
399
400 #if 1
401 //
402 // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
403 //
404 .global bn_mul_add_words#
405 .proc   bn_mul_add_words#
406 .align  64
407 .skip   48      // makes the loop body aligned at 64-byte boundary
408 bn_mul_add_words:
409         .prologue
410         .save   ar.pfs,r2
411 { .mmi; alloc           r2=ar.pfs,4,4,0,8
412         cmp4.le         p6,p0=r34,r0
413         .save   ar.lc,r3
414         mov             r3=ar.lc        };;
415 { .mib; mov             r8=r0           // return value
416         sub             r10=r34,r0,1
417 (p6)    br.ret.spnt.many        b0      };;
418
419 { .mib; setf.sig        f8=r35          // w
420         .save   pr,r9
421         mov             r9=pr
422         brp.loop.imp    .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
423                                         }
424         .body
425 { .mmi; ADDP            r14=0,r32       // rp
426         ADDP            r15=0,r33       // ap
427         mov             ar.lc=r10       }
428 { .mii; ADDP            r16=0,r32       // rp copy
429         mov             pr.rot=0x2001<<16
430                         // ------^----- serves as (p40) at first (p27)
431         mov             ar.ec=11        };;
432
433 // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
434 // Itanium 2. Yes, unlike previous versions it scales:-) Previous
435 // version was performing *all* additions in IALU and was starving
436 // for those even on Itanium 2. In this version one addition is
437 // moved to FPU and is folded with multiplication. This is at cost
438 // of propagating the result from previous call to this subroutine
439 // to L2 cache... In other words negligible even for shorter keys.
440 // *Overall* performance improvement [over previous version] varies
441 // from 11 to 22 percent depending on key length.
442 .L_bn_mul_add_words_ctop:
443 .pred.rel       "mutex",p40,p42
444 { .mfi; (p23)   getf.sig        r36=f45                 // low
445         (p20)   xma.lu          f42=f36,f8,f50          // low
446         (p40)   add             r39=r39,r35     }       // (p27)
447 { .mfi; (p16)   ldf8            f32=[r15],8             // *(ap++)
448         (p20)   xma.hu          f36=f36,f8,f50          // high
449         (p42)   add             r39=r39,r35,1   };;     // (p27)
450 { .mmi; (p24)   getf.sig        r32=f40                 // high
451         (p16)   ldf8            f46=[r16],8             // *(rp1++)
452         (p40)   cmp.ltu         p41,p39=r39,r35 }       // (p27)
453 { .mib; (p26)   st8             [r14]=r39,8             // *(rp2++)
454         (p42)   cmp.leu         p41,p39=r39,r35         // (p27)
455         br.ctop.sptk    .L_bn_mul_add_words_ctop};;
456 .L_bn_mul_add_words_cend:
457
458 { .mmi; .pred.rel       "mutex",p40,p42
459 (p40)   add             r8=r35,r0
460 (p42)   add             r8=r35,r0,1
461         mov             pr=r9,0x1ffff   }
462 { .mib; rum             1<<5            // clear um.mfh
463         mov             ar.lc=r3
464         br.ret.sptk.many        b0      };;
465 .endp   bn_mul_add_words#
466 #endif
467
468 #if 1
469 //
470 // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
471 //
472 .global bn_sqr_words#
473 .proc   bn_sqr_words#
474 .align  64
475 .skip   32      // makes the loop body aligned at 64-byte boundary 
476 bn_sqr_words:
477         .prologue
478         .save   ar.pfs,r2
479 { .mii; alloc           r2=ar.pfs,3,0,0,0
480         sxt4            r34=r34         };;
481 { .mii; cmp.le          p6,p0=r34,r0
482         mov             r8=r0           }       // return value
483 { .mfb; ADDP            r32=0,r32
484         nop.f           0x0
485 (p6)    br.ret.spnt.many        b0      };;
486
487 { .mii; sub     r10=r34,r0,1
488         .save   ar.lc,r3
489         mov     r3=ar.lc
490         .save   pr,r9
491         mov     r9=pr                   };;
492
493         .body
494 { .mib; ADDP            r33=0,r33
495         mov             pr.rot=1<<16
496         brp.loop.imp    .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
497                                         }
498 { .mii; add             r34=8,r32
499         mov             ar.lc=r10
500         mov             ar.ec=18        };;
501
502 // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
503 // possible to compress the epilogue (I'm getting tired to write this
504 // comment over and over) and get down to 2*n+16 at the cost of
505 // scalability. The decision will very likely be reconsidered after the
506 // benchmark program is profiled. I.e. if performance gain on Itanium
507 // will appear larger than loss on "wider" IA-64, then the loop should
508 // be explicitly split and the epilogue compressed.
509 .L_bn_sqr_words_ctop:
510 { .mfi; (p16)   ldf8            f32=[r33],8
511         (p25)   xmpy.lu         f42=f41,f41
512         (p0)    nop.i           0x0             }
513 { .mib; (p33)   stf8            [r32]=f50,16
514         (p0)    nop.i           0x0
515         (p0)    nop.b           0x0             }
516 { .mfi; (p0)    nop.m           0x0
517         (p25)   xmpy.hu         f52=f41,f41
518         (p0)    nop.i           0x0             }
519 { .mib; (p33)   stf8            [r34]=f60,16
520         (p0)    nop.i           0x0
521         br.ctop.sptk    .L_bn_sqr_words_ctop    };;
522 .L_bn_sqr_words_cend:
523
524 { .mii; nop.m           0x0
525         mov             pr=r9,0x1ffff
526         mov             ar.lc=r3        }
527 { .mfb; rum             1<<5            // clear um.mfh
528         nop.f           0x0
529         br.ret.sptk.many        b0      };;
530 .endp   bn_sqr_words#
531 #endif
532
533 #if 1
534 // Apparently we win nothing by implementing special bn_sqr_comba8.
535 // Yes, it is possible to reduce the number of multiplications by
536 // almost factor of two, but then the amount of additions would
537 // increase by factor of two (as we would have to perform those
538 // otherwise performed by xma ourselves). Normally we would trade
539 // anyway as multiplications are way more expensive, but not this
540 // time... Multiplication kernel is fully pipelined and as we drain
541 // one 128-bit multiplication result per clock cycle multiplications
542 // are effectively as inexpensive as additions. Special implementation
543 // might become of interest for "wider" IA-64 implementation as you'll
544 // be able to get through the multiplication phase faster (there won't
545 // be any stall issues as discussed in the commentary section below and
546 // you therefore will be able to employ all 4 FP units)... But these
547 // Itanium days it's simply too hard to justify the effort so I just
548 // drop down to bn_mul_comba8 code:-)
549 //
550 // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
551 //
552 .global bn_sqr_comba8#
553 .proc   bn_sqr_comba8#
554 .align  64
555 bn_sqr_comba8:
556         .prologue
557         .save   ar.pfs,r2
558 #if defined(_HPUX_SOURCE) && !defined(_LP64)
559 { .mii; alloc   r2=ar.pfs,2,1,0,0
560         addp4   r33=0,r33
561         addp4   r32=0,r32               };;
562 { .mii;
563 #else
564 { .mii; alloc   r2=ar.pfs,2,1,0,0
565 #endif
566         mov     r34=r33
567         add     r14=8,r33               };;
568         .body
569 { .mii; add     r17=8,r34
570         add     r15=16,r33
571         add     r18=16,r34              }
572 { .mfb; add     r16=24,r33
573         br      .L_cheat_entry_point8   };;
574 .endp   bn_sqr_comba8#
575 #endif
576
577 #if 1
578 // I've estimated this routine to run in ~120 ticks, but in reality
579 // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
580 // cycles consumed for instructions fetch? Or did I misinterpret some
581 // clause in Itanium Âµ-architecture manual? Comments are welcomed and
582 // highly appreciated.
583 //
584 // On Itanium 2 it takes ~190 ticks. This is because of stalls on
585 // result from getf.sig. I do nothing about it at this point for
586 // reasons depicted below.
587 //
588 // However! It should be noted that even 160 ticks is darn good result
589 // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
590 // C version (compiled with gcc with inline assembler). I really
591 // kicked compiler's butt here, didn't I? Yeah! This brings us to the
592 // following statement. It's damn shame that this routine isn't called
593 // very often nowadays! According to the profiler most CPU time is
594 // consumed by bn_mul_add_words called from BN_from_montgomery. In
595 // order to estimate what we're missing, I've compared the performance
596 // of this routine against "traditional" implementation, i.e. against
597 // following routine:
598 //
599 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
600 // {    r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
601 //      r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
602 //      r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
603 //      r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
604 //      r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
605 //      r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
606 //      r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
607 //      r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
608 // }
609 //
610 // The one below is over 8 times faster than the one above:-( Even
611 // more reasons to "combafy" bn_mul_add_mont...
612 //
613 // And yes, this routine really made me wish there were an optimizing
614 // assembler! It also feels like it deserves a dedication.
615 //
616 //      To my wife for being there and to my kids...
617 //
618 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
619 //
620 #define carry1  r14
621 #define carry2  r15
622 #define carry3  r34
623 .global bn_mul_comba8#
624 .proc   bn_mul_comba8#
625 .align  64
626 bn_mul_comba8:
627         .prologue
628         .save   ar.pfs,r2
629 #if defined(_HPUX_SOURCE) && !defined(_LP64)
630 { .mii; alloc   r2=ar.pfs,3,0,0,0
631         addp4   r33=0,r33
632         addp4   r34=0,r34               };;
633 { .mii; addp4   r32=0,r32
634 #else
635 { .mii; alloc   r2=ar.pfs,3,0,0,0
636 #endif
637         add     r14=8,r33
638         add     r17=8,r34               }
639         .body
640 { .mii; add     r15=16,r33
641         add     r18=16,r34
642         add     r16=24,r33              }
643 .L_cheat_entry_point8:
644 { .mmi; add     r19=24,r34
645
646         ldf8    f32=[r33],32            };;
647
648 { .mmi; ldf8    f120=[r34],32
649         ldf8    f121=[r17],32           }
650 { .mmi; ldf8    f122=[r18],32
651         ldf8    f123=[r19],32           };;
652 { .mmi; ldf8    f124=[r34]
653         ldf8    f125=[r17]              }
654 { .mmi; ldf8    f126=[r18]
655         ldf8    f127=[r19]              }
656
657 { .mmi; ldf8    f33=[r14],32
658         ldf8    f34=[r15],32            }
659 { .mmi; ldf8    f35=[r16],32;;
660         ldf8    f36=[r33]               }
661 { .mmi; ldf8    f37=[r14]
662         ldf8    f38=[r15]               }
663 { .mfi; ldf8    f39=[r16]
664 // -------\ Entering multiplier's heaven /-------
665 // ------------\                    /------------
666 // -----------------\          /-----------------
667 // ----------------------\/----------------------
668                 xma.hu  f41=f32,f120,f0         }
669 { .mfi;         xma.lu  f40=f32,f120,f0         };; // (*)
670 { .mfi;         xma.hu  f51=f32,f121,f0         }
671 { .mfi;         xma.lu  f50=f32,f121,f0         };;
672 { .mfi;         xma.hu  f61=f32,f122,f0         }
673 { .mfi;         xma.lu  f60=f32,f122,f0         };;
674 { .mfi;         xma.hu  f71=f32,f123,f0         }
675 { .mfi;         xma.lu  f70=f32,f123,f0         };;
676 { .mfi;         xma.hu  f81=f32,f124,f0         }
677 { .mfi;         xma.lu  f80=f32,f124,f0         };;
678 { .mfi;         xma.hu  f91=f32,f125,f0         }
679 { .mfi;         xma.lu  f90=f32,f125,f0         };;
680 { .mfi;         xma.hu  f101=f32,f126,f0        }
681 { .mfi;         xma.lu  f100=f32,f126,f0        };;
682 { .mfi;         xma.hu  f111=f32,f127,f0        }
683 { .mfi;         xma.lu  f110=f32,f127,f0        };;//
684 // (*)  You can argue that splitting at every second bundle would
685 //      prevent "wider" IA-64 implementations from achieving the peak
686 //      performance. Well, not really... The catch is that if you
687 //      intend to keep 4 FP units busy by splitting at every fourth
688 //      bundle and thus perform these 16 multiplications in 4 ticks,
689 //      the first bundle *below* would stall because the result from
690 //      the first xma bundle *above* won't be available for another 3
691 //      ticks (if not more, being an optimist, I assume that "wider"
692 //      implementation will have same latency:-). This stall will hold
693 //      you back and the performance would be as if every second bundle
694 //      were split *anyway*...
695 { .mfi; getf.sig        r16=f40
696                 xma.hu  f42=f33,f120,f41
697         add             r33=8,r32               }
698 { .mfi;         xma.lu  f41=f33,f120,f41        };;
699 { .mfi; getf.sig        r24=f50
700                 xma.hu  f52=f33,f121,f51        }
701 { .mfi;         xma.lu  f51=f33,f121,f51        };;
702 { .mfi; st8             [r32]=r16,16
703                 xma.hu  f62=f33,f122,f61        }
704 { .mfi;         xma.lu  f61=f33,f122,f61        };;
705 { .mfi;         xma.hu  f72=f33,f123,f71        }
706 { .mfi;         xma.lu  f71=f33,f123,f71        };;
707 { .mfi;         xma.hu  f82=f33,f124,f81        }
708 { .mfi;         xma.lu  f81=f33,f124,f81        };;
709 { .mfi;         xma.hu  f92=f33,f125,f91        }
710 { .mfi;         xma.lu  f91=f33,f125,f91        };;
711 { .mfi;         xma.hu  f102=f33,f126,f101      }
712 { .mfi;         xma.lu  f101=f33,f126,f101      };;
713 { .mfi;         xma.hu  f112=f33,f127,f111      }
714 { .mfi;         xma.lu  f111=f33,f127,f111      };;//
715 //-------------------------------------------------//
716 { .mfi; getf.sig        r25=f41
717                 xma.hu  f43=f34,f120,f42        }
718 { .mfi;         xma.lu  f42=f34,f120,f42        };;
719 { .mfi; getf.sig        r16=f60
720                 xma.hu  f53=f34,f121,f52        }
721 { .mfi;         xma.lu  f52=f34,f121,f52        };;
722 { .mfi; getf.sig        r17=f51
723                 xma.hu  f63=f34,f122,f62
724         add             r25=r25,r24             }
725 { .mfi;         xma.lu  f62=f34,f122,f62
726         mov             carry1=0                };;
727 { .mfi; cmp.ltu         p6,p0=r25,r24
728                 xma.hu  f73=f34,f123,f72        }
729 { .mfi;         xma.lu  f72=f34,f123,f72        };;
730 { .mfi; st8             [r33]=r25,16
731                 xma.hu  f83=f34,f124,f82
732 (p6)    add             carry1=1,carry1         }
733 { .mfi;         xma.lu  f82=f34,f124,f82        };;
734 { .mfi;         xma.hu  f93=f34,f125,f92        }
735 { .mfi;         xma.lu  f92=f34,f125,f92        };;
736 { .mfi;         xma.hu  f103=f34,f126,f102      }
737 { .mfi;         xma.lu  f102=f34,f126,f102      };;
738 { .mfi;         xma.hu  f113=f34,f127,f112      }
739 { .mfi;         xma.lu  f112=f34,f127,f112      };;//
740 //-------------------------------------------------//
741 { .mfi; getf.sig        r18=f42
742                 xma.hu  f44=f35,f120,f43
743         add             r17=r17,r16             }
744 { .mfi;         xma.lu  f43=f35,f120,f43        };;
745 { .mfi; getf.sig        r24=f70
746                 xma.hu  f54=f35,f121,f53        }
747 { .mfi; mov             carry2=0
748                 xma.lu  f53=f35,f121,f53        };;
749 { .mfi; getf.sig        r25=f61
750                 xma.hu  f64=f35,f122,f63
751         cmp.ltu         p7,p0=r17,r16           }
752 { .mfi; add             r18=r18,r17
753                 xma.lu  f63=f35,f122,f63        };;
754 { .mfi; getf.sig        r26=f52
755                 xma.hu  f74=f35,f123,f73
756 (p7)    add             carry2=1,carry2         }
757 { .mfi; cmp.ltu         p7,p0=r18,r17
758                 xma.lu  f73=f35,f123,f73
759         add             r18=r18,carry1          };;
760 { .mfi;
761                 xma.hu  f84=f35,f124,f83
762 (p7)    add             carry2=1,carry2         }
763 { .mfi; cmp.ltu         p7,p0=r18,carry1
764                 xma.lu  f83=f35,f124,f83        };;
765 { .mfi; st8             [r32]=r18,16
766                 xma.hu  f94=f35,f125,f93
767 (p7)    add             carry2=1,carry2         }
768 { .mfi;         xma.lu  f93=f35,f125,f93        };;
769 { .mfi;         xma.hu  f104=f35,f126,f103      }
770 { .mfi;         xma.lu  f103=f35,f126,f103      };;
771 { .mfi;         xma.hu  f114=f35,f127,f113      }
772 { .mfi; mov             carry1=0
773                 xma.lu  f113=f35,f127,f113
774         add             r25=r25,r24             };;//
775 //-------------------------------------------------//
776 { .mfi; getf.sig        r27=f43
777                 xma.hu  f45=f36,f120,f44
778         cmp.ltu         p6,p0=r25,r24           }
779 { .mfi;         xma.lu  f44=f36,f120,f44        
780         add             r26=r26,r25             };;
781 { .mfi; getf.sig        r16=f80
782                 xma.hu  f55=f36,f121,f54
783 (p6)    add             carry1=1,carry1         }
784 { .mfi;         xma.lu  f54=f36,f121,f54        };;
785 { .mfi; getf.sig        r17=f71
786                 xma.hu  f65=f36,f122,f64
787         cmp.ltu         p6,p0=r26,r25           }
788 { .mfi;         xma.lu  f64=f36,f122,f64
789         add             r27=r27,r26             };;
790 { .mfi; getf.sig        r18=f62
791                 xma.hu  f75=f36,f123,f74
792 (p6)    add             carry1=1,carry1         }
793 { .mfi; cmp.ltu         p6,p0=r27,r26
794                 xma.lu  f74=f36,f123,f74
795         add             r27=r27,carry2          };;
796 { .mfi; getf.sig        r19=f53
797                 xma.hu  f85=f36,f124,f84
798 (p6)    add             carry1=1,carry1         }
799 { .mfi;         xma.lu  f84=f36,f124,f84
800         cmp.ltu         p6,p0=r27,carry2        };;
801 { .mfi; st8             [r33]=r27,16
802                 xma.hu  f95=f36,f125,f94
803 (p6)    add             carry1=1,carry1         }
804 { .mfi;         xma.lu  f94=f36,f125,f94        };;
805 { .mfi;         xma.hu  f105=f36,f126,f104      }
806 { .mfi; mov             carry2=0
807                 xma.lu  f104=f36,f126,f104
808         add             r17=r17,r16             };;
809 { .mfi;         xma.hu  f115=f36,f127,f114
810         cmp.ltu         p7,p0=r17,r16           }
811 { .mfi;         xma.lu  f114=f36,f127,f114
812         add             r18=r18,r17             };;//
813 //-------------------------------------------------//
814 { .mfi; getf.sig        r20=f44
815                 xma.hu  f46=f37,f120,f45
816 (p7)    add             carry2=1,carry2         }
817 { .mfi; cmp.ltu         p7,p0=r18,r17
818                 xma.lu  f45=f37,f120,f45
819         add             r19=r19,r18             };;
820 { .mfi; getf.sig        r24=f90
821                 xma.hu  f56=f37,f121,f55        }
822 { .mfi;         xma.lu  f55=f37,f121,f55        };;
823 { .mfi; getf.sig        r25=f81
824                 xma.hu  f66=f37,f122,f65
825 (p7)    add             carry2=1,carry2         }
826 { .mfi; cmp.ltu         p7,p0=r19,r18
827                 xma.lu  f65=f37,f122,f65
828         add             r20=r20,r19             };;
829 { .mfi; getf.sig        r26=f72
830                 xma.hu  f76=f37,f123,f75
831 (p7)    add             carry2=1,carry2         }
832 { .mfi; cmp.ltu         p7,p0=r20,r19
833                 xma.lu  f75=f37,f123,f75
834         add             r20=r20,carry1          };;
835 { .mfi; getf.sig        r27=f63
836                 xma.hu  f86=f37,f124,f85
837 (p7)    add             carry2=1,carry2         }
838 { .mfi;         xma.lu  f85=f37,f124,f85
839         cmp.ltu         p7,p0=r20,carry1        };;
840 { .mfi; getf.sig        r28=f54
841                 xma.hu  f96=f37,f125,f95
842 (p7)    add             carry2=1,carry2         }
843 { .mfi; st8             [r32]=r20,16
844                 xma.lu  f95=f37,f125,f95        };;
845 { .mfi;         xma.hu  f106=f37,f126,f105      }
846 { .mfi; mov             carry1=0
847                 xma.lu  f105=f37,f126,f105
848         add             r25=r25,r24             };;
849 { .mfi;         xma.hu  f116=f37,f127,f115
850         cmp.ltu         p6,p0=r25,r24           }
851 { .mfi;         xma.lu  f115=f37,f127,f115
852         add             r26=r26,r25             };;//
853 //-------------------------------------------------//
854 { .mfi; getf.sig        r29=f45
855                 xma.hu  f47=f38,f120,f46
856 (p6)    add             carry1=1,carry1         }
857 { .mfi; cmp.ltu         p6,p0=r26,r25
858                 xma.lu  f46=f38,f120,f46
859         add             r27=r27,r26             };;
860 { .mfi; getf.sig        r16=f100
861                 xma.hu  f57=f38,f121,f56
862 (p6)    add             carry1=1,carry1         }
863 { .mfi; cmp.ltu         p6,p0=r27,r26
864                 xma.lu  f56=f38,f121,f56
865         add             r28=r28,r27             };;
866 { .mfi; getf.sig        r17=f91
867                 xma.hu  f67=f38,f122,f66
868 (p6)    add             carry1=1,carry1         }
869 { .mfi; cmp.ltu         p6,p0=r28,r27
870                 xma.lu  f66=f38,f122,f66
871         add             r29=r29,r28             };;
872 { .mfi; getf.sig        r18=f82
873                 xma.hu  f77=f38,f123,f76
874 (p6)    add             carry1=1,carry1         }
875 { .mfi; cmp.ltu         p6,p0=r29,r28
876                 xma.lu  f76=f38,f123,f76
877         add             r29=r29,carry2          };;
878 { .mfi; getf.sig        r19=f73
879                 xma.hu  f87=f38,f124,f86
880 (p6)    add             carry1=1,carry1         }
881 { .mfi;         xma.lu  f86=f38,f124,f86
882         cmp.ltu         p6,p0=r29,carry2        };;
883 { .mfi; getf.sig        r20=f64
884                 xma.hu  f97=f38,f125,f96
885 (p6)    add             carry1=1,carry1         }
886 { .mfi; st8             [r33]=r29,16
887                 xma.lu  f96=f38,f125,f96        };;
888 { .mfi; getf.sig        r21=f55
889                 xma.hu  f107=f38,f126,f106      }
890 { .mfi; mov             carry2=0
891                 xma.lu  f106=f38,f126,f106
892         add             r17=r17,r16             };;
893 { .mfi;         xma.hu  f117=f38,f127,f116
894         cmp.ltu         p7,p0=r17,r16           }
895 { .mfi;         xma.lu  f116=f38,f127,f116
896         add             r18=r18,r17             };;//
897 //-------------------------------------------------//
898 { .mfi; getf.sig        r22=f46
899                 xma.hu  f48=f39,f120,f47
900 (p7)    add             carry2=1,carry2         }
901 { .mfi; cmp.ltu         p7,p0=r18,r17
902                 xma.lu  f47=f39,f120,f47
903         add             r19=r19,r18             };;
904 { .mfi; getf.sig        r24=f110
905                 xma.hu  f58=f39,f121,f57
906 (p7)    add             carry2=1,carry2         }
907 { .mfi; cmp.ltu         p7,p0=r19,r18
908                 xma.lu  f57=f39,f121,f57
909         add             r20=r20,r19             };;
910 { .mfi; getf.sig        r25=f101
911                 xma.hu  f68=f39,f122,f67
912 (p7)    add             carry2=1,carry2         }
913 { .mfi; cmp.ltu         p7,p0=r20,r19
914                 xma.lu  f67=f39,f122,f67
915         add             r21=r21,r20             };;
916 { .mfi; getf.sig        r26=f92
917                 xma.hu  f78=f39,f123,f77
918 (p7)    add             carry2=1,carry2         }
919 { .mfi; cmp.ltu         p7,p0=r21,r20
920                 xma.lu  f77=f39,f123,f77
921         add             r22=r22,r21             };;
922 { .mfi; getf.sig        r27=f83
923                 xma.hu  f88=f39,f124,f87
924 (p7)    add             carry2=1,carry2         }
925 { .mfi; cmp.ltu         p7,p0=r22,r21
926                 xma.lu  f87=f39,f124,f87
927         add             r22=r22,carry1          };;
928 { .mfi; getf.sig        r28=f74
929                 xma.hu  f98=f39,f125,f97
930 (p7)    add             carry2=1,carry2         }
931 { .mfi;         xma.lu  f97=f39,f125,f97
932         cmp.ltu         p7,p0=r22,carry1        };;
933 { .mfi; getf.sig        r29=f65
934                 xma.hu  f108=f39,f126,f107
935 (p7)    add             carry2=1,carry2         }
936 { .mfi; st8             [r32]=r22,16
937                 xma.lu  f107=f39,f126,f107      };;
938 { .mfi; getf.sig        r30=f56
939                 xma.hu  f118=f39,f127,f117      }
940 { .mfi;         xma.lu  f117=f39,f127,f117      };;//
941 //-------------------------------------------------//
942 // Leaving multiplier's heaven... Quite a ride, huh?
943
944 { .mii; getf.sig        r31=f47
945         add             r25=r25,r24
946         mov             carry1=0                };;
947 { .mii;         getf.sig        r16=f111
948         cmp.ltu         p6,p0=r25,r24
949         add             r26=r26,r25             };;
950 { .mfb;         getf.sig        r17=f102        }
951 { .mii;
952 (p6)    add             carry1=1,carry1
953         cmp.ltu         p6,p0=r26,r25
954         add             r27=r27,r26             };;
955 { .mfb; nop.m   0x0                             }
956 { .mii;
957 (p6)    add             carry1=1,carry1
958         cmp.ltu         p6,p0=r27,r26
959         add             r28=r28,r27             };;
960 { .mii;         getf.sig        r18=f93
961                 add             r17=r17,r16
962                 mov             carry3=0        }
963 { .mii;
964 (p6)    add             carry1=1,carry1
965         cmp.ltu         p6,p0=r28,r27
966         add             r29=r29,r28             };;
967 { .mii;         getf.sig        r19=f84
968                 cmp.ltu         p7,p0=r17,r16   }
969 { .mii;
970 (p6)    add             carry1=1,carry1
971         cmp.ltu         p6,p0=r29,r28
972         add             r30=r30,r29             };;
973 { .mii;         getf.sig        r20=f75
974                 add             r18=r18,r17     }
975 { .mii;
976 (p6)    add             carry1=1,carry1
977         cmp.ltu         p6,p0=r30,r29
978         add             r31=r31,r30             };;
979 { .mfb;         getf.sig        r21=f66         }
980 { .mii; (p7)    add             carry3=1,carry3
981                 cmp.ltu         p7,p0=r18,r17
982                 add             r19=r19,r18     }
983 { .mfb; nop.m   0x0                             }
984 { .mii;
985 (p6)    add             carry1=1,carry1
986         cmp.ltu         p6,p0=r31,r30
987         add             r31=r31,carry2          };;
988 { .mfb;         getf.sig        r22=f57         }
989 { .mii; (p7)    add             carry3=1,carry3
990                 cmp.ltu         p7,p0=r19,r18
991                 add             r20=r20,r19     }
992 { .mfb; nop.m   0x0                             }
993 { .mii;
994 (p6)    add             carry1=1,carry1
995         cmp.ltu         p6,p0=r31,carry2        };;
996 { .mfb;         getf.sig        r23=f48         }
997 { .mii; (p7)    add             carry3=1,carry3
998                 cmp.ltu         p7,p0=r20,r19
999                 add             r21=r21,r20     }
1000 { .mii;
1001 (p6)    add             carry1=1,carry1         }
1002 { .mfb; st8             [r33]=r31,16            };;
1003
1004 { .mfb; getf.sig        r24=f112                }
1005 { .mii; (p7)    add             carry3=1,carry3
1006                 cmp.ltu         p7,p0=r21,r20
1007                 add             r22=r22,r21     };;
1008 { .mfb; getf.sig        r25=f103                }
1009 { .mii; (p7)    add             carry3=1,carry3
1010                 cmp.ltu         p7,p0=r22,r21
1011                 add             r23=r23,r22     };;
1012 { .mfb; getf.sig        r26=f94                 }
1013 { .mii; (p7)    add             carry3=1,carry3
1014                 cmp.ltu         p7,p0=r23,r22
1015                 add             r23=r23,carry1  };;
1016 { .mfb; getf.sig        r27=f85                 }
1017 { .mii; (p7)    add             carry3=1,carry3
1018                 cmp.ltu         p7,p8=r23,carry1};;
1019 { .mii; getf.sig        r28=f76
1020         add             r25=r25,r24
1021         mov             carry1=0                }
1022 { .mii;         st8             [r32]=r23,16
1023         (p7)    add             carry2=1,carry3
1024         (p8)    add             carry2=0,carry3 };;
1025
1026 { .mfb; nop.m   0x0                             }
1027 { .mii; getf.sig        r29=f67
1028         cmp.ltu         p6,p0=r25,r24
1029         add             r26=r26,r25             };;
1030 { .mfb; getf.sig        r30=f58                 }
1031 { .mii;
1032 (p6)    add             carry1=1,carry1
1033         cmp.ltu         p6,p0=r26,r25
1034         add             r27=r27,r26             };;
1035 { .mfb;         getf.sig        r16=f113        }
1036 { .mii;
1037 (p6)    add             carry1=1,carry1
1038         cmp.ltu         p6,p0=r27,r26
1039         add             r28=r28,r27             };;
1040 { .mfb;         getf.sig        r17=f104        }
1041 { .mii;
1042 (p6)    add             carry1=1,carry1
1043         cmp.ltu         p6,p0=r28,r27
1044         add             r29=r29,r28             };;
1045 { .mfb;         getf.sig        r18=f95         }
1046 { .mii;
1047 (p6)    add             carry1=1,carry1
1048         cmp.ltu         p6,p0=r29,r28
1049         add             r30=r30,r29             };;
1050 { .mii;         getf.sig        r19=f86
1051                 add             r17=r17,r16
1052                 mov             carry3=0        }
1053 { .mii;
1054 (p6)    add             carry1=1,carry1
1055         cmp.ltu         p6,p0=r30,r29
1056         add             r30=r30,carry2          };;
1057 { .mii;         getf.sig        r20=f77
1058                 cmp.ltu         p7,p0=r17,r16
1059                 add             r18=r18,r17     }
1060 { .mii;
1061 (p6)    add             carry1=1,carry1
1062         cmp.ltu         p6,p0=r30,carry2        };;
1063 { .mfb;         getf.sig        r21=f68         }
1064 { .mii; st8             [r33]=r30,16
1065 (p6)    add             carry1=1,carry1         };;
1066
1067 { .mfb; getf.sig        r24=f114                }
1068 { .mii; (p7)    add             carry3=1,carry3
1069                 cmp.ltu         p7,p0=r18,r17
1070                 add             r19=r19,r18     };;
1071 { .mfb; getf.sig        r25=f105                }
1072 { .mii; (p7)    add             carry3=1,carry3
1073                 cmp.ltu         p7,p0=r19,r18
1074                 add             r20=r20,r19     };;
1075 { .mfb; getf.sig        r26=f96                 }
1076 { .mii; (p7)    add             carry3=1,carry3
1077                 cmp.ltu         p7,p0=r20,r19
1078                 add             r21=r21,r20     };;
1079 { .mfb; getf.sig        r27=f87                 }
1080 { .mii; (p7)    add             carry3=1,carry3
1081                 cmp.ltu         p7,p0=r21,r20
1082                 add             r21=r21,carry1  };;
1083 { .mib; getf.sig        r28=f78                 
1084         add             r25=r25,r24             }
1085 { .mib; (p7)    add             carry3=1,carry3
1086                 cmp.ltu         p7,p8=r21,carry1};;
1087 { .mii;         st8             [r32]=r21,16
1088         (p7)    add             carry2=1,carry3
1089         (p8)    add             carry2=0,carry3 }
1090
1091 { .mii; mov             carry1=0
1092         cmp.ltu         p6,p0=r25,r24
1093         add             r26=r26,r25             };;
1094 { .mfb;         getf.sig        r16=f115        }
1095 { .mii;
1096 (p6)    add             carry1=1,carry1
1097         cmp.ltu         p6,p0=r26,r25
1098         add             r27=r27,r26             };;
1099 { .mfb;         getf.sig        r17=f106        }
1100 { .mii;
1101 (p6)    add             carry1=1,carry1
1102         cmp.ltu         p6,p0=r27,r26
1103         add             r28=r28,r27             };;
1104 { .mfb;         getf.sig        r18=f97         }
1105 { .mii;
1106 (p6)    add             carry1=1,carry1
1107         cmp.ltu         p6,p0=r28,r27
1108         add             r28=r28,carry2          };;
1109 { .mib;         getf.sig        r19=f88
1110                 add             r17=r17,r16     }
1111 { .mib;
1112 (p6)    add             carry1=1,carry1
1113         cmp.ltu         p6,p0=r28,carry2        };;
1114 { .mii; st8             [r33]=r28,16
1115 (p6)    add             carry1=1,carry1         }
1116
1117 { .mii;         mov             carry2=0
1118                 cmp.ltu         p7,p0=r17,r16
1119                 add             r18=r18,r17     };;
1120 { .mfb; getf.sig        r24=f116                }
1121 { .mii; (p7)    add             carry2=1,carry2
1122                 cmp.ltu         p7,p0=r18,r17
1123                 add             r19=r19,r18     };;
1124 { .mfb; getf.sig        r25=f107                }
1125 { .mii; (p7)    add             carry2=1,carry2
1126                 cmp.ltu         p7,p0=r19,r18
1127                 add             r19=r19,carry1  };;
1128 { .mfb; getf.sig        r26=f98                 }
1129 { .mii; (p7)    add             carry2=1,carry2
1130                 cmp.ltu         p7,p0=r19,carry1};;
1131 { .mii;         st8             [r32]=r19,16
1132         (p7)    add             carry2=1,carry2 }
1133
1134 { .mfb; add             r25=r25,r24             };;
1135
1136 { .mfb;         getf.sig        r16=f117        }
1137 { .mii; mov             carry1=0
1138         cmp.ltu         p6,p0=r25,r24
1139         add             r26=r26,r25             };;
1140 { .mfb;         getf.sig        r17=f108        }
1141 { .mii;
1142 (p6)    add             carry1=1,carry1
1143         cmp.ltu         p6,p0=r26,r25
1144         add             r26=r26,carry2          };;
1145 { .mfb; nop.m   0x0                             }
1146 { .mii;
1147 (p6)    add             carry1=1,carry1
1148         cmp.ltu         p6,p0=r26,carry2        };;
1149 { .mii; st8             [r33]=r26,16
1150 (p6)    add             carry1=1,carry1         }
1151
1152 { .mfb;         add             r17=r17,r16     };;
1153 { .mfb; getf.sig        r24=f118                }
1154 { .mii;         mov             carry2=0
1155                 cmp.ltu         p7,p0=r17,r16
1156                 add             r17=r17,carry1  };;
1157 { .mii; (p7)    add             carry2=1,carry2
1158                 cmp.ltu         p7,p0=r17,carry1};;
1159 { .mii;         st8             [r32]=r17
1160         (p7)    add             carry2=1,carry2 };;
1161 { .mfb; add             r24=r24,carry2          };;
1162 { .mib; st8             [r33]=r24               }
1163
1164 { .mib; rum             1<<5            // clear um.mfh
1165         br.ret.sptk.many        b0      };;
1166 .endp   bn_mul_comba8#
1167 #undef  carry3
1168 #undef  carry2
1169 #undef  carry1
1170 #endif
1171
1172 #if 1
1173 // It's possible to make it faster (see comment to bn_sqr_comba8), but
1174 // I reckon it doesn't worth the effort. Basically because the routine
1175 // (actually both of them) practically never called... So I just play
1176 // same trick as with bn_sqr_comba8.
1177 //
1178 // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1179 //
1180 .global bn_sqr_comba4#
1181 .proc   bn_sqr_comba4#
1182 .align  64
1183 bn_sqr_comba4:
1184         .prologue
1185         .save   ar.pfs,r2
1186 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1187 { .mii; alloc   r2=ar.pfs,2,1,0,0
1188         addp4   r32=0,r32
1189         addp4   r33=0,r33               };;
1190 { .mii;
1191 #else
1192 { .mii; alloc   r2=ar.pfs,2,1,0,0
1193 #endif
1194         mov     r34=r33
1195         add     r14=8,r33               };;
1196         .body
1197 { .mii; add     r17=8,r34
1198         add     r15=16,r33
1199         add     r18=16,r34              }
1200 { .mfb; add     r16=24,r33
1201         br      .L_cheat_entry_point4   };;
1202 .endp   bn_sqr_comba4#
1203 #endif
1204
1205 #if 1
1206 // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1207 //
1208 // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1209 //
1210 #define carry1  r14
1211 #define carry2  r15
1212 .global bn_mul_comba4#
1213 .proc   bn_mul_comba4#
1214 .align  64
1215 bn_mul_comba4:
1216         .prologue
1217         .save   ar.pfs,r2
1218 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1219 { .mii; alloc   r2=ar.pfs,3,0,0,0
1220         addp4   r33=0,r33
1221         addp4   r34=0,r34               };;
1222 { .mii; addp4   r32=0,r32
1223 #else
1224 { .mii; alloc   r2=ar.pfs,3,0,0,0
1225 #endif
1226         add     r14=8,r33
1227         add     r17=8,r34               }
1228         .body
1229 { .mii; add     r15=16,r33
1230         add     r18=16,r34
1231         add     r16=24,r33              };;
1232 .L_cheat_entry_point4:
1233 { .mmi; add     r19=24,r34
1234
1235         ldf8    f32=[r33]               }
1236
1237 { .mmi; ldf8    f120=[r34]
1238         ldf8    f121=[r17]              };;
1239 { .mmi; ldf8    f122=[r18]
1240         ldf8    f123=[r19]              }
1241
1242 { .mmi; ldf8    f33=[r14]
1243         ldf8    f34=[r15]               }
1244 { .mfi; ldf8    f35=[r16]
1245
1246                 xma.hu  f41=f32,f120,f0         }
1247 { .mfi;         xma.lu  f40=f32,f120,f0         };;
1248 { .mfi;         xma.hu  f51=f32,f121,f0         }
1249 { .mfi;         xma.lu  f50=f32,f121,f0         };;
1250 { .mfi;         xma.hu  f61=f32,f122,f0         }
1251 { .mfi;         xma.lu  f60=f32,f122,f0         };;
1252 { .mfi;         xma.hu  f71=f32,f123,f0         }
1253 { .mfi;         xma.lu  f70=f32,f123,f0         };;//
1254 // Major stall takes place here, and 3 more places below. Result from
1255 // first xma is not available for another 3 ticks.
1256 { .mfi; getf.sig        r16=f40
1257                 xma.hu  f42=f33,f120,f41
1258         add             r33=8,r32               }
1259 { .mfi;         xma.lu  f41=f33,f120,f41        };;
1260 { .mfi; getf.sig        r24=f50
1261                 xma.hu  f52=f33,f121,f51        }
1262 { .mfi;         xma.lu  f51=f33,f121,f51        };;
1263 { .mfi; st8             [r32]=r16,16
1264                 xma.hu  f62=f33,f122,f61        }
1265 { .mfi;         xma.lu  f61=f33,f122,f61        };;
1266 { .mfi;         xma.hu  f72=f33,f123,f71        }
1267 { .mfi;         xma.lu  f71=f33,f123,f71        };;//
1268 //-------------------------------------------------//
1269 { .mfi; getf.sig        r25=f41
1270                 xma.hu  f43=f34,f120,f42        }
1271 { .mfi;         xma.lu  f42=f34,f120,f42        };;
1272 { .mfi; getf.sig        r16=f60
1273                 xma.hu  f53=f34,f121,f52        }
1274 { .mfi;         xma.lu  f52=f34,f121,f52        };;
1275 { .mfi; getf.sig        r17=f51
1276                 xma.hu  f63=f34,f122,f62
1277         add             r25=r25,r24             }
1278 { .mfi; mov             carry1=0
1279                 xma.lu  f62=f34,f122,f62        };;
1280 { .mfi; st8             [r33]=r25,16
1281                 xma.hu  f73=f34,f123,f72
1282         cmp.ltu         p6,p0=r25,r24           }
1283 { .mfi;         xma.lu  f72=f34,f123,f72        };;//
1284 //-------------------------------------------------//
1285 { .mfi; getf.sig        r18=f42
1286                 xma.hu  f44=f35,f120,f43
1287 (p6)    add             carry1=1,carry1         }
1288 { .mfi; add             r17=r17,r16
1289                 xma.lu  f43=f35,f120,f43
1290         mov             carry2=0                };;
1291 { .mfi; getf.sig        r24=f70
1292                 xma.hu  f54=f35,f121,f53
1293         cmp.ltu         p7,p0=r17,r16           }
1294 { .mfi;         xma.lu  f53=f35,f121,f53        };;
1295 { .mfi; getf.sig        r25=f61
1296                 xma.hu  f64=f35,f122,f63
1297         add             r18=r18,r17             }
1298 { .mfi;         xma.lu  f63=f35,f122,f63
1299 (p7)    add             carry2=1,carry2         };;
1300 { .mfi; getf.sig        r26=f52
1301                 xma.hu  f74=f35,f123,f73
1302         cmp.ltu         p7,p0=r18,r17           }
1303 { .mfi;         xma.lu  f73=f35,f123,f73
1304         add             r18=r18,carry1          };;
1305 //-------------------------------------------------//
1306 { .mii; st8             [r32]=r18,16
1307 (p7)    add             carry2=1,carry2
1308         cmp.ltu         p7,p0=r18,carry1        };;
1309
1310 { .mfi; getf.sig        r27=f43 // last major stall
1311 (p7)    add             carry2=1,carry2         };;
1312 { .mii;         getf.sig        r16=f71
1313         add             r25=r25,r24
1314         mov             carry1=0                };;
1315 { .mii;         getf.sig        r17=f62 
1316         cmp.ltu         p6,p0=r25,r24
1317         add             r26=r26,r25             };;
1318 { .mii;
1319 (p6)    add             carry1=1,carry1
1320         cmp.ltu         p6,p0=r26,r25
1321         add             r27=r27,r26             };;
1322 { .mii;
1323 (p6)    add             carry1=1,carry1
1324         cmp.ltu         p6,p0=r27,r26
1325         add             r27=r27,carry2          };;
1326 { .mii;         getf.sig        r18=f53
1327 (p6)    add             carry1=1,carry1
1328         cmp.ltu         p6,p0=r27,carry2        };;
1329 { .mfi; st8             [r33]=r27,16
1330 (p6)    add             carry1=1,carry1         }
1331
1332 { .mii;         getf.sig        r19=f44
1333                 add             r17=r17,r16
1334                 mov             carry2=0        };;
1335 { .mii; getf.sig        r24=f72
1336                 cmp.ltu         p7,p0=r17,r16
1337                 add             r18=r18,r17     };;
1338 { .mii; (p7)    add             carry2=1,carry2
1339                 cmp.ltu         p7,p0=r18,r17
1340                 add             r19=r19,r18     };;
1341 { .mii; (p7)    add             carry2=1,carry2
1342                 cmp.ltu         p7,p0=r19,r18
1343                 add             r19=r19,carry1  };;
1344 { .mii; getf.sig        r25=f63
1345         (p7)    add             carry2=1,carry2
1346                 cmp.ltu         p7,p0=r19,carry1};;
1347 { .mii;         st8             [r32]=r19,16
1348         (p7)    add             carry2=1,carry2 }
1349
1350 { .mii; getf.sig        r26=f54
1351         add             r25=r25,r24
1352         mov             carry1=0                };;
1353 { .mii;         getf.sig        r16=f73
1354         cmp.ltu         p6,p0=r25,r24
1355         add             r26=r26,r25             };;
1356 { .mii;
1357 (p6)    add             carry1=1,carry1
1358         cmp.ltu         p6,p0=r26,r25
1359         add             r26=r26,carry2          };;
1360 { .mii;         getf.sig        r17=f64
1361 (p6)    add             carry1=1,carry1
1362         cmp.ltu         p6,p0=r26,carry2        };;
1363 { .mii; st8             [r33]=r26,16
1364 (p6)    add             carry1=1,carry1         }
1365
1366 { .mii; getf.sig        r24=f74
1367                 add             r17=r17,r16     
1368                 mov             carry2=0        };;
1369 { .mii;         cmp.ltu         p7,p0=r17,r16
1370                 add             r17=r17,carry1  };;
1371
1372 { .mii; (p7)    add             carry2=1,carry2
1373                 cmp.ltu         p7,p0=r17,carry1};;
1374 { .mii;         st8             [r32]=r17,16
1375         (p7)    add             carry2=1,carry2 };;
1376
1377 { .mii; add             r24=r24,carry2          };;
1378 { .mii; st8             [r33]=r24               }
1379
1380 { .mib; rum             1<<5            // clear um.mfh
1381         br.ret.sptk.many        b0      };;
1382 .endp   bn_mul_comba4#
1383 #undef  carry2
1384 #undef  carry1
1385 #endif
1386
1387 #if 1
1388 //
1389 // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1390 //
1391 // In the nutshell it's a port of my MIPS III/IV implementation.
1392 //
1393 #define AT      r14
1394 #define H       r16
1395 #define HH      r20
1396 #define L       r17
1397 #define D       r18
1398 #define DH      r22
1399 #define I       r21
1400
1401 #if 0
1402 // Some preprocessors (most notably HP-UX) appear to be allergic to
1403 // macros enclosed to parenthesis [as these three were].
1404 #define cont    p16
1405 #define break   p0      // p20
1406 #define equ     p24
1407 #else
1408 cont=p16
1409 break=p0
1410 equ=p24
1411 #endif
1412
1413 .global abort#
1414 .global bn_div_words#
1415 .proc   bn_div_words#
1416 .align  64
1417 bn_div_words:
1418         .prologue
1419         .save   ar.pfs,r2
1420 { .mii; alloc           r2=ar.pfs,3,5,0,8
1421         .save   b0,r3
1422         mov             r3=b0
1423         .save   pr,r10
1424         mov             r10=pr          };;
1425 { .mmb; cmp.eq          p6,p0=r34,r0
1426         mov             r8=-1
1427 (p6)    br.ret.spnt.many        b0      };;
1428
1429         .body
1430 { .mii; mov             H=r32           // save h
1431         mov             ar.ec=0         // don't rotate at exit
1432         mov             pr.rot=0        }
1433 { .mii; mov             L=r33           // save l
1434         mov             r25=r0          // needed if abort is called on VMS
1435         mov             r36=r0          };;
1436
1437 .L_divw_shift:  // -vv- note signed comparison
1438 { .mfi; (p0)    cmp.lt          p16,p0=r0,r34   // d
1439         (p0)    shladd          r33=r34,1,r0    }
1440 { .mfb; (p0)    add             r35=1,r36
1441         (p0)    nop.f           0x0
1442 (p16)   br.wtop.dpnt            .L_divw_shift   };;
1443
1444 { .mii; mov             D=r34
1445         shr.u           DH=r34,32
1446         sub             r35=64,r36              };;
1447 { .mii; setf.sig        f7=DH
1448         shr.u           AT=H,r35
1449         mov             I=r36                   };;
1450 { .mib; cmp.ne          p6,p0=r0,AT
1451         shl             H=H,r36
1452 (p6)    br.call.spnt.clr        b0=abort        };;     // overflow, die...
1453
1454 { .mfi; fcvt.xuf.s1     f7=f7
1455         shr.u           AT=L,r35                };;
1456 { .mii; shl             L=L,r36
1457         or              H=H,AT                  };;
1458
1459 { .mii; nop.m           0x0
1460         cmp.leu         p6,p0=D,H;;
1461 (p6)    sub             H=H,D                   }
1462
1463 { .mlx; setf.sig        f14=D
1464         movl            AT=0xffffffff           };;
1465 ///////////////////////////////////////////////////////////
1466 { .mii; setf.sig        f6=H
1467         shr.u           HH=H,32;;
1468         cmp.eq          p6,p7=HH,DH             };;
1469 { .mfb;
1470 (p6)    setf.sig        f8=AT
1471 (p7)    fcvt.xuf.s1     f6=f6
1472 (p7)    br.call.sptk    b6=.L_udiv64_32_b6      };;
1473
1474 { .mfi; getf.sig        r33=f8                          // q
1475         xmpy.lu         f9=f8,f14               }
1476 { .mfi; xmpy.hu         f10=f8,f14
1477         shrp            H=H,L,32                };;
1478
1479 { .mmi; getf.sig        r35=f9                          // tl
1480         getf.sig        r31=f10                 };;     // th
1481
1482 .L_divw_1st_iter:
1483 { .mii; (p0)    add             r32=-1,r33
1484         (p0)    cmp.eq          equ,cont=HH,r31         };;
1485 { .mii; (p0)    cmp.ltu         p8,p0=r35,D
1486         (p0)    sub             r34=r35,D
1487         (equ)   cmp.leu         break,cont=r35,H        };;
1488 { .mib; (cont)  cmp.leu         cont,break=HH,r31
1489         (p8)    add             r31=-1,r31
1490 (cont)  br.wtop.spnt            .L_divw_1st_iter        };;
1491 ///////////////////////////////////////////////////////////
1492 { .mii; sub             H=H,r35
1493         shl             r8=r33,32
1494         shl             L=L,32                  };;
1495 ///////////////////////////////////////////////////////////
1496 { .mii; setf.sig        f6=H
1497         shr.u           HH=H,32;;
1498         cmp.eq          p6,p7=HH,DH             };;
1499 { .mfb;
1500 (p6)    setf.sig        f8=AT
1501 (p7)    fcvt.xuf.s1     f6=f6
1502 (p7)    br.call.sptk    b6=.L_udiv64_32_b6      };;
1503
1504 { .mfi; getf.sig        r33=f8                          // q
1505         xmpy.lu         f9=f8,f14               }
1506 { .mfi; xmpy.hu         f10=f8,f14
1507         shrp            H=H,L,32                };;
1508
1509 { .mmi; getf.sig        r35=f9                          // tl
1510         getf.sig        r31=f10                 };;     // th
1511
1512 .L_divw_2nd_iter:
1513 { .mii; (p0)    add             r32=-1,r33
1514         (p0)    cmp.eq          equ,cont=HH,r31         };;
1515 { .mii; (p0)    cmp.ltu         p8,p0=r35,D
1516         (p0)    sub             r34=r35,D
1517         (equ)   cmp.leu         break,cont=r35,H        };;
1518 { .mib; (cont)  cmp.leu         cont,break=HH,r31
1519         (p8)    add             r31=-1,r31
1520 (cont)  br.wtop.spnt            .L_divw_2nd_iter        };;
1521 ///////////////////////////////////////////////////////////
1522 { .mii; sub     H=H,r35
1523         or      r8=r8,r33
1524         mov     ar.pfs=r2               };;
1525 { .mii; shr.u   r9=H,I                  // remainder if anybody wants it
1526         mov     pr=r10,0x1ffff          }
1527 { .mfb; br.ret.sptk.many        b0      };;
1528
1529 // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1530 // procedure.
1531 //
1532 // inputs:      f6 = (double)a, f7 = (double)b
1533 // output:      f8 = (int)(a/b)
1534 // clobbered:   f8,f9,f10,f11,pred
1535 pred=p15
1536 // This snippet is based on text found in the "Divide, Square
1537 // Root and Remainder" section at
1538 // http://www.intel.com/software/products/opensource/libraries/num.htm.
1539 // Yes, I admit that the referred code was used as template,
1540 // but after I realized that there hardly is any other instruction
1541 // sequence which would perform this operation. I mean I figure that
1542 // any independent attempt to implement high-performance division
1543 // will result in code virtually identical to the Intel code. It
1544 // should be noted though that below division kernel is 1 cycle
1545 // faster than Intel one (note commented splits:-), not to mention
1546 // original prologue (rather lack of one) and epilogue.
1547 .align  32
1548 .skip   16
1549 .L_udiv64_32_b6:
1550         frcpa.s1        f8,pred=f6,f7;;         // [0]  y0 = 1 / b
1551
1552 (pred)  fnma.s1         f9=f7,f8,f1             // [5]  e0 = 1 - b * y0
1553 (pred)  fmpy.s1         f10=f6,f8;;             // [5]  q0 = a * y0
1554 (pred)  fmpy.s1         f11=f9,f9               // [10] e1 = e0 * e0
1555 (pred)  fma.s1          f10=f9,f10,f10;;        // [10] q1 = q0 + e0 * q0
1556 (pred)  fma.s1          f8=f9,f8,f8     //;;    // [15] y1 = y0 + e0 * y0
1557 (pred)  fma.s1          f9=f11,f10,f10;;        // [15] q2 = q1 + e1 * q1
1558 (pred)  fma.s1          f8=f11,f8,f8    //;;    // [20] y2 = y1 + e1 * y1
1559 (pred)  fnma.s1         f10=f7,f9,f6;;          // [20] r2 = a - b * q2
1560 (pred)  fma.s1          f8=f10,f8,f9;;          // [25] q3 = q2 + r2 * y2
1561
1562         fcvt.fxu.trunc.s1       f8=f8           // [30] q = trunc(q3)
1563         br.ret.sptk.many        b6;;
1564 .endp   bn_div_words#
1565 #endif