]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/CodeGen/LiveRangeCalc.cpp
Vendor import of llvm trunk r338150:
[FreeBSD/FreeBSD.git] / lib / CodeGen / LiveRangeCalc.cpp
1 //===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LiveRangeCalc.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SlotIndexes.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <iterator>
34 #include <tuple>
35 #include <utility>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "regalloc"
40
41 // Reserve an address that indicates a value that is known to be "undef".
42 static VNInfo UndefVNI(0xbad, SlotIndex());
43
44 void LiveRangeCalc::resetLiveOutMap() {
45   unsigned NumBlocks = MF->getNumBlockIDs();
46   Seen.clear();
47   Seen.resize(NumBlocks);
48   EntryInfos.clear();
49   Map.resize(NumBlocks);
50 }
51
52 void LiveRangeCalc::reset(const MachineFunction *mf,
53                           SlotIndexes *SI,
54                           MachineDominatorTree *MDT,
55                           VNInfo::Allocator *VNIA) {
56   MF = mf;
57   MRI = &MF->getRegInfo();
58   Indexes = SI;
59   DomTree = MDT;
60   Alloc = VNIA;
61   resetLiveOutMap();
62   LiveIn.clear();
63 }
64
65 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
66                           LiveRange &LR, const MachineOperand &MO) {
67   const MachineInstr &MI = *MO.getParent();
68   SlotIndex DefIdx =
69       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
70
71   // Create the def in LR. This may find an existing def.
72   LR.createDeadDef(DefIdx, Alloc);
73 }
74
75 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
76   assert(MRI && Indexes && "call reset() first");
77
78   // Step 1: Create minimal live segments for every definition of Reg.
79   // Visit all def operands. If the same instruction has multiple defs of Reg,
80   // createDeadDef() will deduplicate.
81   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
82   unsigned Reg = LI.reg;
83   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
84     if (!MO.isDef() && !MO.readsReg())
85       continue;
86
87     unsigned SubReg = MO.getSubReg();
88     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
89       LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
90                                         : MRI->getMaxLaneMaskForVReg(Reg);
91       // If this is the first time we see a subregister def, initialize
92       // subranges by creating a copy of the main range.
93       if (!LI.hasSubRanges() && !LI.empty()) {
94         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
95         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
96       }
97
98       LI.refineSubRanges(*Alloc, SubMask,
99           [&MO, this](LiveInterval::SubRange &SR) {
100         if (MO.isDef())
101           createDeadDef(*Indexes, *Alloc, SR, MO);
102       });
103     }
104
105     // Create the def in the main liverange. We do not have to do this if
106     // subranges are tracked as we recreate the main range later in this case.
107     if (MO.isDef() && !LI.hasSubRanges())
108       createDeadDef(*Indexes, *Alloc, LI, MO);
109   }
110
111   // We may have created empty live ranges for partially undefined uses, we
112   // can't keep them because we won't find defs in them later.
113   LI.removeEmptySubRanges();
114
115   // Step 2: Extend live segments to all uses, constructing SSA form as
116   // necessary.
117   if (LI.hasSubRanges()) {
118     for (LiveInterval::SubRange &S : LI.subranges()) {
119       LiveRangeCalc SubLRC;
120       SubLRC.reset(MF, Indexes, DomTree, Alloc);
121       SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
122     }
123     LI.clear();
124     constructMainRangeFromSubranges(LI);
125   } else {
126     resetLiveOutMap();
127     extendToUses(LI, Reg, LaneBitmask::getAll());
128   }
129 }
130
131 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
132   // First create dead defs at all defs found in subranges.
133   LiveRange &MainRange = LI;
134   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
135          "Expect empty main liverange");
136
137   for (const LiveInterval::SubRange &SR : LI.subranges()) {
138     for (const VNInfo *VNI : SR.valnos) {
139       if (!VNI->isUnused() && !VNI->isPHIDef())
140         MainRange.createDeadDef(VNI->def, *Alloc);
141     }
142   }
143   resetLiveOutMap();
144   extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
145 }
146
147 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
148   assert(MRI && Indexes && "call reset() first");
149
150   // Visit all def operands. If the same instruction has multiple defs of Reg,
151   // LR.createDeadDef() will deduplicate.
152   for (MachineOperand &MO : MRI->def_operands(Reg))
153     createDeadDef(*Indexes, *Alloc, LR, MO);
154 }
155
156 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
157                                  LiveInterval *LI) {
158   SmallVector<SlotIndex, 4> Undefs;
159   if (LI != nullptr)
160     LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
161
162   // Visit all operands that read Reg. This may include partial defs.
163   bool IsSubRange = !Mask.all();
164   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
165   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
166     // Clear all kill flags. They will be reinserted after register allocation
167     // by LiveIntervals::addKillFlags().
168     if (MO.isUse())
169       MO.setIsKill(false);
170     // MO::readsReg returns "true" for subregister defs. This is for keeping
171     // liveness of the entire register (i.e. for the main range of the live
172     // interval). For subranges, definitions of non-overlapping subregisters
173     // do not count as uses.
174     if (!MO.readsReg() || (IsSubRange && MO.isDef()))
175       continue;
176
177     unsigned SubReg = MO.getSubReg();
178     if (SubReg != 0) {
179       LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
180       if (MO.isDef())
181         SLM = ~SLM;
182       // Ignore uses not reading the current (sub)range.
183       if ((SLM & Mask).none())
184         continue;
185     }
186
187     // Determine the actual place of the use.
188     const MachineInstr *MI = MO.getParent();
189     unsigned OpNo = (&MO - &MI->getOperand(0));
190     SlotIndex UseIdx;
191     if (MI->isPHI()) {
192       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
193       // The actual place where a phi operand is used is the end of the pred
194       // MBB. PHI operands are paired: (Reg, PredMBB).
195       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
196     } else {
197       // Check for early-clobber redefs.
198       bool isEarlyClobber = false;
199       unsigned DefIdx;
200       if (MO.isDef())
201         isEarlyClobber = MO.isEarlyClobber();
202       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
203         // FIXME: This would be a lot easier if tied early-clobber uses also
204         // had an early-clobber flag.
205         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
206       }
207       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
208     }
209
210     // MI is reading Reg. We may have visited MI before if it happens to be
211     // reading Reg multiple times. That is OK, extend() is idempotent.
212     extend(LR, UseIdx, Reg, Undefs);
213   }
214 }
215
216 void LiveRangeCalc::updateFromLiveIns() {
217   LiveRangeUpdater Updater;
218   for (const LiveInBlock &I : LiveIn) {
219     if (!I.DomNode)
220       continue;
221     MachineBasicBlock *MBB = I.DomNode->getBlock();
222     assert(I.Value && "No live-in value found");
223     SlotIndex Start, End;
224     std::tie(Start, End) = Indexes->getMBBRange(MBB);
225
226     if (I.Kill.isValid())
227       // Value is killed inside this block.
228       End = I.Kill;
229     else {
230       // The value is live-through, update LiveOut as well.
231       // Defer the Domtree lookup until it is needed.
232       assert(Seen.test(MBB->getNumber()));
233       Map[MBB] = LiveOutPair(I.Value, nullptr);
234     }
235     Updater.setDest(&I.LR);
236     Updater.add(Start, End, I.Value);
237   }
238   LiveIn.clear();
239 }
240
241 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
242                            ArrayRef<SlotIndex> Undefs) {
243   assert(Use.isValid() && "Invalid SlotIndex");
244   assert(Indexes && "Missing SlotIndexes");
245   assert(DomTree && "Missing dominator tree");
246
247   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
248   assert(UseMBB && "No MBB at Use");
249
250   // Is there a def in the same MBB we can extend?
251   auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
252   if (EP.first != nullptr || EP.second)
253     return;
254
255   // Find the single reaching def, or determine if Use is jointly dominated by
256   // multiple values, and we may need to create even more phi-defs to preserve
257   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
258   // know the dominating VNInfo.
259   if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
260     return;
261
262   // When there were multiple different values, we may need new PHIs.
263   calculateValues();
264 }
265
266 // This function is called by a client after using the low-level API to add
267 // live-out and live-in blocks.  The unique value optimization is not
268 // available, SplitEditor::transferValues handles that case directly anyway.
269 void LiveRangeCalc::calculateValues() {
270   assert(Indexes && "Missing SlotIndexes");
271   assert(DomTree && "Missing dominator tree");
272   updateSSA();
273   updateFromLiveIns();
274 }
275
276 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
277                                  MachineBasicBlock &MBB, BitVector &DefOnEntry,
278                                  BitVector &UndefOnEntry) {
279   unsigned BN = MBB.getNumber();
280   if (DefOnEntry[BN])
281     return true;
282   if (UndefOnEntry[BN])
283     return false;
284
285   auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
286     for (MachineBasicBlock *S : B.successors())
287       DefOnEntry[S->getNumber()] = true;
288     DefOnEntry[BN] = true;
289     return true;
290   };
291
292   SetVector<unsigned> WorkList;
293   // Checking if the entry of MBB is reached by some def: add all predecessors
294   // that are potentially defined-on-exit to the work list.
295   for (MachineBasicBlock *P : MBB.predecessors())
296     WorkList.insert(P->getNumber());
297
298   for (unsigned i = 0; i != WorkList.size(); ++i) {
299     // Determine if the exit from the block is reached by some def.
300     unsigned N = WorkList[i];
301     MachineBasicBlock &B = *MF->getBlockNumbered(N);
302     if (Seen[N]) {
303       const LiveOutPair &LOB = Map[&B];
304       if (LOB.first != nullptr && LOB.first != &UndefVNI)
305         return MarkDefined(B);
306     }
307     SlotIndex Begin, End;
308     std::tie(Begin, End) = Indexes->getMBBRange(&B);
309     // Treat End as not belonging to B.
310     // If LR has a segment S that starts at the next block, i.e. [End, ...),
311     // std::upper_bound will return the segment following S. Instead,
312     // S should be treated as the first segment that does not overlap B.
313     LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
314                                               End.getPrevSlot());
315     if (UB != LR.begin()) {
316       LiveRange::Segment &Seg = *std::prev(UB);
317       if (Seg.end > Begin) {
318         // There is a segment that overlaps B. If the range is not explicitly
319         // undefined between the end of the segment and the end of the block,
320         // treat the block as defined on exit. If it is, go to the next block
321         // on the work list.
322         if (LR.isUndefIn(Undefs, Seg.end, End))
323           continue;
324         return MarkDefined(B);
325       }
326     }
327
328     // No segment overlaps with this block. If this block is not defined on
329     // entry, or it undefines the range, do not process its predecessors.
330     if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
331       UndefOnEntry[N] = true;
332       continue;
333     }
334     if (DefOnEntry[N])
335       return MarkDefined(B);
336
337     // Still don't know: add all predecessors to the work list.
338     for (MachineBasicBlock *P : B.predecessors())
339       WorkList.insert(P->getNumber());
340   }
341
342   UndefOnEntry[BN] = true;
343   return false;
344 }
345
346 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
347                                      SlotIndex Use, unsigned PhysReg,
348                                      ArrayRef<SlotIndex> Undefs) {
349   unsigned UseMBBNum = UseMBB.getNumber();
350
351   // Block numbers where LR should be live-in.
352   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
353
354   // Remember if we have seen more than one value.
355   bool UniqueVNI = true;
356   VNInfo *TheVNI = nullptr;
357
358   bool FoundUndef = false;
359
360   // Using Seen as a visited set, perform a BFS for all reaching defs.
361   for (unsigned i = 0; i != WorkList.size(); ++i) {
362     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
363
364 #ifndef NDEBUG
365     if (MBB->pred_empty()) {
366       MBB->getParent()->verify();
367       errs() << "Use of " << printReg(PhysReg)
368              << " does not have a corresponding definition on every path:\n";
369       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
370       if (MI != nullptr)
371         errs() << Use << " " << *MI;
372       report_fatal_error("Use not jointly dominated by defs.");
373     }
374
375     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
376         !MBB->isLiveIn(PhysReg)) {
377       MBB->getParent()->verify();
378       const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
379       errs() << "The register " << printReg(PhysReg, TRI)
380              << " needs to be live in to " << printMBBReference(*MBB)
381              << ", but is missing from the live-in list.\n";
382       report_fatal_error("Invalid global physical register");
383     }
384 #endif
385     FoundUndef |= MBB->pred_empty();
386
387     for (MachineBasicBlock *Pred : MBB->predecessors()) {
388        // Is this a known live-out block?
389        if (Seen.test(Pred->getNumber())) {
390          if (VNInfo *VNI = Map[Pred].first) {
391            if (TheVNI && TheVNI != VNI)
392              UniqueVNI = false;
393            TheVNI = VNI;
394          }
395          continue;
396        }
397
398        SlotIndex Start, End;
399        std::tie(Start, End) = Indexes->getMBBRange(Pred);
400
401        // First time we see Pred.  Try to determine the live-out value, but set
402        // it as null if Pred is live-through with an unknown value.
403        auto EP = LR.extendInBlock(Undefs, Start, End);
404        VNInfo *VNI = EP.first;
405        FoundUndef |= EP.second;
406        setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI);
407        if (VNI) {
408          if (TheVNI && TheVNI != VNI)
409            UniqueVNI = false;
410          TheVNI = VNI;
411        }
412        if (VNI || EP.second)
413          continue;
414
415        // No, we need a live-in value for Pred as well
416        if (Pred != &UseMBB)
417          WorkList.push_back(Pred->getNumber());
418        else
419           // Loopback to UseMBB, so value is really live through.
420          Use = SlotIndex();
421     }
422   }
423
424   LiveIn.clear();
425   FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI);
426   if (!Undefs.empty() && FoundUndef)
427     UniqueVNI = false;
428
429   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
430   // neither require it. Skip the sorting overhead for small updates.
431   if (WorkList.size() > 4)
432     array_pod_sort(WorkList.begin(), WorkList.end());
433
434   // If a unique reaching def was found, blit in the live ranges immediately.
435   if (UniqueVNI) {
436     assert(TheVNI != nullptr && TheVNI != &UndefVNI);
437     LiveRangeUpdater Updater(&LR);
438     for (unsigned BN : WorkList) {
439       SlotIndex Start, End;
440       std::tie(Start, End) = Indexes->getMBBRange(BN);
441       // Trim the live range in UseMBB.
442       if (BN == UseMBBNum && Use.isValid())
443         End = Use;
444       else
445         Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
446       Updater.add(Start, End, TheVNI);
447     }
448     return true;
449   }
450
451   // Prepare the defined/undefined bit vectors.
452   EntryInfoMap::iterator Entry;
453   bool DidInsert;
454   std::tie(Entry, DidInsert) = EntryInfos.insert(
455       std::make_pair(&LR, std::make_pair(BitVector(), BitVector())));
456   if (DidInsert) {
457     // Initialize newly inserted entries.
458     unsigned N = MF->getNumBlockIDs();
459     Entry->second.first.resize(N);
460     Entry->second.second.resize(N);
461   }
462   BitVector &DefOnEntry = Entry->second.first;
463   BitVector &UndefOnEntry = Entry->second.second;
464
465   // Multiple values were found, so transfer the work list to the LiveIn array
466   // where UpdateSSA will use it as a work list.
467   LiveIn.reserve(WorkList.size());
468   for (unsigned BN : WorkList) {
469     MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
470     if (!Undefs.empty() &&
471         !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
472       continue;
473     addLiveInBlock(LR, DomTree->getNode(MBB));
474     if (MBB == &UseMBB)
475       LiveIn.back().Kill = Use;
476   }
477
478   return false;
479 }
480
481 // This is essentially the same iterative algorithm that SSAUpdater uses,
482 // except we already have a dominator tree, so we don't have to recompute it.
483 void LiveRangeCalc::updateSSA() {
484   assert(Indexes && "Missing SlotIndexes");
485   assert(DomTree && "Missing dominator tree");
486
487   // Interate until convergence.
488   bool Changed;
489   do {
490     Changed = false;
491     // Propagate live-out values down the dominator tree, inserting phi-defs
492     // when necessary.
493     for (LiveInBlock &I : LiveIn) {
494       MachineDomTreeNode *Node = I.DomNode;
495       // Skip block if the live-in value has already been determined.
496       if (!Node)
497         continue;
498       MachineBasicBlock *MBB = Node->getBlock();
499       MachineDomTreeNode *IDom = Node->getIDom();
500       LiveOutPair IDomValue;
501
502       // We need a live-in value to a block with no immediate dominator?
503       // This is probably an unreachable block that has survived somehow.
504       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
505
506       // IDom dominates all of our predecessors, but it may not be their
507       // immediate dominator. Check if any of them have live-out values that are
508       // properly dominated by IDom. If so, we need a phi-def here.
509       if (!needPHI) {
510         IDomValue = Map[IDom->getBlock()];
511
512         // Cache the DomTree node that defined the value.
513         if (IDomValue.first && IDomValue.first != &UndefVNI &&
514             !IDomValue.second) {
515           Map[IDom->getBlock()].second = IDomValue.second =
516             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
517         }
518
519         for (MachineBasicBlock *Pred : MBB->predecessors()) {
520           LiveOutPair &Value = Map[Pred];
521           if (!Value.first || Value.first == IDomValue.first)
522             continue;
523           if (Value.first == &UndefVNI) {
524             needPHI = true;
525             break;
526           }
527
528           // Cache the DomTree node that defined the value.
529           if (!Value.second)
530             Value.second =
531               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
532
533           // This predecessor is carrying something other than IDomValue.
534           // It could be because IDomValue hasn't propagated yet, or it could be
535           // because MBB is in the dominance frontier of that value.
536           if (DomTree->dominates(IDom, Value.second)) {
537             needPHI = true;
538             break;
539           }
540         }
541       }
542
543       // The value may be live-through even if Kill is set, as can happen when
544       // we are called from extendRange. In that case LiveOutSeen is true, and
545       // LiveOut indicates a foreign or missing value.
546       LiveOutPair &LOP = Map[MBB];
547
548       // Create a phi-def if required.
549       if (needPHI) {
550         Changed = true;
551         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
552         SlotIndex Start, End;
553         std::tie(Start, End) = Indexes->getMBBRange(MBB);
554         LiveRange &LR = I.LR;
555         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
556         I.Value = VNI;
557         // This block is done, we know the final value.
558         I.DomNode = nullptr;
559
560         // Add liveness since updateFromLiveIns now skips this node.
561         if (I.Kill.isValid()) {
562           if (VNI)
563             LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
564         } else {
565           if (VNI)
566             LR.addSegment(LiveInterval::Segment(Start, End, VNI));
567           LOP = LiveOutPair(VNI, Node);
568         }
569       } else if (IDomValue.first && IDomValue.first != &UndefVNI) {
570         // No phi-def here. Remember incoming value.
571         I.Value = IDomValue.first;
572
573         // If the IDomValue is killed in the block, don't propagate through.
574         if (I.Kill.isValid())
575           continue;
576
577         // Propagate IDomValue if it isn't killed:
578         // MBB is live-out and doesn't define its own value.
579         if (LOP.first == IDomValue.first)
580           continue;
581         Changed = true;
582         LOP = IDomValue;
583       }
584     }
585   } while (Changed);
586 }
587
588 bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB,
589                                        ArrayRef<SlotIndex> Defs,
590                                        const SlotIndexes &Indexes) {
591   const MachineFunction &MF = *MBB->getParent();
592   BitVector DefBlocks(MF.getNumBlockIDs());
593   for (SlotIndex I : Defs)
594     DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber());
595
596   SetVector<unsigned> PredQueue;
597   PredQueue.insert(MBB->getNumber());
598   for (unsigned i = 0; i != PredQueue.size(); ++i) {
599     unsigned BN = PredQueue[i];
600     if (DefBlocks[BN])
601       return true;
602     const MachineBasicBlock *B = MF.getBlockNumbered(BN);
603     for (const MachineBasicBlock *P : B->predecessors())
604       PredQueue.insert(P->getNumber());
605   }
606   return false;
607 }