]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/IR/SafepointIRVerifier.cpp
Vendor import of llvm trunk r338150:
[FreeBSD/FreeBSD.git] / lib / IR / SafepointIRVerifier.cpp
1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Run a sanity check on the IR to ensure that Safepoints - if they've been
11 // inserted - were inserted correctly.  In particular, look for use of
12 // non-relocated values after a safepoint.  It's primary use is to check the
13 // correctness of safepoint insertion immediately after insertion, but it can
14 // also be used to verify that later transforms have not found a way to break
15 // safepoint semenatics.
16 //
17 // In its current form, this verify checks a property which is sufficient, but
18 // not neccessary for correctness.  There are some cases where an unrelocated
19 // pointer can be used after the safepoint.  Consider this example:
20 //
21 //    a = ...
22 //    b = ...
23 //    (a',b') = safepoint(a,b)
24 //    c = cmp eq a b
25 //    br c, ..., ....
26 //
27 // Because it is valid to reorder 'c' above the safepoint, this is legal.  In
28 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
29 // idioms like this.  The verifier knows about these cases and avoids reporting
30 // false positives.
31 //
32 //===----------------------------------------------------------------------===//
33
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/SafepointIRVerifier.h"
47 #include "llvm/IR/Statepoint.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/raw_ostream.h"
51
52 #define DEBUG_TYPE "safepoint-ir-verifier"
53
54 using namespace llvm;
55
56 /// This option is used for writing test cases.  Instead of crashing the program
57 /// when verification fails, report a message to the console (for FileCheck
58 /// usage) and continue execution as if nothing happened.
59 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
60                                cl::init(false));
61
62 namespace {
63
64 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
65 /// of blocks unreachable from entry then propagates deadness using foldable
66 /// conditional branches without modifying CFG. So GVN does but it changes CFG
67 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
68 /// clean up dead blocks, but in some cases, like verification or loop passes
69 /// it's not possible.
70 class CFGDeadness {
71   const DominatorTree *DT = nullptr;
72   SetVector<const BasicBlock *> DeadBlocks;
73   SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
74
75 public:
76   /// Return the edge that coresponds to the predecessor.
77   static const Use& getEdge(const_pred_iterator &PredIt) {
78     auto &PU = PredIt.getUse();
79     return PU.getUser()->getOperandUse(PU.getOperandNo());
80   }
81
82   /// Return true if there is at least one live edge that corresponds to the
83   /// basic block InBB listed in the phi node.
84   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
85     assert(!isDeadBlock(InBB) && "block must be live");
86     const BasicBlock* BB = PN->getParent();
87     bool Listed = false;
88     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
89       if (InBB == *PredIt) {
90         if (!isDeadEdge(&getEdge(PredIt)))
91           return true;
92         Listed = true;
93       }
94     }
95     assert(Listed && "basic block is not found among incoming blocks");
96     return false;
97   }
98
99
100   bool isDeadBlock(const BasicBlock *BB) const {
101     return DeadBlocks.count(BB);
102   }
103
104   bool isDeadEdge(const Use *U) const {
105     assert(dyn_cast<Instruction>(U->getUser())->isTerminator() &&
106            "edge must be operand of terminator");
107     assert(cast_or_null<BasicBlock>(U->get()) &&
108            "edge must refer to basic block");
109     assert(!isDeadBlock(dyn_cast<Instruction>(U->getUser())->getParent()) &&
110            "isDeadEdge() must be applied to edge from live block");
111     return DeadEdges.count(U);
112   }
113
114   bool hasLiveIncomingEdges(const BasicBlock *BB) const {
115     // Check if all incoming edges are dead.
116     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
117       auto &PU = PredIt.getUse();
118       const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
119       if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
120         return true; // Found a live edge.
121     }
122     return false;
123   }
124
125   void processFunction(const Function &F, const DominatorTree &DT) {
126     this->DT = &DT;
127
128     // Start with all blocks unreachable from entry.
129     for (const BasicBlock &BB : F)
130       if (!DT.isReachableFromEntry(&BB))
131         DeadBlocks.insert(&BB);
132
133     // Top-down walk of the dominator tree
134     ReversePostOrderTraversal<const Function *> RPOT(&F);
135     for (const BasicBlock *BB : RPOT) {
136       const TerminatorInst *TI = BB->getTerminator();
137       assert(TI && "blocks must be well formed");
138
139       // For conditional branches, we can perform simple conditional propagation on
140       // the condition value itself.
141       const BranchInst *BI = dyn_cast<BranchInst>(TI);
142       if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
143         continue;
144
145       // If a branch has two identical successors, we cannot declare either dead.
146       if (BI->getSuccessor(0) == BI->getSuccessor(1))
147         continue;
148
149       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
150       if (!Cond)
151         continue;
152
153       addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
154     }
155   }
156
157 protected:
158   void addDeadBlock(const BasicBlock *BB) {
159     SmallVector<const BasicBlock *, 4> NewDead;
160     SmallSetVector<const BasicBlock *, 4> DF;
161
162     NewDead.push_back(BB);
163     while (!NewDead.empty()) {
164       const BasicBlock *D = NewDead.pop_back_val();
165       if (isDeadBlock(D))
166         continue;
167
168       // All blocks dominated by D are dead.
169       SmallVector<BasicBlock *, 8> Dom;
170       DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
171       // Do not need to mark all in and out edges dead
172       // because BB is marked dead and this is enough
173       // to run further.
174       DeadBlocks.insert(Dom.begin(), Dom.end());
175
176       // Figure out the dominance-frontier(D).
177       for (BasicBlock *B : Dom)
178         for (BasicBlock *S : successors(B))
179           if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
180             NewDead.push_back(S);
181     }
182   }
183
184   void addDeadEdge(const Use &DeadEdge) {
185     if (!DeadEdges.insert(&DeadEdge))
186       return;
187
188     BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
189     if (hasLiveIncomingEdges(BB))
190       return;
191
192     addDeadBlock(BB);
193   }
194 };
195 } // namespace
196
197 static void Verify(const Function &F, const DominatorTree &DT,
198                    const CFGDeadness &CD);
199
200 namespace {
201
202 struct SafepointIRVerifier : public FunctionPass {
203   static char ID; // Pass identification, replacement for typeid
204   SafepointIRVerifier() : FunctionPass(ID) {
205     initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
206   }
207
208   bool runOnFunction(Function &F) override {
209     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
210     CFGDeadness CD;
211     CD.processFunction(F, DT);
212     Verify(F, DT, CD);
213     return false; // no modifications
214   }
215
216   void getAnalysisUsage(AnalysisUsage &AU) const override {
217     AU.addRequiredID(DominatorTreeWrapperPass::ID);
218     AU.setPreservesAll();
219   }
220
221   StringRef getPassName() const override { return "safepoint verifier"; }
222 };
223 } // namespace
224
225 void llvm::verifySafepointIR(Function &F) {
226   SafepointIRVerifier pass;
227   pass.runOnFunction(F);
228 }
229
230 char SafepointIRVerifier::ID = 0;
231
232 FunctionPass *llvm::createSafepointIRVerifierPass() {
233   return new SafepointIRVerifier();
234 }
235
236 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
237                       "Safepoint IR Verifier", false, false)
238 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
239 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
240                     "Safepoint IR Verifier", false, false)
241
242 static bool isGCPointerType(Type *T) {
243   if (auto *PT = dyn_cast<PointerType>(T))
244     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
245     // GC managed heap.  We know that a pointer into this heap needs to be
246     // updated and that no other pointer does.
247     return (1 == PT->getAddressSpace());
248   return false;
249 }
250
251 static bool containsGCPtrType(Type *Ty) {
252   if (isGCPointerType(Ty))
253     return true;
254   if (VectorType *VT = dyn_cast<VectorType>(Ty))
255     return isGCPointerType(VT->getScalarType());
256   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
257     return containsGCPtrType(AT->getElementType());
258   if (StructType *ST = dyn_cast<StructType>(Ty))
259     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
260                        containsGCPtrType);
261   return false;
262 }
263
264 // Debugging aid -- prints a [Begin, End) range of values.
265 template<typename IteratorTy>
266 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
267   OS << "[ ";
268   while (Begin != End) {
269     OS << **Begin << " ";
270     ++Begin;
271   }
272   OS << "]";
273 }
274
275 /// The verifier algorithm is phrased in terms of availability.  The set of
276 /// values "available" at a given point in the control flow graph is the set of
277 /// correctly relocated value at that point, and is a subset of the set of
278 /// definitions dominating that point.
279
280 using AvailableValueSet = DenseSet<const Value *>;
281
282 /// State we compute and track per basic block.
283 struct BasicBlockState {
284   // Set of values available coming in, before the phi nodes
285   AvailableValueSet AvailableIn;
286
287   // Set of values available going out
288   AvailableValueSet AvailableOut;
289
290   // AvailableOut minus AvailableIn.
291   // All elements are Instructions
292   AvailableValueSet Contribution;
293
294   // True if this block contains a safepoint and thus AvailableIn does not
295   // contribute to AvailableOut.
296   bool Cleared = false;
297 };
298
299 /// A given derived pointer can have multiple base pointers through phi/selects.
300 /// This type indicates when the base pointer is exclusively constant
301 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
302 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
303 /// NonConstant.
304 enum BaseType {
305   NonConstant = 1, // Base pointers is not exclusively constant.
306   ExclusivelyNull,
307   ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
308                           // set of constants, but they are not exclusively
309                           // null.
310 };
311
312 /// Return the baseType for Val which states whether Val is exclusively
313 /// derived from constant/null, or not exclusively derived from constant.
314 /// Val is exclusively derived off a constant base when all operands of phi and
315 /// selects are derived off a constant base.
316 static enum BaseType getBaseType(const Value *Val) {
317
318   SmallVector<const Value *, 32> Worklist;
319   DenseSet<const Value *> Visited;
320   bool isExclusivelyDerivedFromNull = true;
321   Worklist.push_back(Val);
322   // Strip through all the bitcasts and geps to get base pointer. Also check for
323   // the exclusive value when there can be multiple base pointers (through phis
324   // or selects).
325   while(!Worklist.empty()) {
326     const Value *V = Worklist.pop_back_val();
327     if (!Visited.insert(V).second)
328       continue;
329
330     if (const auto *CI = dyn_cast<CastInst>(V)) {
331       Worklist.push_back(CI->stripPointerCasts());
332       continue;
333     }
334     if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
335       Worklist.push_back(GEP->getPointerOperand());
336       continue;
337     }
338     // Push all the incoming values of phi node into the worklist for
339     // processing.
340     if (const auto *PN = dyn_cast<PHINode>(V)) {
341       for (Value *InV: PN->incoming_values())
342         Worklist.push_back(InV);
343       continue;
344     }
345     if (const auto *SI = dyn_cast<SelectInst>(V)) {
346       // Push in the true and false values
347       Worklist.push_back(SI->getTrueValue());
348       Worklist.push_back(SI->getFalseValue());
349       continue;
350     }
351     if (isa<Constant>(V)) {
352       // We found at least one base pointer which is non-null, so this derived
353       // pointer is not exclusively derived from null.
354       if (V != Constant::getNullValue(V->getType()))
355         isExclusivelyDerivedFromNull = false;
356       // Continue processing the remaining values to make sure it's exclusively
357       // constant.
358       continue;
359     }
360     // At this point, we know that the base pointer is not exclusively
361     // constant.
362     return BaseType::NonConstant;
363   }
364   // Now, we know that the base pointer is exclusively constant, but we need to
365   // differentiate between exclusive null constant and non-null constant.
366   return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
367                                       : BaseType::ExclusivelySomeConstant;
368 }
369
370 static bool isNotExclusivelyConstantDerived(const Value *V) {
371   return getBaseType(V) == BaseType::NonConstant;
372 }
373
374 namespace {
375 class InstructionVerifier;
376
377 /// Builds BasicBlockState for each BB of the function.
378 /// It can traverse function for verification and provides all required
379 /// information.
380 ///
381 /// GC pointer may be in one of three states: relocated, unrelocated and
382 /// poisoned.
383 /// Relocated pointer may be used without any restrictions.
384 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
385 /// or returned. Unrelocated pointer may be safely compared against another
386 /// unrelocated pointer or against a pointer exclusively derived from null.
387 /// Poisoned pointers are produced when we somehow derive pointer from relocated
388 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
389 /// used in a very limited number of situations. Currently the only way to use
390 /// it is comparison against constant exclusively derived from null. All
391 /// limitations arise due to their undefined state: this pointers should be
392 /// treated as relocated and unrelocated simultaneously.
393 /// Rules of deriving:
394 /// R + U = P - that's where the poisoned pointers come from
395 /// P + X = P
396 /// U + U = U
397 /// R + R = R
398 /// X + C = X
399 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
400 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
401 /// nothing (in case when "+" is unary operation).
402 /// Deriving of pointers by itself is always safe.
403 /// NOTE: when we are making decision on the status of instruction's result:
404 /// a) for phi we need to check status of each input *at the end of
405 ///    corresponding predecessor BB*.
406 /// b) for other instructions we need to check status of each input *at the
407 ///    current point*.
408 ///
409 /// FIXME: This works fairly well except one case
410 ///     bb1:
411 ///     p = *some GC-ptr def*
412 ///     p1 = gep p, offset
413 ///         /     |
414 ///        /      |
415 ///    bb2:       |
416 ///    safepoint  |
417 ///        \      |
418 ///         \     |
419 ///      bb3:
420 ///      p2 = phi [p, bb2] [p1, bb1]
421 ///      p3 = phi [p, bb2] [p, bb1]
422 ///      here p and p1 is unrelocated
423 ///           p2 and p3 is poisoned (though they shouldn't be)
424 ///
425 /// This leads to some weird results:
426 ///      cmp eq p, p2 - illegal instruction (false-positive)
427 ///      cmp eq p1, p2 - illegal instruction (false-positive)
428 ///      cmp eq p, p3 - illegal instruction (false-positive)
429 ///      cmp eq p, p1 - ok
430 /// To fix this we need to introduce conception of generations and be able to
431 /// check if two values belong to one generation or not. This way p2 will be
432 /// considered to be unrelocated and no false alarm will happen.
433 class GCPtrTracker {
434   const Function &F;
435   const CFGDeadness &CD;
436   SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
437   DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
438   // This set contains defs of unrelocated pointers that are proved to be legal
439   // and don't need verification.
440   DenseSet<const Instruction *> ValidUnrelocatedDefs;
441   // This set contains poisoned defs. They can be safely ignored during
442   // verification too.
443   DenseSet<const Value *> PoisonedDefs;
444
445 public:
446   GCPtrTracker(const Function &F, const DominatorTree &DT,
447                const CFGDeadness &CD);
448
449   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
450     return CD.hasLiveIncomingEdge(PN, InBB);
451   }
452
453   BasicBlockState *getBasicBlockState(const BasicBlock *BB);
454   const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
455
456   bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
457
458   /// Traverse each BB of the function and call
459   /// InstructionVerifier::verifyInstruction for each possibly invalid
460   /// instruction.
461   /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
462   /// in order to prohibit further usages of GCPtrTracker as it'll be in
463   /// inconsistent state.
464   static void verifyFunction(GCPtrTracker &&Tracker,
465                              InstructionVerifier &Verifier);
466
467   /// Returns true for reachable and live blocks.
468   bool isMapped(const BasicBlock *BB) const {
469     return BlockMap.find(BB) != BlockMap.end();
470   }
471
472 private:
473   /// Returns true if the instruction may be safely skipped during verification.
474   bool instructionMayBeSkipped(const Instruction *I) const;
475
476   /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
477   /// each of them until it converges.
478   void recalculateBBsStates();
479
480   /// Remove from Contribution all defs that legally produce unrelocated
481   /// pointers and saves them to ValidUnrelocatedDefs.
482   /// Though Contribution should belong to BBS it is passed separately with
483   /// different const-modifier in order to emphasize (and guarantee) that only
484   /// Contribution will be changed.
485   /// Returns true if Contribution was changed otherwise false.
486   bool removeValidUnrelocatedDefs(const BasicBlock *BB,
487                                   const BasicBlockState *BBS,
488                                   AvailableValueSet &Contribution);
489
490   /// Gather all the definitions dominating the start of BB into Result. This is
491   /// simply the defs introduced by every dominating basic block and the
492   /// function arguments.
493   void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
494                             const DominatorTree &DT);
495
496   /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
497   /// which is the BasicBlockState for BB.
498   /// ContributionChanged is set when the verifier runs for the first time
499   /// (in this case Contribution was changed from 'empty' to its initial state)
500   /// or when Contribution of this BB was changed since last computation.
501   static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
502                             bool ContributionChanged);
503
504   /// Model the effect of an instruction on the set of available values.
505   static void transferInstruction(const Instruction &I, bool &Cleared,
506                                   AvailableValueSet &Available);
507 };
508
509 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
510 /// instruction (which uses heap reference) is legal or not, given our safepoint
511 /// semantics.
512 class InstructionVerifier {
513   bool AnyInvalidUses = false;
514
515 public:
516   void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
517                          const AvailableValueSet &AvailableSet);
518
519   bool hasAnyInvalidUses() const { return AnyInvalidUses; }
520
521 private:
522   void reportInvalidUse(const Value &V, const Instruction &I);
523 };
524 } // end anonymous namespace
525
526 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
527                            const CFGDeadness &CD) : F(F), CD(CD) {
528   // Calculate Contribution of each live BB.
529   // Allocate BB states for live blocks.
530   for (const BasicBlock &BB : F)
531     if (!CD.isDeadBlock(&BB)) {
532       BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
533       for (const auto &I : BB)
534         transferInstruction(I, BBS->Cleared, BBS->Contribution);
535       BlockMap[&BB] = BBS;
536     }
537
538   // Initialize AvailableIn/Out sets of each BB using only information about
539   // dominating BBs.
540   for (auto &BBI : BlockMap) {
541     gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
542     transferBlock(BBI.first, *BBI.second, true);
543   }
544
545   // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
546   // sets of each BB until it converges. If any def is proved to be an
547   // unrelocated pointer, it will be removed from all BBSs.
548   recalculateBBsStates();
549 }
550
551 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
552   auto it = BlockMap.find(BB);
553   return it != BlockMap.end() ? it->second : nullptr;
554 }
555
556 const BasicBlockState *GCPtrTracker::getBasicBlockState(
557     const BasicBlock *BB) const {
558   return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
559 }
560
561 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
562   // Poisoned defs are skipped since they are always safe by itself by
563   // definition (for details see comment to this class).
564   return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
565 }
566
567 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
568                                   InstructionVerifier &Verifier) {
569   // We need RPO here to a) report always the first error b) report errors in
570   // same order from run to run.
571   ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
572   for (const BasicBlock *BB : RPOT) {
573     BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
574     if (!BBS)
575       continue;
576
577     // We destructively modify AvailableIn as we traverse the block instruction
578     // by instruction.
579     AvailableValueSet &AvailableSet = BBS->AvailableIn;
580     for (const Instruction &I : *BB) {
581       if (Tracker.instructionMayBeSkipped(&I))
582         continue; // This instruction shouldn't be added to AvailableSet.
583
584       Verifier.verifyInstruction(&Tracker, I, AvailableSet);
585
586       // Model the effect of current instruction on AvailableSet to keep the set
587       // relevant at each point of BB.
588       bool Cleared = false;
589       transferInstruction(I, Cleared, AvailableSet);
590       (void)Cleared;
591     }
592   }
593 }
594
595 void GCPtrTracker::recalculateBBsStates() {
596   SetVector<const BasicBlock *> Worklist;
597   // TODO: This order is suboptimal, it's better to replace it with priority
598   // queue where priority is RPO number of BB.
599   for (auto &BBI : BlockMap)
600     Worklist.insert(BBI.first);
601
602   // This loop iterates the AvailableIn/Out sets until it converges.
603   // The AvailableIn and AvailableOut sets decrease as we iterate.
604   while (!Worklist.empty()) {
605     const BasicBlock *BB = Worklist.pop_back_val();
606     BasicBlockState *BBS = getBasicBlockState(BB);
607     if (!BBS)
608       continue; // Ignore dead successors.
609
610     size_t OldInCount = BBS->AvailableIn.size();
611     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
612       const BasicBlock *PBB = *PredIt;
613       BasicBlockState *PBBS = getBasicBlockState(PBB);
614       if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
615         set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
616     }
617
618     assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
619
620     bool InputsChanged = OldInCount != BBS->AvailableIn.size();
621     bool ContributionChanged =
622         removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
623     if (!InputsChanged && !ContributionChanged)
624       continue;
625
626     size_t OldOutCount = BBS->AvailableOut.size();
627     transferBlock(BB, *BBS, ContributionChanged);
628     if (OldOutCount != BBS->AvailableOut.size()) {
629       assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
630       Worklist.insert(succ_begin(BB), succ_end(BB));
631     }
632   }
633 }
634
635 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
636                                               const BasicBlockState *BBS,
637                                               AvailableValueSet &Contribution) {
638   assert(&BBS->Contribution == &Contribution &&
639          "Passed Contribution should be from the passed BasicBlockState!");
640   AvailableValueSet AvailableSet = BBS->AvailableIn;
641   bool ContributionChanged = false;
642   // For explanation why instructions are processed this way see
643   // "Rules of deriving" in the comment to this class.
644   for (const Instruction &I : *BB) {
645     bool ValidUnrelocatedPointerDef = false;
646     bool PoisonedPointerDef = false;
647     // TODO: `select` instructions should be handled here too.
648     if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
649       if (containsGCPtrType(PN->getType())) {
650         // If both is true, output is poisoned.
651         bool HasRelocatedInputs = false;
652         bool HasUnrelocatedInputs = false;
653         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
654           const BasicBlock *InBB = PN->getIncomingBlock(i);
655           if (!isMapped(InBB) ||
656               !CD.hasLiveIncomingEdge(PN, InBB))
657             continue; // Skip dead block or dead edge.
658
659           const Value *InValue = PN->getIncomingValue(i);
660
661           if (isNotExclusivelyConstantDerived(InValue)) {
662             if (isValuePoisoned(InValue)) {
663               // If any of inputs is poisoned, output is always poisoned too.
664               HasRelocatedInputs = true;
665               HasUnrelocatedInputs = true;
666               break;
667             }
668             if (BlockMap[InBB]->AvailableOut.count(InValue))
669               HasRelocatedInputs = true;
670             else
671               HasUnrelocatedInputs = true;
672           }
673         }
674         if (HasUnrelocatedInputs) {
675           if (HasRelocatedInputs)
676             PoisonedPointerDef = true;
677           else
678             ValidUnrelocatedPointerDef = true;
679         }
680       }
681     } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
682                containsGCPtrType(I.getType())) {
683       // GEP/bitcast of unrelocated pointer is legal by itself but this def
684       // shouldn't appear in any AvailableSet.
685       for (const Value *V : I.operands())
686         if (containsGCPtrType(V->getType()) &&
687             isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
688           if (isValuePoisoned(V))
689             PoisonedPointerDef = true;
690           else
691             ValidUnrelocatedPointerDef = true;
692           break;
693         }
694     }
695     assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
696            "Value cannot be both unrelocated and poisoned!");
697     if (ValidUnrelocatedPointerDef) {
698       // Remove def of unrelocated pointer from Contribution of this BB and
699       // trigger update of all its successors.
700       Contribution.erase(&I);
701       PoisonedDefs.erase(&I);
702       ValidUnrelocatedDefs.insert(&I);
703       LLVM_DEBUG(dbgs() << "Removing urelocated " << I
704                         << " from Contribution of " << BB->getName() << "\n");
705       ContributionChanged = true;
706     } else if (PoisonedPointerDef) {
707       // Mark pointer as poisoned, remove its def from Contribution and trigger
708       // update of all successors.
709       Contribution.erase(&I);
710       PoisonedDefs.insert(&I);
711       LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
712                         << BB->getName() << "\n");
713       ContributionChanged = true;
714     } else {
715       bool Cleared = false;
716       transferInstruction(I, Cleared, AvailableSet);
717       (void)Cleared;
718     }
719   }
720   return ContributionChanged;
721 }
722
723 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
724                                         AvailableValueSet &Result,
725                                         const DominatorTree &DT) {
726   DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
727
728   assert(DTN && "Unreachable blocks are ignored");
729   while (DTN->getIDom()) {
730     DTN = DTN->getIDom();
731     auto BBS = getBasicBlockState(DTN->getBlock());
732     assert(BBS && "immediate dominator cannot be dead for a live block");
733     const auto &Defs = BBS->Contribution;
734     Result.insert(Defs.begin(), Defs.end());
735     // If this block is 'Cleared', then nothing LiveIn to this block can be
736     // available after this block completes.  Note: This turns out to be
737     // really important for reducing memory consuption of the initial available
738     // sets and thus peak memory usage by this verifier.
739     if (BBS->Cleared)
740       return;
741   }
742
743   for (const Argument &A : BB->getParent()->args())
744     if (containsGCPtrType(A.getType()))
745       Result.insert(&A);
746 }
747
748 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
749                                  bool ContributionChanged) {
750   const AvailableValueSet &AvailableIn = BBS.AvailableIn;
751   AvailableValueSet &AvailableOut = BBS.AvailableOut;
752
753   if (BBS.Cleared) {
754     // AvailableOut will change only when Contribution changed.
755     if (ContributionChanged)
756       AvailableOut = BBS.Contribution;
757   } else {
758     // Otherwise, we need to reduce the AvailableOut set by things which are no
759     // longer in our AvailableIn
760     AvailableValueSet Temp = BBS.Contribution;
761     set_union(Temp, AvailableIn);
762     AvailableOut = std::move(Temp);
763   }
764
765   LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
766              PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
767              dbgs() << " to ";
768              PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
769              dbgs() << "\n";);
770 }
771
772 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
773                                        AvailableValueSet &Available) {
774   if (isStatepoint(I)) {
775     Cleared = true;
776     Available.clear();
777   } else if (containsGCPtrType(I.getType()))
778     Available.insert(&I);
779 }
780
781 void InstructionVerifier::verifyInstruction(
782     const GCPtrTracker *Tracker, const Instruction &I,
783     const AvailableValueSet &AvailableSet) {
784   if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
785     if (containsGCPtrType(PN->getType()))
786       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
787         const BasicBlock *InBB = PN->getIncomingBlock(i);
788         const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
789         if (!InBBS ||
790             !Tracker->hasLiveIncomingEdge(PN, InBB))
791           continue; // Skip dead block or dead edge.
792
793         const Value *InValue = PN->getIncomingValue(i);
794
795         if (isNotExclusivelyConstantDerived(InValue) &&
796             !InBBS->AvailableOut.count(InValue))
797           reportInvalidUse(*InValue, *PN);
798       }
799   } else if (isa<CmpInst>(I) &&
800              containsGCPtrType(I.getOperand(0)->getType())) {
801     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
802     enum BaseType baseTyLHS = getBaseType(LHS),
803                   baseTyRHS = getBaseType(RHS);
804
805     // Returns true if LHS and RHS are unrelocated pointers and they are
806     // valid unrelocated uses.
807     auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
808                                    &LHS, &RHS] () {
809         // A cmp instruction has valid unrelocated pointer operands only if
810         // both operands are unrelocated pointers.
811         // In the comparison between two pointers, if one is an unrelocated
812         // use, the other *should be* an unrelocated use, for this
813         // instruction to contain valid unrelocated uses. This unrelocated
814         // use can be a null constant as well, or another unrelocated
815         // pointer.
816         if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
817           return false;
818         // Constant pointers (that are not exclusively null) may have
819         // meaning in different VMs, so we cannot reorder the compare
820         // against constant pointers before the safepoint. In other words,
821         // comparison of an unrelocated use against a non-null constant
822         // maybe invalid.
823         if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
824              baseTyRHS == BaseType::NonConstant) ||
825             (baseTyLHS == BaseType::NonConstant &&
826              baseTyRHS == BaseType::ExclusivelySomeConstant))
827           return false;
828
829         // If one of pointers is poisoned and other is not exclusively derived
830         // from null it is an invalid expression: it produces poisoned result
831         // and unless we want to track all defs (not only gc pointers) the only
832         // option is to prohibit such instructions.
833         if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
834             (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
835             return false;
836
837         // All other cases are valid cases enumerated below:
838         // 1. Comparison between an exclusively derived null pointer and a
839         // constant base pointer.
840         // 2. Comparison between an exclusively derived null pointer and a
841         // non-constant unrelocated base pointer.
842         // 3. Comparison between 2 unrelocated pointers.
843         // 4. Comparison between a pointer exclusively derived from null and a
844         // non-constant poisoned pointer.
845         return true;
846     };
847     if (!hasValidUnrelocatedUse()) {
848       // Print out all non-constant derived pointers that are unrelocated
849       // uses, which are invalid.
850       if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
851         reportInvalidUse(*LHS, I);
852       if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
853         reportInvalidUse(*RHS, I);
854     }
855   } else {
856     for (const Value *V : I.operands())
857       if (containsGCPtrType(V->getType()) &&
858           isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
859         reportInvalidUse(*V, I);
860   }
861 }
862
863 void InstructionVerifier::reportInvalidUse(const Value &V,
864                                            const Instruction &I) {
865   errs() << "Illegal use of unrelocated value found!\n";
866   errs() << "Def: " << V << "\n";
867   errs() << "Use: " << I << "\n";
868   if (!PrintOnly)
869     abort();
870   AnyInvalidUses = true;
871 }
872
873 static void Verify(const Function &F, const DominatorTree &DT,
874                    const CFGDeadness &CD) {
875   LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
876                     << "\n");
877   if (PrintOnly)
878     dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
879
880   GCPtrTracker Tracker(F, DT, CD);
881
882   // We now have all the information we need to decide if the use of a heap
883   // reference is legal or not, given our safepoint semantics.
884
885   InstructionVerifier Verifier;
886   GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
887
888   if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
889     dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
890            << "\n";
891   }
892 }