]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - include/llvm/Analysis/MemorySSA.h
Vendor import of llvm trunk r338150:
[FreeBSD/FreeBSD.git] / include / llvm / Analysis / MemorySSA.h
1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file exposes an interface to building/using memory SSA to
12 /// walk memory instructions using a use/def graph.
13 ///
14 /// Memory SSA class builds an SSA form that links together memory access
15 /// instructions such as loads, stores, atomics, and calls. Additionally, it
16 /// does a trivial form of "heap versioning" Every time the memory state changes
17 /// in the program, we generate a new heap version. It generates
18 /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
19 ///
20 /// As a trivial example,
21 /// define i32 @main() #0 {
22 /// entry:
23 ///   %call = call noalias i8* @_Znwm(i64 4) #2
24 ///   %0 = bitcast i8* %call to i32*
25 ///   %call1 = call noalias i8* @_Znwm(i64 4) #2
26 ///   %1 = bitcast i8* %call1 to i32*
27 ///   store i32 5, i32* %0, align 4
28 ///   store i32 7, i32* %1, align 4
29 ///   %2 = load i32* %0, align 4
30 ///   %3 = load i32* %1, align 4
31 ///   %add = add nsw i32 %2, %3
32 ///   ret i32 %add
33 /// }
34 ///
35 /// Will become
36 /// define i32 @main() #0 {
37 /// entry:
38 ///   ; 1 = MemoryDef(0)
39 ///   %call = call noalias i8* @_Znwm(i64 4) #3
40 ///   %2 = bitcast i8* %call to i32*
41 ///   ; 2 = MemoryDef(1)
42 ///   %call1 = call noalias i8* @_Znwm(i64 4) #3
43 ///   %4 = bitcast i8* %call1 to i32*
44 ///   ; 3 = MemoryDef(2)
45 ///   store i32 5, i32* %2, align 4
46 ///   ; 4 = MemoryDef(3)
47 ///   store i32 7, i32* %4, align 4
48 ///   ; MemoryUse(3)
49 ///   %7 = load i32* %2, align 4
50 ///   ; MemoryUse(4)
51 ///   %8 = load i32* %4, align 4
52 ///   %add = add nsw i32 %7, %8
53 ///   ret i32 %add
54 /// }
55 ///
56 /// Given this form, all the stores that could ever effect the load at %8 can be
57 /// gotten by using the MemoryUse associated with it, and walking from use to
58 /// def until you hit the top of the function.
59 ///
60 /// Each def also has a list of users associated with it, so you can walk from
61 /// both def to users, and users to defs. Note that we disambiguate MemoryUses,
62 /// but not the RHS of MemoryDefs. You can see this above at %7, which would
63 /// otherwise be a MemoryUse(4). Being disambiguated means that for a given
64 /// store, all the MemoryUses on its use lists are may-aliases of that store
65 /// (but the MemoryDefs on its use list may not be).
66 ///
67 /// MemoryDefs are not disambiguated because it would require multiple reaching
68 /// definitions, which would require multiple phis, and multiple memoryaccesses
69 /// per instruction.
70 //
71 //===----------------------------------------------------------------------===//
72
73 #ifndef LLVM_ANALYSIS_MEMORYSSA_H
74 #define LLVM_ANALYSIS_MEMORYSSA_H
75
76 #include "llvm/ADT/DenseMap.h"
77 #include "llvm/ADT/GraphTraits.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/ilist.h"
81 #include "llvm/ADT/ilist_node.h"
82 #include "llvm/ADT/iterator.h"
83 #include "llvm/ADT/iterator_range.h"
84 #include "llvm/ADT/simple_ilist.h"
85 #include "llvm/Analysis/AliasAnalysis.h"
86 #include "llvm/Analysis/MemoryLocation.h"
87 #include "llvm/Analysis/PHITransAddr.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/DerivedUser.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/IR/ValueHandle.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Casting.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cstddef>
102 #include <iterator>
103 #include <memory>
104 #include <utility>
105
106 namespace llvm {
107
108 class Function;
109 class Instruction;
110 class MemoryAccess;
111 class MemorySSAWalker;
112 class LLVMContext;
113 class raw_ostream;
114
115 namespace MSSAHelpers {
116
117 struct AllAccessTag {};
118 struct DefsOnlyTag {};
119
120 } // end namespace MSSAHelpers
121
122 enum : unsigned {
123   // Used to signify what the default invalid ID is for MemoryAccess's
124   // getID()
125   INVALID_MEMORYACCESS_ID = -1U
126 };
127
128 template <class T> class memoryaccess_def_iterator_base;
129 using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
130 using const_memoryaccess_def_iterator =
131     memoryaccess_def_iterator_base<const MemoryAccess>;
132
133 // The base for all memory accesses. All memory accesses in a block are
134 // linked together using an intrusive list.
135 class MemoryAccess
136     : public DerivedUser,
137       public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
138       public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
139 public:
140   using AllAccessType =
141       ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
142   using DefsOnlyType =
143       ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
144
145   MemoryAccess(const MemoryAccess &) = delete;
146   MemoryAccess &operator=(const MemoryAccess &) = delete;
147
148   void *operator new(size_t) = delete;
149
150   // Methods for support type inquiry through isa, cast, and
151   // dyn_cast
152   static bool classof(const Value *V) {
153     unsigned ID = V->getValueID();
154     return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
155   }
156
157   BasicBlock *getBlock() const { return Block; }
158
159   void print(raw_ostream &OS) const;
160   void dump() const;
161
162   /// The user iterators for a memory access
163   using iterator = user_iterator;
164   using const_iterator = const_user_iterator;
165
166   /// This iterator walks over all of the defs in a given
167   /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
168   /// MemoryUse/MemoryDef, this walks the defining access.
169   memoryaccess_def_iterator defs_begin();
170   const_memoryaccess_def_iterator defs_begin() const;
171   memoryaccess_def_iterator defs_end();
172   const_memoryaccess_def_iterator defs_end() const;
173
174   /// Get the iterators for the all access list and the defs only list
175   /// We default to the all access list.
176   AllAccessType::self_iterator getIterator() {
177     return this->AllAccessType::getIterator();
178   }
179   AllAccessType::const_self_iterator getIterator() const {
180     return this->AllAccessType::getIterator();
181   }
182   AllAccessType::reverse_self_iterator getReverseIterator() {
183     return this->AllAccessType::getReverseIterator();
184   }
185   AllAccessType::const_reverse_self_iterator getReverseIterator() const {
186     return this->AllAccessType::getReverseIterator();
187   }
188   DefsOnlyType::self_iterator getDefsIterator() {
189     return this->DefsOnlyType::getIterator();
190   }
191   DefsOnlyType::const_self_iterator getDefsIterator() const {
192     return this->DefsOnlyType::getIterator();
193   }
194   DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
195     return this->DefsOnlyType::getReverseIterator();
196   }
197   DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
198     return this->DefsOnlyType::getReverseIterator();
199   }
200
201 protected:
202   friend class MemoryDef;
203   friend class MemoryPhi;
204   friend class MemorySSA;
205   friend class MemoryUse;
206   friend class MemoryUseOrDef;
207
208   /// Used by MemorySSA to change the block of a MemoryAccess when it is
209   /// moved.
210   void setBlock(BasicBlock *BB) { Block = BB; }
211
212   /// Used for debugging and tracking things about MemoryAccesses.
213   /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
214   inline unsigned getID() const;
215
216   MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
217                BasicBlock *BB, unsigned NumOperands)
218       : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
219         Block(BB) {}
220
221   // Use deleteValue() to delete a generic MemoryAccess.
222   ~MemoryAccess() = default;
223
224 private:
225   BasicBlock *Block;
226 };
227
228 template <>
229 struct ilist_alloc_traits<MemoryAccess> {
230   static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
231 };
232
233 inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
234   MA.print(OS);
235   return OS;
236 }
237
238 /// Class that has the common methods + fields of memory uses/defs. It's
239 /// a little awkward to have, but there are many cases where we want either a
240 /// use or def, and there are many cases where uses are needed (defs aren't
241 /// acceptable), and vice-versa.
242 ///
243 /// This class should never be instantiated directly; make a MemoryUse or
244 /// MemoryDef instead.
245 class MemoryUseOrDef : public MemoryAccess {
246 public:
247   void *operator new(size_t) = delete;
248
249   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
250
251   /// Get the instruction that this MemoryUse represents.
252   Instruction *getMemoryInst() const { return MemoryInstruction; }
253
254   /// Get the access that produces the memory state used by this Use.
255   MemoryAccess *getDefiningAccess() const { return getOperand(0); }
256
257   static bool classof(const Value *MA) {
258     return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
259   }
260
261   // Sadly, these have to be public because they are needed in some of the
262   // iterators.
263   inline bool isOptimized() const;
264   inline MemoryAccess *getOptimized() const;
265   inline void setOptimized(MemoryAccess *);
266
267   // Retrieve AliasResult type of the optimized access. Ideally this would be
268   // returned by the caching walker and may go away in the future.
269   Optional<AliasResult> getOptimizedAccessType() const {
270     return OptimizedAccessAlias;
271   }
272
273   /// Reset the ID of what this MemoryUse was optimized to, causing it to
274   /// be rewalked by the walker if necessary.
275   /// This really should only be called by tests.
276   inline void resetOptimized();
277
278 protected:
279   friend class MemorySSA;
280   friend class MemorySSAUpdater;
281
282   MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
283                  DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB)
284       : MemoryAccess(C, Vty, DeleteValue, BB, 1), MemoryInstruction(MI),
285         OptimizedAccessAlias(MayAlias) {
286     setDefiningAccess(DMA);
287   }
288
289   // Use deleteValue() to delete a generic MemoryUseOrDef.
290   ~MemoryUseOrDef() = default;
291
292   void setOptimizedAccessType(Optional<AliasResult> AR) {
293     OptimizedAccessAlias = AR;
294   }
295
296   void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
297                          Optional<AliasResult> AR = MayAlias) {
298     if (!Optimized) {
299       setOperand(0, DMA);
300       return;
301     }
302     setOptimized(DMA);
303     setOptimizedAccessType(AR);
304   }
305
306 private:
307   Instruction *MemoryInstruction;
308   Optional<AliasResult> OptimizedAccessAlias;
309 };
310
311 template <>
312 struct OperandTraits<MemoryUseOrDef>
313     : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
314 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
315
316 /// Represents read-only accesses to memory
317 ///
318 /// In particular, the set of Instructions that will be represented by
319 /// MemoryUse's is exactly the set of Instructions for which
320 /// AliasAnalysis::getModRefInfo returns "Ref".
321 class MemoryUse final : public MemoryUseOrDef {
322 public:
323   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
324
325   MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
326       : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB) {}
327
328   // allocate space for exactly one operand
329   void *operator new(size_t s) { return User::operator new(s, 1); }
330
331   static bool classof(const Value *MA) {
332     return MA->getValueID() == MemoryUseVal;
333   }
334
335   void print(raw_ostream &OS) const;
336
337   void setOptimized(MemoryAccess *DMA) {
338     OptimizedID = DMA->getID();
339     setOperand(0, DMA);
340   }
341
342   bool isOptimized() const {
343     return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
344   }
345
346   MemoryAccess *getOptimized() const {
347     return getDefiningAccess();
348   }
349
350   void resetOptimized() {
351     OptimizedID = INVALID_MEMORYACCESS_ID;
352   }
353
354 protected:
355   friend class MemorySSA;
356
357 private:
358   static void deleteMe(DerivedUser *Self);
359
360   unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
361 };
362
363 template <>
364 struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
365 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
366
367 /// Represents a read-write access to memory, whether it is a must-alias,
368 /// or a may-alias.
369 ///
370 /// In particular, the set of Instructions that will be represented by
371 /// MemoryDef's is exactly the set of Instructions for which
372 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
373 /// Note that, in order to provide def-def chains, all defs also have a use
374 /// associated with them. This use points to the nearest reaching
375 /// MemoryDef/MemoryPhi.
376 class MemoryDef final : public MemoryUseOrDef {
377 public:
378   friend class MemorySSA;
379
380   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
381
382   MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
383             unsigned Ver)
384       : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB), ID(Ver) {}
385
386   // allocate space for exactly one operand
387   void *operator new(size_t s) { return User::operator new(s, 1); }
388
389   static bool classof(const Value *MA) {
390     return MA->getValueID() == MemoryDefVal;
391   }
392
393   void setOptimized(MemoryAccess *MA) {
394     Optimized = MA;
395     OptimizedID = getDefiningAccess()->getID();
396   }
397
398   MemoryAccess *getOptimized() const {
399     return cast_or_null<MemoryAccess>(Optimized);
400   }
401
402   bool isOptimized() const {
403     return getOptimized() && getDefiningAccess() &&
404            OptimizedID == getDefiningAccess()->getID();
405   }
406
407   void resetOptimized() {
408     OptimizedID = INVALID_MEMORYACCESS_ID;
409   }
410
411   void print(raw_ostream &OS) const;
412
413   unsigned getID() const { return ID; }
414
415 private:
416   static void deleteMe(DerivedUser *Self);
417
418   const unsigned ID;
419   unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
420   WeakVH Optimized;
421 };
422
423 template <>
424 struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
425 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
426
427 /// Represents phi nodes for memory accesses.
428 ///
429 /// These have the same semantic as regular phi nodes, with the exception that
430 /// only one phi will ever exist in a given basic block.
431 /// Guaranteeing one phi per block means guaranteeing there is only ever one
432 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
433 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
434 /// a MemoryPhi's operands.
435 /// That is, given
436 /// if (a) {
437 ///   store %a
438 ///   store %b
439 /// }
440 /// it *must* be transformed into
441 /// if (a) {
442 ///    1 = MemoryDef(liveOnEntry)
443 ///    store %a
444 ///    2 = MemoryDef(1)
445 ///    store %b
446 /// }
447 /// and *not*
448 /// if (a) {
449 ///    1 = MemoryDef(liveOnEntry)
450 ///    store %a
451 ///    2 = MemoryDef(liveOnEntry)
452 ///    store %b
453 /// }
454 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
455 /// end of the branch, and if there are not two phi nodes, one will be
456 /// disconnected completely from the SSA graph below that point.
457 /// Because MemoryUse's do not generate new definitions, they do not have this
458 /// issue.
459 class MemoryPhi final : public MemoryAccess {
460   // allocate space for exactly zero operands
461   void *operator new(size_t s) { return User::operator new(s); }
462
463 public:
464   /// Provide fast operand accessors
465   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
466
467   MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
468       : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
469         ReservedSpace(NumPreds) {
470     allocHungoffUses(ReservedSpace);
471   }
472
473   // Block iterator interface. This provides access to the list of incoming
474   // basic blocks, which parallels the list of incoming values.
475   using block_iterator = BasicBlock **;
476   using const_block_iterator = BasicBlock *const *;
477
478   block_iterator block_begin() {
479     auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
480     return reinterpret_cast<block_iterator>(Ref + 1);
481   }
482
483   const_block_iterator block_begin() const {
484     const auto *Ref =
485         reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
486     return reinterpret_cast<const_block_iterator>(Ref + 1);
487   }
488
489   block_iterator block_end() { return block_begin() + getNumOperands(); }
490
491   const_block_iterator block_end() const {
492     return block_begin() + getNumOperands();
493   }
494
495   iterator_range<block_iterator> blocks() {
496     return make_range(block_begin(), block_end());
497   }
498
499   iterator_range<const_block_iterator> blocks() const {
500     return make_range(block_begin(), block_end());
501   }
502
503   op_range incoming_values() { return operands(); }
504
505   const_op_range incoming_values() const { return operands(); }
506
507   /// Return the number of incoming edges
508   unsigned getNumIncomingValues() const { return getNumOperands(); }
509
510   /// Return incoming value number x
511   MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
512   void setIncomingValue(unsigned I, MemoryAccess *V) {
513     assert(V && "PHI node got a null value!");
514     setOperand(I, V);
515   }
516
517   static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
518   static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
519
520   /// Return incoming basic block number @p i.
521   BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
522
523   /// Return incoming basic block corresponding
524   /// to an operand of the PHI.
525   BasicBlock *getIncomingBlock(const Use &U) const {
526     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
527     return getIncomingBlock(unsigned(&U - op_begin()));
528   }
529
530   /// Return incoming basic block corresponding
531   /// to value use iterator.
532   BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
533     return getIncomingBlock(I.getUse());
534   }
535
536   void setIncomingBlock(unsigned I, BasicBlock *BB) {
537     assert(BB && "PHI node got a null basic block!");
538     block_begin()[I] = BB;
539   }
540
541   /// Add an incoming value to the end of the PHI list
542   void addIncoming(MemoryAccess *V, BasicBlock *BB) {
543     if (getNumOperands() == ReservedSpace)
544       growOperands(); // Get more space!
545     // Initialize some new operands.
546     setNumHungOffUseOperands(getNumOperands() + 1);
547     setIncomingValue(getNumOperands() - 1, V);
548     setIncomingBlock(getNumOperands() - 1, BB);
549   }
550
551   /// Return the first index of the specified basic
552   /// block in the value list for this PHI.  Returns -1 if no instance.
553   int getBasicBlockIndex(const BasicBlock *BB) const {
554     for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
555       if (block_begin()[I] == BB)
556         return I;
557     return -1;
558   }
559
560   MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
561     int Idx = getBasicBlockIndex(BB);
562     assert(Idx >= 0 && "Invalid basic block argument!");
563     return getIncomingValue(Idx);
564   }
565
566   // After deleting incoming position I, the order of incoming may be changed.
567   void unorderedDeleteIncoming(unsigned I) {
568     unsigned E = getNumOperands();
569     assert(I < E && "Cannot remove out of bounds Phi entry.");
570     // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
571     // itself should be deleted.
572     assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
573                      "at least 2 values.");
574     setIncomingValue(I, getIncomingValue(E - 1));
575     setIncomingBlock(I, block_begin()[E - 1]);
576     setOperand(E - 1, nullptr);
577     block_begin()[E - 1] = nullptr;
578     setNumHungOffUseOperands(getNumOperands() - 1);
579   }
580
581   // After deleting entries that satisfy Pred, remaining entries may have
582   // changed order.
583   template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
584     for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
585       if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
586         unorderedDeleteIncoming(I);
587         E = getNumOperands();
588         --I;
589       }
590     assert(getNumOperands() >= 1 &&
591            "Cannot remove all incoming blocks in a MemoryPhi.");
592   }
593
594   // After deleting incoming block BB, the incoming blocks order may be changed.
595   void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
596     unorderedDeleteIncomingIf(
597         [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
598   }
599
600   // After deleting incoming memory access MA, the incoming accesses order may
601   // be changed.
602   void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
603     unorderedDeleteIncomingIf(
604         [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
605   }
606
607   static bool classof(const Value *V) {
608     return V->getValueID() == MemoryPhiVal;
609   }
610
611   void print(raw_ostream &OS) const;
612
613   unsigned getID() const { return ID; }
614
615 protected:
616   friend class MemorySSA;
617
618   /// this is more complicated than the generic
619   /// User::allocHungoffUses, because we have to allocate Uses for the incoming
620   /// values and pointers to the incoming blocks, all in one allocation.
621   void allocHungoffUses(unsigned N) {
622     User::allocHungoffUses(N, /* IsPhi */ true);
623   }
624
625 private:
626   // For debugging only
627   const unsigned ID;
628   unsigned ReservedSpace;
629
630   /// This grows the operand list in response to a push_back style of
631   /// operation.  This grows the number of ops by 1.5 times.
632   void growOperands() {
633     unsigned E = getNumOperands();
634     // 2 op PHI nodes are VERY common, so reserve at least enough for that.
635     ReservedSpace = std::max(E + E / 2, 2u);
636     growHungoffUses(ReservedSpace, /* IsPhi */ true);
637   }
638
639   static void deleteMe(DerivedUser *Self);
640 };
641
642 inline unsigned MemoryAccess::getID() const {
643   assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
644          "only memory defs and phis have ids");
645   if (const auto *MD = dyn_cast<MemoryDef>(this))
646     return MD->getID();
647   return cast<MemoryPhi>(this)->getID();
648 }
649
650 inline bool MemoryUseOrDef::isOptimized() const {
651   if (const auto *MD = dyn_cast<MemoryDef>(this))
652     return MD->isOptimized();
653   return cast<MemoryUse>(this)->isOptimized();
654 }
655
656 inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
657   if (const auto *MD = dyn_cast<MemoryDef>(this))
658     return MD->getOptimized();
659   return cast<MemoryUse>(this)->getOptimized();
660 }
661
662 inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
663   if (auto *MD = dyn_cast<MemoryDef>(this))
664     MD->setOptimized(MA);
665   else
666     cast<MemoryUse>(this)->setOptimized(MA);
667 }
668
669 inline void MemoryUseOrDef::resetOptimized() {
670   if (auto *MD = dyn_cast<MemoryDef>(this))
671     MD->resetOptimized();
672   else
673     cast<MemoryUse>(this)->resetOptimized();
674 }
675
676 template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
677 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
678
679 /// Encapsulates MemorySSA, including all data associated with memory
680 /// accesses.
681 class MemorySSA {
682 public:
683   MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
684   ~MemorySSA();
685
686   MemorySSAWalker *getWalker();
687
688   /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
689   /// access associated with it. If passed a basic block gets the memory phi
690   /// node that exists for that block, if there is one. Otherwise, this will get
691   /// a MemoryUseOrDef.
692   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
693   MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
694
695   void dump() const;
696   void print(raw_ostream &) const;
697
698   /// Return true if \p MA represents the live on entry value
699   ///
700   /// Loads and stores from pointer arguments and other global values may be
701   /// defined by memory operations that do not occur in the current function, so
702   /// they may be live on entry to the function. MemorySSA represents such
703   /// memory state by the live on entry definition, which is guaranteed to occur
704   /// before any other memory access in the function.
705   inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
706     return MA == LiveOnEntryDef.get();
707   }
708
709   inline MemoryAccess *getLiveOnEntryDef() const {
710     return LiveOnEntryDef.get();
711   }
712
713   // Sadly, iplists, by default, owns and deletes pointers added to the
714   // list. It's not currently possible to have two iplists for the same type,
715   // where one owns the pointers, and one does not. This is because the traits
716   // are per-type, not per-tag.  If this ever changes, we should make the
717   // DefList an iplist.
718   using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
719   using DefsList =
720       simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
721
722   /// Return the list of MemoryAccess's for a given basic block.
723   ///
724   /// This list is not modifiable by the user.
725   const AccessList *getBlockAccesses(const BasicBlock *BB) const {
726     return getWritableBlockAccesses(BB);
727   }
728
729   /// Return the list of MemoryDef's and MemoryPhi's for a given basic
730   /// block.
731   ///
732   /// This list is not modifiable by the user.
733   const DefsList *getBlockDefs(const BasicBlock *BB) const {
734     return getWritableBlockDefs(BB);
735   }
736
737   /// Given two memory accesses in the same basic block, determine
738   /// whether MemoryAccess \p A dominates MemoryAccess \p B.
739   bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
740
741   /// Given two memory accesses in potentially different blocks,
742   /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
743   bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
744
745   /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
746   /// dominates Use \p B.
747   bool dominates(const MemoryAccess *A, const Use &B) const;
748
749   /// Verify that MemorySSA is self consistent (IE definitions dominate
750   /// all uses, uses appear in the right places).  This is used by unit tests.
751   void verifyMemorySSA() const;
752
753   /// Used in various insertion functions to specify whether we are talking
754   /// about the beginning or end of a block.
755   enum InsertionPlace { Beginning, End };
756
757 protected:
758   // Used by Memory SSA annotater, dumpers, and wrapper pass
759   friend class MemorySSAAnnotatedWriter;
760   friend class MemorySSAPrinterLegacyPass;
761   friend class MemorySSAUpdater;
762
763   void verifyDefUses(Function &F) const;
764   void verifyDomination(Function &F) const;
765   void verifyOrdering(Function &F) const;
766   void verifyDominationNumbers(const Function &F) const;
767
768   // This is used by the use optimizer and updater.
769   AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
770     auto It = PerBlockAccesses.find(BB);
771     return It == PerBlockAccesses.end() ? nullptr : It->second.get();
772   }
773
774   // This is used by the use optimizer and updater.
775   DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
776     auto It = PerBlockDefs.find(BB);
777     return It == PerBlockDefs.end() ? nullptr : It->second.get();
778   }
779
780   // These is used by the updater to perform various internal MemorySSA
781   // machinsations.  They do not always leave the IR in a correct state, and
782   // relies on the updater to fixup what it breaks, so it is not public.
783
784   void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
785   void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
786
787   // Rename the dominator tree branch rooted at BB.
788   void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
789                   SmallPtrSetImpl<BasicBlock *> &Visited) {
790     renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
791   }
792
793   void removeFromLookups(MemoryAccess *);
794   void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
795   void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
796                                InsertionPlace);
797   void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
798                              AccessList::iterator);
799   MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
800
801 private:
802   class CachingWalker;
803   class OptimizeUses;
804
805   CachingWalker *getWalkerImpl();
806   void buildMemorySSA();
807   void optimizeUses();
808
809   void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
810
811   using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
812   using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
813
814   void
815   determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
816   void markUnreachableAsLiveOnEntry(BasicBlock *BB);
817   bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
818   MemoryPhi *createMemoryPhi(BasicBlock *BB);
819   MemoryUseOrDef *createNewAccess(Instruction *);
820   MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
821   void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
822   MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
823   void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
824   void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
825                   SmallPtrSetImpl<BasicBlock *> &Visited,
826                   bool SkipVisited = false, bool RenameAllUses = false);
827   AccessList *getOrCreateAccessList(const BasicBlock *);
828   DefsList *getOrCreateDefsList(const BasicBlock *);
829   void renumberBlock(const BasicBlock *) const;
830   AliasAnalysis *AA;
831   DominatorTree *DT;
832   Function &F;
833
834   // Memory SSA mappings
835   DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
836
837   // These two mappings contain the main block to access/def mappings for
838   // MemorySSA. The list contained in PerBlockAccesses really owns all the
839   // MemoryAccesses.
840   // Both maps maintain the invariant that if a block is found in them, the
841   // corresponding list is not empty, and if a block is not found in them, the
842   // corresponding list is empty.
843   AccessMap PerBlockAccesses;
844   DefsMap PerBlockDefs;
845   std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
846
847   // Domination mappings
848   // Note that the numbering is local to a block, even though the map is
849   // global.
850   mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
851   mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
852
853   // Memory SSA building info
854   std::unique_ptr<CachingWalker> Walker;
855   unsigned NextID;
856 };
857
858 // Internal MemorySSA utils, for use by MemorySSA classes and walkers
859 class MemorySSAUtil {
860 protected:
861   friend class GVNHoist;
862   friend class MemorySSAWalker;
863
864   // This function should not be used by new passes.
865   static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
866                                   AliasAnalysis &AA);
867 };
868
869 // This pass does eager building and then printing of MemorySSA. It is used by
870 // the tests to be able to build, dump, and verify Memory SSA.
871 class MemorySSAPrinterLegacyPass : public FunctionPass {
872 public:
873   MemorySSAPrinterLegacyPass();
874
875   bool runOnFunction(Function &) override;
876   void getAnalysisUsage(AnalysisUsage &AU) const override;
877
878   static char ID;
879 };
880
881 /// An analysis that produces \c MemorySSA for a function.
882 ///
883 class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
884   friend AnalysisInfoMixin<MemorySSAAnalysis>;
885
886   static AnalysisKey Key;
887
888 public:
889   // Wrap MemorySSA result to ensure address stability of internal MemorySSA
890   // pointers after construction.  Use a wrapper class instead of plain
891   // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
892   struct Result {
893     Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
894
895     MemorySSA &getMSSA() { return *MSSA.get(); }
896
897     std::unique_ptr<MemorySSA> MSSA;
898   };
899
900   Result run(Function &F, FunctionAnalysisManager &AM);
901 };
902
903 /// Printer pass for \c MemorySSA.
904 class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
905   raw_ostream &OS;
906
907 public:
908   explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
909
910   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
911 };
912
913 /// Verifier pass for \c MemorySSA.
914 struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
915   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
916 };
917
918 /// Legacy analysis pass which computes \c MemorySSA.
919 class MemorySSAWrapperPass : public FunctionPass {
920 public:
921   MemorySSAWrapperPass();
922
923   static char ID;
924
925   bool runOnFunction(Function &) override;
926   void releaseMemory() override;
927   MemorySSA &getMSSA() { return *MSSA; }
928   const MemorySSA &getMSSA() const { return *MSSA; }
929
930   void getAnalysisUsage(AnalysisUsage &AU) const override;
931
932   void verifyAnalysis() const override;
933   void print(raw_ostream &OS, const Module *M = nullptr) const override;
934
935 private:
936   std::unique_ptr<MemorySSA> MSSA;
937 };
938
939 /// This is the generic walker interface for walkers of MemorySSA.
940 /// Walkers are used to be able to further disambiguate the def-use chains
941 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
942 /// you.
943 /// In particular, while the def-use chains provide basic information, and are
944 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
945 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other
946 /// information. In particular, they may want to use SCEV info to further
947 /// disambiguate memory accesses, or they may want the nearest dominating
948 /// may-aliasing MemoryDef for a call or a store. This API enables a
949 /// standardized interface to getting and using that info.
950 class MemorySSAWalker {
951 public:
952   MemorySSAWalker(MemorySSA *);
953   virtual ~MemorySSAWalker() = default;
954
955   using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
956
957   /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
958   /// will give you the nearest dominating MemoryAccess that Mod's the location
959   /// the instruction accesses (by skipping any def which AA can prove does not
960   /// alias the location(s) accessed by the instruction given).
961   ///
962   /// Note that this will return a single access, and it must dominate the
963   /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
964   /// this will return the MemoryPhi, not the operand. This means that
965   /// given:
966   /// if (a) {
967   ///   1 = MemoryDef(liveOnEntry)
968   ///   store %a
969   /// } else {
970   ///   2 = MemoryDef(liveOnEntry)
971   ///   store %b
972   /// }
973   /// 3 = MemoryPhi(2, 1)
974   /// MemoryUse(3)
975   /// load %a
976   ///
977   /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
978   /// in the if (a) branch.
979   MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
980     MemoryAccess *MA = MSSA->getMemoryAccess(I);
981     assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
982     return getClobberingMemoryAccess(MA);
983   }
984
985   /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
986   /// but takes a MemoryAccess instead of an Instruction.
987   virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
988
989   /// Given a potentially clobbering memory access and a new location,
990   /// calling this will give you the nearest dominating clobbering MemoryAccess
991   /// (by skipping non-aliasing def links).
992   ///
993   /// This version of the function is mainly used to disambiguate phi translated
994   /// pointers, where the value of a pointer may have changed from the initial
995   /// memory access. Note that this expects to be handed either a MemoryUse,
996   /// or an already potentially clobbering access. Unlike the above API, if
997   /// given a MemoryDef that clobbers the pointer as the starting access, it
998   /// will return that MemoryDef, whereas the above would return the clobber
999   /// starting from the use side of  the memory def.
1000   virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1001                                                   const MemoryLocation &) = 0;
1002
1003   /// Given a memory access, invalidate anything this walker knows about
1004   /// that access.
1005   /// This API is used by walkers that store information to perform basic cache
1006   /// invalidation.  This will be called by MemorySSA at appropriate times for
1007   /// the walker it uses or returns.
1008   virtual void invalidateInfo(MemoryAccess *) {}
1009
1010   virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
1011
1012 protected:
1013   friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
1014                           // constructor.
1015   MemorySSA *MSSA;
1016 };
1017
1018 /// A MemorySSAWalker that does no alias queries, or anything else. It
1019 /// simply returns the links as they were constructed by the builder.
1020 class DoNothingMemorySSAWalker final : public MemorySSAWalker {
1021 public:
1022   // Keep the overrides below from hiding the Instruction overload of
1023   // getClobberingMemoryAccess.
1024   using MemorySSAWalker::getClobberingMemoryAccess;
1025
1026   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
1027   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1028                                           const MemoryLocation &) override;
1029 };
1030
1031 using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
1032 using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
1033
1034 /// Iterator base class used to implement const and non-const iterators
1035 /// over the defining accesses of a MemoryAccess.
1036 template <class T>
1037 class memoryaccess_def_iterator_base
1038     : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
1039                                   std::forward_iterator_tag, T, ptrdiff_t, T *,
1040                                   T *> {
1041   using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
1042
1043 public:
1044   memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
1045   memoryaccess_def_iterator_base() = default;
1046
1047   bool operator==(const memoryaccess_def_iterator_base &Other) const {
1048     return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
1049   }
1050
1051   // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1052   // block from the operand in constant time (In a PHINode, the uselist has
1053   // both, so it's just subtraction). We provide it as part of the
1054   // iterator to avoid callers having to linear walk to get the block.
1055   // If the operation becomes constant time on MemoryPHI's, this bit of
1056   // abstraction breaking should be removed.
1057   BasicBlock *getPhiArgBlock() const {
1058     MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
1059     assert(MP && "Tried to get phi arg block when not iterating over a PHI");
1060     return MP->getIncomingBlock(ArgNo);
1061   }
1062
1063   typename BaseT::iterator::pointer operator*() const {
1064     assert(Access && "Tried to access past the end of our iterator");
1065     // Go to the first argument for phis, and the defining access for everything
1066     // else.
1067     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
1068       return MP->getIncomingValue(ArgNo);
1069     return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
1070   }
1071
1072   using BaseT::operator++;
1073   memoryaccess_def_iterator &operator++() {
1074     assert(Access && "Hit end of iterator");
1075     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
1076       if (++ArgNo >= MP->getNumIncomingValues()) {
1077         ArgNo = 0;
1078         Access = nullptr;
1079       }
1080     } else {
1081       Access = nullptr;
1082     }
1083     return *this;
1084   }
1085
1086 private:
1087   T *Access = nullptr;
1088   unsigned ArgNo = 0;
1089 };
1090
1091 inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
1092   return memoryaccess_def_iterator(this);
1093 }
1094
1095 inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
1096   return const_memoryaccess_def_iterator(this);
1097 }
1098
1099 inline memoryaccess_def_iterator MemoryAccess::defs_end() {
1100   return memoryaccess_def_iterator();
1101 }
1102
1103 inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
1104   return const_memoryaccess_def_iterator();
1105 }
1106
1107 /// GraphTraits for a MemoryAccess, which walks defs in the normal case,
1108 /// and uses in the inverse case.
1109 template <> struct GraphTraits<MemoryAccess *> {
1110   using NodeRef = MemoryAccess *;
1111   using ChildIteratorType = memoryaccess_def_iterator;
1112
1113   static NodeRef getEntryNode(NodeRef N) { return N; }
1114   static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
1115   static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
1116 };
1117
1118 template <> struct GraphTraits<Inverse<MemoryAccess *>> {
1119   using NodeRef = MemoryAccess *;
1120   using ChildIteratorType = MemoryAccess::iterator;
1121
1122   static NodeRef getEntryNode(NodeRef N) { return N; }
1123   static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
1124   static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
1125 };
1126
1127 /// Provide an iterator that walks defs, giving both the memory access,
1128 /// and the current pointer location, updating the pointer location as it
1129 /// changes due to phi node translation.
1130 ///
1131 /// This iterator, while somewhat specialized, is what most clients actually
1132 /// want when walking upwards through MemorySSA def chains. It takes a pair of
1133 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1134 /// memory location through phi nodes for the user.
1135 class upward_defs_iterator
1136     : public iterator_facade_base<upward_defs_iterator,
1137                                   std::forward_iterator_tag,
1138                                   const MemoryAccessPair> {
1139   using BaseT = upward_defs_iterator::iterator_facade_base;
1140
1141 public:
1142   upward_defs_iterator(const MemoryAccessPair &Info)
1143       : DefIterator(Info.first), Location(Info.second),
1144         OriginalAccess(Info.first) {
1145     CurrentPair.first = nullptr;
1146
1147     WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
1148     fillInCurrentPair();
1149   }
1150
1151   upward_defs_iterator() { CurrentPair.first = nullptr; }
1152
1153   bool operator==(const upward_defs_iterator &Other) const {
1154     return DefIterator == Other.DefIterator;
1155   }
1156
1157   BaseT::iterator::reference operator*() const {
1158     assert(DefIterator != OriginalAccess->defs_end() &&
1159            "Tried to access past the end of our iterator");
1160     return CurrentPair;
1161   }
1162
1163   using BaseT::operator++;
1164   upward_defs_iterator &operator++() {
1165     assert(DefIterator != OriginalAccess->defs_end() &&
1166            "Tried to access past the end of the iterator");
1167     ++DefIterator;
1168     if (DefIterator != OriginalAccess->defs_end())
1169       fillInCurrentPair();
1170     return *this;
1171   }
1172
1173   BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
1174
1175 private:
1176   void fillInCurrentPair() {
1177     CurrentPair.first = *DefIterator;
1178     if (WalkingPhi && Location.Ptr) {
1179       PHITransAddr Translator(
1180           const_cast<Value *>(Location.Ptr),
1181           OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
1182       if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
1183                                         DefIterator.getPhiArgBlock(), nullptr,
1184                                         false))
1185         if (Translator.getAddr() != Location.Ptr) {
1186           CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
1187           return;
1188         }
1189     }
1190     CurrentPair.second = Location;
1191   }
1192
1193   MemoryAccessPair CurrentPair;
1194   memoryaccess_def_iterator DefIterator;
1195   MemoryLocation Location;
1196   MemoryAccess *OriginalAccess = nullptr;
1197   bool WalkingPhi = false;
1198 };
1199
1200 inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
1201   return upward_defs_iterator(Pair);
1202 }
1203
1204 inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
1205
1206 inline iterator_range<upward_defs_iterator>
1207 upward_defs(const MemoryAccessPair &Pair) {
1208   return make_range(upward_defs_begin(Pair), upward_defs_end());
1209 }
1210
1211 /// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1212 /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1213 /// comparing against a null def_chain_iterator, this will compare equal only
1214 /// after walking said Phi/liveOnEntry.
1215 ///
1216 /// The UseOptimizedChain flag specifies whether to walk the clobbering
1217 /// access chain, or all the accesses.
1218 ///
1219 /// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1220 /// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1221 /// a phi node.  The optimized chain walks the clobbering access of a store.
1222 /// So if you are just trying to find, given a store, what the next
1223 /// thing that would clobber the same memory is, you want the optimized chain.
1224 template <class T, bool UseOptimizedChain = false>
1225 struct def_chain_iterator
1226     : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
1227                                   std::forward_iterator_tag, MemoryAccess *> {
1228   def_chain_iterator() : MA(nullptr) {}
1229   def_chain_iterator(T MA) : MA(MA) {}
1230
1231   T operator*() const { return MA; }
1232
1233   def_chain_iterator &operator++() {
1234     // N.B. liveOnEntry has a null defining access.
1235     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1236       if (UseOptimizedChain && MUD->isOptimized())
1237         MA = MUD->getOptimized();
1238       else
1239         MA = MUD->getDefiningAccess();
1240     } else {
1241       MA = nullptr;
1242     }
1243
1244     return *this;
1245   }
1246
1247   bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
1248
1249 private:
1250   T MA;
1251 };
1252
1253 template <class T>
1254 inline iterator_range<def_chain_iterator<T>>
1255 def_chain(T MA, MemoryAccess *UpTo = nullptr) {
1256 #ifdef EXPENSIVE_CHECKS
1257   assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
1258          "UpTo isn't in the def chain!");
1259 #endif
1260   return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
1261 }
1262
1263 template <class T>
1264 inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
1265   return make_range(def_chain_iterator<T, true>(MA),
1266                     def_chain_iterator<T, true>(nullptr));
1267 }
1268
1269 } // end namespace llvm
1270
1271 #endif // LLVM_ANALYSIS_MEMORYSSA_H